

Home.Literature.Help.	Contact Us
	FAQ

Log in / Sign up	Log in / Sign up

	Post a question
	Home.
	Literature.

Help.

Write a JAVA program

Ghost90
data-structures-abstractions-java-3rd.pdf

Home>Computer Science homework help>Write a JAVA program

Reserved Words
Reserved words are also called keywords. You may not redefine any of these reserved words.
Their meanings are determined by the Java language and cannot be changed. In particular, you
cannot use any of these reserved words for variable names, method names, or class names.

abstract false package void

assert final private volatile

finally protected

boolean float public while

break for

byte return

goto

case short

catch if static

char implements strictfp

class import super

const instanceof switch

continue int synchronized

interface

default this

do long throw

double throws

native transient

else new true

enum null try

extends

This page intentionally left blank

Operator Precedence
In the following list, operators on the same line are of equal precedence. As you move down the
list, each line is of lower precedence. When the order of operations is not dictated by parenthe-
ses, the operator of higher precedence executes before an operator of lower precedence. When
operators have equal precedence, binary operators execute in left-to-right order, and unary oper-
ators execute in right-to-left order.

Highest Precedence
The unary operators +, -, ++, --, !, ~
The unary operators new and (type)
The binary operators *, /, %
The binary operators +, -
The binary (shift) operators <<, >>, >>>
The binary operators <, >, <=, >=
The binary operators ==, !=
The binary operator &
The binary operator ^
The binary operator |
The binary operator &&
The binary operator ||
The ternary (conditional) operator ? :
Assignment operators =, *=, /=, %=, +=, -=, <<=, >>=, >>>=, &=, ^=, |=
Lowest Precedence

Primitive Data Types

Type Size Values

Integer

byte 1 byte -128 to 127

short 2 bytes -32,768 to 32,767

int 4 bytes -2,147,483,648 to 2,147,483,647

long 8 bytes -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

Real

float 4 bytes -3.402824 x 1038 to 3.402824 x 1038

double 8 bytes -1.79769313486232 x 10308 to
1.79769313486232 x 10308

Character (Unicode)

char 2 bytes All Unicode values between 0 and 65,535

Boolean

boolean 1 bit true, false

Unicode Character Codes
The printable characters shown are a subset of the Unicode character set known as the ASCII
character set. The numbering is the same whether the characters are considered to be members
of the Unicode character set or members of the ASCII character set. (Character number 32 is the
blank.)

32 56 8 80 P 104 h

33 ! 57 9 81 Q 105 i

34 " 58 : 82 R 106 j

35 # 59 ; 83 S 107 k

36 $ 60 < 84 T 108 l

37 % 61 = 85 U 109 m

38 & 62 > 86 V 110 n

39 ' 63 ? 87 W 111 o

40 (64 @ 88 X 112 p

41) 65 A 89 Y 113 q

42 * 66 B 90 Z 114 r

43 + 67 C 91 [115 s

44 , 68 D 92 \ 116 t

45 - 69 E 93] 117 u

46 . 70 F 94 ^ 118 v

47 / 71 G 95 _ 119 w

48 0 72 H 96 ‘ 120 x

49 1 73 I 97 a 121 y

50 2 74 J 98 b 122 z

51 3 75 K 99 c 123 {

52 4 76 L 100 d 124 |

53 5 77 M 101 e 125 }

54 6 78 N 102 f 126 ~

55 7 79 O 103 g

Data Structures and Abstractions
with Java™

Third Edition

\

Frank M. Carrano
University of Rhode Island

Prentice Hall
Boston Columbus Indianpolis New York San Francisco Upper Saddle River

Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Editorial Director: Marcia Horton
Editor in Chief: Michael Hirsch
Acquisitions Editor: Tracy Dunkelberger
Editorial Assistant: Stephanie Sellinger
Director of Marketing: Patrice Jones
Marketing Manager: Yezan Alayan
Marketing Coordinator: Kathryn Ferranti
Vice President, Production: Vince O’Brien
Managing Editor: Jeff Holcomb
Associate Managing Editor: Robert Engelhardt
Manufacturing Manager: Nick Sklitsis
Operations Specialist: Lisa McDowell

Cover Designer: Anthony Gemmellaro
Photo Researcher: AV Manager, Rights and

Permissions: Karen Sanatar
Cover Image Credit: © Color Symphony/

Shutterstock
Media Editor: Dan Sandin
Full-Service Project Management: GEX

Publishing Services
Composition: GEX Publishing Services
Printer/Binder: Edwards Brothers
Cover Printer: Lehigh-Phoenix Color, Hagerstown

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this
textbook appear on the appropriate page within text.

Java is a trademark of the Oracle Corporation, 500 Oracle Parkway, Redwood Shores, CA 94065.

Copyright © 2012, 2007 and 2003 by Pearson Education, Inc., publishing as Prentice Hall. All rights
reserved. Manufactured in the United States of America. This publication is protected by Copyright, and
permission should be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying,
recording, or likewise. To obtain permission(s) to use material from this work, please submit a written
request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New
Jersey 07458, or you may fax your request to 201-236-3290.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark
claim, the designations have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data
Carrano, Frank M.
 Data structures and abstractions with Java / Frank M. Carrano. -- 3rd ed.
 p. cm.
 Includes bibliographical references and index.
 ISBN-13: 978-0-13-610091-1 (alk. paper)
 ISBN-10: 0-13-610091-0 (alk. paper)
 1. Data structures (Computer science) 2. Java (Computer program language) I. Title.
 QA76.9.D33C37 2012
 005.13'3--dc23
 2011029581

10 9 8 7 6 5 4 3 2 1

ISBN-10: 0-13-610091-0
ISBN-13: 978-0-13-610091-1

Welcome to the third edition of Data Structures and Abstractions with Java, a book for an introductory
course in data structures, typically known as CS-2. Readers of my book Imagine! Java can consider this one
as a sequel.

I wrote this book with you in mind—whether you are an instructor or a student—based upon my experi-
ences during more than three decades of teaching undergraduate computer science. I wanted my book to be
reader friendly so that students could learn more easily and instructors could teach more effectively. To this end,
you will find the material covered in small pieces—I call them “segments”—that are easy to digest and facilitate
learning. Numerous examples that mimic real-world situations provide a context for the new material and help to
make it easier for students to learn and retain abstract concepts. Many simple figures illustrate and clarify com-
plicated ideas. Included are over 60 video tutorials to supplement the instruction and help students when their
instructor is unavailable.

 I hope that you enjoy reading this book. Like many others before you, you can learn—or teach—data
structures in an effective and sustainable way.

Warm regards,
Frank M. Carrano

P. S. I am always available to connect with instructors and students who use my books. Here are a few ways
you can reach me:

Find me on Facebook: www.facebook.com/makingitreal

Follow me on Twitter: twitter.com/Frank_M_Carrano

Send me an e-mail: carrano@acm.org

Post on my blog: frank-m-carrano.com/makingitreal

Fr
om

 th
e

A
ut

ho
r

iii

www.facebook.com/makingitreal

iv

The topics that we cover in this book deal with the various ways of organizing data so that a given appli-
cation can access and manipulate data in an efficient way. These topics are fundamental to your future
study of computer science, as they provide you with the foundation of knowledge required to create com-
plex and reliable software. Whether you are interested in designing video games or software for robotic-
controlled surgery, the study of data structures is vital to your success. Even if you do not study all of the
topics in this book now, you are likely to encounter them later. I hope that you will enjoy reading the book,
and that it will serve as a useful reference tool for your future courses.

After looking over this preface, you should read the Introduction. There you will quickly see what this
book is about and what you need to know about Java before you begin. Appendices A through G review Java
basics, classes, inheritance, exceptions, files, and javadoc comments. Note that inside the front and back cov-
ers you will find Java’s reserved words, its primitive data types, the precedence of its operators, and a list of
Unicode characters.

 Please be sure to browse the rest of this preface to see the features that will help you in your studies.

A
 N

ot
e

to
 S

tu
de

nt
s

Organization and Structure

This book’s organization, sequencing, and pace of topic coverage make learning and teaching easier by
focusing your attention on one concept at a time, by providing flexibility in the order in which you can
cover topics, and by clearly distinguishing between the specification and implementation of abstract data
types, or ADTs. To accomplish these goals, I have organized the material into 30 chapters, composed of
small, numbered segments that deal with one concept at a time. Each chapter focuses on either the specifi-
cation and use of an ADT or its various implementations. You can choose to cover the specification of an
ADT followed by its implementations, or you can treat the specification and use of several ADTs before
you consider any implementation issues. The book’s organization makes it easy for you to choose the topic
order that you prefer.

Table of Contents at a Glance

The following list of chapter titles shows the overall composition of the book. A further chapter-by-chapter
description appears later. Note that highlighted sections are available online.

Introduction 21. Introducing Hashing
 1. Bags 22. Hashing as a Dictionary Implementation
 2. Bag Implementations That Use Arrays 23. Trees
 3. A Bag Implementation That Links Data 24. Tree Implementations
 4. The Efficiency of Algorithms 25. A Binary Search Tree Implementation
 5. Stacks 26. A Heap Implementation
 6. Stack Implementations 27. Balanced Search Trees
 7. Recursion 28. Graphs
 8. An Introduction to Sorting 29. Graph Implementations
 9. Faster Sorting Methods 30. Mutable, Immutable, and Cloneable Objects
 10. Queues, Deques, and Priority Queues
 11. Queue, Deque, and Priority Queue Implementations Appendices
 12. Lists A. Java Essentials
 13. List Implementations That Use Arrays B. Java Classes
 14. A List Implementation That Links Data C. Creating Classes from Other Classes
 15. Iterators D. Designing Classes
 16. Sorted Lists E. Handling Exceptions
 17. Inheritance and Lists F. File Input and Output
 18. Searching G. Documentation and Programming Style
 19. Dictionaries Glossary
 20. Dictionary Implementations Index

B
ri

ef
 T

ab
le

 o
f C

on
te

nt
s

v

vi

What’s New?

Based on comments from readers and reviewers, I have reorganized some of the material. Many students
are familiar with stacks and queues, and so the coverage of these data organizations is much earlier in this
edition. Moreover, the reorganization makes the difficult topic of linked data more accessible to students.
Adding or removing the first node in a chain of linked nodes is the easiest operation. By introducing the
bag, the book uses these simple operations on a linked chain in the bag’s implementation. That data collec-
tion is followed by the stack, a more useful organization that has the same simple chain in one of its defini-
tions. Queue implementations provide the opportunity to discuss adding and removing the last node in a
chain. Finally, the treatment of lists looks at the more involved operations of adding and removing a node
that lies between existing nodes.

You will notice that algorithm efficiency—including improved motivation—recursion, and sorting also
are covered earlier in this edition than in the previous one. To maintain the focus on data structures, I have
moved the first three chapters—Java Classes, Creating Classes from Other Classes, and Designing Classes—
to the appendices. The presentation now moves from the introduction immediately to the first data collection,
the bag. However, readers who need to study Java classes before embarking on the main topic of this book
will find the original coverage intact in the appendices.

Finally, I have added some new features. Extensive examples are presented in the form of “A Problem
Solved,” in which a problem is posed and its solution is discussed and implemented. An occasional “Design
Decision” explores various design choices of a solution. These two new elements help students to think about
important aspects of program design and to consider concepts in a situational context. Another new feature is
the availability online of over 60 VideoNotes that provide additional instruction in a more dynamic form than
a static textbook. The Notes, Programming Tips, and Questions—with answers—that were featured in the
previous edition have been retained. And you will find an introduction to the interface Deque and the class
ArrayDeque, as well as additional programming projects.

Here is a summary of what is new:

• Earlier introduction of abstract data types, resizable arrays, and linked data.
• More gradual coverage of linked data.
• Earlier coverage of algorithm efficiency, stacks, recursion, sorting, and queues.
• Better motivation of the need for algorithm efficiency.
• Chapters 1 through 3—Bags, Bag Implementations That Use Arrays, and A Bag Implementation That

Links Data—introduce and implement the ADT bag.
• New elements, including A Problem Solved and Design Decision.
• Review of Java classes that appeared in the initial chapters of the second edition is now in the appendices.
• VideoNotes—short instructional tutorials—reinforce key concepts presented in the book.
• Coverage of the standard interface Deque and the class ArrayDeque.
• Additional Programming Projects.
• Answers to Self-Test Questions appear at the end of each chapter instead of an appendix.

N
ew

 to
 T

hi
s E

di
tio

n

N
ew

 to
 th

is
 E

di
tio

n

Features to Enhance Learning

Each chapter begins with a table of contents, a list of prerequisite chapters or appendices that students
should have read, and the learning objectives for the material to be covered. Other pedagogical elements
appear throughout the book, as follows:

Notes Important ideas are presented or summarized in highlighted paragraphs and are meant
to be read in line with the surrounding text.

Programming Tips Suggestions to improve or facilitate programming are featured as soon as
they become relevant.

Examples Numerous examples illuminate new concepts.

A Problem Solved Large examples are presented in the form of “A Problem Solved,” in
which a problem is posed and its solution is discussed, designed, and implemented.

Design Decisions To give readers insight into the design choices that one could make when
formulating a solution, “Design Decision” elements lay out such options, along with the ration-
ale behind the choice made for a particular example. These discussions are often in the context
of one of the A Problem Solved examples.

Self-Test Questions Questions are posed throughout each chapter, integrated within the text,
that reinforce the concept just presented. These “self-test” questions help readers to understand
the material, since answering them requires pause and reflection. Solutions to these questions
are provided at the end of each chapter.

VideoNotes Online tutorials are a Pearson feature that provides visual and audio support to
the presentation given throughout the book. They offer students another way to recap and
reinforce key concepts. VideoNotes allow for self-paced instruction with easy navigation,
including the ability to select, play, rewind, fast-forward, and stop within each video. Unique
VideoNote icons appear throughout this book whenever a video is available for a particular
concept or problem. A detailed list of the VideoNotes for this text and their associated loca-
tions in the book can be found on page xxiv. VideoNotes are free with the purchase of a new
textbook. To purchase access to VideoNotes, please go to

pearsonhighered.com/carrano

Exercises and Programming Projects Further practice is available by solving the exercises
and programming projects at the end of each chapter. Unfortunately, we cannot give readers the
answers to these exercises and programming projects, even if they are not enrolled in a class.
Only instructors who adopt the book can receive selected answers from the publisher. For help
with these exercises and projects, you will have to contact your instructor.

VideoNote

Pe
da

go
gi

ca
l E

le
m

en
ts

vii

viii

Accessing Instructor and Student Resource Materials

The following items are available on the publisher’s website at pearsonhighered.com/carrano:
• Java code as it appears in the book
• A link to any misprints that have been discovered since the book was published
• Links to additional online content, which is described next

Instructor Resources
The following protected material is available to instructors who adopt this book by logging onto Pearson’s
Instructor Resource Center, accessible from pearsonhighered.com/carrano:

• PowerPoint lecture slides
• Instructor solutions manual
• Figures from the book

Additionally, instructors can access the book’s Companion Website for the following online premium con-
tent, also accessible from pearsonhighered.com/carrano:

• Instructional VideoNotes
• Chapter 30
• A glossary of terms
• Exercises and projects for Appendices B, C, and D

Please contact your Pearson sales representative for an instructor access code. Contact information is avail-
able at pearsonhighered.com/replocator.

Student Resources
The following material is available to students by logging onto the Companion Website accessible from
pearsonhighered.com/carrano:

• Instructional VideoNotes
• Chapter 30
• A glossary of terms
• Exercises and projects for Appendices B, C, and D

Students must use the access card located in the front of the book to register for and then enter the Com-
panion Website. Students without an access code can purchase access from the Companion Website by
following the instructions listed there.

Note that the Java Class Library is available at download.oracle.com/javase/7/docs/api/.

R
es

ou
rc

es

Chapter Overview

Readers of this book should have completed a programming course, preferably in Java. The appendices
cover the essentials of Java that we assume readers will know. You can use these appendices as a review or
as the basis for making the transition to Java from another programming language. The book itself begins
with the Introduction, which sets the stage for the data organizations that we will study.

• Chapters 1 through 3: We introduce the bag as an abstract data type (ADT). By dividing the material
across several chapters, we clearly separate the specification, use, and implementation of the bag. For
example, Chapter 1 specifies the bag and provides several examples of its use. Chapter 2 covers imple-
mentations that use arrays and vectors, while Chapter 3 introduces chains of linked nodes and uses one
in the definition of a class of bags.

In a similar fashion, we separate specification from implementation throughout the book when we
discuss various other ADTs. You can choose to cover the chapters that specify and use the ADTs and
then later cover the chapters that implement them. Or you can cover the chapters as they appear, imple-
menting each ADT right after studying its specification and use. A list of chapter prerequisites appears
later in this preface to help you plan your path through the book.

Chapter 2 does more than simply implement the ADT bag. It shows how to approach the imple-
mentation of a class by initially focusing on core methods. When defining a class, it is often useful to
implement and test these core methods first and to leave definitions of the other methods for later.

• Chapter 4: Here we introduce the complexity of algorithms, a topic that we integrate into future
chapters.

• Chapters 5 and 6: Chapter 5 discusses stacks, giving examples of their use, and Chapter 6 implements
the stack using an array, a vector, and a chain.

• Chapters 7 through 9: Next, we present recursion as a problem-solving tool and its relationship to
stacks. Recursion, along with algorithm efficiency, is a topic that is revisited throughout the book. For
example, Chapters 8 and 9 discuss various sorting techniques and their relative complexities. We con-
sider both iterative and recursive versions of these algorithms.

• Chapters 10 and 11: Chapter 10 discusses queues, deques, and priority queues, and Chapter 11 consid-
ers their implementations. It is in this latter chapter that we introduce circularly linked and doubly
linked chains.

• Chapters 12, 13, and 14: The next three chapters introduce the ADT list. We discuss this collection
abstractly and then implement it by using an array, a vector, and finally a chain of linked nodes.

• Chapter 15: Next, we discuss iterators in the context of a list. This chapter considers and imple-
ments Java’s iterator interfaces Iterator and ListIterator. The chapter also introduces the inter-
face Iterable.

• Chapters 16 and 17: Continuing the discussion of a list, Chapter 16 introduces the sorted list, looking
at two possible implementations and their efficiencies. Chapter 17 shows how to use the list as a super-
class for the sorted list and discusses the general design of a superclass.

• Chapter 18: We then examine some strategies for searching an array or a chain in the context of a list or
a sorted list. This discussion is a good basis for the sequence of chapters that follows.

• Chapters 19 through 22: Chapter 19 covers the specification and use of the ADT dictionary. Chapter 20
presents implementations of the dictionary that are linked or that use arrays. Chapter 21 introduces hash-
ing, and Chapter 22 uses it as a dictionary implementation.

• Chapters 23 through 27: Chapter 23 discusses trees and their possible uses. Included among the sev-
eral examples of trees is an introduction to the binary search tree and the heap. Chapter 24 considers
implementations of the binary tree and the general tree, and Chapter 25 focuses on the implementation
of the binary search tree. Chapter 26 shows how to use an array to implement the heap. Chapter 27

D
et

ai
le

d
C

on
te

nt
 D

es
cr

ip
tio

n

ix

x

introduces balanced search trees. Included in this chapter are the AVL, 2-3, 2-4, and red-black trees, as
well as B-trees.

• Chapters 28 and 29: Next, we discuss graphs and look at several applications and two implementations.
• Chapter 30: The final chapter expands on the notion of mutable objects and immutable objects, and

introduces cloning. If a client can maintain a reference to the data within an ADT, it can change that data
without using the class’s public methods, if the data is mutable. We consider steps that you can take to
prevent the client from doing so.

• Appendices A through G: The appendices provide supplemental coverage of Java. As we mentioned earlier,
Appendix A reviews Java up to but not including classes. However, this appendix also covers the Scanner
class, enumerations, boxing and unboxing, and the for-each loop. Appendix B discusses Java classes,
Appendix C expands this topic by looking at composition and inheritance, and Appendix D focuses on class
design. Appendix E covers exception handling, and Appendix F discusses files. Appendix G considers pro-
gramming style and comments. It introduces javadoc comments and defines the tags that we use in this book.

Acknowledgments
My sincere appreciation and thanks go to the following reviewers for carefully reading the previous edition
and making candid comments and suggestions that greatly improved the work.

Steven Andrianoff—St. Bonaventure University
Brent Baas—LeTourneau University
Timothy Henry—University of Rhode Island
Ken Martin—University of North Florida
Bill Siever—Northwest Missouri State University
Lydia Sinapova—Simpson College
Lubomir Stanchev—Indiana University
Judy Walters—North Central College
Xiaohui Yuan—University of North Texas

Special thanks go to my support team during the lengthy process of revising this book. My editor, Tracy
Dunkelberger, gave me her constant enthusiasm, encouragement, wisdom, and guidance. Melinda Haggerty
and Allison Michael coordinated the review process, and Stephanie Sellinger oversaw the development of the
book and its supplements. My long-time copy editor, Rebecca Pepper, ensured that my presentation is clear,
correct, and grammatical. Jeff Holcomb, Bob Engelhardt, and Louise Capulli directed the production of the
book. This team was there for me whenever I needed them at a moment’s notice. Thank you so much!

My gratitude for the previously mentioned people does not diminish my appreciation for the help pro-
vided by many others. Tim Henry, my colleague at URI, created over 60 VideoNotes that provide extra
instruction for every chapter of the book. Steve Armstrong produced the lecture slides for this edition and pre-
vious editions of the book. Thank you again to the reviewers of the first two editions of the book:

Reviewers for the second edition:
Harold Anderson—Marist College
Razvan Andonie—Central Washington University
Tom Blough—Rensselaer Polytechnic Institute

A
ck

no
w

le
dg

m
en

ts

Chris Brooks—University of San Francisco
Adrienne Decker—University at Buffalo, SUNY
Henry Etlinger—Rochester Institute of Technology
Derek Harter—Texas A&M University
Timothy Henry—University of Rhode Island
Robert Holloway—University of Wisconsin, Madison
Charles Hoot—Oklahoma City University
Teresa Leyk—Texas A&M University
Robert McGlinn—Southern Illinois University, Carbondale
Edward Medvid—Marymount University
Charles Metzler—City College of San Francisco
Daniel Zeng—University of Arizona

Reviewers for the first edition:
David Boyd—Valdosta State University
Dennis Brylow—Purdue University
Michael Croswell—Industry trainer/consultant
Matthew Dickerson—Middlebury College
Robert Holloway—University of Wisconsin, Madison
John Motil—California State University, Northridge
Bina Ramamurthy—University at Buffalo, SUNY
David Surma—Valparaiso University

I continue to appreciate the many others who helped during previous editions. They include Alan Apt,
James Blanding, Lianne Dunn, Mike Giacobbe, Toni Holm, Charles Hoot, Brian Jepson, Rose Kernan, Chris-
tianna Lee, Patrick Lindner, John Lovell, Vince O’Brien, Patty Roy, Walt Savitch, Ben Schomp, Heather
Scott, Carole Snyder, Chirag Thakkar, Camille Trentacoste, Nate Walker, and Xiaohong Zhu.

Finally, I thank my family and friends—Doug, Ted, Vandee, Nancy, Sue, Tom, Maybeth, Marge, and
Lorraine—for giving me a life away from computers.

Thank you, everyone, for your expertise and good cheer.
Frank M. Carrano

A
ck

no
w

le
dg

m
en

ts

xi

This page intentionally left blank

xiii

Ta
bl

e
of

 C
on

te
nt

sContents
Introduction 1

Chapter 1 Bags 5
The Bag 6

A Bag’s Behaviors 6
Specifying a Bag 7

An Interface 13
Using the ADT Bag 15
Using an ADT Is Like Using a Vending Machine 20
Java Class Library: The Interface Set 21

Chapter 2 Bag Implementations That Use Arrays 27
Using a Fixed-Size Array to Implement the ADT Bag 28

An Analogy 28
A Group of Core Methods 29
Implementing the Core Methods 30
Testing the Core Methods 37
Implementing More Methods 40
Methods That Remove Entries 42

Using Array Resizing to Implement the ADT Bag 50
Resizing an Array 50
A New Implementation of a Bag 53

The Pros and Cons of Using an Array to Implement the ADT Bag 55

Chapter 3 A Bag Implementation That Links Data 61
Linked Data 62

Forming a Chain by Adding to Its Beginning 63
A Linked Implementation of the ADT Bag 65

The Private Class Node 65
An Outline of the Class LinkedBag 66
Defining Some Core Methods 67
Testing the Core Methods 71
The Method getFrequencyOf 72
The Method contains 73

Removing an Item from a Linked Chain 74
The Methods remove and clear 75

A Class Node That Has Set and Get Methods 78
The Pros and Cons of Using a Chain to Implement the ADT Bag 81

Chapter 4 The Efficiency of Algorithms 87
Motivation 88
Measuring an Algorithm’s Efficiency 89

Counting Basic Operations 91
Best, Worst, and Average Cases 93

Big Oh Notation 94
The Complexities of Program Constructs 97

Picturing Efficiency 98
The Efficiency of Implementations of the ADT Bag 102

An Array-Based Implementation 102
A Linked Implementation 103
Comparing the Implementations 104

xiv

Ta
bl

e
of

 C
on

te
nt

s Chapter 5 Stacks 113
Specifications of the ADT Stack 114
Using a Stack to Process Algebraic Expressions 118

A Problem Solved: Checking for Balanced Delimiters in an
Infix Algebraic Expression 119

A Problem Solved: Transforming an Infix Expression
to a Postfix Expression 123

A Problem Solved: Evaluating Postfix Expressions 128
A Problem Solved: Evaluating Infix Expressions 130

The Program Stack 132
Java Class Library: The Class Stack 133

Chapter 6 Stack Implementations 141
A Linked Implementation 141
An Array-Based Implementation 145
A Vector-Based Implementation 149

Java Class Library: The Class Vector 150
Using a Vector to Implement the ADT Stack 150

Chapter 7 Recursion 157
What Is Recursion? 158
Tracing a Recursive Method 162
Recursive Methods That Return a Value 166
Recursively Processing an Array 168
Recursively Processing a Linked Chain 171
The Time Efficiency of Recursive Methods 172

The Time Efficiency of countDown 172
The Time Efficiency of Computing xn 174

A Simple Solution to a Difficult Problem 175
A Poor Solution to a Simple Problem 180
Tail Recursion 182
Indirect Recursion 184
Using a Stack Instead of Recursion 185

Chapter 8 An Introduction to Sorting 195
Organizing Java Methods That Sort an Array 196
Selection Sort 198

Iterative Selection Sort 199
Recursive Selection Sort 201
The Efficiency of Selection Sort 202

Insertion Sort 203
Iterative Insertion Sort 204
Recursive Insertion Sort 206
The Efficiency of Insertion Sort 208
Insertion Sort of a Chain of Linked Nodes 208

Shell Sort 211
The Java Code 213
The Efficiency of Shell Sort 214

Comparing the Algorithms 214

xv

Ta
bl

e
of

 C
on

te
nt

sChapter 9 Faster Sorting Methods 221
Merge Sort 222

Merging Arrays 222
Recursive Merge Sort 223
The Efficiency of Merge Sort 225
Iterative Merge Sort 227
Merge Sort in the Java Class Library 227

Quick Sort 228
The Efficiency of Quick Sort 228
Creating the Partition 229
Java Code for Quick Sort 232
Quick Sort in the Java Class Library 234

Radix Sort 235
Pseudocode for Radix Sort 236
The Efficiency of Radix Sort 237

Comparing the Algorithms 237

Chapter 10 Queues, Deques, and Priority Queues 245
The ADT Queue 246

A Problem Solved: Simulating a Waiting Line 250
A Problem Solved: Computing the Capital Gain in a Sale of Stock 256
Java Class Library: The Interface Queue 259

The ADT Deque 260
A Problem Solved: Computing the Capital Gain in a Sale of Stock 262
Java Class Library: The Interface Deque 263
Java Class Library: The Class ArrayDeque 264

The ADT Priority Queue 265
A Problem Solved: Tracking Your Assignments 266
Java Class Library: The Class PriorityQueue 268

Chapter 11 Queue, Deque, and Priority Queue Implementations 273
A Linked Implementation of a Queue 274
An Array-Based Implementation of a Queue 278

A Circular Array 278
A Circular Array with One Unused Location 281

A Vector-Based Implementation of a Queue 286
Circular Linked Implementations of a Queue 288

A Two-Part Circular Linked Chain 289
Java Class Library: The Class AbstractQueue 294
A Doubly Linked Implementation of a Deque 295
Possible Implementations of a Priority Queue 299

Chapter 12 Lists 305
Specifications for the ADT List 306
Using the ADT List 312
Java Class Library: The Interface List 316
Java Class Library: The Class ArrayList 316

xvi

Ta
bl

e
of

 C
on

te
nt

s Chapter 13 List Implementations That Use Arrays 321
Using an Array to Implement the ADT List 322

An Analogy 322
The Java Implementation 324
The Efficiency of Using an Array to Implement the ADT List 331

Using a Vector to Implement the ADT List 332

Chapter 14 A List Implementation That Links Data 339
Operations on a Chain of Linked Nodes 340

Adding a Node at Various Positions 340
Removing a Node from Various Positions 344
The Private Method getNodeAt 345

Beginning the Implementation 346
The Data Fields and Constructor 347
Adding to the End of the List 348
Adding at a Given Position Within the List 349
The Methods isEmpty and toArray 350
Testing the Core Methods 353

Continuing the Implementation 354
A Refined Implementation 356

The Tail Reference 357
The Efficiency of Using a Chain to Implement the ADT List 360
Java Class Library: The Class LinkedList 362

Chapter 15 Iterators 369
What Is an Iterator? 370
 The Interface Iterator 371

Using the Interface Iterator 372
A Separate Class Iterator 377
An Inner Class Iterator 381

A Linked Implementation 381
An Array-Based Implementation 385

Why Are Iterator Methods in Their Own Class? 388
The Interface ListIterator 390

Using the Interface ListIterator 393
An Array-Based Implementation of the Interface ListIterator 395

The Inner Class 397
Java Class Library: The Interface Iterable 402

Iterable and for-each loops 403
The Interface List Revisited 403

Chapter 16 Sorted Lists 411
Specifications for the ADT Sorted List 412

Using the ADT Sorted List 415
A Linked Implementation 416

The Method add 417
The Efficiency of the Linked Implementation 424

An Implementation That Uses the ADT List 424
Efficiency Issues 427

xvii

Ta
bl

e
of

 C
on

te
nt

sChapter 17 Inheritance and Lists 433
Using Inheritance to Implement a Sorted List 434
Designing a Base Class 436

Creating an Abstract Base Class 441
An Efficient Implementation of a Sorted List 443

The Method add 443

Chapter 18 Searching 447
The Problem 448
Searching an Unsorted Array 448

An Iterative Sequential Search of an Unsorted Array 449
A Recursive Sequential Search of an Unsorted Array 450
The Efficiency of a Sequential Search of an Array 452

Searching a Sorted Array 452
A Sequential Search of a Sorted Array 452
A Binary Search of a Sorted Array 453
Java Class Library: The Method binarySearch 458
The Efficiency of a Binary Search of an Array 458

Searching an Unsorted Chain 460
An Iterative Sequential Search of an Unsorted Chain 460
A Recursive Sequential Search of an Unsorted Chain 461
The Efficiency of a Sequential Search of a Chain 462

Searching a Sorted Chain 462
A Sequential Search of a Sorted Chain 462
A Binary Search of a Sorted Chain 462

Choosing a Search Method 463

Chapter 19 Dictionaries 471
Specifications for the ADT Dictionary 472

A Java Interface 476
Iterators 477

Using the ADT Dictionary 478
A Problem Solved: A Directory of Telephone Numbers 479
A Problem Solved: The Frequency of Words 484
A Problem Solved: A Concordance of Words 488

Java Class Library: The Interface Map 490

Chapter 20 Dictionary Implementations 497
Array-Based Implementations 498

An Unsorted Array-Based Dictionary 498
A Sorted Array-Based Dictionary 503

Vector-Based Implementations 508
Linked Implementations 512

An Unsorted Linked Dictionary 514
A Sorted Linked Dictionary 514

Chapter 21 Introducing Hashing 523
What Is Hashing? 524
Hash Functions 527

Computing Hash Codes 527
Compressing a Hash Code into an Index for the Hash Table 530

xviii

Ta
bl

e
of

 C
on

te
nt

s Resolving Collisions 531
Open Addressing with Linear Probing 531
Open Addressing with Quadratic Probing 537
Open Addressing with Double Hashing 537
A Potential Problem with Open Addressing 539
Separate Chaining 539

Chapter 22 Hashing as a Dictionary Implementation 547
The Efficiency of Hashing 548

The Load Factor 548
The Cost of Open Addressing 549
The Cost of Separate Chaining 551

Rehashing 552
Comparing Schemes for Collision Resolution 553
A Dictionary Implementation That Uses Hashing 554

Entries in the Hash Table 554
Data Fields and Constructors 555
The Methods getValue, remove, and add 557
Iterators 562

Java Class Library: The Class HashMap 564
Java Class Library: The Class HashSet 564

Chapter 23 Trees 569
Tree Concepts 570

Hierarchical Organizations 570
Tree Terminology 572

Traversals of a Tree 576
Traversals of a Binary Tree 576
Traversals of a General Tree 579

Java Interfaces for Trees 579
Interfaces for All Trees 580
An Interface for Binary Trees 580

Examples of Binary Trees 582
Expression Trees 582
Decision Trees 584
Binary Search Trees 588
Heaps 590

Examples of General Trees 593
Parse Trees 593
Game Trees 593

Chapter 24 Tree Implementations 603
The Nodes in a Binary Tree 604

An Interface for a Node 605
An Implementation of BinaryNode 606

An Implementation of the ADT Binary Tree 607
Creating a Basic Binary Tree 608
The Method privateSetTree 609
Accessor and Mutator Methods 612
Computing the Height and Counting Nodes 613
Traversals 614

xix

Ta
bl

e
of

 C
on

te
nt

sAn Implementation of an Expression Tree 619
General Trees 621

A Node for a General Tree 621
Using a Binary Tree to Represent a General Tree 622

Chapter 25 A Binary Search Tree Implementation 629
Getting Started 630

An Interface for the Binary Search Tree 631
Duplicate Entries 633
Beginning the Class Definition 634

Searching and Retrieving 635
Traversing 637
Adding an Entry 637

A Recursive Implementation 638
An Iterative Implementation 642

Removing an Entry 643
Removing an Entry Whose Node Is a Leaf 644
Removing an Entry Whose Node Has One Child 644
Removing an Entry Whose Node Has Two Children 645
Removing an Entry in the Root 648
A Recursive Implementation 649
An Iterative Implementation 652

The Efficiency of Operations 656
The Importance of Balance 657
The Order in Which Nodes Are Added 658

An Implementation of the ADT Dictionary 659

Chapter 26 A Heap Implementation 673
Reprise: The ADT Heap 674
Using an Array to Represent a Heap 674
Adding an Entry 677
Removing the Root 680
Creating a Heap 683
Heap Sort 686

Chapter 27 Balanced Search Trees 695
AVL Trees 696

Single Rotations 696
Double Rotations 699
Implementation Details 703

2-3 Trees 707
Searching a 2-3 Tree 708
Adding Entries to a 2-3 Tree 709
Splitting Nodes During Addition 711

2-4 Trees 712
Adding Entries to a 2-4 Tree 713
Comparing AVL, 2-3, and 2-4 Trees 715

Red-Black Trees 716
Properties of a Red-Black Tree 717
Adding Entries to a Red-Black Tree 718
Java Class Library: The Class TreeMap 724

B-Trees 724

xx

Ta
bl

e
of

 C
on

te
nt

s Chapter 28 Graphs 731
Some Examples and Terminology 732

Road Maps 732
Airline Routes 735
Mazes 736
Course Prerequisites 736
Trees 737

Traversals 737
Breadth-First Traversal 738
Depth-First Traversal 740

Topological Order 741
Paths 744

Finding a Path 744
The Shortest Path in an Unweighted Graph 744
The Shortest Path in a Weighted Graph 747

Java Interfaces for the ADT Graph 751

Chapter 29 Graph Implementations 761
An Overview of Two Implementations 762

The Adjacency Matrix 762
The Adjacency List 763

Vertices and Edges 764
Specifying the Class Vertex 765
The Inner Class Edge 767
Implementing the Class Vertex 768

An Implementation of the ADT Graph 772
Basic Operations 772
Graph Algorithms 775

Chapter 30 Mutable, Immutable, and Cloneable Objects Online
Mutable and Immutable Objects 30-2

Creating a Read-Only Class 30-4
Companion Classes 30-6

Cloneable Objects 30-8
Cloning an Array 30-14
Cloning a Chain 30-16
A Sorted List of Clones 30-19

Appendices
A. Java Essentials A-1
Introduction A-2

Applications and Applets A-2
Objects and Classes A-3
A First Java Application Program A-3

Java Basics A-5
Identifiers A-5
Reserved Words A-6
Variables A-6
Primitive Types A-7
Constants A-7

xx

Ta
bl

e
of

 C
on

te
nt

s

xxi

Ta
bl

e
of

 C
on

te
nt

sAssignment Statements A-8
Assignment Compatibilities A-9
Type Casting A-9
Arithmetic Operators and Expressions A-10
Parentheses and Precedence Rules A-11
Increment and Decrement Operators A-12
Special Assignment Operators A-13
Named Constants A-14
The Class Math A-15

Simple Input and Output Using the Keyboard and Screen A-15
Screen Output A-15
Keyboard Input Using the Class Scanner A-17

The if-else Statement A-19
Boolean Expressions A-20
Nested Statements A-23
Multiway if-else Statements A-24
The Conditional Operator (Optional) A-25

The switch Statement A-26
Enumerations A-28
Scope A-30
Loops A-30

The while Statement A-31
The for Statement A-32
The do-while Statement A-34
Additional Loop Information A-35

The Class String A-36
Characters Within Strings A-36
Concatenation of Strings A-37
String Methods A-38

The Class StringBuilder A-40
Using Scanner to Extract Pieces of a String A-42
Arrays A-44

Array Parameters and Returned Values A-46
Initializing Arrays A-47
Array Index Out of Bounds A-47
Use of = and == with Arrays A-47
Arrays and the For-Each Loop A-48
Multidimensional Arrays A-49

Wrapper Classes A-51

B. Java Classes B-1
Objects and Classes B-1
Using the Methods in a Java Class B-3

References and Aliases B-4
Defining a Java Class B-5

Method Definitions B-7
Arguments and Parameters B-9
Passing Arguments B-9
A Definition of the Class Name B-13

xxii

Ta
bl

e
of

 C
on

te
nt

s Constructors B-15
The Method toString B-17
Methods That Call Other Methods B-17
Methods That Return an Instance of Their Class B-19
Static Fields and Methods B-19
Overloading Methods B-21

Enumeration as a Class B-22
Packages B-25

The Java Class Library B-25
Generic Data Types B-26

C. Creating Classes from Other Classes C-1
Composition C-2

Adapters C-4
Inheritance C-5

Invoking Constructors from Within Constructors C-9
Private Fields and Methods of the Superclass C-10
Protected Access C-11
Overriding and Overloading Methods C-11
Multiple Inheritance C-16

Type Compatibility and Superclasses C-16
The Class Object C-18
Abstract Classes and Methods C-19

Polymorphism C-21

D. Designing Classes D-1
Encapsulation D-2
Specifying Methods D-4

Comments D-4
Preconditions and Postconditions D-5
Assertions D-6

Java Interfaces D-7
Writing an Interface D-8
Implementing an Interface D-10
An Interface as a Data Type D-11
Generic Types Within an Interface D-12
Extending an Interface D-14
Interfaces Versus Abstract Classes D-15
Named Constants Within an Interface D-17

Choosing Classes D-18
Identifying Classes D-20
CRC Cards D-20
The Unified Modeling Language D-21

Reusing Classes D-23

E. Handling Exceptions E-1
The Basics E-2
Handling an Exception E-4

Postpone Handling: The throws Clause E-4
Handle It Now: The try-catch Blocks E-5
Multiple catch Blocks E-6

xxiii

Ta
bl

e
of

 C
on

te
nt

sThrowing an Exception E-8
Programmer-Defined Exception Classes E-9
Inheritance and Exceptions E-14
The finally Block E-15

F. File Input and Output F-1
Preliminaries F-2

Why Files? F-2
Streams F-2
The Kinds of Files F-3
File Names F-3

Text Files F-3
Creating a Text File F-3
Reading a Text File F-8
Changing Existing Data in a Text File F-12
Defining a Method to Open a Stream F-13

Binary Files F-13
Creating a Binary File of Primitive Data F-14
Reading a Binary File of Primitive Data F-18
Strings in a Binary File F-20
Object Serialization F-23

G. Documentation and Programming Style G-1
Naming Variables and Classes G-1
Indenting G-2
Comments G-2

Single-Line Comments G-3
Comment Blocks G-3
When to Write Comments G-3
Java Documentation Comments G-3
Running javadoc G-5

Glossary Online
Index I-1

xxiv

VideoNotes Directory
This table lists the VideoNotes that are available online. The page numbers indicate
where in the book each VideoNote has relevance.

Chapter 1 Bags
Designing an ADT 7
Designing a test for an ADT 16

Chapter 2 Bag Implementations That Use Arrays
An array-based bag 29
A resizable bag 53

Chapter 3 A Bag Implementation That Links Data
Linked data 62
Beginning the class LinkedBag 67
Completing the class LinkedBag 72

Chapter 4 The Efficiency of Algorithms
Measuring efficiency 89
Comparing ADT bag implementations 102

Chapter 5 Stacks
The ADT stack 114
Using the ADT stack 128

Chapter 6 Stack Implementations
The class LinkedStack 142
The class ArrayStack 145

Chapter 7 Recursion
Introducing recursion 158
Using recursion to solve problems 168

Chapter 8 An Introduction to Sorting
Selection sort 198
Insertion sort 203

Chapter 9 Faster Sorting Methods
Merge sort 222
Quick sort 228

Chapter 10 Queues, Deques, and Priority Queues
The ADT queue 246
The ADTs deque and priority queue 265

Chapter 11 Queue, Deque, and Priority Queue Implementations
The class LinkedQueue 274
The class ArrayQueue 281
Other queue implementations 288

Chapter 12 Lists
The ADT list 306
Using the ADT list 312

Chapter 13 List Implementations That Use Arrays
The class AList 324
Completing the class AList 329

VideoNote

V
id

eo
N

ot
es

xxv

Chapter 14 A List Implementation That Links Data
The class LList 348
Completing the class LList 354

Chapter 15 Iterators
Iterators and their use 370
Alternative iterator implementations 381

Chapter 16 Sorted Lists
The class SortedLinkedList 416
An array-based sorted list 424

Chapter 17 Inheritance and Lists
Inheritance and ADT implementations 434
Creating a base class 441

Chapter 18 Searching
Searching an array 449
Searching a linked chain 460

Chapter 19 Dictionaries
The ADT dictionary 472
Using the ADT dictionary 478

Chapter 20 Dictionary Implementations
Array-based dictionaries 498
Linked-chain dictionaries 512

Chapter 21 Introducing Hashing
Hashing 524
Resolving collisions 531

Chapter 22 Hashing as a Dictionary Implementation
Hashing efficiency 548
Implementing a dictionary 554

Chapter 23 Trees
The ADT Tree 576
Using the ADT tree 582

Chapter 24 Tree Implementations
Creating a binary tree 608
Binary tree operations 612

Chapter 25 A Binary Search Tree Implementation
Creating a binary search tree 634
Binary search tree additions and removals 637

Chapter 26 A Heap Implementation
Implementing the ADT heap 674
The heap sort 686

Chapter 27 Balanced Search Trees
AVL trees 696
2-3 trees 707
2-4 and red-black trees 713

V
id

eo
N

ot
es

xxvi

Chapter 28 Graphs
Graph concepts and terminology 733
Graph operations 738

Chapter 29 Graph Implementations
The adjacency matrix 762
Implementing graph operations 772

Chapter 30 Mutable, Immutable, and Cloneable Objects
Mutable and immutable objects 30-2
Cloneable objects 30-8

V
id

eo
N

ot
es

xxvii

Chapter Prerequisites
Each chapter and appendix assumes that the reader has studied certain previous
material. This list indicates those prerequisites. Numbers represent chapter num-
bers, and letters reference appendices. You can use this information to plan a path
through the book.

Prerequisites
Chapter 1 Bags C, D
Chapter 2 Bag Implementations That Use Arrays 1, D
Chapter 3 A Bag Implementation That Links Data 1, 2
Chapter 4 The Efficiency of Algorithms 2, 3, B
Chapter 5 Stacks 1, D
Chapter 6 Stack Implementations 2, 3, 4, 5
Chapter 7 Recursion 2, 3, 4, 5, B
Chapter 8 An Introduction to Sorting 3, 4, 7
Chapter 9 Faster Sorting Methods 4, 7, 8
Chapter 10 Queues, Deques, and Priority Queues 5, 8, D
Chapter 11 Queue, Deque, and Priority Queue Implementations 2, 3, 6, 10
Chapter 12 Lists 6, B, D, E
Chapter 13 List Implementations That Use Arrays 2, 4, 12, D
Chapter 14 A List Implementation That Links Data 3, 11, 12, 13
Chapter 15 Iterators 13, 14, E
Chapter 16 Sorted Lists 4, 7, 12, 14
Chapter 17 Inheritance and Lists 12, 13, 14, 16, C
Chapter 18 Searching 4, 7, 12, 13, 14, 16
Chapter 19 Dictionaries 12, 15, 18
Chapter 20 Dictionary Implementations 3, 4, 12, 13, 14, 15, 18, 19
Chapter 21 Introducing Hashing 19, 20
Chapter 22 Hashing as a Dictionary Implementation 4, 13, 14, 15, 19, 20, 21
Chapter 23 Trees 5, 7, 14, 15, 18
Chapter 24 Tree Implementations 5, 10, 14, 23, C, E
Chapter 25 A Binary Search Tree Implementation 7, 19, 23, 24, C
Chapter 26 A Heap Implementation 2, 13, 23
Chapter 27 Balanced Search Trees 23, 24, 25
Chapter 28 Graphs 5, 10, 23
Chapter 29 Graph Implementations 5, 10, 12, 15, 19, 23, 28
Chapter 30 Mutable, Immutable, and Cloneable Objects 13, 14, 15, 16, 17, C, E
Appendix A Java Essentials Knowledge of a programming language
Appendix B Java Classes A
Appendix C Creating Classes from Other Classes B
Appendix D Designing Classes A, B, C, G
Appendix E Handling Exceptions A, B, C
Appendix F File Input and Output A, D, E
Appendix G Documentation and Programming Style A

This page intentionally left blank

Introduction

Look around and you will see ways that people organize things. When you stopped at the store
this morning, you went to the back of a line to wait for the cashier. The line organized people
chronologically. The first person in the line was the first to be served and to leave the line.
Eventually, you reached the front of the line and left the store with a bag containing your purchases.
The items in the bag were in no particular order, and some of them were the same.

Do you see a stack of books or a pile of papers on your desk? It’s easy to look at or remove
the top item of the stack or to add a new item to the top of the stack. The items in a stack also are
organized chronologically, with the item added most recently on top and the item added first on
the bottom.

At your desk, you see your to-do list. Each entry in the list has a position that might or might
not be important to you. You may have written them either as you thought of them, in their order of
importance, or in alphabetical order. You decide the order; the list simply provides places for your
entries.

Your dictionary is an alphabetical list of words and their definitions. You search for a word and
get its definition. If your dictionary is printed, the alphabetical organization helps you to locate a
word quickly. If your dictionary is computerized, its alphabetical organization is hidden, but it still
speeds the search.

Speaking of your computer, you have organized your files into folders, or directories. Each
folder contains several other folders or files. This type of organization is hierarchical. If you drew a
picture of it, you would get something like a family tree or a chart of a company’s internal depart-
ments. These data organizations are similar and are called trees.

Finally, notice the road map that you are using to plan your weekend trip. The diagram of roads
and towns shows you how to get from one place to another. Often, several ways are possible. One
way might be shorter, another faster. The road map has an organization known as a graph.

2 Introduction

Computer programs also need to organize their data. They do so in ways that parallel the
examples we just cited. That is, programs can use a list, a stack, a dictionary, and so on. These ways
of organizing data are represented by abstract data types. An abstract data type, or ADT, is a spec-
ification that describes a data set and the operations on that data. Each ADT specifies what data
is stored and what the operations on the data do. Since an ADT does not indicate how to store
the data or how to implement the operations, we can talk about ADTs independently of any
programming language. In contrast, a data structure is an implementation of an ADT within a pro-
gramming language.

A collection is a general term for an ADT that contains a group of objects. Some collections
allow duplicate items, some do not. Some collections arrange their contents in a certain order, while
others do not. A container is a class that implements a collection. Some people use the terms
“container” and “collection” interchangeably.

We might create an ADT bag consisting of an unordered collection that allows duplicates. It is
like a grocery bag, a lunch bag, or a bag of potato chips. Suppose you remove one chip from a bag
of chips. You don’t know when the chip was placed into the bag. You don’t know whether the bag
contains another chip shaped exactly like the one you just removed. But you don’t really care. If
you did, you wouldn’t store your chips in a bag!

A bag does not order its contents, but sometimes you do want to order things. ADTs can order
their items in a variety of ways. The ADT list, for example, simply numbers its items. A list, then,
has a first item, a second item, and so on. Although you can add an item to the end of a list, you can
also insert an item at the beginning of the list or between existing items. Doing so renumbers the
items after the new item. Additionally, you can remove an item at a particular position within a list.

Examples of everday
data organizations

Introduction 3

Thus, the position of an item in the list does not necessarily indicate when it was added. Notice that
the list does not decide where an item is placed; you make this decision.

In contrast, the ADTs stack and queue order their items chronologically. When you remove an
item from a stack, you remove the one that was added most recently. When you remove an item
from a queue, you remove the one that was added the earliest. Thus, a stack is like a pile of books.
You can remove the top book or add another book to the top of the pile. A queue is like a line of
people. People leave a line from its front and join it at its end.

Some ADTs maintain their entries in sorted order, if the items can be compared. For instance,
strings can be organized in alphabetical order. When you add an item to the ADT sorted list, for
example, the ADT determines where to place the item in the list. You do not indicate a position for
the item, as you would with the ADT list.

The ADT dictionary contains pairs of items, much as a language dictionary contains a word
and its definition. In this example, the word serves as a key that is used to locate the entries. Some
dictionaries sort their entries and some do not.

The ADT tree organizes its entries according to some hierarchy. For example, in a family tree,
people are associated with their children and their parents. The ADT binary search tree has a com-
bined hierarchical and sorted organization that makes locating a particular entry easier.

The ADT graph is a generalization of the ADT tree that focuses on the relationship among its
entries instead of any hierarchical organization. For example, a road map is a graph that shows the
existing roads and distances between towns.

This book shows you how to use and implement these data organizations. Before we begin,
you need to know Java. Appendix A reviews the basic statements in Java. Appendix B discusses
the basic construction of classes and methods. You can choose to glance at this material, read it
carefully, or come back to it as necessary. Appendices C and D also focus on Java, but some or all
of the material might be new to you. Appendix C covers techniques, including composition and
inheritance, for creating new classes from existing classes. Appendix D discusses how to design
classes, specify methods, and write Java interfaces. Using interfaces and writing comments to spec-
ify methods are essential to our presentation of ADTs. Appendix E reviews how to handle excep-
tions, Appendix F presents reading and writings external files, and Appendix G gives an overview
of writing comments suitable for javadoc.

This page intentionally left blank

Chapter

1Bags
Contents
The Bag

A Bag’s Behaviors
Specifying a Bag

An Interface
Using the ADT Bag
Using an ADT Is Like Using a Vending Machine

Prerequisites
Appendix C Creating Classes from Other Classes
Appendix D Designing Classes

Objectives
After studying this chapter, you should be able to
• Describe the concept of an abstract data type (ADT)
• Describe the ADT bag
• Use the ADT bag in a Java program

This chapter builds on the concepts of encapsulation and data abstraction presented
in Appendix D, and it develops the notion of an abstract data type. As you probably
know, a data type such as int or double is a group of values and operations on those
values that is defined within a specific programming language. In contrast, an
abstract data type, or ADT, is a specification for a group of values and the
operations on those values that is defined conceptually and independently of any
programming language. A data structure is an implementation of an ADT within a
programming language.

This chapter also begins to generalize the idea of grouping objects. A collection
is an object that groups other objects and provides various services to its client. In
particular, a typical collection enables a client to add, remove, retrieve, and query the
objects it represents. Various collections exist for different purposes. Their behaviors

6 CHAPTER 1 Bags

are specified abstractly and can differ in purpose according to the collection. Thus, a collection is
an abstraction and is an abstract data type. However, an ADT is not necessarily a collection.

To provide an example of a collection and of an abstract data type, we will specify and use the ADT
bag. In doing so we will provide a Java interface for our bag. Knowing just this interface, you will be able
to use a bag in a Java program. You do not need to know how the entries in the bag are represented or how
the bag operations are implemented. Indeed, your program will not depend on these specifics. As you will
see, this important program characteristic is what data abstraction is all about.

The Bag

1.1 Imagine a paper bag, a reusable cloth bag, or even a plastic bag. People use bags when they shop, pack a
lunch, or eat potato chips. Bags contain things. In everyday language, a bag is a kind of container. In Java,
however, a container is an object whose class extends the standard class Container. Such containers are
used in graphics programs. Rather than being considered a container, a bag in Java is a kind of collection.

What distinguishes a bag from other collections? A bag doesn’t do much more than contain its items.
It doesn’t order them in a particular way, nor does it prevent duplicate items. Most of its behaviors could be
performed by other kinds of collections. While describing the behaviors for the collection that we’ll design
in this chapter, let’s keep in mind that we are specifying an abstraction inspired by an actual physical bag.
For example, a paper bag holds things of various dimensions and shapes in no particular order and without
regard for duplicates. Our abstract bag will hold unordered and possibly duplicate objects, but let’s insist
that these objects have the same or related types.

A Bag’s Behaviors
1.2 Since a bag contains a finite number of objects, reporting how many objects it contains could be

one of a bag’s behaviors:

Get the number of items currently in the bag

Two related behaviors detect whether a bag is full or empty:
See whether the bag is full
See whether the bag is empty

1.3 We should be able to add and remove objects:
Add a given object to the bag
Remove an unspecified object from the bag
Remove an occurrence of a particular object from the bag, if possible
Remove all objects from the bag

While you hope that the bagger at the grocery store does not toss six cans of soup into a bag on top
of your bread and eggs, our add operation does not indicate where in the bag an object should go.
Remember that a bag does not order its contents. Likewise, the first remove operation just removes
any object it can. This operation is like reaching into a grab bag and pulling something out. On the
other hand, the second remove operation looks for a particular item in the bag. If you find it, you
take it out. If the bag contains several equal objects that satisfy your search, you remove any one of

Note: A bag is a finite collection of objects in no particular order. A bag can contain dupli-
cate items.

Specifying a Bag 7

them. If you can’t find the object in the bag, you can’t remove it, and you just say so. Finally, the
last remove operation simply empties the bag of all objects.

1.4 How many cans of dog food did you buy? Did you remember to get anchovy paste? Just what is in
that bag? The answers to these questions can be answered by the following operations:

Count the number of times a certain object occurs in the bag
Test whether the bag contains a particular object
Look at all objects that are in the bag

We have enough behaviors for now. At this point, we would have written all 10 behaviors on a
piece of paper or on the class-responsibility-collaboration (CRC) card pictured in Figure 1-1, as
suggested in Appendix D.

FIGURE 1-1 A CRC card for a class Bag

1.5 Since a bag is an abstract data type, we only describe its data and specify its operations. We do not indicate
how to store the data or how to implement its operations. Don’t think about arrays, for example. You first
need to clearly know what the bag operations do: Focus on what the operations do, not on how they do
them. That is, you need a detailed set of specifications before you can use a bag in a program. In fact, you
should specify the bag operations before you even decide on a programming language.

Specifying a Bag

VideoNote

Before we can implement a bag in Java, we need to describe its data and specify in detail the meth-
ods that correspond to the bag’s behaviors. We’ll name the methods, choose their parameters,
decide their return types, and write comments to fully describe their effect on the bag’s data. Our
eventual goal, of course, is to write a Java header and comments for each method, but first we will
express the methods in pseudocode and then in Unified Modeling Language (UML) notation.

Bag

 Get the number of items currently in the bag
 See whether the bag is full
 See whether the bag is empty
 Add a given object to the bag
 Remove an unspecified object from the bag
 Remove an occurrence of a particular object from
 the bag, if possible
 Remove all objects from the bag
 Count the number of times a certain object occurs in the bag
 Test whether the bag contains a particular object
 Look at all objects that are in the bag

 Collaborations
 The class of objects that the bag can contain

Responsibilities

Note: Since an abstract data type, or ADT, describes a data organization independently of a
programming language, you have a choice of programming languages for its implementation.

Designing an ADT

8 CHAPTER 1 Bags

1.6 The first behavior on our CRC card gives rise to a method that returns a count of the current num-
ber of entries in the bag. The corresponding method has no parameters and returns an integer. In
pseudocode, we have the following specification:

// Returns the current number of entries in the bag.
getCurrentSize()

We can express this method using UML as
+getCurrentSize(): integer

and add this line to a class diagram.
We can test whether the bag is full or empty by using two boolean-valued methods, again with-

out parameters. Their specifications in pseudocode and UML are
// Returns true if the bag is full.
isFull()

// Returns true if the bag is empty.
isEmpty()

and

+isFull(): boolean
+isEmpty(): boolean

We add these two lines to our class diagram.

1.7 We now want to add a given object to the bag. We can name the method add and give it a parameter
to represent the new entry. We could write the following pseudocode:

// Adds a new entry to the bag.
add(newEntry)

We might be tempted to make add a void method, but if the bag is full, we cannot add a new entry
to it. What should we do in this case?

Design Decision: What should the method add do when it cannot add a new entry?
Here are two options that we can take when add cannot complete its task:

● Do nothing. We cannot add another item, so we ignore it and leave the bag unchanged.
● Leave the bag unchanged, but signal the client that the addition is impossible.

The first option is easy, but it leaves the client wondering what happened. Of course, we could
state as a precondition of add that the bag must not already be full. Then the client has the responsi-
bility to avoid adding a new entry to a full bag.

The second option is the better one, and it is not too hard to specify or implement. How can we
indicate to the client whether the addition was successful? The standard Java interface Collection
specifies that an exception should occur if the addition is not successful. We will leave this
approach for later and use another way. Displaying an error message is not a good choice, as you
should let the client dictate all written output. Since the addition is either successful or not, we can
simply have the method add return a boolean value.

Thus, we can specify the method add in UML as

+add(newEntry: T): boolean

where newEntry’s data type is the generic type1 T.

1. Appendix C reviews generic types in Java.

Specifying a Bag 9

1.8 Three behaviors involve removing entries from a bag: remove all entries, remove any one entry,
and remove a particular entry. Suppose we name the methods and any parameters and specify them
in pseudocode as follows:

// Removes all entries from the bag.
clear()

// Removes one unspecified entry from the bag.
remove()

// Removes one occurrence of a particular entry from the bag, if possible.
remove(anEntry)

What return types are these methods?

1.9 The method clear can be a void method: We just want to empty the bag, not retrieve any of its con-
tents. Thus, we write

+clear(): void

in UML.
If the first remove method removes an entry from the bag, the method can easily return the

object it has removed. Its return type is then the generic type T. In UML, we have
+remove(): T

Notice that we can respond to an attempt to remove an object from an empty bag by returning null.
The second remove method won’t be able to remove a particular entry from the bag if the bag does not

contain that entry. We could have the method return a boolean value, much as add does, so it can indicate
success or not. Or the method could return either the removed object or null if it can’t remove the object.
Here are the specifications for these two possible versions of the method in UML —we must choose one:

+remove(anEntry: T): boolean

or
+remove(anEntry: T): T

If anEntry equals an entry in the bag, the first version of this method would remove that entry
and return true. Even though the method would not return the removed entry, the client would have
the method’s argument, anEntry, which is equal to the removed entry. We will choose this first ver-
sion, to be consistent with the interface Collection.

Question 1 Suppose aBag represents an empty bag that has a finite capacity. Write some
pseudocode statements to add user-supplied strings to the bag until it becomes full.

Question 2 Is it legal to have both versions of remove(anEntry), which were just described,
in one class? Explain.

Question 3 Is it legal to have two versions of remove, one that has no parameter and one
that has a parameter, in the same class? Explain.

Question 4 Given the full bag aBag that you created in Question 1, write some pseudocode
statements that remove and display all of the strings in the bag.

10 CHAPTER 1 Bags

1.10 The remaining behaviors do not change the contents of the bag. One of these behaviors counts the
number of times a given object occurs within the bag. We specify it first in pseudocode and then in
UML, as follows:

// Counts the number of times a given entry appears in the bag.
getFrequencyOf(anEntry)

+getFrequencyOf(anEntry: T): integer

Another method tests whether the bag contains a given object. Its specifications in pseudocode
and UML are

// Tests whether the bag contains a given entry.
contains(anEntry)

+contains(anEntry: T): boolean

1.11 Finally, we want to look at the contents of the bag. Rather than providing a method that displays the
entries in the bag, we will define one that returns an array of these entries. The client is then free to
display any or all of them in any way desired. Here are the specifications for our last method:

// Looks at all entries in the bag.
toArray()

+toArray(): T[]

When a method returns an array, it usually should define a new one to return. We will note that
detail for this method.

1.12 As we developed the previous specifications for the bag’s methods, we represented them using
UML notation. Figure 1-2 shows the result of doing so.

FIGURE 1-2 UML notation for the class Bag

Notice that the CRC card and the UML do not reflect all of the details, such as assumptions
and unusual circumstances, that we mentioned in our previous discussion. However, after you have

Question 5 Given the full bag aBag that you created in Question 1, write some pseudocode
statements to find the number of times, if any, that the string "Hello" occurs in aBag.

 Bag

+getCurrentSize(): integer
+isFull(): boolean
+isEmpty(): boolean
+add(newEntry: T): boolean
+remove(): T
+remove(anEntry: T): boolean
+clear(): void
+getFrequencyOf(anEntry: T): integer
+contains(anEntry: T): boolean
+toArray(): T[]

Specifying a Bag 11

identified such conditions, you should specify how your methods will behave under each one. You
should write down your decisions about how you want your methods to behave, as we have done in
the following table. Later, you can incorporate these informal descriptions into the Java comments
that document your methods.

ABSTRACT DATA TYPE: BAG

DATA

● A finite number of objects, not necessarily distinct, in no particular order, and having the same data type
● The number of objects in this collection

OPERATIONS

PSEUDOCODE UML DESCRIPTION

getCurrentSize() +getCurrentSize(): integer Task: Reports the current number of objects
in the bag.

Input: None.
Output: The number of objects currently in

the bag.

isFull() +isFull(): boolean Task: Sees whether the bag is full.
Input: None.
Output: True or false according to whether

the bag is full.

isEmpty() +isEmpty(): boolean Task: Sees whether the bag is empty.
Input: None.
Output: True or false according to whether

the bag is empty.

add(newEntry) +add(newEntry: T): boolean Task: Adds a given object to the bag.
Input: newEntry is an object.
Output: True or false according to whether

the addition succeeds.

remove() +remove(): T Task: Removes an unspecified object from
the bag, if possible.

Input: None.
Output: Either the removed object, if the

removal was successful, or null.

12 CHAPTER 1 Bags

Design Decision: What should happen when an unusual condition occurs?
You as class designer need to make decisions about how to treat unusual conditions and include
these decisions in your specifications. The documentation for the ADT bag should reflect both
these decisions and the details in the previous discussion.

In general, you can address unusual situations in several ways. Your method could

● Assume that the invalid situations will not occur. This assumption is not as naive as it
might sound. A method could state as an assumption—that is, a precondition—restrictions
to which a client must adhere. It is then up to the client to check that the precondition is
satisfied before invoking the method. For example, a precondition for the method remove
might be that the bag is not empty. Notice that the client can use other methods of the
ADT bag, such as isEmpty and getCurrentSize, to help with this task. As long as the cli-
ent obeys the restriction, the invalid situation will not occur.

remove(anEntry) +remove(anEntry: T): boolean Task: Removes an occurrence of a particular
object from the bag, if possible.

Input: anEntry is an object.
Output: True or false according to whether

the removal succeeds.

clear() +clear(): void Task: Removes all objects from the bag.
Input: None.
Output: None.

getFrequencyOf(anEntry) +getFrequencyOf(anEntry: T):
 integer

Task: Counts the number of times an object
occurs in the bag.

Input: anEntry is an object.
Output: The integer number of times

anEntry occurs in the bag.

contains(anEntry) +contains(anEntry: T):
boolean

Task: Tests whether the bag contains a
particular object.

Input: anEntry is an object.
Output: True or false according to whether

anEntry occurs in the bag.

toArray() +toArray(): T[] Task: Looks at all objects in the bag.
Input: None.
Output: A new array of entries currently in

the bag.

Specifying a Bag 13

● Ignore the invalid situations. A method could simply do nothing when given invalid
data. Doing absolutely nothing, however, leaves the client without knowledge of what
happened.

● Guess at the client’s intention. Like the previous option, this choice can cause problems
for the client.

● Return a value that signals a problem. For example, if a client tries to remove an entry
from an empty bag, the remove method could return null. The value returned must be
something that cannot be in the bag.

● Return a boolean value that indicates the success or failure of an operation.
● Throw an exception.

An Interface
1.13 As your specifications become more detailed, they increasingly should reflect your choice of pro-

gramming language. Ultimately, you can write Java headers for the bag’s methods and organize them
into a Java interface for the class that will implement the ADT. The Java interface in Listing 1-1 con-
tains the methods for an ADT bag and detailed comments that describe their behaviors. Recall that a
class interface does not include data fields, constructors, private methods, or protected methods.

For now, the items in the bag will be objects of the same class. For example, we could have a
bag of strings. To accommodate entries of any one class type, the bag methods use a generic type T
for each entry. To give meaning to the identifier T, we must write <T> after the name of the inter-
face. Once the actual data type is chosen within a client, the compiler will use that data type wher-
ever T appears.

As you examine the interface, notice the decisions that were made to address the unusual situations
mentioned in the previous segment. In particular, each of the methods add, remove, and contains
returns a value. Since our programming language is Java, notice that one of the remove methods returns
a reference to an entry, not the entry itself.

Although writing an interface before implementing a class is certainly not required, doing so
enables you to document your specifications in a concise way. You then can use the code in the
interface as an outline for the actual class. Having an interface also provides a data type for a bag
that is independent of a particular class definition. The next two chapters will develop different

Note: Throwing an exception is often a desirable way for a Java method to react to unusual
events that occur during its execution. The method can simply report a problem without
deciding what to do about it. The exception enables each client to do what is needed in its
own particular situation. However, the method invocation in the client must appear within a
try block. For simplicity right now, we will adopt the philosophy that methods should throw
exceptions only in truly exceptional circumstances, when no other reasonable solution exists.

Note: A first draft of an ADT’s specifications often overlooks or ignores situations that you
really need to consider. You might intentionally make these omissions to simplify this first
draft. Once you have written the major portions of the specifications, you can concentrate on
the details that make the specifications complete.

14 CHAPTER 1 Bags

implementations of a class of bags. Code written with respect to an interface allows us to more eas-
ily replace one implementation of a bag with another.

LISTING 1-1 A Java interface for a class of bags

/**
An interface that describes the operations of a bag of objects.
@author Frank M. Carrano

*/
public interface BagInterface<T>
{

/** Gets the current number of entries in this bag.
@return the integer number of entries currently in the bag */

public int getCurrentSize();

/** Sees whether this bag is full.
@return true if the bag is full, or false if not */

public boolean isFull();

/** Sees whether this bag is empty.
@return true if the bag is empty, or false if not */

public boolean isEmpty();

/** Adds a new entry to this bag.
@param newEntry the object to be added as a new entry
@return true if the addition is successful, or false if not */

public boolean add(T newEntry);

/** Removes one unspecified entry from this bag, if possible.
@return either the removed entry, if the removal

was successful, or null */
public T remove();

/** Removes one occurrence of a given entry from this bag,
if possible.
@param anEntry the entry to be removed
@return true if the removal was successful, or false if not */

public boolean remove(T anEntry);

/** Removes all entries from this bag. */
public void clear();

/** Counts the number of times a given entry appears in this bag.
@param anEntry the entry to be counted
@return the number of times anEntry appears in the bag */

public int getFrequencyOf(T anEntry);

/** Tests whether this bag contains a given entry.
@param anEntry the entry to locate
@return true if the bag contains anEntry, or false otherwise */

Using the ADT Bag 15

1.14 After specifying an ADT and writing a Java interface for its operations, you should write some Java
statements that use the ADT. Although we cannot execute these statements yet—after all, we have
not written a class that implements BagInterface—we can use them to confirm or revise both our
decisions about the design of the methods and the accompanying documentation. In this way, you
check both the suitability and your understanding of the specifications. It is better to revise the
design or documentation of the ADT now, instead of after you have written its implementation. An
added benefit of doing this task carefully is that you can use these same Java statements later to test
your implementation.

The following section looks at two examples that use a bag. Later, these examples can be part
of a test of your implementation.

Using the ADT Bag

1.15 Imagine that we hire a programmer to implement the ADT bag in Java, given the interface and
specifications that we have developed so far. If we assume that these specifications are clear
enough for the programmer to complete the implementation, we can use the ADT’s operations in a

public boolean contains(T anEntry);

/** Creates an array of all entries that are in this bag.
@return a newly allocated array of all the entries in the bag */

public T[] toArray();
} // end BagInterface

Question 6 Given the full bag aBag that you created in Question 1, write some Java state-
ments that display all of the strings in aBag. Do not alter the contents of aBag.

Programming Tip Write a test program before you implement a class
Writing Java statements that test a class’s methods will help you to fully understand the spec-
ifications for the methods. Obviously, you must understand a method before you can imple-
ment it correctly. If you are also the class designer, your use of the class might help you see
desirable changes to your design or its documentation. You will save time if you make these
revisions before you have implemented the class. Since you must write a program that tests
your implementation sometime, why not get additional benefits from the task by writing it
now instead of later?

Note: Although we said that the entries in a bag belong to the same class, those entries can
also belong to classes related by inheritance. For example, assume Bag is a class that imple-
ments the interface BagInterface. If we create a bag of class C objects by writing

BagInterface<C> aBag = new Bag<C>();

aBag can contain objects of class C, as well as objects of any subclass of C.

16 CHAPTER 1 Bags

program without knowing the details of the implementation. That is, we do not need to know how
the programmer implemented the bag to be able to use it. We only need to know what the ADT bag
does. This section assumes that we have a Java class, Bag, that implements the Java interface
BagInterface given in Listing 1-1. The simple examples demonstrate how we can use Bag.

VideoNote

Notice that once we choose the data type of the objects to be in a bag, that data type is
enclosed in brackets that follow the interface name and the class name. All entries in the bag then
must have either that data type or a subtype of that data type. The compiler will enforce this
restriction for us. For primitive types, you can place instances of an appropriate wrapper class
into a bag. For example, instead of instances of the primitive type int, you could use instances of
the wrapper class Integer.

1.16 Example: Shopping online. When you shop online, your selections are saved in a shopping cart,
or bag, until you are ready to check out. The program that implements the shopping website can use
the class Bag to maintain the shopping cart. After all, the order in which you choose items to pur-
chase is not important. Listing 1-2 shows a simple example of such a program.

Designing a test for an ADT

LISTING 1-2 A program that maintains a bag for online shopping

/**
A class that maintains a shopping cart for an online store.
@author Frank M. Carrano

*/
public class OnlineShopper
{

public static void main(String[] args)
{

Item[] items = {new Item("Bird feeder", 2050),
new Item("Squirrel guard", 1547),
new Item("Bird bath", 4499),
new Item("Sunflower seeds", 1295)};

BagInterface<Item> shoppingCart = new Bag<Item>();
int totalCost = 0;

// statements that add selected items to the shopping cart:
for (int index = 0; index < items.length; index++)
{

Item nextItem = items[index]; // simulate getting item from
// shopper

shoppingCart.add(nextItem);
totalCost = totalCost + nextItem.getPrice();

} // end for

// simulate checkout
while (!shoppingCart.isEmpty())

System.out.println(shoppingCart.remove());

System.out.println("Total cost: " +
 "\t$" + totalCost / 100 + "." +

totalCost % 100);

Using the ADT Bag 17

To keep the example simple, we create an array of Item objects to represent the choices made by the
shopper. The class Item, which is available to you in this book’s online resources, defines data fields for an
item’s description and price, accessor methods for these fields, and the method toString.

Initially, we create an empty bag for Item objects by using Bag’s default constructor. Notice that the
data type of shoppingCart is BagInterface<Item>. This declaration obliges shoppingCart to receive
only calls to methods declared in BagInterface. Moreover, we could replace the class Bag with another
class that also implements BagInterface without modifying the subsequent statements in the program.

Notice the loop that adds the chosen items to the bag and the loop that removes them one at a
time during checkout.

1.17 Example: A piggy bank. You might have a piggy bank, jar, or some other receptacle to hold your
spare coins. The piggy bank holds the coins but gives them no other organization. And certainly the
bank can contain duplicate coins. A piggy bank is like a bag, but it is simpler, as it has only three
operations: You can add a coin to the bank, remove one (you shake the bank, so you have no control
over what coin falls out), or see whether the bank is empty.

Assuming that we have the class Coin to represent coins, we can create the class PiggyBank
given in Listing 1-3. A PiggyBank object stores its coins in a bag, that is, in an instance of a class
that implements the interface BagInterface. The add, remove, and isEmpty methods of PiggyBank
each call the respective bag method to achieve their results. The class PiggyBank is an example of
an adapter class. See Appendix C for more on adapter classes.

} // end main
} // end OnlineShopper

Output
Sunflower seeds $12.95

Bird bath $44.99

Squirrel guard $15.47

Bird feeder $20.50

Total cost: $93.91

Question 7 In the previous example, a while loop executes during the checkout process
until the bag is empty. What for statement could replace the while statement? Use only the
existence of shoppingCart, not the array items.

LISTING 1-3 A class of piggy banks

/**
A class that implements a piggy bank by using a bag.
@author Frank M. Carrano

*/
public class PiggyBank
{

private BagInterface<Coin> coins;

public PiggyBank()
{

18 CHAPTER 1 Bags

1.18 Listing 1-4 provides a brief demonstration of the class PiggyBank. The program adds some coins to
the bank and then removes all of them. Since the program does not keep a record of the coins it
adds to the bank, it has no control over which coins are removed. Although the output indicates that
the coins leave the bank in the opposite order from how they entered it, that order depends on the
bag’s implementation. We’ll consider these implementations in the next chapters.

Notice that, in addition to the main method, the program defines another method, addCoin.
Since main is static and calls addCoin, it must be static as well. The method addCoin accepts as its
arguments a Coin object and a PiggyBank object. The method then adds the coin to the bank.

coins = new Bag<Coin>();
} // end default constructor

public boolean add(Coin aCoin)
{

return coins.add(aCoin);
} // end add

public Coin remove()
{

return coins.remove();
} // end remove

public boolean isEmpty()
{

return coins.isEmpty();
} // end isEmpty

} // end PiggyBank

LISTING 1-4 A demonstration of the class PiggyBank
/**

A class that demonstrates the class PiggyBank.
@author Frank M. Carrano

*/
public class PiggyBankExample
{

public static void main(String[] args)
{

PiggyBank myBank = new PiggyBank();

addCoin(new Coin(1, 2010), myBank);
addCoin(new Coin(5, 2011), myBank);
addCoin(new Coin(10, 2000), myBank);
addCoin(new Coin(25, 2012), myBank);

Using the ADT Bag 19

System.out.println("Removing all the coins:");
int amountRemoved = 0;

while (!myBank.isEmpty())
{

Coin removedCoin = myBank.remove();
System.out.println("Removed a " + removedCoin.getCoinName() +

".");
amountRemoved = amountRemoved + removedCoin.getValue();

} // end while

System.out.println("All done. Removed " + amountRemoved +
" cents.");

} // end main

private static void addCoin(Coin aCoin, PiggyBank aBank)
{

if (aBank.add(aCoin))
System.out.println("Added a " + aCoin.getCoinName() + ".");

else
System.out.println("Tried to add a " + aCoin.getCoinName() +

", but couldn't");
} // end addCoin

} // end PiggyBankExample

Output
Added a PENNY.

Added a NICKEL.

Added a DIME.

Added a QUARTER.

Removing all the coins:

Removed a QUARTER.

Removed a DIME.

Removed a NICKEL.

Removed a PENNY.

All done. Removed 41 cents.

Note: A method can change the state of an object passed to it as an argument
You pass two arguments to the method addCoin: a coin and a piggy bank. Both of these argu-
ments are references to objects that exist in the main method. The method addCoin stores copies
of these references in its parameters, which, as you will recall, behave as local variables.
Although addCoin cannot change the references, because they exist in the main method, it can
alter the state of the referenced objects. In particular, it changes the piggy bank —that is, the
PiggyBank object —by adding coins to it. That bank, remember, is local to main and is out-
side of addCoin.

20 CHAPTER 1 Bags

Using an ADT Is Like Using a Vending Machine

1.19 Imagine that you are in front of a vending machine, as Figure 1-3 depicts; or better yet, take a break
and go buy something from one!

FIGURE 1-3 A vending machine

 When you look at the front of a vending machine, you see its interface. By inserting coins
and pressing buttons, you are able to make a purchase. Here are some observations that we can
make about the vending machine:

● You can perform only the specific tasks that the machine’s interface presents to you.
● You must understand these tasks—that is, you must know what to do to buy a soda.
● You cannot access the inside of the machine, because a locked shell encapsulates it.
● You can use the machine even though you do not know what happens inside.
● If someone replaced the machine’s inner mechanism with an improved version, leaving the

interface unchanged, you could still use the machine in the same way.

Note: As soon as we implement a class of bags in the next chapters, you can actually run
the programs shown in the previous listings. You just need to reconcile the class name Bag
that these examples use with the names of the classes in the next chapters.

Question 8 Consider the program in Listing 1-4. After creating the instance myBank of the
class PiggyBank, suppose that we add several unknown coins to myBank. Write some code that
will remove coins from the bank until either you remove a penny or the bank becomes empty.

I’m really thirsty —
what looks good?

Java Class Library: The Interface Set 21

You, as the user of a vending machine, are like the client of the ADT bag that you saw earlier
in this chapter. The observations that we just made about the user of a vending machine are similar
to the following observations about a bag’s client:

● The client can perform only the operations specific to the ADT bag. These operations often
are declared within a Java interface.

● The client must adhere to the specifications of the operations that the ADT bag provides.
That is, the programmer of the client must understand how to use these operations.

● The client cannot access the data within the bag without using an ADT operation. The princi-
ple of encapsulation hides the data representation within the ADT.

● The client can use the bag, even though the programmer does not know how the data is stored.
● If someone changed the implementation of the bag’s operations, the client could still use the

bag in the same way, as long as the interface did not change.

1.20 In the examples of the previous section, each bag is an instance of a class that implements the ADT
bag. That is, each bag is an object whose behaviors are the operations of the ADT bag. You can
think of each such object as being like the vending machine we just described. Each object encap-
sulates the bag’s data and operations, just as the vending machine encapsulates its product (soda
cans) and delivery system.

Some ADT operations have inputs analogous to the coins you insert into a vending machine.
Some ADT operations have outputs analogous to the change, soda cans, messages, and warning
lights that a vending machine provides.

Now imagine that you are the designer of the front, or interface, of the vending machine. What
can the machine do, and what should a person do to use the machine? Will it help you or hinder you
to think about how the soda cans will be stored and transported within the machine? We maintain
that you should ignore these aspects and focus solely on how someone will use the machine—that
is, you focus on designing the interface. Ignoring extraneous details makes your task easier and
increases the quality of your design.

Recall that abstraction as a design principle asks you to focus on what instead of how. When
you design an ADT, and ultimately a class, you use data abstraction to focus on what you want to
do with or to the data, without worrying about how you will accomplish these tasks. We practiced
data abstraction at the beginning of this chapter when we designed the ADT bag. As we chose the
methods that a bag would have, we did not consider how we would represent the bag. Instead, we
focused on what each method should do.

Ultimately, we wrote a Java interface that specified the methods in detail. We were then able to
write a client that used the bag, again without knowledge of its implementation. If someone wrote
the implementation for us, our program would presumably run correctly. If someone else gave us a
better implementation, we could use it without changing our already-written client. This feature of
the client is a major advantage of abstraction.

Java Class Library: The Interface Set
As we mentioned at the end of Appendix B, the Java Class Library is a collection of classes and inter-
faces that Java programmers use as a matter of course. From time to time, we will present members of
the Java Class Library that are like or relevant to our current discussion. The Java Collections
Framework is a subset of this library that provides us with a uniform way of representing and work-
ing with collections. Many of the classes and interfaces in the Java Class Library that we will note are
a part of this framework, although we usually will not point out this fact.

22 CHAPTER 1 Bags

1.21 The ADT set is a bag that does not allow duplicate entries. Although we leave the specification and imple-
mentation of the set as exercises in this and subsequent chapters, we do want to present the standard inter-
face Set, which belongs to the package java.util within the Java Class Library. Sets that adhere to the
specifications of this interface do not contain a pair of objects x and y such that x.equals(y) is true.

The following method headers declared in the interface Set are similar to the methods within
our BagInterface. The differences between a method in Set and a corresponding method in
BagInterface are highlighted.

Each of the interfaces Set and BagInterface declare methods that are not in the other.

CHAPTER SUMMARY

public boolean add(T newEntry)
public boolean remove(Object anEntry)
public void clear()
public boolean contains(Object anEntry)
public boolean isEmpty()
public int size()
public Object[] toArray()

● An abstract data type, or ADT, is a specification of a data set and the operations on that data. This specifica-
tion does not indicate how to store the data or how to implement the operations, and it is independent of any
programming language.

● When you use data abstraction to design an ADT, you focus on what you want to do with or to the data with-
out worrying about how you will accomplish these tasks. That is, you ignore the details of how you repre-
sent data and how you manipulate it.

● The manifestation of the ADT in a programming language encapsulates the data and operations. As a result,
the particular data representations and method implementations are hidden from the client.

● A collection is an object that holds a group of other objects.

● A bag is a finite collection whose entries are in no particular order.

● A client manipulates or accesses a bag’s entries by using only the operations defined for the ADT bag.

● When you add an object to a bag, you cannot indicate where in the bag it will be placed.

● You can remove from a bag an object having either a given value or one that is unspecified. You also can
remove all objects from a bag.

● A bag can report whether it contains a given object. It can also report the number of times a given object
occurs within its contents.

● A bag can tell you the number of objects it currently contains and can provide an array of those objects.

● Carefully specify the methods for a proposed class before you begin to implement them, using tools such as
CRC cards and UML notation.

● After designing a draft of an ADT, confirm your understanding of the operations and their design by writing
some pseudocode that uses the ADT.

● You should specify the action a method should take if it encounters an unusual situation.

● Writing a Java interface is a way to organize a specification for an ADT.

● Writing a program that tests a class before it is defined is a way to see whether you fully understand and are
satisfied with the specification of the class’s methods.

Exercises 23

PROGRAMMING TIP

EXERCISES

• Writing Java statements that test a class’s methods will help you to fully understand the specifications for the
methods. Obviously, you must understand a method before you can implement it correctly. If you are also
the class designer, your use of the class might help you see desirable changes to your design or its documen-
tation. You will save time if you make these revisions before you have implemented the class. Since you
must write a program that tests your implementation sometime, why not get additional benefits from the task
by writing it now instead of later?

1. Specify each method of the class PiggyBank, as given in Listing 1-3, by stating the method’s purpose; by
describing its parameters; and by writing preconditions, postconditions, and a pseudocode version of its header.
Then write a Java interface for these methods that includes javadoc-style comments.

2. Suppose that groceryBag is a bag filled to its capacity with 10 strings that name various groceries. Write Java state-
ments that remove and count all occurrences of "soup" in groceryBag. Do not remove any other strings from the
bag. Report the number of times that "soup" occurred in the bag. Accommodate the possibility that groceryBag
does not contain any occurrence of "soup".

3. Given groceryBag, as described in Exercise 2, what effect does the operation groceryBag.toArray() have on
groceryBag?

4. Given groceryBag, as described in Exercise 2, write some Java statements that create an array of the distinct strings
that are in this bag. That is, if "soup" occurs three times in groceryBag, it should only appear once in your array.
After you have finished creating this array, the contents of groceryBag should be unchanged.

5. The union of two collections consists of their contents combined into a new collection. Add a method union to the
interface BagInterface for the ADT bag that returns as a new bag the union of the bag receiving the call to the
method and the bag that is the method’s one argument. Include sufficient comments to fully specify the method.

Note that the union of two bags might contain duplicate items. For example, if object x occurs five times in one
bag and twice in another, the union of these bags contains x seven times. Specifically, suppose that bag1 and bag2 are
Bag objects, where Bag implements BagInterface; bag1 contains the String objects a, b, and c; and bag2 contains
the String objects b, b, d, and e. After the statement

BagInterface<String> everything = bag1.union(bag2);

executes, the bag everything contains the strings a, b, b, b, c, d, and e. Note that union does not affect the con-
tents of bag1 and bag2.

6. The intersection of two collections is a new collection of the entries that occur in both collections. That is, it con-
tains the overlapping entries. Add a method intersection to the interface BagInterface for the ADT bag that
returns as a new bag the intersection of the bag receiving the call to the method and the bag that is the method’s
one argument. Include sufficient comments to fully specify the method.

Note that the intersection of two bags might contain duplicate items. For example, if object x occurs five
times in one bag and twice in another, the intersection of these bags contains x twice. Specifically, suppose that
bag1 and bag2 are Bag objects, where Bag implements BagInterface; bag1 contains the String objects a, b, and
c; and bag2 contains the String objects b, b, d, and e. After the statement

BagInterface<String> commonItems = bag1.intersection(bag2);

executes, the bag commonItems contains only the string b. If b had occurred in bag1 twice, commonItems would
have contained two occurrences of b, since bag2 also contains two occurrences of b. Note that intersection does
not affect the contents of bag1 and bag2.

24 CHAPTER 1 Bags

PROJECTS

7. The difference of two collections is a new collection of the entries that would be left in one collection after remov-
ing those that also occur in the second. Add a method difference to the interface BagInterface for the ADT bag
that returns as a new bag the difference of the bag receiving the call to the method and the bag that is the method’s
one argument. Include sufficient comments to fully specify the method.

Note that the difference of two bags might contain duplicate items. For example, if object x occurs five times
in one bag and twice in another, the difference of these bags contains x three times. Specifically, suppose that bag1
and bag2 are Bag objects, where Bag implements BagInterface; bag1 contains the String objects a, b, and c; and
bag2 contains the String objects b, b, d, and e. After the statement

BagInterface leftOver1 = bag1.difference(bag2);

executes, the bag leftOver1 contains the strings a and c. After the statement
BagInterface leftOver2 = bag2.difference(bag1);

executes, the bag leftOver2 contains the strings b, d, and e. Note that difference does not affect the contents of
bag1 and bag2.

8. Write code that accomplishes the following tasks: Consider two bags that can hold strings. One bag is named
letters and contains several one-letter strings. The other bag is empty and is named vowels. One at a time,
remove a string from letters. If the string contains a vowel, place it into the bag vowels; otherwise, discard
the string. After you have checked all of the strings in letters, report the number of vowels in the bag vowels
and the number of times each vowel appears in the bag.

9. Write code that accomplishes the following tasks: Consider three bags that can hold strings. One bag is named letters
and contains several one-letter strings. Another bag is named vowels and contains five strings, one for each vowel. The
third bag is empty and is named consonants. One at a time, remove a string from letters. Check whether the string is
in the bag vowels. If it is, discard the string. Otherwise, place it into the bag consonants. After you have checked all of
the strings in letters, report the number of consonants in the bag consonants and the number of times each conso-
nant appears in the bag.

1. As we mentioned in Segment 1.21, a set is a special bag that does not allow duplicates.
a. Specify each operation for a set of objects by stating its purpose; by describing its parameters; and by writ-

ing preconditions, postconditions, and a pseudocode version of its header. Then write a Java interface,
SetInterface<T>, for the set. Include javadoc-style comments in your code.

b. Suppose the class Set<T> implements SetInterface<T>. Given an empty set that is an object of
Set<String> and an object of the class Bag<String> that contains several strings, write statements at the
client level that create a set from the given bag.

2. Imagine a pile of books on your desk. Each book is so large and heavy that you can remove only the top one from
the pile. You cannot remove a book from under another one. Likewise, you can add another book to the pile only
by placing it on the top of the pile. You cannot add a book beneath another one.

If you represent books by their titles alone, design a class that you can use to track the books in the pile on
your desk. Specify each operation by stating its purpose, by describing its parameters, and by writing a pseudo-
code version of its header. Then write a Java interface for the pile’s methods. Include javadoc-style comments in
your code.

Answers to Self-Test Questions 25

ANSWERS TO SELF-TEST QUESTIONS

3. A ring is a collection of items that has a reference to a current item. An operation —let’s call it advance —moves
the reference to the next item in the collection. When the reference reaches the last item, the next advance opera-
tion will move the reference back to the first item. A ring also has operations to get the current item, add an item,
and remove an item. The details of where an item is added and which one is removed are up to you.

Design an ADT to represent a ring of objects. Specify each operation by stating its purpose, by describing its
parameters, and by writing a pseudocode version of its header. Then write a Java interface for a ring’s methods.
Include javadoc-style comments in your code.

4. A shoe of playing cards contains some number of standard decks of cards. Cards in the shoe can be shuffled
together and dealt one at a time. The number of cards in the shoe can also be calculated.

After a hand is complete, you should be able to return all cards to the shoe and shuffle them. Some card
games require that the discard pile be returned to the shoe when the shoe becomes empty. Then the cards in the
shoe can be shuffled. In this case, not all cards are in the shoe; some are held by the players.

Design an ADT for a shoe, assuming that you have the class PlayingCard, which was described in Project 6
of the online projects for Appendix C. You do not need an ADT deck, since a deck is a shoe whose number of
decks is 1.

Specify each ADT operation by stating its purpose, by describing its parameters, and by writing a pseudocode ver-
sion of its header. Then write a Java interface for a shoe’s methods. Include javadoc-style comments in your code.

5. A bid for installing an air conditioner consists of the name of the company, a description of the unit, the perfor-
mance of the unit, the cost of the unit, and the cost of installation.

Design an ADT that represents any bid. Then design another ADT to represent a collection of bids. The sec-
ond ADT should include methods to search for bids based on price and performance. Also note that a single com-
pany could make multiple bids, each with a different unit.

Specify each ADT operation by stating its purpose, by describing its parameters, and by writing a pseudocode
version of its header. Then write a Java interface for a bid’s methods. Include javadoc-style comments in your code.

6. A matrix is a rectangular array of numerical values. You can add or multiply two matrices to form a third matrix.
You can multiply a matrix by a scalar, and you can transpose a matrix. Design an ADT that represents a matrix
that has these operations.

Specify each ADT operation by stating its purpose, by describing its parameters, and by writing a pseudocode
version of its header. Then write a Java interface for the methods of a matrix. Include javadoc-style comments in
your code.

1. // aBag is empty
dodododo
{

entry = next string read from user
aBag.add(entry)

} whilewhilewhilewhile (!aBag.isFull())
// aBag is full

2. No. The two methods have identical signatures. Recall that a method’s return type is not a part of its signature.
These methods have the same name and parameter list.

3. Yes. The two methods have different signatures. They are overloaded methods.

26 CHAPTER 1 Bags

4. // aBag is full
whilewhilewhilewhile (!aBag.isEmpty())
{

entry = aBag.remove()
Display entry

}
// aBag is empty

5. Display "The string Hello occurs in aBag " + aBag.getFrequencyOf("Hello") + " times."

6. String[] contents = aBag.toArray();
for (int index = 0; index < contents.length; index++)

System.out.print(contents[index] + " ");
System.out.println();

7. int itemCount = shoppingCart.getCurrentSize();
for (int counter = 0; counter < itemCount; counter++)

System.out.println(shoppingCart.remove());

8. boolean lookingForPenny = true;
while (!myBank.isEmpty() && lookingForPenny)
{

Coin removedCoin = myBank.remove();
System.out.println("Removed a " + removedCoin.getCoinName() + ".");
if (removedCoin.getCoinName() == CoinName.PENNY)

// if (removedCoin.getValue() == 1) // ALTERNATE
{

System.out.println("Found a penny. All done!");
lookingForPenny = false; // penny is found

}
} // end while

if (lookingForPenny)
System.out.println("No penny was found. Sorry!");

Chapter

2Bag ImplementationsThat Use Arrays
Contents
Using a Fixed-Size Array to Implement the ADT Bag

An Analogy
A Group of Core Methods
Implementing the Core Methods
Testing the Core Methods
Implementing More Methods
Methods That Remove Entries

Using Array Resizing to Implement the ADT Bag
Resizing an Array
A New Implementation of a Bag

The Pros and Cons of Using an Array to Implement the ADT Bag

Prerequisites
Appendix D Designing Classes
Chapter 1 Bags

Objectives
After studying this chapter, you should be able to
● Implement the ADT bag by using a fixed-size array or an array that you expand dynamically
● Discuss the advantages and disadvantages of the two implementations presented

You have seen several examples of how to use the ADT bag in a program. This
chapter presents two different ways—each involving an array—to implement a bag in
Java. When you use an array to organize data, the implementation is said to be array
based. You will see a completely different approach in the next chapter.

We begin by using an ordinary Java array to represent the entries in a bag. With
this implementation, your bag could become full, just as a grocery bag does. We then
offer another implementation that does not suffer from this problem. When you use

28 CHAPTER 2 Bag Implementations That Use Arrays

all of the space in an array, Java enables you to move the data to a larger array. The effect is to have
an array that apparently expands to meet your needs. Thus, we can have a bag that is never full.

Using a Fixed-Size Array to Implement the ADT Bag
Our task is to define the methods we specified in the previous chapter when we wrote the interface
BagInterface. We begin by using an analogy to describe how a fixed-size array could contain the
entries in a bag. In doing so, we show how the add and remove methods would work. Subsequently,
we present a corresponding Java implementation for the bag.

An Analogy
2.1 Imagine a classroom—call it room A—containing 40 desks in fixed positions. If a course is

restricted to 30 students, 10 desks are idle and wasted. If we lift the enrollment restriction, we can
accommodate only 10 more students, even if 20 more want to take the course.

An array is like this classroom, and each desk is like one array location. Suppose that we num-
ber the 40 desks in the room sequentially, beginning with zero, as Figure 2-1 illustrates. Although
desks are arranged in rows in typical classrooms, we will ignore this detail and treat the desks as a
one-dimensional array.

FIGURE 2-1 A classroom that contains desks in fixed positions

2.2 Adding a new student. Suppose that the instructor asks arriving students to occupy consecutively
numbered desks. Thus, the first student who arrives at the classroom sits at desk 0; the second stu-
dent sits at desk 1, and so on. The instructor’s request that consecutively numbered desks be occu-
pied is arbitrary and simply for his or her convenience. As you will see, we will fill an array of bag
entries in an analogous way.

Ro
om

 A

8

16

0

24

32

33

36

37

3831

39

30

28

26

25

17

19

20

21

22

23

12

11

10

9

1

2

3

4

5

6

7

13

15

14

18

27

29

35

34

Using a Fixed-Size Array to Implement the ADT Bag 29

Imagine that 30 students in room A occupy the desks numbered sequentially from 0 to 29, and
a new student wants to join those students. Since 40 desks are in the room, the desk numbered 30 is
available. We can simply assign the new student to desk 30. When all 40 desks are occupied, we
can no longer accommodate more students. The room is full.

2.3 Removing a particular student. Now imagine that the student in desk 5 of room A drops the
course. Desk 5 stays in its fixed location within the room and will be vacant. If we still want stu-
dents to sit in consecutively numbered desks, however, one student will need to move to desk 5.
Since the students are not in any particular order, if the student in the highest-numbered desk moves
to desk 5, no one else need move. For example, if 30 students are seated in the room in desks 0 to
29, the student in desk 29 would move to desk 5. Desks 29 and above would be vacant.

A Group of Core Methods
2.4 The Java array-based implementation for the ADT bag incorporates some of the ideas that our

classroom example illustrates. The result is the class ArrayBag, which implements the interface
BagInterface that you saw in Listing 1-1 of Chapter 1. Each public method within the interface
corresponds to an ADT bag operation. Recall that the interface defines a generic type T for the
objects in a bag. We use this same generic type in the definition of ArrayBag.

VideoNote

The definition for the class ArrayBag could be fairly involved. The class certainly will have
quite a few methods. For such classes, you should not define the entire class and then attempt to test
it. Instead, you should identify a group of core methods to both implement and test before continu-
ing with the rest of the class definition. By leaving the definitions of the other methods for later,
you can focus your attention and simplify your task. But what methods should be part of this
group? In general, such methods should be central to the purpose of the class and allow reasonable
testing. We sometimes will call a group of core methods a core group.

When dealing with a collection such as a bag, you cannot test most methods until you have cre-
ated the collection. Thus, adding objects to the collection is a fundamental operation. If the method
add does not work correctly, testing other methods such as remove would be pointless. Thus, the
bag’s add method is part of the group of core methods that we implement first.

To test whether add works correctly, we need a method that allows us to see the bag’s contents.
The method toArray serves this purpose, and so it is a core method. The constructors are also fun-
damental and are in the core group. Similarly, any methods that a core method might call are part of
the core group as well. For example, since we cannot add an entry to a full bag, the method add will
need to call isFull.

2.5 The core methods. We have identified the following core methods to be a part of the first draft of the
class ArrayBag:

● Constructors
● public boolean add(T newEntry)
● public T[] toArray()
● public boolean isFull()

Question 1 What is an advantage of moving a student as just described so that the vacated
desk does not remain vacant?

Question 2 What is an advantage of leaving the vacated desk vacant?

Question 3 If a student were to drop the course, which one could do so without forcing
another to change desks?

An array-based bag

30 CHAPTER 2 Bag Implementations That Use Arrays

With this core, we will be able to construct a bag, add objects to it, and look at the result. We will
not implement the remaining methods until these core methods work correctly.

Implementing the Core Methods
2.6 The data fields. Before we define any of the core methods, we need to consider the class’s data

fields. Since the bag will hold a group of objects, one field can be an array of these objects. The
length of the array defines the bag’s capacity. We can let the client specify this capacity, and we can
also provide a default capacity. In addition, we will want to track the current number of entries in
the bag. Thus, we can define the following data fields for our class,

private final T[] bag;
private static final int DEFAULT_CAPACITY = 25;
private int numberOfEntries;

and add them to our earlier UML representation of the class in Figure 1-2 of the previous chapter.
The resulting notation appears in Figure 2-2.

FIGURE 2-2 UML notation for the class ArrayBag, including the class’s data fields

2.7 About the constructors. A constructor for this class must create the array bag. Notice that the dec-
laration of the data field bag in the previous segment does not create an array. Forgetting to create
an array in a constructor is a common mistake. To create the array, the constructor must specify the
array’s length, which is the bag’s capacity. And since we are creating an empty bag, the constructor
should also initialize the field numberOfEntries to zero.

Note: Methods such as add and remove that can alter the underlying structure of a collec-
tion are likely to have the most involved implementations. In general, you should define such
methods before the others in the class. But since we can’t test remove before add is correct,
we will delay implementing it until after add is completed and thoroughly tested.

Programming Tip: When defining a class, implement and test a group of core methods.
Begin with methods that add to a collection of objects and/or have involved implementations.

 ArrayBag

+getCurrentSize(): integer
+isFull(): boolean
+isEmpty(): boolean
+add(newEntry: T): boolean
+remove(): T
+remove(anEntry: T): boolean
+clear(): void
+getFrequencyOf(anEntry: T): integer
+contains(anEntry: T): boolean
+toArray(): T[]

-bag: T[]
-DEFAULT_CAPACITY: integer
-numberOfEntries: integer

Using a Fixed-Size Array to Implement the ADT Bag 31

The decision to use a generic data type in the declaration of the array bag affects how we allo-
cate this array within the constructor. A statement such as

bag = new T[capacity]; // SYNTAX ERROR

is syntactically incorrect. You cannot use a generic type when allocating an array. Instead, we allo-
cate an array of objects of type Object, as follows:

new Object[capacity];

However, problems arise when we try to assign this array to the data field bag. The statement
bag = new Object[capacity]; // SYNTAX ERROR: incompatible types

causes a syntax error because you cannot assign an array of type Object[] to an array of type T[].
That is, the types of the two arrays are not compatible.

A cast is necessary but creates its own problem. The statement
bag = (T[])new Object[capacity];

produces the compiler warning
ArrayBag.java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.

If you compile the class again and use the option -Xlint, the messages will be more detailed,
beginning as follows:

ArrayBag.java:24: warning: [unchecked] unchecked cast
found : java.lang.Object[]
required: T[]

bag = (T[])new Object[capacity];
^

The compiler wants you to ensure that casting each entry in the array from type Object to the
generic type T is safe. Since the array has just been allocated, it contains null entries. Thus, the cast
is safe, and so we instruct the compiler to ignore the warning by writing the annotation

@SuppressWarnings("unchecked")

before the offending statement. This instruction to the compiler can only precede a method defini-
tion or a variable declaration. Since the assignment

bag = (T[])new Object[capacity];

does not declare bag—bag has already been declared—we revise it as follows:
// the cast is safe because the new array contains null entries
@SuppressWarnings("unchecked")
T[] tempBag = (T[])new Object[capacity]; // unchecked cast
bag = tempBag;

2.8 The constructors. The following constructor performs the previous steps, using a capacity given
as an argument:

/** Creates an empty bag having a given capacity.
@param capacity the integer capacity desired */

Note: Suppressing compiler warnings
To suppress an unchecked-cast warning from the compiler, you precede the flagged state-
ments with the instruction

@SuppressWarnings("unchecked")

Note that this instruction can precede only a method definition or a variable declaration.

32 CHAPTER 2 Bag Implementations That Use Arrays

public ArrayBag(int capacity)
{

numberOfEntries = 0;
// the cast is safe because the new array contains null entries
@SuppressWarnings("unchecked")
T[] tempBag = (T[])new Object[capacity]; // unchecked cast
bag = tempBag;

} // end constructor

The default constructor can invoke the previous one, passing it the default capacity as an argu-
ment, as follows:

/** Creates an empty bag whose capacity is 25. */
public ArrayBag()
{

this(DEFAULT_CAPACITY);
} // end default constructor

Recall that a constructor can invoke another constructor in the same class by using the keyword
this as a method name.

2.9 An outline of the class. Let’s look at the class as we have defined it so far. After you complete the
initial portion of the class—that is, the header, data fields, and constructors—you can add the com-
ments and headers for the public methods simply by copying them from BagInterface. You then
write empty bodies after each of those headers. Listing 2-1 shows the result of these steps. Our next
task is to implement our three core methods.

LISTING 2-1 An outline of the class ArrayBag

/**
A class of bags whose entries are stored in a fixed-size array.
@author Frank M. Carrano

*/
public class ArrayBag<T> implements BagInterface<T>
{

private final T[] bag;
private static final int DEFAULT_CAPACITY = 25;
private int numberOfEntries;

/** Creates an empty bag whose initial capacity is 25. */
public ArrayBag()
{

this(DEFAULT_CAPACITY);
} // end default constructor

/** Creates an empty bag having a given initial capacity.
@param capacity the integer capacity desired */

public ArrayBag(int capacity)
{

numberOfEntries = 0;
// the cast is safe because the new array contains null entries
@SuppressWarnings("unchecked")
T[] tempBag = (T[])new Object[capacity]; // unchecked cast
bag = tempBag;

} // end constructor

Using a Fixed-Size Array to Implement the ADT Bag 33

Design Decision: When the array bag is partially full, which array elements should
contain the bag’s entries?
When you add a first entry to an array, you typically place it in the array’s first element, that is, the
element whose index is 0. Doing so, however, is not a requirement, especially for arrays that imple-
ment collections. For example, some collection implementations can benefit by ignoring the array
element whose index is 0 and using index 1 as the first element in the array. Sometimes you might
want to use the elements at the end of the array before the ones at its beginning. For the bag, we
have no reason to be atypical, and so the objects in our bag will begin at index 0 of the array.

Another consideration is whether the bag’s objects should occupy consecutive elements of the
array. Requiring the add method to place objects into the array bag consecutively is certainly rea-
sonable, but why should we care, and is this really a concern? We need to establish certain truths, or
assertions, about our planned implementation so that the action of each method is not detrimental to
other methods. For example, the method toArray must “know” where add has placed the bag’s
entries. Our decision now also will affect what must happen later when we remove an entry from
the bag. Will the method remove ensure that the array entries remain in consecutive elements? It
must, because for now at least, we will insist that bag entries occupy consecutive array elements.

2.10 The method add. If the bag is full, we cannot add anything to it. In that case, the method add
should return false. Otherwise, we simply add newEntry immediately after the last entry in the
array bag by writing the following statement:

bag[numberOfEntries] = newEntry;

/** Adds a new entry to this bag.
@param newEntry the object to be added as a new entry
@return true if the addition is successful, or false if not */

public boolean add(T newEntry)
{

< Body to be defined >
} // end add

/** Retrieves all entries that are in this bag.
@return a newly allocated array of all the entries in the bag */

public T[] toArray()
{

< Body to be defined >
} // end toArray

/** Sees whether this bag is full.
@return true if the bag is full, or false if not */

public boolean isFull()
{

< Body to be defined >
} // end isFull

< Similar partial definitions are here for the remaining methods
declared in BagInterface. >

. . .
} // end ArrayBag

34 CHAPTER 2 Bag Implementations That Use Arrays

If we are adding to an empty bag, numberOfEntries would be zero, and the assignment would be to
bag[0]. If the bag contained one entry, an additional entry would be assigned to bag[1], and so on.
After each addition to the bag, we increase the counter numberOfEntries. These steps are illus-
trated in Figure 2-3 and accomplished by the definition of the method add that follows the figure.

FIGURE 2-3 Adding entries to an array that represents a bag, whose capacity
is six, until it becomes full

/** Adds a new entry to this bag.
@param newEntry the object to be added as a new entry
@return true if the addition is successful, or false if not */

public boolean add(T newEntry)
{

boolean result = true;
if (isFull())
{

result = false;
}
else
{ // assertion: result is true here

bag[numberOfEntries] = newEntry;
numberOfEntries++;

} // end if

return result;
} // end add

Nancy

Ted Vandee

0 1 2 3 4 5

0 1 2 3 4 5
Doug

numberOfEntriesbag

0

1

0 1 2 3 4 5
Doug 2Nancy

Nancy
0 1 2 3 4 5

Doug 6FrankSue

Nancy

0 1 2 3 4 5
Doug 3Nancy Ted

Nancy

0 1 2 3 4 5
Doug 4Nancy Ted Vandee

Ted VandeeNancy
0 1 2 3 4 5

Doug 5Sue

Empty

Full

Using a Fixed-Size Array to Implement the ADT Bag 35

Notice that we call isFull as if it has been defined already. Had we not considered isFull as a
core method earlier, its use now would indicate to us that it should be in the core group.

FIGURE 2-4 An array of objects contains references to those objects

2.11 The method isFull. A bag is full when it contains as many objects as the array bag can accommo-
date. That situation occurs when numberOfEntries is equal to the capacity of the array. Thus,
isFull has the following straightforward definition:

/** Sees whether this bag is full.
@return true if the bag is full, or false if not */

public boolean isFull()
{

return numberOfEntries == bag.length;
} // end isFull

2.12 The method toArray. The last method, toArray, in our initial core group retrieves the entries that
are in a bag and returns them to the client within a newly allocated array. The length of this new
array can equal the number of entries in the bag—that is, numberOfEntries—rather than the length
of the array bag. However, we have the same problems in allocating an array that we had in defin-
ing the constructor, so we take the same steps as for the constructor.

After toArray creates the new array, a simple loop can copy the references in the array bag to
this new array before returning it. Thus, the definition of toArray can appear as follows:

/** Retrieves all entries that are in this bag.
@return a newly allocated array of all the entries in the bag */

public T[] toArray()
{

// the cast is safe because the new array contains null entries
@SuppressWarnings("unchecked")
T[] result = (T[])new Object[numberOfEntries]; // unchecked cast
for (int index = 0; index < numberOfEntries; index++)
{

result[index] = bag[index];
} // end for

return result;
} // end toArray

Note: The entries in a bag have no particular order. Thus, the method add can place a new
entry into a convenient element of the array bag. In the previous definition of add, that ele-
ment is the one immediately after the last element used.

Note: For simplicity, our figures and discussion portray arrays as if they actually contained
objects. In reality, Java arrays contain references to objects, as Figure 2-4 illustrates.

Indices 0 1 2 3 4 5 6

Nancy Ted VandeeDoug SueAlice

36 CHAPTER 2 Bag Implementations That Use Arrays

Design Decision: Should the method toArray return the array bag instead of a copy?
Suppose that we define toArray as follows:

public String[] toArray()
{

return bag;
} // end toArray

This simple definition would certainly return an array of the bag’s contents to a client. For example, the
statement

String[] bagArray = myBag.toArray();

provides a reference to an array of the entries in myBag. A client could use the variable bagArray to
display the contents of myBag.

The reference bagArray, however, is to the array bag itself. That is, bagArray is an alias for the
private instance variable bag within the object myBag, and therefore it gives the client direct access
to this private data. Thus, a client could change the contents of the bag without calling the class’s
public methods. For instance, if myBag is the full bag pictured in Figure 2-3, the statement

bagArray[2] = null;

would change the entry Ted to null. Although this approach might sound good to you if the
intent is to remove Ted from the bag, doing so would destroy the integrity of the bag. In particu-
lar, the entries in the array bag would no longer be consecutive, and the count of the number of
entries in the bag would be incorrect.

Programming Tip
A class should not return a reference to an array that is a private data field.

Note: A variable whose declared data type is Object can reference an object of any data
type. A collection whose entries are referenced by variables of type Object can contain
objects of various unrelated classes. In contrast, a variable having a generic data type can ref-
erence only an object of specific data types. A collection whose entries are referenced by
variables of a generic type can contain only objects of classes related by inheritance. Gener-
ics enable you to restrict the data types of the entries in your collections.

Question 4 In the previous method toArray, does the value of numberOfEntries equal
bag.length in general?

Question 5 Suppose that the previous method toArray gave the new array result the same
length as the array bag. How would a client get the number of entries in the returned array?

Question 6 Suppose that the previous method toArray returned the array bag instead of
returning a new array such as result. If myBag is a bag of five entries, what effect would the
following statements have on the array bag and the field numberOfEntries?

Object[] bagArray = myBag.toArray();
bagArray[0] = null;

Question 7 The body of the method toArray could consist of one return statement if you
call the method Arrays.copyOf. Make this change to toArray.

Using a Fixed-Size Array to Implement the ADT Bag 37

Testing the Core Methods
2.13 Getting ready. Now that we have defined the three core methods, we can test them. But what about

the other methods in BagInterface? Since ArrayBag—as given in Listing 2-1—implements
BagInterface, Java’s syntax checker will look for a definition of each method declared in this
interface. Should we wait until we complete their definitions to begin testing? Absolutely not! Test-
ing methods as you write them makes finding logical errors easier. However, instead of writing a
complete implementation of each method in BagInterface, we can provide incomplete definitions
of the methods we choose to temporarily ignore.

An incomplete definition of a method is called a stub. The stub needs only to keep the syntax
checker happy. For example, for each method that returns a value, you can avoid syntax errors by
adding a return statement that returns a dummy value. Methods that return a boolean value could
return true. Methods that return an object could return null. On the other hand, void methods can
simply have an empty body.

For instance, the method remove ultimately will return the removed entry, so its stub must con-
tain a return statement and could appear as follows:

public T remove()
{

return null; // STUB
} // end remove

A stub for the void method clear could be

public void clear()
{

// STUB
} // end clear

Note that if you plan to call a stub within your test program, the stub should report that it was
invoked by displaying a message.

2.14 A test program. Listing 2-2 shows a program to test the core methods add, isFull, and toArray of
the class ArrayBag1 at this stage of its development. Initially, the main method creates an empty bag
by using the default constructor. Since the capacity of this bag is 25, it should not be full if you add
fewer than 25 entries to it. Thus, isFull should return false after these additions. The program’s
descriptive output, in fact, indicates that the tested methods are correct.

Next in the main method, we consider a full bag by creating a bag whose capacity is seven and
then adding seven strings to it. This time, isFull should return true. Again, the program’s output
shows that our methods are correct.

Programming Tip: Do not wait until you complete the implementation of an ADT
before testing it. By writing stubs, which are incomplete definitions of required methods, you
can begin testing early in the process.

1. Note that this version of the class ArrayBag is available online at the book’s website and is named ArrayBag1.

LISTING 2-2 A program that tests three core methods of the class ArrayBag

/**
A test of the methods add, toArray, and isFull, as defined
in the first draft of the class ArrayBag.

38 CHAPTER 2 Bag Implementations That Use Arrays

@author Frank M. Carrano
*/
public class ArrayBagDemo1
{

public static void main(String[] args)
{

// a bag that is not full
BagInterface<String> aBag = new ArrayBag<String>();

// tests on an empty bag
testIsFull(aBag, false);

// adding strings
String[] contentsOfBag1 = {"A", "A", "B", "A", "C", "A"};
testAdd(aBag, contentsOfBag1);
testIsFull(aBag, false);

// a bag that will be full
aBag = new ArrayBag<String>(7);
System.out.println("\nA new empty bag:");

// tests on an empty bag
testIsFull(aBag, false);

// adding strings
String[] contentsOfBag2 = {"A", "B", "A", "C", "B", "C", "D"};
testAdd(aBag, contentsOfBag2);
testIsFull(aBag, true);

} // end main

// Tests the method add.
private static void testAdd(BagInterface<String> aBag,

String[] content)
{

System.out.print("Adding to the bag: ");
for (int index = 0; index < content.length; index++)
{

aBag.add(content[index]);
System.out.print(content[index] + " ");

} // end for
System.out.println();

displayBag(aBag);
} // end testAdd

// Tests the method isFull.
// correctResult indicates what isFull should return.
private static void testIsFull(BagInterface<String> aBag,

boolean correctResult)
{

Using a Fixed-Size Array to Implement the ADT Bag 39

System.out.print("\nTesting the method isFull with ");
if (correctResult)

System.out.println("a full bag:");
else

System.out.println("a bag that is not full:");

System.out.print("isFull finds the bag ");
if (correctResult && aBag.isFull())

System.out.println("full: OK.");
else if (correctResult)

System.out.println("not full, but it is full: ERROR.");
else if (!correctResult && aBag.isFull())

System.out.println("full, but it is not full: ERROR.");
else

System.out.println("not full: OK.");
} // end testIsFull

// Tests the method toArray while displaying the bag.
private static void displayBag(BagInterface<String> aBag)
{

System.out.println("The bag contains the following string(s):");
Object[] bagArray = aBag.toArray();
for (int index = 0; index < bagArray.length; index++)
{

System.out.print(bagArray[index] + " ");
} // end for

System.out.println();
} // end displayBag

} // end ArrayBagDemo1

Output
Testing the method isFull with a bag that is not full:

isFull finds the bag not full: OK.

Adding to the bag: A A B A C A

The bag contains the following string(s):

A A B A C A

Testing the method isFull with a bag that is not full:

isFull finds the bag not full: OK.

A new empty bag:

Testing the method isFull with a bag that is not full:

isFull finds the bag not full: OK.

Adding to the bag: A B A C B C D

40 CHAPTER 2 Bag Implementations That Use Arrays

2.15 Notice that, in addition to the main method, ArrayBagDemo1 has three other methods. Since main is
static and calls these other methods, they must be static as well. The method testAdd accepts as its
arguments a bag and an array of strings. The method uses a loop to add each string in the array to
the bag. The method testIsFull takes a bag as its argument and a boolean value that indicates the
value we expect isFull to return if its logic is correct. Finally, the method displayBag takes a bag
as its argument and uses the bag’s method toArray to access its contents. Once we have an array of
the bag’s entries, a simple loop can display them.

Implementing More Methods
Now that we can add objects to a bag, we can implement the remaining methods, beginning with the eas-
iest ones. We will postpone the definitions of remove momentarily until we see how to search a bag.

2.16 The methods isEmpty and getCurrentSize. The methods isEmpty and getCurrentSize have
straightforward definitions, as you can see:

/** Sees whether this bag is empty.
@return true if the bag is empty, or false if not */

public boolean isEmpty()
{

return numberOfEntries == 0;
} // end isEmpty

/** Gets the current number of entries in this bag.
@return the integer number of entries currently in the bag */

public int getCurrentSize()
{

return numberOfEntries;
} // end getCurrentSize

2.17 The method getFrequencyOf. To count the number of times a given object occurs in a bag, we count
the number of times the object occurs in the array bag. Using a for loop to cycle through the array’s
indices from 0 to numberOfEntries – 1, we compare the given object to every object in the array.

The bag contains the following string(s):

A B A C B C D

Testing the method isFull with a full bag:

isFull finds the bag full: OK.

Question 8 What is the result of executing the following statements within the main
method of BagDemo1?

ArrayBag<String> aBag = new ArrayBag<String>();
displayBag(aBag);

Note: The definitions of some methods are almost as simple as the stubs you might use to
define them in an early version of a class. Such is the case for the bag methods isEmpty and
getCurrentSize. Although these two methods are not in our first group of core methods,
they could have been. That is, we could have defined them earlier instead of writing stubs.

Using a Fixed-Size Array to Implement the ADT Bag 41

Each time we find a match, we increment a counter. When the loop ends, we simply return the value
of the counter. Note that we must use the method equals to compare objects. That is, we must write

anEntry.equals(bag[index])

and not
anEntry == bag[index] // WRONG!

We assume that the class to which the objects belong defines its own version of equals.
The method definition follows:

/** Counts the number of times a given entry appears in this bag.
@param anEntry the entry to be counted
@return the number of times anEntry appears in the bag */

public int getFrequencyOf(T anEntry)
{

int counter = 0;

for (int index = 0; index < numberOfEntries; index++)
{

if (anEntry.equals(bag[index]))
{

counter++;
} // end if

} // end for

return counter;
} // end getFrequencyOf

2.18 The method contains. To see whether a bag contains a given object, we once again search the
array bag. The loop we need here is similar to the one in the method getFrequencyOf, but it should
stop as soon as it finds the first occurrence of the desired entry. The following pseudocode
describes this logic:

while (anEntry is not found and we have more array elements to check)
{

if (anEntry equals the next array entry)
anEntry is found in the array

}

This loop terminates under one of two conditions: Either anEntry has been found in the array or the
entire array has been searched without success.

Here, then, is our definition of the method contains:

/** Tests whether this bag contains a given entry.
@param anEntry the entry to locate
@return true if the bag contains anEntry, or false otherwise */

public boolean contains(T anEntry)
{

boolean found = false;

for (int index = 0; !found && (index < numberOfEntries); index++)
{

if (anEntry.equals(bag[index]))
{

found = true;
} // end if

} // end for

return found;
} // end contains

42 CHAPTER 2 Bag Implementations That Use Arrays

2.19 Testing the additional methods. As you define additional methods for the class ArrayBag, you
should test them. The program ArrayBagDemo2, which is available online from the book’s website,
focuses only on these additional methods. However, you should form a test program incrementally so
that it tests all the methods you have defined so far. The tests in ArrayBagDemo2 are performed on a
bag that is not full and on a full bag, as we did in ArrayBagDemo1. The version of the class ArrayBag
to date is named ArrayBag2 within the source code available online.

Methods That Remove Entries
We have postponed the three methods that remove entries from a bag until now because one of them is
somewhat difficult and involves a search much like the one we performed in the method contains. We
begin with the two methods that are easier to define.

2.20 The method clear. The method clear removes all entries from a bag, one at a time. The following
definition of clear calls the method remove until the bag is empty:

/** Removes all entries from this bag. */
public void clear()
{

while (!isEmpty())
remove();

} // end clear

Exactly which entry is removed by each cycle of the loop is unimportant. Thus, we call the remove
method that removes an unspecified entry. Moreover, we do not save the entry that the method returns.

Question 9 The method contains could call getFrequencyOf instead of executing a loop.
That is, you could define the method as follows:

public boolean contains(T anEntry)
{

return getFrequencyOf(anEntry) > 0;
} // end contains

What is an advantage and a disadvantage of this definition as compared to the one given in the pre-
vious segment?

Note: Two kinds of loops
To count how many times an entry occurs in an array, the method getFrequencyOf uses a
loop that cycles through all of the array’s entries. In fact, the body of the loop executes
numberOfEntries times. In contrast, to indicate whether a given entry occurs in an array,
the loop in the method contains ends as soon as the desired entry is discovered. The body
of this loop executes between one and numberOfEntries times. You should be comfortable
writing loops that execute either a definitive or a variable number of times.

Note: We can write the definition of the method clear in terms of the as yet undefined
method remove. However, we cannot test clear completely until remove is defined.

Using a Fixed-Size Array to Implement the ADT Bag 43

2.21 Removing an unspecified entry. The method remove that has no parameter removes an unspecified
entry from a bag, as long as the bag is not empty. Recall from the method’s specification given in the
interface in Listing 1-1 of the previous chapter that the method returns the entry it removes:

/** Removes one unspecified entry from this bag, if possible.
@return either the removed entry, if the removal was successful,

or null otherwise */
public T remove()

If the bag is empty before the method executes, null is returned.
Removing an entry from a bag involves removing it from an array. Although we can access

any entry in the array bag, the last one is easy to remove. To do so, we

● Access the entry so it can be returned
● Set the entry’s array element to null
● Decrement numberOfEntries

Decrementing numberOfEntries causes the last entry to be ignored, meaning that it is effectively
removed, even if we did not set its location in the array to null.

A literal translation of the previous steps into Java leads to the following definition of the method:

public T remove()
{

T result = null;
if (numberOfEntries > 0)
{

result = bag[numberOfEntries - 1];
bag[numberOfEntries - 1] = null;
numberOfEntries--;

} // end if

return result;
} // end remove

Note that this method computes numberOfEntries - 1 three times. The following refinement
avoids this repetition:

public T remove()
{

T result = null;
if (numberOfEntries > 0)
{

numberOfEntries--;
result = bag[numberOfEntries];
bag[numberOfEntries] = null;

} // end if

Question 10 Revise the definition of the method clear so that it does not call isEmpty.
Hint: The while statement should have an empty body.

Question 11 Consider the following definition of clear:
public void clear()
{

numberOfEntries = 0;
} // end clear

What is a disadvantage of this definition as compared to the one shown in Segment 2.20?

44 CHAPTER 2 Bag Implementations That Use Arrays

return result;
} // end remove

2.22 Removing a given entry. Our third method that removes an entry from the bag involves removing
a given entry —call it anEntry. If the entry occurs more than once in the bag, we will remove only
one occurrence. Exactly which occurrence is removed is unspecified. We will simply remove the
first occurrence of anEntry that we encounter while searching for it. As we discussed in
Segment 1.9 of Chapter 1, we will return either true or false, according to whether we find the entry
in the bag.

Assuming that the bag is not empty, we search the array bag much as the method contains did
in Segment 2.18. If anEntry equals bag[index], we note the value of index. Figure 2-5 illustrates
the array after a successful search.

FIGURE 2-5 The array bag after a successful search for the string "Alice"

We now need to remove the entry in bag[index]. If we simply write
bag[index] = null;

the reference in bag[index] to the entry will be removed, but we will have a gap in the array. That is, the
contents of the bag will no longer be in consecutive array locations, as Figure 2-6a illustrates. We could get
rid of that gap by shifting the subsequent entries, as shown in Figure 2-6b. This time-consuming approach
is not necessary, however.

FIGURE 2-6 (a) A gap in the array bag after setting the entry in bag[index] to
null; (b) the array after shifting subsequent entries to avoid a gap

Question 12 Why does the method remove set bag[numberOfEntries] to null?

Question 13 The previous remove method removes the last entry in the array bag. Why
might removing a different entry be more difficult to accomplish?

Indices 0 1 2 3 4 5 6

Nancy Ted VandeeDoug Sue

bag[index]

Alice

index

0 1 2 3 4 5 6

Nancy Ted VandeeDoug Suenull

bag[index]

Nancy Ted VandeeDoug Sue

(a)

(b)

Using a Fixed-Size Array to Implement the ADT Bag 45

Remember that we are not required to maintain any particular order for a bag’s entries. So
instead of shifting array entries after removing an entry, we can replace the entry being removed
with the last entry in the array, as follows. After locating anEntry in bag[index], as Figure 2-7a
indicates, we copy the entry in bag[numberOfEntries - 1] to bag[index] (Figure 2-7b). We then
replace the entry in bag[numberOfEntries - 1] with null, as Figure 2-7c illustrates, and finally we
decrement numberOfEntries.

FIGURE 2-7 Avoiding a gap in the array while removing an entry

2.23 Pseudocode for removing a given entry. Let’s organize our discussion by writing some pseudo-
code to remove the given entry, anEntry, from a bag that contains it:

Locate anEntry in the array bag; assume it occurs at bag[index]
bag[index] = bag[numberOfEntries - 1]
bag[numberOfEntries - 1] = null
Decrement the counter numberOfEntries
return true

This pseudocode assumes that the bag contains anEntry.
After we add some details to the pseudocode to accommodate the situation in which anEntry is

not in the bag, and to avoid computing numberOfEntries - 1 more than once, as we did in
Segment 2.21, the pseudocode appears as follows:

Search the array bag for anEntry
if (anEntry is in the bag at bag[index])
{

Decrement the counter numberOfEntries
bag[index] = bag[numberOfEntries]
bag[numberOfEntries] = null
return true

}
else

return false

2.24 Avoiding duplicate effort. We can easily translate this pseudocode into the Java method remove.
However, if we were to do so, we would see much similarity between our new method and the remove
method we wrote earlier in Segment 2.21. In fact, if anEntry occurs in bag[numberOfEntries - 1],
both remove methods will have exactly the same effect. To avoid this duplicate effort, both remove
methods can call a private method that performs the removal. We can specify such a method as follows:

// Removes and returns the entry at a given array index.
// If no such entry exists, returns null.
private T removeEntry(int givenIndex)

0 1 2 3 4 5 6

Nancy Ted VandeeDoug SueAlice

bag[index]

Nancy TedDoug Vandee

(a)

(b) Sue Sue

0 1 2 3 4 5 6

Nancy TedDoug Vandee(c) Sue null

46 CHAPTER 2 Bag Implementations That Use Arrays

Before we implement this private method, let’s see if we can use it by revising the remove
method in Segment 2.21. Since that method removes and returns the last entry in the array bag, that is,
bag[numberOfEntries - 1], its definition can make the call removeEntry(numberOfEntries - 1).
Proceeding as if removeEntry were defined and tested, we can define remove as follows:

/** Removes one unspecified entry from this bag, if possible.
@return either the removed entry, if the removal was successful,
or null otherwise */

public T remove()
{

T result = removeEntry(numberOfEntries - 1);
return result;

} // end remove

This definition looks good; let’s implement the second remove method.

2.25 The second remove method. The first remove method does not search for the entry to remove, as it
removes the last entry in the array. The second remove method, however, does need to perform a
search. Rather than thinking about the details of locating an entry in an array right now, let’s dele-
gate that task to another private method, which we specify as follows:

// Locates a given entry within the array bag.
// Returns the index of the entry, if located, or -1 otherwise.
private int getIndexOf(T anEntry)

Assuming that this method is defined and tested, we can define our public method as follows:

/** Removes one occurrence of a given entry from this bag.
@param anEntry the entry to be removed
@return true if the removal was successful, or false if not */

public boolean remove(T anEntry)
{

int index = getIndexOf(anEntry);
T result = removeEntry(index);
return anEntry.equals(result);

} // end remove

Notice that removeEntry returns either the entry it removes or null. That is exactly what the first
remove method needs, but the second remove method has to return a boolean value. Thus, in the second
method we need to compare the entry we want to remove with the one removeEntry returns to get the
desired boolean value.

2.26 The definition of the private method removeEntry. Let’s look back at the pseudocode we wrote
in Segment 2.23 for removing a particular entry from the bag. The private method removeEntry

Question 14 Can the return statement in the previous definition of remove be written as
follows?

a. return result.equals(anEntry);
b. return result != null;

Question 15 The array bag in ArrayBag contains the entries in the bag aBag. If bag con-
tains the strings "A", "A", "B", "A", "C", why does aBag.remove("B") change the contents
of bag to "A", "A", "C", "A", null instead of either "A", "A", "A", "C", null or "A", "A",
null, "A", "C"?

Using a Fixed-Size Array to Implement the ADT Bag 47

assumes that the search for the entry is done already, so we can ignore the first step of the
pseudocode. The rest of the pseudocode, however, gives the basic logic for removing an entry.
We can revise the pseudocode as follows:

// Removes and returns the entry at a given index within the arraybag.
// If no such entry exists, returns null.
if (the bag is not empty and the given index is not negative)
{

result = bag[givenIndex]
Decrement the counter numberOfEntries
bag[givenIndex] = bag[numberOfEntries]
bag[numberOfEntries] = null
return result

}
else

return null

The definition of the method remove given in the previous segment passes the integer returned by
getIndexOf to removeEntry. Since getIndexOf can return –1, removeEntry must watch for such an
argument. Thus, if the bag is not empty —that is, if numberOfEntries is greater than zero—and
givenIndex is greater than or equal to zero, removeEntry removes the array entry at givenIndex by
replacing it with the last entry and decrementing numberOfEntries. The method then returns the
removed entry. If, however, the bag is empty, the method returns null.

The code for the method is
// Removes and returns the entry at a given index within the arraybag.
// If no such entry exists, returns null.
private T removeEntry(int givenIndex)
{

T result = null;
if (!isEmpty() && (givenIndex >= 0))
{

result = bag[givenIndex]; // entry to remove
numberOfEntries--;
bag[givenIndex] = bag[numberOfEntries]; // replace entry with last entry
bag[numberOfEntries] = null; // remove last entry

} // end if

return result;
} // end removeEntry

2.27 Locating the entry to remove. We now need to think about locating the entry to remove from the
bag so we can pass its index to removeEntry. The method contains performs the same search that
we will use to locate anEntry within the definition of remove. Unfortunately, contains returns true
or false; it does not return the index of the entry it locates in the array. Thus, we cannot simply call
that method within our method definition.

Design Decision: Should the method contains return the index of a located entry?
Should we change the definition of contains so that it returns an index instead of a boolean value?
No. As a public method, contains should not provide a client with such implementation details. The
client should have no expectation that a bag’s entries are in an array, since they are in no particular
order. Instead of changing the specifications for contains, we will follow our original plan to define a
private method to search for an entry and return its index.

48 CHAPTER 2 Bag Implementations That Use Arrays

The definition of getIndexOf will be like the definition of contains, which we recall here:
public boolean contains(T anEntry)
{

boolean found = false;

for (int index = 0; !found && (index < numberOfEntries); index++)
{

if (anEntry.equals(bag[index]))
{

found = true;
} // end if

} // end for

return found;
} // end contains

The structure of the loop is suitable for the method getIndexOf, but we must save the value of
index when the entry is found. The method will return this index instead of a boolean value.

2.28 The definition of getIndexOf. To revise the loop in contains for use in getIndexOf, we define an
integer variable where to record the value of index when anEntry equals bag[index]. Thus, the
definition of getIndexOf looks like this:

// Assertion: If where > -1, anEntry is in the array bag, and it
// equals bag[where]; otherwise, anEntry is not in the array

return where;

} // end getIndexOf

The method getIndexOf returns the value of where. Notice that we initialize where to –1, which is
the value to return if anEntry is not found.

// Locates a given entry within the array bag.
// Returns the index of the entry, if located, or -1 otherwise.
private int getIndexOf(T anEntry)
{

int where = -1;
boolean found = false;

for (int index = 0; !found && (index < numberOfEntries); index++)
{

if (anEntry.equals(bag[index]))
{

found = true;
where = index;

} // end if
} // end for

Question 16 What assert statement can you add to the definition of the method getIndexOf
just before the return statement to indicate the possible values that the method can return?

Question 17 Revise the definition of the method getIndexOf so that it does not use a
boolean variable.

Using a Fixed-Size Array to Implement the ADT Bag 49

2.29 A revised definition for the method contains. Having completed the definitions of remove and
the private methods they call, we realize that the method contains can call the private method
getIndexOf, resulting in a simpler definition than the one given in Segment 2.18. Recall that the
expression getIndexOf(anEntry) returns an integer between 0 and numberOfEntries – 1 if
anEntry is in the bag, or –1 otherwise. That is, getIndexOf(anEntry) is greater than –1 if anEntry
is in the bag. Thus, we can define contains as follows:

/** Tests whether this bag contains a given entry.
@param anEntry the entry to locate
@return true if the bag contains anEntry, or false otherwise */

public boolean contains(T anEntry)
{

return getIndexOf(anEntry) > -1;
} // end contains

Since we have changed the definition of contains, we should test it again. By doing so, we are
also testing the private method getIndexOf.

Aside: Thinking positively

Unlike the method contains, the method getIndexOf uses the boolean variable found only to
control the loop and not as a return value. Thus, we can modify the logic somewhat to avoid the
use of the not operator !.

Let’s use a variable stillLooking instead of found and initialize it to true. Then we can
replace the boolean expression !found with stillLooking, as you can see in the following defi-
nition of the method getIndexOf:

If anEntry is found within the array, stillLooking is set to false to end the loop. Some programmers
prefer to think positively, as in this revision, while others find !found to be perfectly clear.

// Locates a given entry within the array bag.
// Returns the index of the entry, if located, or -1 otherwise.
private int getIndexOf(T anEntry)
{

int where = -1;
boolean stillLooking = true;

for (int index = 0; stillLooking && (index < numberOfEntries); index++)
{

if (anEntry.equals(bag[index]))
{

stillLooking = false;
where = index;

} // end if
} // end for

return where;
} // end getIndexOf

Note: Both the method contains and the second remove method must perform similar searches
for an entry. By isolating the search in a private method that both contains and remove can call, we
make our code easier to debug and to maintain. This strategy is the same one we used when we
defined the removal operation in the private method removeEntry that both remove methods call.

50 CHAPTER 2 Bag Implementations That Use Arrays

2.30 Testing. Our class ArrayBag is essentially complete. We can use the previously tested methods—which
we assume are correct—in the tests for remove and clear. Starting with a bag that is not full, the online
program ArrayBagDemo3 removes the bag’s entries until it is empty. It also includes similar tests begin-
ning with a full bag. Finally, we should consolidate our previous tests and run them again. The source
code available on the book’s website identifies our test program as ArrayBagDemo and the complete ver-
sion of the class as ArrayBag.

Using Array Resizing to Implement the ADT Bag

2.31 An array has a fixed size, which is chosen by either the programmer or the user before the array is
created. A fixed-size array is like a classroom. If the room contains 40 desks but only 30 students, we
waste 10 desks. If 40 students are taking the course, the room is full and cannot accommodate any-
one else. Likewise, if we do not use all of the locations in an array, we waste memory. If we need
more, we are out of luck.

Using a fixed-size array to implement the ADT bag, therefore, limits the size of the bag. When
the array, and hence the bag, becomes full, the method isFull returns true and subsequent calls to
the add method return false. Some applications can use a bag or other collection that has a limited
capacity. For other applications, however, we need the size of a collection to grow without bound.
We will now show you how a group of items can be as large as you want—within the limits of your
computer’s memory—but still be in an array.

Resizing an Array

2.32 The strategy. When a classroom is full, one way to accommodate additional students is to move to
a larger room. In a similar manner, when an array becomes full, you can move its contents to a
larger array. This process is called resizing an array. Figure 2-8 shows two arrays: an original array
of five consecutive memory locations and another array—twice the size of the original array—that
is in another part of the computer’s memory. If you copy the data from the original smaller array to
the beginning of the new larger array, the result will be like expanding the original array. The only
glitch in this scheme is the name of the new array: You want it to be the same as the name of the old
array. You will see how to accomplish this momentarily.

FIGURE 2-8 Resizing an array copies its contents to a larger second array

2.33 The details. Suppose we have an array that myArray references, as Figure 2-9a illustrates. We first
define an alias oldArray that also references the array, as Figure 2-9b shows. The next step is to cre-
ate a new array that is larger than the original array and let myArray reference this new array. As pic-
tured in Figure 2-9c, the new array typically doubles the size of the original array. The final step

Programming Tip
Even though you might have written a correct definition of a method, do not hesitate to revise
it if you think of a better implementation.

Original array

Larger array

Using Array Resizing to Implement the ADT Bag 51

copies the contents of the original array to the new array (Figure 2-9d) and then discards the original
array (Figure 2-9e). The following pseudocode summarizes these steps:

oldArray = myArray
myArray = a new array whose length is 2 * oldArray.length
Copy entries from the original array—oldArray—to the new array—myArray
oldArray = null // discard old array

FIGURE 2-9 (a) An array; (b) two references to the same array; (c) the origi-
nal array variable now references a new, larger array; (d) the
entries in the original array are copied to the new array; (e) the
original array is discarded

myArray

(a)

oldArray

(c)

myArray

oldArray

(b)

myArray

oldArray

(d)

myArray

myArray

oldArray

(e)

Note: When an array is no longer referenced, its memory is recycled during garbage
collection, just as occurs with any other object.

52 CHAPTER 2 Bag Implementations That Use Arrays

2.34 The code. While we could simply translate the previous pseudocode into Java, much of the work
can be done by using the method Arrays.copyOf, which is in the Java Class Library. For example,
let’s work with a simple array of integers:

int[] myArray = {10, 20, 30, 40, 50};

At this point, myArray references the array, as Figure 2-10a shows. Next, we’ll call Arrays.copyOf.
The method’s first parameter, sourceArray, is assigned the reference in the variable myArray, as
Figure 2-10b implies. Next the method creates a new, larger array and copies the entries in the argument
array to it (Figure 2-10c). Finally, the method returns a reference (Figure 2-10d) to the new array, and we
assign this reference to myArray (Figure 2-10e). The following statement performs these steps:

myArray = Arrays.copyOf(myArray, 2 * myArray.length);

FIGURE 2-10 The effect of the statement
myArray = Arrays.copyOf(myArray, 2 * myArray.length);
(a) The argument array; (b) the parameter that references the
argument array; (c) a new, larger array that gets the contents of the
argument array; (d) the return value that references the new array;
(e) the argument variable is assigned the return value

2.35 Resizing an array is not as attractive as it might first seem. Each time you expand the size of
an array, you must copy its contents. If you were to expand an array by one element each
time you needed additional space in the array, the process would be expensive in terms of
computing time. For example, if a 50-element array is full, accommodating another entry
would require you to copy the array to a 51-element array. Adding yet another entry would
require that you copy the 51-element array to a 52-element array, and so on. Each addition
would cause the array to be copied. If you added 100 entries to the original 50-entry array,
you would copy the array 100 times.

However, expanding the array by m elements spreads the copying cost over m additions
instead of just one. Doubling the size of an array each time it becomes full is a typical approach.
For example, when you add an entry to a full array of 50 entries, you copy the 50-element array
to a 100-element array before completing the addition. The next 49 additions then can be made
quickly without copying the array. Thus, you will have copied the array only once.

(a)

(c)

(b)

(d)

sourceArray

10 20 30 40 50newArray 0 0 0 0 0

myArray 10 20 30 40 50

myArray

The method Arrays.copyOf

(e)

Using Array Resizing to Implement the ADT Bag 53

A New Implementation of a Bag
2.36 The approach. We can revise the previous implementation of the ADT bag by resizing the array

bag so that the bag’s capacity is limited only by the amount of memory available on your computer.
If we look at the outline of the class ArrayBag in Listing 2-1, we can see what we need to revise.
Let’s itemize these tasks:

VideoNote

● Change the name of the class to ResizableArrayBag so we can distinguish between our two
implementations.

● Remove the modifier final from the declaration of the array bag to enable it to be resized.
● Change the name of the constant DEFAULT_CAPACITY to DEFAULT_INITIAL_CAPACITY.

Although unnecessary, this change clarifies the new purpose of the constant, since the bag’s
capacity will increase as necessary. Make the same change in the default constructor, which
uses the constant.

● Change the names of the constructors to match the new class name.

Programming Tip: When increasing the size of an array, you copy its entries to a larger
array. You should expand the array sufficiently to reduce the impact of the cost of copying. A
common practice is to double the size of the array.

Note: Importing a class
The definition of a class that uses a class from the Java Class Library must be preceded by a
import statement. For example, to use the class Arrays, you would write the following state-
ment prior to your class definition and its descriptive comments:

import java.util.Arrays;

Some programmers replace Arrays in this statement with an asterisk to make all classes in
the package java.util available to their program.

Note: To say that we “resize” an array is really a misnomer, since an array’s length cannot
be changed. The process of resizing an array involves creating a completely new array that
contains the entries of the original array. The new array is given the name of the original
array—in other words, a reference to the new array is assigned to the variable that had refer-
enced the original array. The original array is then discarded.

Question 18 Consider the array of strings that the following statement defines:
String[] text = {"cat", "dog", "bird", "snake"};

What Java statements will increase the capacity of the array text by five elements without altering
its current contents?

Question 19 Consider an array text of strings. If the number of strings placed into this
array is less than its length (capacity), how could you decrease the array’s length without
altering its current contents? Assume that the number of strings is in the variable size.

A resizable bag

54 CHAPTER 2 Bag Implementations That Use Arrays

● Revise the definition of the method add to always accommodate a new entry. The method
will never return false.

● Revise the definition of the method isFull to always return false. A bag will never become full.

Revising the method add is the only substantial task in this list. The rest of the class will remain
unchanged.

2.37 The method add. Here is the original definition of the method add, as it appears in Segment 2.10:
/** Adds a new entry to this bag.

@param newEntry the object to be added as a new entry
@return true if the addition is successful, or false if not */

public boolean add(T newEntry)
{

boolean result = true;
if (isFull())
{

result = false;
}
else
{ // assertion: result is true here

bag[numberOfEntries] = newEntry;
numberOfEntries++;

} // end if

return result;
} // end add

Since the bag will never be full, the method isFull will always return false. Thus, we can no lon-
ger call isFull to see whether the array bag is full. Instead, we can define a private method to both
make this check and resize the array bag, if necessary. Let’s name the method ensureCapacity and
specify it as follows:

// Doubles the size of the array bag if it is full.
private void ensureCapacity()

Assuming that we have defined this private method, we can revise the method add as follows:

public boolean add(T newEntry)
{

ensureCapacity();
bag[numberOfEntries] = newEntry;
numberOfEntries++;

return true;
} // end add

2.38 The private method ensureCapacity. The array bag is full when numberOfEntries equals the
array’s length, bag.length. When that is the case, we will resize bag using the technique described
earlier in Segment 2.34. Thus, the definition of ensureCapacity is straightforward:

// Doubles the size of the array bag if it is full.
private void ensureCapacity()
{

if (numberOfEntries == bag.length)
bag = Arrays.copyOf(bag, 2 * bag.length);

} // end ensureCapacity

2.39 The class ResizableArrayBag. Our new class is available online from the book’s website. You
should examine its details.

The Pros and Cons of Using an Array to Implement the ADT Bag 55

Design Decision: You might wonder about some of the decisions we made while defining
the class ResizableArrayBag, with questions such as the following:

● Why is the method add a boolean method and not a void method? It always returns true!
● Why did we bother to define isFull? The bag is never full!
● Why did we define the private method ensureCapacity? Only one method, add, calls it!

The answers to the first two questions are the same: The class implements the interface
BagInterface, so we followed its specifications. As a result, we have two different implementations,
ArrayBag and ResizableArrayBag, each of which can be used by the same client. Our answer to the
third question reflects our approach to problem solving. To implement add, we needed to answer two
questions: When is an array full, and how do we expand a full array? Rather than risking the distrac-
tion of answering these questions while we were defining the method add, we chose to specify a pri-
vate method to provide those answers. Admittedly, the definition of this private method turned out to
be short. We could now integrate the body of the private method into that of add, but we have no
pressing reason to do so.

2.40 Testing the class. A program that tests the class ResizableArrayBag can create a bag whose initial
capacity is small—3, for example. This choice allows us to easily test the bag’s ability to increase its
capacity. For instance, when the fourth item is added, the bag’s capacity is doubled to 6. At the seventh
addition, the capacity is doubled again, this time to 12. Such a program, ResizableArrayBagDemo, is
available online at the book’s website.

The Pros and Cons of Using an Array to Implement the ADT Bag

2.41 This chapter discussed two implementations of the ADT bag that use an array to store a bag’s entries.
An array is simple to use and enables you to access any element immediately, if you know its index.
Since we know the index of the last entry in the array, removing it is easy and fast. Similarly, adding
an entry at the end of the array is equally easy and fast. On the other hand, removing a particular entry,
if it occurs between other entries, requires us to avoid a gap within the array. To do so, we replace the
removed entry with the last entry in the array. This is an insignificant increase in execution time, as it

Question 20 What is the definition of a constructor that you could add to the class
ResizableArrayBag to initialize the bag to the contents of a given array?

Question 21 In the definition of the constructor described in the previous question, is it
necessary to copy the entries from the argument array to the array bag, or would a simple
assignment (bag = contents) be sufficient?

Question 22 What is an advantage of using an array to organize data? What is a disadvantage?

Programming Tip: A class implementing a single interface that declares the operations
of an ADT should define the methods declared in the interface as its only public methods.
However, the class can also define private methods and protected methods.

56 CHAPTER 2 Bag Implementations That Use Arrays

is overshadowed by the time it takes to locate the desired entry. We will talk more about such a search
later in this book.

Using a fixed-size array limits the capacity of a bag, which is usually a disadvantage. Resizing
an array dynamically enables you to increase the array’s size but requires copying data. You should
realize that the array entries that we copy are references, and so do not occupy much space nor take
much time to move. Some languages other than Java store the data itself within the array. In such
cases, moving large, complex objects can be quite time-consuming.

CHAPTER SUMMARY

PROGRAMMING TIPS

Note: When you use an array to implement the ADT bag,
● Adding an entry to the bag is fast
● Removing an unspecified entry is fast
● Removing a particular entry requires time to locate the entry
● Increasing the size of the array requires time to copy its entries

● You can use a Java array to define a relatively simple implementation of the ADT bag, but other implementations
are possible.

● Adding an entry right after the last entry in an array does not disturb the position of existing entries. Likewise,
deleting the last entry from an array does not disturb the position of existing entries.

● Because a bag does not maintain its entries in a specific order, deleting an entry does not require you to
move all subsequent array entries to the next lower position. Instead, you can replace the entry that you want
to delete with the last entry in the array and replace the last entry with null.

● Identifying and implementing a class’s central, or core, methods before any others is a good strategy to use
when you expect the class to be lengthy or complex. Use stubs for the remaining methods.

● Test a class at each stage of its development, particularly after adding a significant method.

● Using a fixed-size array can result in a full bag.

● Resizing an array makes it appear to change size. To do so, you allocate a new array, copy the entries from the
original array to the new array, and use the original variable to reference the new array.

● Resizing an array enables you to implement collections whose contents are limited in number only by the
size of the computer’s memory.

● When defining a class, implement and test a group of core methods. Begin with methods that add to a collec-
tion of objects and/or have involved implementations.

● A class should not return a reference to an array that is a private data field.

● Do not wait until you complete the implementation of an ADT before testing it. By writing stubs, which are
incomplete definitions of required methods, you can begin testing early in the process.

● Even though you might have written a correct definition of a method, do not hesitate to revise it if you think
of a better implementation.

Exercises 57

EXERCISES

● When increasing the size of an array, you copy its entries to a larger array. You should expand the array sufficiently
to reduce the impact of the cost of copying. A common practice is to double the size of the array.

● A class implementing a single interface that declares the operations of an ADT should define the methods
declared in the interface as its only public methods. However, the class can also define private methods and
protected methods.

1. Why are the methods getIndexOf and removeEntry in the class ArrayBag private instead of public?

2. Implement a method replace for the ADT bag that replaces and returns any object currently in a bag with a
given object.

3. Revise the definition of the method remove, as given in Segment 2.24, so that it removes a random entry
from a bag. Would this change affect any other method within the class ArrayBag?

4. Define a method removeEvery for the class ArrayBag that removes all occurrences of a given entry from a bag.

5. An instance of the class ArrayBag has a fixed size, whereas an instance of ResizableArrayBag does not. Give
some examples of situations where a bag would be appropriate if its size is

a. Fixed.
b. Resizable.

6. Suppose that you wanted to define a class PileOfBooks that implements the interface described in Project 2 of the
previous chapter. Would a bag be a reasonable collection to represent the pile of books? Explain.

7. Consider an instance myBag of the class ResizableArrayBag, as discussed in Segments 2.36 to 2.40. Suppose that
the initial capacity of myBag is 10. What is the length of the array bag after

a. Adding 145 entries to myBag?
b. Adding an additional 20 entries to myBag?

8. Define a method at the client level that accepts as its argument an instance of the class ArrayBag and returns an
instance of the class ResizableArrayBag that contains the same entries as the argument bag.

9. Suppose that a bag contains Comparable objects. Implement the following methods for the class ArrayBag:
● The method getMin that returns the smallest object in a bag
● The method getMax that returns the largest object in a bag
● The method removeMin that removes and returns the smallest object in a bag
● The method removeMax that removes and returns the largest object in a bag

10. Suppose that a bag contains Comparable objects. Define a method for the class ArrayBag that returns a new bag of
items that are less than some given item. The header of the method could be as follows:

public ArrayBag<T> getAllLessThan(Comparable<T> anObject)

Make sure that your method does not affect the state of the original bag.

11. Define an equals method for the class ArrayBag that returns true when the contents of two bags are the same.
Note that two equal bags contain the same number of entries, and each entry occurs in each bag the same number
of times.

58 CHAPTER 2 Bag Implementations That Use Arrays

PROJECTS

12. The class ResizableArrayBag has an array that can grow in size as objects are added to the bag. Revise the class
so that its array also can shrink in size as objects are removed from the bag. Accomplishing this task will require
two new private methods, as follows:

● The first new method checks whether we should reduce the size of the array:
private boolean isTooBig()

This method returns true if the number of entries in the bag is less than half the size of the array and the
size of the array is greater than 20.

● The second new method creates a new array that is three quarters the size of the current array and
then copies the objects in the bag to the new array:
private void reduceArray()

Implement each of these two methods, and then use them in the definitions of the two remove methods.

13. Consider the two private methods described in the previous exercise.
a. The method isTooBig requires the size of the array to be greater than 20. What problem could occur if this

requirement is dropped?
b. The method reduceArray is not analogous to the method ensureCapacity in that it does not reduce the

size of the array by one half. What problem could occur if the size of the array is reduced by one half
instead of three quarters?

14. Define the method union, as described in Exercise 5 of the previous chapter, for the class ResizableArrayBag.

15. Define the method intersection, as described in Exercise 6 of the previous chapter, for the class ResizableArrayBag.

16. Define the method difference, as described in Exercise 7 of the previous chapter, for the class
ResizableArrayBag.

1. Define a class ArraySet that represents a set and implements the interface described in Project 1a of the previous
chapter. Use the class ResizableArrayBag in your implementation. Then write a program that adequately demon-
strates your implementation.

2. Repeat the previous project, but use a resizable array instead of the class ResizableArrayBag.

3. Define a class PileOfBooks that implements the interface described in Project 2 of the previous chapter. Use a
resizable array in your implementation. Then write a program that adequately demonstrates your implementation.

4. Define a class Ring that represents a ring and implements the interface described in Project 3 of the previous
chapter. Use a resizable array in your implementation. Then write a program that adequately demonstrates your
implementation.

5. You can use either a set or a bag to create a spell checker. The set or bag serves as a dictionary and contains a col-
lection of correctly spelled words. To see whether a word is spelled correctly, you see whether it is contained in
the dictionary. Use this scheme to create a spell checker for the words in an external file. To simplify your task,
restrict your dictionary to a manageable size.

6. Repeat the previous project to create a spell checker, but instead place the words whose spelling you want to
check into a bag. The difference between the dictionary (the set or bag containing the correctly spelled words) and
the bag of words to be checked is a bag of incorrectly spelled words.

Answers to Self-Test Questions 59

ANSWERS TO SELF-TEST QUESTIONS

1. The students remain in consecutively numbered desks. You do not have to keep track of the locations of the
empty desks.

2. Time is saved by not moving a student.

3. The student in the highest-numbered desk.

4. No. The two values are equal only when a bag is full.

5. If the client contained a statement such as
Object[] bagContents = myBag.toArray();

myBag.getCurrentSize() would be the number of entries in the array bagContents. With the proposed design,
bagContents.length could be larger than the number of entries in the bag.

6. The statements set the first element of bag to null. The value of numberOfEntries does not change, so it is 5.

7. public T[] toArray()
{

return Arrays.copyOf(bag, bag.length);
} // end toArray

8. The bag aBag is empty. When displayBag is called, the statement
Object[] bagArray = aBag.toArray();

executes. When toArray is called, the statement
T[] result = (T[])new Object[numberOfEntries];

executes. Since aBag is empty, numberOfEntries is zero. Thus, the new array, result, is empty. The loop in
toArray is skipped and the empty array is returned and assigned to bagArray. Since bagArray.length is zero, the
loop in displayBag is skipped. The result of the call displayBag(aBag) is simply the line

The bag contains

9. Advantage: This definition is easier to write, so you are less likely to make a mistake.
Disadvantage: This definition takes more time to execute, if the bag contains more than one occurrence of anEntry.
Note that the loop in the method getFrequencyOf cycles through all of the entries in the bag, whereas the loop in the
method contains, as given in Segment 2.18, ends as soon as the desired entry is found.

10. public void clear()
{

while (remove() != null)
{
} // end while

} // end clear

11. Although the bag will appear empty to both the client and the other methods in ArrayBag, the references to
the removed objects will remain in the array bag. Thus, the memory associated with these objects will not be
deallocated.

12. By setting bag[numberOfEntries] to null, the method causes the memory assigned to the deleted entry to be
recycled, unless another reference to that entry exists in the client.

13. An entry in the array bag, other than the last one, would be set to null. The remaining entries would no longer be
in consecutive elements of the array. We could either rearrange the entries to get rid of the null entry or modify
other methods to skip any null entry.

60 CHAPTER 2 Bag Implementations That Use Arrays

14. a. No. If result were null—and that is quite possible—a NullPointerException would occur.
b. Yes.

15. After locating "B" in the bag, the remove method replaces it with the last relevant entry in the array bag, which is
"C". It then replaces that last entry with null. Although we could define remove to result in either of the two other
possibilities given in the question, both choices are inferior. For example, to get "A", "A", "A", "C", null,
remove would shift the array elements, requiring more execution time. Leaving a gap in the array, such as "A",
"A", null, "A", "C", is easy for remove to do but complicates the logic of the remaining methods.

16. assert ((where >= 0) && (where < numberOfEntries)) || (where == -1);

17. private int getIndexOf(T anEntry)
{

int where = -1;
for (int index = 0; (where == -1) && (index < numberOfEntries); index++)
{

if (anEntry.equals(bag[index]))
where = index;

} // end for

return where;
} // end getIndexOf

or

private int getIndexOf(T anEntry)
{

int where = numberOfEntries - 1;
while ((where > -1) && !anEntry.equals(bag[where]))

where--;

return where;
} // end getIndexOf

18. text = Arrays.copyOf(text, text.length + 5);
or
String[] origText = text;
text = new String[text.length + 5];
System.arraycopy(origText, 0, text, 0, origText.length);

19. text = Arrays.copyOf(text, size);

20. /** Creates a bag containing the given array of entries.
@param contents an array of objects */

public ResizableArrayBag(T[] contents)
{

bag = Arrays.copyOf(contents, contents.length);
numberOfEntries = contents.length;

} // end constructor

21. A simple assignment statement would be a poor choice, since then the client could corrupt the bag’s data by
using the reference to the array that it passes to the constructor as an argument. Copying the argument array to
the array bag is necessary to protect the integrity of the bag’s data.

22. Advantage: You can access any array location directly if you know its index.
Disadvantages: The array has a fixed size, so you will either waste space or run out of room. Resizing the array
avoids the latter disadvantage, but requires you to copy the contents of the original array to a larger array.

Chapter

3A Bag ImplementationThat Links Data
Contents
Linked Data

Forming a Chain by Adding to Its Beginning
A Linked Implementation of the ADT Bag

The Private Class Node
An Outline of the Class LinkedBag
Defining Some Core Methods
Testing the Core Methods
The Method getFrequencyOf
The Method contains

Removing an Item from a Linked Chain
The Methods remove and clear

A Class Node That Has Set and Get Methods
The Pros and Cons of Using a Chain to Implement the ADT Bag

Prerequisites
Chapter 1 Bags
Chapter 2 Bag Implementations That Use Arrays

Objectives
After studying this chapter, you should be able to
• Describe a linked organization of data
• Describe how to add a new node to the beginning of a chain of linked nodes
• Describe how to remove the first node in a chain of linked nodes
• Describe how to locate a particular piece of data within a chain of linked nodes
• Implement the ADT bag by using a chain of linked nodes
• Describe the differences between the array-based and linked implementations of the ADT bag

62 CHAPTER 3 A Bag Implementation That Links Data

Using an array to implement the ADT bag has both advantages and disadvantages, as you saw in
Chapter 2. An array has a fixed size, and so it can either become full or have several unused
elements. You can resize an array when it becomes full by moving its entries to a larger array.
Although resizing an array can provide as much space as a bag needs, you must move data each
time you expand the array.

This chapter introduces a data organization that uses memory only as needed for a new entry
and returns the unneeded memory to the system after an entry is removed. By linking data, this new
organization avoids moving data when adding or removing bag entries. These features make this
way of implementing a bag an important alternative to array-based approaches.

Linked Data

3.1 In Chapter 2, we used the analogy of a classroom to describe how data is stored in an array. Here
we use a classroom to show you another way to organize data.

Imagine an empty classroom—room L—that is assigned to a course. All available desks are in
the hallway. Any student who registers for the course receives a desk, takes it into the room, and
sits at it. Assume that the room can accommodate all of the desks that are in the hall.

VideoNote

Each desk in the hallway has a number stamped on its back. This number—called an address—
never changes and is not considered when desks are given to students. Thus, the room will eventu-
ally contain desks whose addresses are not sequential.

Now imagine that Jill is among 30 students who are seated in room L at exactly 30 desks.
Taped to each desktop is a piece of paper. As Jill entered the room, we wrote on her paper the desk
number (address) of another desk in the room. For example, the paper on Jill’s desk might contain
the number 20. If her desk is desk 15, we say that desk 15 references desk 20 and that desks 15 and
20 are linked. Since all of the desks are linked to one another in this way, we say that they form a
chain of desks.

Figure 3-1 shows a chain of five desks. No desk references the first desk in the chain, but the
instructor knows its desk number, 22. Notice that the last desk in the chain does not reference
another desk; the piece of paper on this desk is blank.

FIGURE 3-1 A chain of five desks

Linked data

22

15

4

10

20

15

20

4

10

22

Linked Data 63

3.2 The chain of desks provides an order for the desks. Suppose that first in the chain is the student who
arrived most recently. Written on this student’s desk is the desk number of the student who arrived
just before. With one exception, everyone’s desk references the desk of the student who arrived just
before. The exception is the person who arrived first. That person sits at the last desk, which does
not reference another desk.

The instructor knows the address of the first desk in the chain and so can ask questions of the
student at that first desk. Then, by looking at the address, or desk number, that is written on the
paper on the first desk, the instructor can locate the second desk in the chain and can question its
occupant. Continuing in this way, the instructor can visit every desk in the order in which they
appear in the chain. Ultimately, the instructor reaches the last desk in the chain, which references
no other desk. Note that the only way the instructor can locate the student in this last desk is to
begin at the first desk. Also note that the instructor can traverse this chain in only one order. In
our similar example in Chapter 2, the instructor in room A was able to ask questions of any stu-
dent in any order.

Forming a Chain by Adding to Its Beginning
3.3 How did we form the chain of desks in the first place? Let’s return to the time when room L was

empty and all available desks were in the hallway.
Suppose that Matt arrives first. He gets a desk from the hallway and enters the room. The

instructor notes Matt’s desk number (address), and we leave the paper on his desk blank to indicate
that no other student has arrived. The room appears as in Figure 3-2.

FIGURE 3-2 One desk in the room

3.4 When the second student arrives, we write Matt’s desk number on the new desk’s paper and give
the instructor the number of the new desk to remember. Let’s assume that the instructor can remem-
ber only one desk number at a time. The room now appears as in Figure 3-3. The new desk is at the
beginning of the chain.

When the third student arrives, we write the instructor’s memorized desk number, which is that
of the desk at the beginning of the chain, on the new desk’s paper. We then tell the instructor to
remember the number of the new desk, which is now at the beginning of the chain. The room now
appears as in Figure 3-4.

After all the students have arrived, the instructor knows only the desk number of the student
who arrived most recently. On that student’s desk is the desk number of the student who arrived just
previously. In general, written on each student’s desk is the number of the desk that belongs to the
previous student who arrived. Since Matt was the first student to arrive, the paper on his desk is still
blank. In Figures 3-1 through 3-4, desk 10 belongs to Matt.

10

10

64 CHAPTER 3 A Bag Implementation That Links Data

FIGURE 3-3 Two linked desks, with the newest desk first

FIGURE 3-4 Three linked desks, with the newest desk first

3.5 The following pseudocode details the steps taken to form a chain of desks by adding new desks to
the beginning of the chain:

// Process the first student
newDesk represents the new student’s desk
New student sits at newDesk
Instructor memorizes the address of newDesk

10

4

10

4

20

20

4

10

4

10

Question 1 The instructor knows the address of only one desk.
a. Where in the chain is that desk: first, last, or somewhere else?
b. Who is sitting at that desk: the student who arrived first, the student who arrived last, or

someone else?

Question 2 Where in the chain of desks is a new desk added: at the beginning, at the end,
or somewhere else?

A Linked Implementation of the ADT Bag 65

// Process the remaining students
while (students arrive)
{

newDesk represents the new student’s desk
New student sits at newDesk
Write the instructor’s memorized address on newDesk
Instructor memorizes the address of newDesk

}

A Linked Implementation of the ADT Bag
The previous section described how you can organize data by linking it together. This section expresses
these ideas in Java by beginning the implementation of the ADT bag.

The Private Class Node
3.6 We begin by defining the Java equivalent of a desk, called a node. Nodes are objects that you typi-

cally link together to form a data structure. Our particular nodes have two data fields each: one to
reference a piece of data—presently, an entry in a bag—and one to reference another node. An
entry in a bag is analogous to a person who sits at a desk. The reference to another node is analo-
gous to the address written on the paper that is on each desk.

The class that represents these nodes can have the following form:

class Node
{

private T data; // entry in bag
private Node next; // link to next node

< Constructors >
. . .
< Accessor and mutator methods: getData, setData, getNextNode, setNextNode >
. . .

} // end Node

3.7 Let’s focus on the data fields. The field data contains a reference to one of the objects in the bag.
Sometimes we will call this field the data portion of the node. The data type of data is represented
here by the generic type T. Soon, you will see that T is the same generic type that the class of bags
will declare.

The field next contains a reference to another node. Notice that its data type is Node, which is
the class that we are currently defining! Such a circular definition might surprise you, but it is per-
fectly legal in Java. It also enables one node to reference another node, just as one desk references
another desk in our example. Notice that a desk does not reference a student in another desk. Like-
wise, a node does not reference the data in another node, but rather references the entire other node.
Sometimes we will call the field next the link portion of the node. Figure 3-5 illustrates two nodes
that are linked and contain references to objects in the bag.

FIGURE 3-5 Two linked nodes that each reference object data

Objects in a bag

Linked nodes

66 CHAPTER 3 A Bag Implementation That Links Data

3.8 The rest of the definition of the class Node is uneventful. Constructors to initialize the node are use-
ful, and since the data fields are private, methods to access and alter their contents are provided.
But are they really necessary? If we intend Node to be for public use, like our other classes, such
methods are necessary; however, Node is a detail of this implementation of the ADT bag that should
be hidden from the bag’s client. One way to hide Node from the world is to define it within a pack-
age that also contains the class that implements the bag. Another way—the way we will use here—
is to define Node within an outer class, the one that implements the bag. Because of its placement
within another class, Node is an example of an inner class. We declare it to be private. An outer
class can access the data fields of an inner class directly by name without the need for accessor and
mutator methods. Thus, we write the simpler definition of Node shown in Listing 3-1.

We did not include a default constructor because we will not need one.
Because Node will be an inner class, the generic type T will be the same as the generic type

declared by the outer class that contains Node. Thus, we do not write <T> after Node. If, however,
Node was not an inner class but instead had package access or public access, you would write
Node<T>. In that case, Node would also require set and get methods for its data fields.

An Outline of the Class LinkedBag
3.9 For this implementation of the ADT bag, we will use a chain of linked nodes to contain the bag’s

entries. In our earlier classroom example, the instructor remembered the address of the first desk in
a chain of desks. Similarly, our implementation must “remember” the address of the first node in
the chain of nodes. We use a data field called the head reference to record a reference to this first

LISTING 3-1 The private inner class Node

private class Node
{

private T data; // entry in bag
private Node next; // link to next node

private Node(T dataPortion)
{

this(dataPortion, null);
} // end constructor

private Node(T dataPortion, Node nextNode)
{

data = dataPortion;
next = nextNode;

} // end constructor
} // end Node

Note: Terminology
A nested class is defined entirely within another class definition. Nested classes can be static,
although we will not encounter any in this book. An inner class is a nested class that is not
static. An outer class, or enclosing class, contains a nested class. A top-level class is one that
is not nested.

A Linked Implementation of the ADT Bag 67

node. A second data field can track the number of entries in the bag, that is, the number of nodes in
the chain.

VideoNote

Listing 3-2 contains an outline of the class LinkedBag that implements the ADT bag and con-
tains the class Node as an inner class. Recall that Chapter 1 introduced the interface BagInterface
in Listing 1-1. It and the classes that implement it define a generic type for the objects in a bag. The
identifier T that we use for this generic type must match the one that we use within the class Node.

The data field firstNode is the head reference of the chain of nodes. Just like the instructor who
knew the address of the first desk in the chain of desks, firstNode references the first node in the chain
of nodes. Another data field, numberOfEntries, records the number of entries in the current bag. This
number is also the number of nodes in the chain. Initially, a bag is empty, so the default constructor simply
initializes the data fields firstNode to null and numberOfEntries to zero.

Defining Some Core Methods
As we stated in the previous chapter, implementing and testing a core group of methods often is
advantageous when you write a class. Any method that adds an entry to a collection typically is a
core method for a class that implements a collection, such as a bag. Moreover, to verify that addi-
tions to a collection are made correctly, we need a way to look at the collection’s entries. The
method toArray can serve this purpose, and so it also is a core method. Such was the case for the

Beginning the class
LinkedBag

LISTING 3-2 An outline of the class LinkedBag

/**
A class of bags whose entries are stored in a chain of linked nodes.
The bag is never full.
@author Frank M. Carrano

*/
public class LinkedBag<T> implements BagInterface<T>
{

private Node firstNode; // reference to first node
private int numberOfEntries;

public LinkedBag()
{

firstNode = null;
numberOfEntries = 0;

} // end default constructor

< Implementations of the public methods declared in BagInterface go here. >

. . .

private class Node // private inner class
{

< See Listing 3-1. >
} // end Node

} // end LinkedBag

68 CHAPTER 3 A Bag Implementation That Links Data

class ArrayBag in the previous chapter, and it is true of our present class LinkedBag. Before we do
anything else, let’s define the bag’s methods add and toArray.

3.10 The method add: Beginning a chain of nodes. In Segment 3.3, the room was empty when the first
student arrived. As we noted in Segment 3.5, we took the following steps to begin a chain of desks:

newDesk represents the new student’s desk
New student sits at newDesk
Instructor memorizes the address of newDesk

Here are the analogous steps that the method add must take to add the first entry to an initially
empty bag. Note that the desk in the previous pseudocode is analogous to a node defined within
LinkedBag, the student is analogous to a bag entry—that is, the data within the node—and the
instructor is analogous to firstNode.

newNode references a new instance of Node
Place data in newNode
firstNode = address of newNode

Thus, when the method add adds the first entry to an initially empty bag, it creates a new node and
makes it a one-node chain.

In Java, these steps appear as follows, where newEntry references the entry to be added to the bag:

Node newNode = new Node(newEntry);
firstNode = newNode;

Figure 3-6 illustrates these two steps. Part a of this figure shows the empty chain and the node cre-
ated by the first statement. Part b shows the result of the second statement. Notice that in Part b,
both firstNode and newNode reference the same node. After the insertion of the new node is com-
plete, only firstNode should reference it. We could set newNode to null, but as you will see
shortly, newNode is a local variable of the method add. As such, newNode will not exist after add
ends its execution. The same is true of the parameter newEntry, which behaves like a local variable.

FIGURE 3-6 (a) An empty chain and a new node; (b) after adding a new node
to a chain that was empty

3.11 The method add: Adding to the chain of nodes. Just as we added new desks to the beginning of
an existing chain in Segment 3.5, the method add will add new nodes to the beginning of its chain.
In the context of desks in a room, the necessary steps are

newDesk represents the new student’s desk
New student sits at newDesk
Write the instructor’s memorized address on newDesk
Instructor memorizes the address of newDesk

newEntry

newNode

firstNode

(b)(a)

firstNode

newNode

newEntry

A Linked Implementation of the ADT Bag 69

As a result of these steps, the new desk references the current first desk in the chain and becomes
the new first desk.

Here are the analogous steps that add takes:
newNode references a new instance of Node
Place data in newNode
Set newNode’s link to firstNode
Set firstNode to newNode

That is, we make the new node reference the first node in the chain, making it the new first node.
Figure 3-7 illustrates these steps, and the following Java statements implement them:

Node newNode = new Node(newEntry);
newNode.next = firstNode;
firstNode = newNode;

FIGURE 3-7 A chain of nodes (a) just prior to adding a node at the begin-
ning; (b) just after adding a node at the beginning

Adding a node to an empty chain, as Figure 3-6 depicts, is actually the same as adding a node
to the beginning of a chain. Question 3 asks you to think about this fact.

3.12 The method add. As you have seen, although it might appear that an empty bag is a special case
when adding a new entry to a bag, it really is not. The following definition of the method add uses
this conclusion:

/** Adds a new entry to this bag.
@param newEntry the object to be added as a new entry
@return true */

public boolean add(T newEntry) // OutOfMemoryError possible

newNode

firstNode

(a) (b)

firstNode

newNode

Question 3 The code that we developed in Segment 3.10 to add a node to an empty chain is
Node newNode = new Node(newEntry);
firstNode = newNode;

The code that we just developed to add to the beginning of a chain is
Node newNode = new Node(newEntry);
newNode.next = firstNode;
firstNode = newNode;

Why do these three statements also work correctly when the chain is empty?

70 CHAPTER 3 A Bag Implementation That Links Data

{
// add to beginning of chain:
Node newNode = new Node(newEntry);
newNode.next = firstNode; // make new node reference rest of chain

// (firstNode is null if chain is empty)
firstNode = newNode; // new node is at beginning of chain
numberOfEntries++;

return true;
} // end add

3.13 An out-of-memory error. With a linked implementation, the bag cannot become full. Anytime
you add a new entry, you create a new node for that entry. Thus, the method add always returns
true. It is possible, however, for your program to use all of your computer’s memory. If this
occurs, your request for a new node will cause the error OutOfMemoryError. You might interpret
this condition as a full bag, but an OutOfMemoryError is fatal, and the client will not have the
opportunity to react to it.

3.14 The method toArray. The method toArray returns an array of the entries currently in a bag. By
implementing this method, we will be able to test whether the add method works before we com-
plete the rest of the class LinkedBag. To access the bag’s entries, we need to access each node in a
chain, beginning with the first one. This action is called a traversal, and it is analogous to visiting
each desk in a chain of desks, as we described in Segment 3.2.

The data field firstNode contains a reference to the first node in the chain. That node contains a
reference to the second node in the chain, the second node contains a reference to the third node, and
so on. To traverse the chain, the method toArray needs a temporary, local variable currentNode to
reference each node in turn. When currentNode references the node whose data we want to access,
that data is at currentNode.data.

Initially, we want currentNode to reference the first node in the chain, so we set it to firstNode.
After accessing the data at currentNode.data, we move to the next node by executing

currentNode = currentNode.next;

We again access the data at currentNode.data and then move to the next node by executing
currentNode = currentNode.next;

once again. We continue in this manner until currentNode becomes null.
The following method toArray uses these ideas:

/** Retrieves all entries that are in this bag.
@return a newly allocated array of all the entries in the bag */

public T[] toArray()
{

// the cast is safe because the new array contains null entries
@SuppressWarnings("unchecked")
T[] result = (T[])new Object[numberOfEntries]; // unchecked cast

int index = 0;

Note: Allocating memory
When you use the new operator, you create, or instantiate, an object. At that time, the Java
run-time environment allocates, or assigns, memory to the object. When you create a node
for a linked chain, we sometimes say that you have allocated the node.

A Linked Implementation of the ADT Bag 71

Node currentNode = firstNode;
while ((index < numberOfEntries) && (currentNode != null))
{

result[index] = currentNode.data;
index++;
currentNode = currentNode.next;

} // end while

return result;
} // end toArray

Testing the Core Methods
3.15 Earlier, we realized that the add method is fundamental to our class, so it is one of the core methods

that we implement and test first. The method toArray lets us see whether add works correctly, so it
too is in our core group. But what about the methods that are not in our core group? Because
LinkedBag implements the interface BagInterface, it must define every method in the interface.
As the previous chapter described, we write stubs for methods that are declared in the interface but
are not a part of our core group. Since the methods getCurrentSize, isFull, and isEmpty have
simple definitions, we will write them instead of stubs in this first draft of the class LinkedBag.

A test program for LinkedBag1 could be just like the one for ArrayBag, as given in Listing 2-2
of the previous chapter, except for its name, the class used to create a bag, and one other significant
distinction: Although an instance of ArrayBag can become full, an instance of LinkedBag will not.
Listing 3-3 outlines such a test program. Notice that the private static methods here are exactly the
same as those given in Listing 2-2 of the previous chapter. This is possible because the methods use
BagInterface as the data type of a bag.

Programming Tip
If ref is a reference to a node in a chain, be sure that ref is not null before you use it to access
ref.data or ref.next. Otherwise, if ref is null, a NullPointerException will occur.

Question 4 In the previous definition of toArray, the while statement uses the boolean
expression (index < numberOfEntries) && (currentNode != null) to control the loop. Is it
necessary to test the values of both index and currentNode? Explain your answer.

Note: The method isFull should always return false. As noted in Segment 3.13, the only
time a bag whose implementation is linked could appear full is when the system cannot pro-
vide memory to the add method for a new node. In that case, an OutOfMemoryError occurs,
which is fatal. A client would not have the opportunity to call isFull.

1. Note that this version of the class LinkedBag is available online at the book’s website and is named LinkedBag1.

72 CHAPTER 3 A Bag Implementation That Links Data

The Method getFrequencyOf
3.16 To count the number of times a given entry appears in a bag, we must traverse the chain of nodes and

look at the entry in each one. The traversal is much like the one we used in the method toArray. Thus,
if currentNode will reference the node that we want to examine, we set it initially to firstNode—the
first node in the chain—and then use the statement

VideoNote

currentNode = currentNode.next;

to advance it to the next node. Using this technique, we can write a loop like the following one:
int counter = 0;
Node currentNode = firstNode;
while ((counter < numberOfEntries) && (currentNode != null))
{

. . .

counter++;
currentNode = currentNode.next;

} // end while

Although the method toArray uses the variable index, since it deals with an array, we use the
variable counter here, as we do not have an array. You should note that counter is counting nodes
for loop control; it is not counting how many times a given entry occurs in a bag. Moreover, we
could omit counter entirely, but we retain it as a check on our logic.

LISTING 3-3 A sample program that tests some methods in the class LinkedBag

/** A test of the methods add, toArray, isFull, isEmpty, and
getCurrentSize, as defined in the first draft of the class LinkedBag.
@author Frank M. Carrano

*/
public class LinkedBagDemo1
{

public static void main(String[] args)
{

System.out.println("Creating an empty bag.");
BagInterface<String> aBag = new LinkedBag<String>();
testIsEmpty(aBag, true);
displayBag(aBag);

String[] contentsOfBag = {"A", "D", "B", "A", "C", "A", "D"};
testAdd(aBag, contentsOfBag);
testIsEmpty(aBag, false);
testIsFull(aBag, false);

} // end main

< The static methods testAdd, testIsFull, and displayBag from Listing 2-2 are here. >
< The static method testIsEmpty is analogous to testIsFull and is here. >

} // end LinkedBagDemo1

Completing the class
LinkedBag

A Linked Implementation of the ADT Bag 73

Within the body of the loop, we access the data in the current node and compare it with the
entry passed to the method as its argument. Each time we find a match, we increment a frequency
count. Thus, we have the following definition for the method getFrequencyOf:

/** Counts the number of times a given entry appears in this bag.
@param anEntry the entry to be counted
@return the number of times anEntry appears in the bag */

public int getFrequencyOf(T anEntry)
{

int frequency = 0;

int counter = 0;
Node currentNode = firstNode;
while ((counter < numberOfEntries) && (currentNode != null))
{

if (anEntry.equals(currentNode.data))
frequency++;

counter++;
currentNode = currentNode.next;

} // end while

return frequency;
} // end getFrequencyOf

The Method contains
3.17 In the previous chapter—where we used an array to represent the bag’s entries—we determined

whether a bag contained a given entry by examining each array element—starting at index zero—
until we either found the desired entry or discovered that it was not in the array. We use an analo-
gous approach here to search a chain for a particular piece of data by looking at the chain’s nodes,
one at a time. We begin at the first node, and if that does not contain the entry we are seeking, we
look at the second node, and so on.

When searching an array, we use an index. To search a chain, we use a reference to a node. So,
just as in the method getFrequencyOf, we use a local variable currentNode to reference the node
that we want to examine. Initially, we set currentNode to firstNode and then to currentNode.next
as we traverse the chain. However, instead of traversing the entire chain, our loop iterates until either
we find the desired entry or currentNode becomes null—in which case the entry is not in the bag.

Thus, the method contains has the following implementation:
public boolean contains(T anEntry)
{

boolean found = false;
Node currentNode = firstNode;

while (!found && (currentNode != null))
{

if (anEntry.equals(currentNode.data))
found = true;

else
currentNode = currentNode.next;

} // end while

return found;
} // end contains

74 CHAPTER 3 A Bag Implementation That Links Data

Removing an Item from a Linked Chain

3.18 Earlier in this chapter, we used the analogy of a classroom to describe how to form a linked chain of
data. Available desks are in the hallway outside of the classroom. Each desk has a number (address)
stamped on its back and a blank piece of paper taped to its desktop. As students enter the room,
they take a desk from the hall. The number of another desk already in the room is written on the
new desk’s piece of paper, and the instructor is given the new desk’s number. In this way, the desks
are linked to one another, forming a chain of desks. As you saw in Figure 3-1, no desk references
the first desk in the chain, but the instructor knows its address. The last desk does not reference
another desk; its paper is blank.

Students who leave our classroom—room L—return their desks to the hall. Such desks can be
reassigned to other students who enter either room L or other rooms that share this hallway. Suppose
that you are a student in room L but you want to drop the course. If you simply move your desk to the
hallway, you will not actually remove yourself from the chain of desks in the room: Either another
desk or the instructor will still reference your desk. We need to disconnect your desk from the chain.
The details of how we do this depend on where your desk is in the chain. Here are the possible cases:

• Case 1: Your desk is first in the chain of desks.
• Case 2: Your desk is not first in the chain of desks.

3.19 Case 1. Figure 3-8 illustrates Case 1 before we remove the first desk from the chain. The following
steps are necessary to remove the first desk:

1. Locate the first desk by asking the instructor for its address.
2. Give the address that is written on the first desk to the instructor. This is the address of the

second desk in the chain.
3. Return the first desk to the hallway.

FIGURE 3-8 A chain of desks just prior to removing its first desk

Question 5 If currentNode in the previous method contains becomes null, what value
does the method return when the bag is not empty?

Question 6 Trace the execution of the method contains when the bag is empty. What is
the result?

Removing an Item from a Linked Chain 75

Figure 3-9 shows the chain after the first two steps take place. Notice that the first desk is no longer
a part of the chain. Technically, it still references the second desk. But if this desk is ever used
again, a new address will be written on its paper.

FIGURE 3-9 A chain of desks just after removing its first desk

3.20 Case 2. Remember that a bag does not order its entries in any particular way. Thus, in our analo-
gous classroom, we assume that the students are seated in no particular order. If you want to drop
the course and are not seated at the first desk in the chain, we do not have to remove your desk.
Instead, we take the following steps:

1. Move the student in the first desk to your former desk.
2. Remove the first desk using the steps described for Case 1.

In effect, we have changed Case 2 into Case 1, which we know how to handle.

The Methods remove and clear
3.21 Removing an unspecified entry. The method remove without a parameter removes an unspecified

entry from a bag that is not empty. According to the method’s specification, as given in the interface in
Listing 1-1 of Chapter 1, the method returns the entry it removes:

/** Removes one unspecified entry from this bag, if possible.
@return either the removed object, if the removal was successful,

or null */
public T remove()

If the bag is empty before the method executes, null is returned.
Removing an entry from a bag involves removing it from a chain of linked nodes. Since the

first node is easy to remove from the chain, we can define remove so that it removes the entry in
this first node. To do so, we take the following steps:

• Access the entry in the first node so it can be returned.
• Set firstNode to reference the second node, as Figure 3-10 indicates. If a second node does

not exist, set firstNode to null.
• Decrement numberOfEntries.

Question 7 What steps are necessary to remove the first desk in a chain of five desks?

Question 8 What steps are necessary to remove the third desk in a chain of five desks?

76 CHAPTER 3 A Bag Implementation That Links Data

FIGURE 3-10 A chain of nodes (a) just prior to removing the first node;
(b) just after removing the first node

Notice how we implement these steps in the following Java definition of remove:

public T remove()
{

T result = null;
if (firstNode != null)
{

result = firstNode.data;
firstNode = firstNode.next; // remove first node from chain
numberOfEntries--;

} // end if

return result;
} // end remove

We first check whether the chain is empty by comparing firstNode with null. Note that we could
have called isEmpty instead. While accessing the data in the first node and decrementing the num-
ber of entries have straightforward expressions in Java, the entire effect of the statement

firstNode = firstNode.next;

might not be obvious. It should be clear by now that this statement makes firstNode reference the
second node in the chain, if such a node exists. But what if it doesn’t? That is, what happens when
the chain contains only one node? In that case, firstNode.next is null, so the statement sets
firstNode to null, as required.

3.22 Removing a given entry. As the interface in Listing 1-1 of Chapter 1 specifies, a second method
remove removes a given entry and returns true or false according to the success of the operation:

/** Removes one occurrence of a given entry from this bag, if possible.
@param anEntry the entry to be removed
@return true if the removal was successful, or false otherwise */

public boolean remove(T anEntry)

If the bag is empty before the method executes, or if anEntry is not in the bag, the method returns false.
To remove a specific entry that is in a chain of linked nodes, we first must locate the entry. That

is, we must traverse the chain and examine the entries in the nodes. Suppose that we find the desired
entry in node N. From our previous discussion in Segment 3.20 about a classroom, we can see that if
node N is not first in the chain, we can remove its entry by taking the following steps:

1. Replace the entry in node N with the entry in the first node.
2. Remove the first node from the chain.

firstNode

firstNode

(b)

(a)

Removing an Item from a Linked Chain 77

Notice that the second step can be accomplished by calling the method remove, as given in the pre-
vious segment.

What if node N is first in the chain? If we do not treat this situation separately, the previous steps
will replace the entry in the first node with itself. It will be easier to let this happen than to add logic
that asks whether node N is the first one.

Thus, we have the following pseudocode for the method remove:

Locate a node N that contains anEntry
if (node N exists)
{

Replace the entry in node N with the entry in the first node
remove()

}
return true or false according to whether the operation succeeds

3.23 Removing a given entry, continued. The search to locate a node that contains a given entry is the
same one done by the method contains in Segment 3.17. Rather than repeating this code in the
method remove, we can place it into a new private method that both remove and contains can call.
The definition of this private method follows:

// Locates a given entry within this bag.
// Returns a reference to the node containing the entry, if located,
// or null otherwise.
private Node getReferenceTo(T anEntry)
{

boolean found = false;
Node currentNode = firstNode;

while (!found && (currentNode != null))
{

if (anEntry.equals(currentNode.data))
found = true;

else
currentNode = currentNode.next;

} // end while

return currentNode;
} // end getReferenceTo

The pseudocode given in the previous segment for the method remove now translates into Java
as follows:

public boolean remove(T anEntry)
{

boolean result = false;
Node nodeN = getReferenceTo(anEntry);

if (nodeN != null)
{

nodeN.data = firstNode.data; // replace located entry with entry
// in first node

remove(); // remove first node
result = true;

} // end if

return result;
} // end remove

78 CHAPTER 3 A Bag Implementation That Links Data

3.24 The method clear. In the class ArrayBag, as given in the previous chapter, the method clear
called the methods remove and isEmpty to remove all entries from the bag. Since this definition
does not depend on how we represent the bag, we can use the same definition here in LinkedBag.
Thus, clear’s definition is

public void clear()
{

while (!isEmpty())
remove();

} // end clear

A Class Node That Has Set and Get Methods
Because Node is an inner class of the class LinkedBag, LinkedBag can access Node’s private data
fields directly by name. Doing so makes the implementation somewhat easier to write, read, and
understand, particularly for novice Java programmers. However, some computer scientists feel that
you should access a class’s data fields only by calling accessor and mutator (set and get) methods.
This section adds these methods to Node and explores three ways define this class.

3.25 As an inner class. Suppose that we add the methods getData, setData, getNextNode, and
setNextNode to the inner class Node, as it appears in Listing 3-1. The class would then appear as
given in Listing 3-4.

Question 9 Instead of calling the method getReferenceTo, could the method remove have
called the original definition of contains, as given in Segment 3.17? Explain.

Question 10 Revise the definition of the method contains so that it calls the private
method getReferenceTo.

Question 11 Revise the definition of the method getReferenceTo so that it controls its
loop by using a counter and numberOfEntries instead of currentNode.

Question 12 What is an advantage of the definition of getReferenceTo, as given in the
previous segment, over the one that the previous question describes?

Note: Deallocating memory
After the method remove removes a node from a chain, you have no way to reference the
removed node, so you cannot use it. As Segment B.20 in Appendix B noted, the Java run-
time environment automatically deallocates and recycles the memory associated with such
nodes. No explicit instruction from the programmer is necessary or, in fact, possible to cause
deallocation to occur.

LISTING 3-4 The inner class Node with set and get methods

private class Node
{

private T data; // entry in bag
private Node next; // link to next node

private Node(T dataPortion)
{

A Class Node That Has Set and Get Methods 79

3.26 With these additions to Node, we could revise the implementation of LinkedBag by making changes
such as the following:

• Change
newNode.next = firstNode;

to
newNode.setNextNode(firstNode);

• Change
currentNode = currentNode.next;

to
currentNode = currentNode.getNextNode();

• Change
result = firstNode.data;

to
result = firstNode.getData();

• Change
entryNode.data = firstNode.data;

this(dataPortion, null);
} // end constructor

private Node(T dataPortion, Node nextNode)
{

data = dataPortion;
next = nextNode;

} // end constructor

private T getData()
{

return data;
} // end getData

private void setData(T newData)
{

data = newData;
} // end setData

private Node getNextNode()
{

return next;
} // end getNextNode

private void setNextNode(Node nextNode)
{

next = nextNode;
} // end setNextNode

} // end Node

80 CHAPTER 3 A Bag Implementation That Links Data

to
entryNode.setData(firstNode.getData());

Project 2 at the end of this chapter asks you to complete these revisions to LinkedBag.

3.27 As a class within a package. After we modify Node and LinkedBag as just described, Node could
remain as a private inner class. Since Node is an implementation detail that we want to hide, making
it an inner class is appropriate. But if we ever changed our minds and wanted to define Node outside
of LinkedBag, we could do so while retaining the modifications to LinkedBag made in the previous
segment. We could—with a few changes—make Node accessible only within a package, or we
could even make it a public class.

To transform Node, as given in Listing 3-4, into a class accessible only by other classes in its
package, you first omit all the access modifiers except the ones for the data fields. You then add <T>
after each occurrence of Node within the class definition, except when it is used as a constructor
name. The revised class appears in Listing 3-5.

LISTING 3-5 The class Node with package access

package BagPackage;
class Node<T>
{

private T data;
private Node<T> next;

Node(T dataPortion) // the constructor’s name is Node, not Node<T>
{

this(dataPortion, null);
} // end constructor

Node(T dataPortion, Node<T> nextNode)
{

data = dataPortion;
next = nextNode;

} // end constructor

T getData()
{

return data;
} // end getData

void setData(T newData)
{

data = newData;
} // end setData

Node<T> getNextNode()
{

return next;
} // end getNextNode

void setNextNode(Node<T> nextNode)

The Pros and Cons of Using a Chain to Implement the ADT Bag 81

3.28 The class LinkedBag can access Node, as just given in Listing 3-5, if both classes are in the same
package and we modify LinkedBag slightly. Each occurrence of Node within LinkedBag must now
appear as Node<T>. We begin to make these changes to LinkedBag and highlight them in Listing 3-6.

Project 3 at the end of this chapter asks you to complete this revision of LinkedBag.

3.29 As an inner class with a declared generic type. The version of LinkedBag just described in
Listing 3-6 could define Node as an inner class. Node would be similar to the class given in
Listing 3-5, but would require the following changes:

• Omit the package statement.
• Make the class, constructors, and methods private.
• Replace the generic type T with another identifier, such as S.

Since both LinkedBag and Node declare generic types, they must use different identifiers to repre-
sent them.

Project 4 at the end of the chapter asks you to revise Node and LinkedBag as described here.

The Pros and Cons of Using a Chain to Implement the ADT Bag

3.30 You have seen how to use a chain in the implementation of the ADT bag. One of the greatest
advantages of this approach is that the chain, and therefore the bag, can grow and shrink in size as
necessary. As long as memory is available, you can add as many nodes to a chain as you wish.

{
next = nextNode;

} // end setNextNode
} // end Node

LISTING 3-6 The class LinkedBag when Node is in the same package

package BagPackage;
public class LinkedBag<T> implements BagInterface<T>
{

private Node<T> firstNode;
. . .

public boolean add(T newEntry)
{

Node<T> newNode = new Node<T>(newEntry);
newNode.setNextNode(firstNode);
firstNode = newNode;
numberOfEntries++;

return true;
} // end add
. . .

} // end LinkedBag

82 CHAPTER 3 A Bag Implementation That Links Data

Moreover, you can remove and recycle nodes that are no longer needed. Although you can resize an
array to allow a bag to grow in size—as the previous chapter describes—each time a larger array is
necessary, you must copy the entries from the full array to the new array. No such copying is
required when you use a chain.

Adding a new entry to the end of an array or to the beginning of a chain are both relatively sim-
ple tasks. Both operations are fast, unless the array needs to be resized. Likewise, removing the
entry at the end of an array or the beginning of a chain takes about the same effort. However,
removing a specific entry requires a search of the array or chain.

Lastly, a chain requires more memory than an array of the same length. Although both data
structures contain references to data objects, each node in a chain also contains a reference to
another node. However, an array is often larger than necessary, so memory is wasted. A chain uses
memory only as needed.

CHAPTER SUMMARY

PROGRAMMING TIP

EXERCISES

Question 13 Compare the efforts made by the contains methods in the classes LinkedBag
in this chapter and ResizableArrayBag in Chapter 2. Does one take more time to perform its
task? Explain.

• You can form a chain of linked data by using objects called nodes. Each node has two parts. One part con-
tains a reference to a data object, and the second part references the next node in the chain. The last node,
however, references no other node and contains null. A head reference external to the chain references the
first node.

• You can add a node to the beginning of a chain of linked nodes by changing two references: the one within
the node to be added and the chain’s head reference.

• You can remove the first node in a chain of linked nodes by setting the chain’s head reference to the refer-
ence within the first node.

• Locating a particular node in a chain of linked nodes requires a traversal of the chain. Beginning at the first
node, you move from node to node sequentially until you reach the desired node.

• The class Node can be an inner class of LinkedBag or a class within a package that contains LinkedBag. In
the latter case, Node must define set and get methods to provide access to its data fields.

• If ref is a reference to a node in a chain, be sure that ref is not null before you use it to access ref.data or
ref.next.

1. Add a constructor to the class LinkedBag that creates a bag from a given array of objects.

2. Consider the definition of LinkedBag’s add method that appears in Segment 3.12. Interchange the second and
third statements in the method’s body, as follows:

firstNode = newNode;
newNode.next = firstNode;

a. What is displayed by the following statements in a client of the modified LinkedBag?

BagInterface<String> myBag = new LinkedBag<String>();
myBag.add("30");

Projects 83

PROJECTS

myBag.add("40");
myBag.add("50");
myBag.add("10");
myBag.add("60");
myBag.add("20");
int numberOfEntries = myBag.getCurrentSize();
String[] entries = myBag.toArray();
for (int index = 0; index < numberOfEntries; index++)

System.out.print(entries[index] + " ");

b. What methods, if any, in LinkedBag could be affected by the change to the method add when they
execute? Why?

3. Repeat Exercise 2 in the previous chapter for the class LinkedBag.

4. Revise the definition of the method remove, as given in Segment 3.21, so that it removes a random entry
from a bag. Would this change affect any other method within the class LinkedBag?

5. Define a method removeEvery for the class LinkedBag that removes all occurrences of a given entry from a bag.

6. Suppose that a bag contains Comparable objects. Define the following methods for the class LinkedBag:
• The method getMin that returns the smallest object in a bag
• The method getMax that returns the largest object in a bag

7. Repeat Exercise 10 in the previous chapter for the class LinkedBag.

8. Define an equals method for the class LinkedBag. Consult Exercise 11 in the previous chapter for details about
this method.

9. Define the method union, as described in Exercise 5 of Chapter 1, for the class LinkedBag.

10. Define the method intersection, as described in Exercise 6 of Chapter 1, for the class LinkedBag.

11. Define the method difference, as described in Exercise 7 of Chapter 1, for the class LinkedBag.

12. In a doubly linked chain, each node can reference the previous node as well as the next node. Figure 3-11 shows
a doubly linked chain and its head reference. Define a class to represent a node in a doubly linked chain. Write the
class as an inner class of a class that implements the ADT bag. You can omit set and get methods.

FIGURE 3-11 A doubly linked chain for Exercises 12, 13, 14, and 15, and Project 7

13. Repeat Exercise 12, but instead write the class within a package that contains an implementation of the ADT bag.
Set and get methods will be necessary.

14. List the steps necessary to add a node to the beginning of the doubly linked chain shown in Figure 3-11.

15. List the steps necessary to remove the first node from the beginning of the doubly linked chain shown in Figure 3-11.

firstNode

1. Write a program that thoroughly tests the class LinkedBag.

2. Listing 3-4 shows the inner class Node with set and get methods. Revise the class LinkedBag so that it invokes
these set and get methods instead of accessing the private data fields data and next directly by name.

84 CHAPTER 3 A Bag Implementation That Links Data

ANSWERS TO SELF-TEST QUESTIONS

3. Listing 3-5 shows Node as a class within a package containing LinkedBag. Revise LinkedBag to use this version of Node.

4. Revise Node and LinkedBag as described in Segment 3.29.

5. Define a class LinkedSet that represents a set and implements the interface described in Project 1a of
Chapter 1. Use the class LinkedBag in your implementation. Then write a program that adequately demon-
strates your implementation.

6. Repeat the previous project, but use a chain of linked nodes instead of the class LinkedBag.

7. Define a class DoublyLinkedBag that implements the ADT bag by using a doubly linked chain, as shown in
Figure 3-11. Use the inner class of nodes that Exercise 12 defines.

8. Repeat the previous project, but define set and get methods in the inner class of nodes.

9. Use the classes for a set or a bag, as defined in this chapter or described in the previous projects, to create a spell
checker. Consult the details given in Projects 5 and 6 of the previous chapter.

1. a. First.
b. The student who arrived last (most recently).

2. At the beginning.

3. When the chain is empty, firstNode is null. Setting newNode.next to firstNode sets it to null. Since
newNode.next already is null, no harm is done by the additional assignment.

4. Testing the values of both index and currentNode is not necessary. Although testing either one of these values is
sufficient, testing both values provides a check against mistakes in your code.

5. The method returns false. If currentNode becomes null, the entire chain has been searched without success.

6. Since the bag is empty, firstNode—and hence currentNode—is null. The while loop ends immediately and the
method returns false.

7. • Locate the first desk by asking the instructor for its address.
• Give the address that is written on the first desk’s paper to the instructor. This is the address of the second

desk in the chain.
• Return the first desk to the hallway.

8. • The student in the first desk moves to the third desk.
• Remove the first desk using the three steps given as the answer to the previous question.

9. No. The method contains returns either true or false. Although remove would be able to tell whether anEntry is
in the bag, it would not have a reference to anEntry. Thus, it would not be able to remove anEntry without doing
its own search.

10. public boolean contains(T anEntry)
{

return getReferenceTo(anEntry) != null;
} // end contains

Answers to Self-Test Questions 85

11. private Node getReferenceTo(T anEntry)
{

boolean found = false;
Node currentNode = firstNode;
int counter = 0;

while (!found && (counter < numberOfEntries))
{

if (anEntry.equals(currentNode.data))
found = true;

else
{

currentNode = currentNode.next;
counter++;

} // end if
} // end while

return currentNode;
} // end getReferenceTo

12. The original definition of getReferenceTo ensures that currentNode is not null, and thus avoids a
NullPointerException.

13. The effort expended by each of these two methods is about the same. Each method calls a private method
that searches for the desired entry. In LinkedBag, contains calls getReferenceTo, which searches at most
numberOfEntries nodes for the desired entry. In ResizableArrayBag, contains calls getIndexOf, which
searches at most numberOfEntries array elements for the desired entry. The next chapter will discuss these
methods and analyze their time requirements in more detail.

This page intentionally left blank

Chapter

4The Efficiency ofAlgorithms
Contents
Motivation
Measuring an Algorithm’s Efficiency

Counting Basic Operations
Best, Worst, and Average Cases

Big Oh Notation
The Complexities of Program Constructs

Picturing Efficiency
The Efficiency of Implementations of the ADT Bag

An Array-Based Implementation
A Linked Implementation
Comparing the Implementations

Prerequisites
Appendix B Java Classes
Chapter 2 Bag Implementations That Use Arrays
Chapter 3 A Bag Implementation That Links Data

Objectives
After studying this chapter, you should be able to
• Assess the efficiency of a given algorithm
• Compare the expected execution times of two methods, given the efficiencies of their algorithms

With amazing frequency, manufacturers introduce new computers that are faster
and have larger memories than their recent predecessors. Yet we—and likely your
computer science professors—ask you to write code that is efficient in its use of time
and space (memory). Admittedly, such efficiency is not as pressing an issue as it was
fifty years ago, when computers were much slower and their memory size was much
smaller than they are now. (Computers had small memories, but they were physically

88 CHAPTER 4 The Efficiency of Algorithms

huge, occupying entire rooms.) Even so, efficiency remains an issue—in some circumstances, a
critical issue.

This chapter will introduce you to the terminology and ways that computer scientists use to
measure the efficiency of an algorithm. With this background, not only will you have an intuitive
feel for efficiency, but you also will be able to talk about efficiency in a quantitative way.

Motivation

4.1 Example. Perhaps you think that you are not likely to write a program in the near future whose
execution time is noticeably long. You might be right, but we are about to show you some simple
Java code that does take a long time to perform its computations.

Consider the problem of computing the sum 1 + 2 + . . . + n for any positive integer n. Figure 4-1
contains pseudocode showing three ways to solve this problem. Algorithm A computes the sum 0 + 1 +
2 + . . . + n from left to right. Algorithm B computes 0 + (1) + (1 + 1) + (1 + 1 + 1) + . . . + (1 + 1 + . . . + 1).
Finally, Algorithm C uses an algebraic identity to compute the sum.

FIGURE 4-1 Three algorithms for computing the sum 1 + 2 + . . . + n for an
integer n > 0

4.2 Let’s translate these algorithms into Java code. If we use long integers, we could write the
following statements:

// Computing the sum of the consecutive integers from 1 to n:
long n = 10000; // ten thousand

// Algorithm A
long sum = 0;
for (long i = 1; i <= n; i++)

sum = sum + i;
System.out.println(sum);

// Algorithm B
sum = 0;
for (long i = 1; i <= n; i++)
{

for (long j = 1; j <= i; j++)
sum = sum + 1;

} // end for
System.out.println(sum);

// Algorithm C
sum = n * (n + 1) / 2;
System.out.println(sum);

Algorithm A Algorithm B Algorithm C

sum = 0 sum = 0 sum = n * (n + 1) / 2
for i = 1 to n for i = 1 to n
 sum = sum + i {
 for j = 1 to i
 sum = sum + 1
 }

Measuring an Algorithm’s Efficiency 89

If you execute this code with n equal to ten thousand (10000), you will get the right answer of 50005000
for each of the algorithms. Now change the value of n to one hundred thousand (100000), and execute
the code again. Once more, you will get the correct answer, which this time is 5000050000. However,
you should notice a delay in seeing the result for Algorithm B. Now try one million (1000000) for the
value of n. Again you will get the correct answer—500000500000—but you will have to wait even lon-
ger for the result from Algorithm B. The wait might be long enough for you to suspect that something is
broken. If not, try a larger value of n.

The previous simple code for Algorithm B takes a noticeably long time to execute, much
longer than either of the other two algorithms. If it were the only algorithm you tried, what
should you do? Use a faster computer? While that might be a solution, it’s clear that we should
use a different algorithm.

Measuring an Algorithm’s Efficiency

4.3 The previous section should have convinced you that a program’s efficiency matters. How can we
measure efficiency so that we can compare various approaches to solving a problem? In the previ-
ous section, we computed the sum of the first n consecutive integers in three different ways. We
then observed that one was noticeably slower than the others as the value of n increased. In general,
however, implementing several ideas before you choose one requires too much work to be practi-
cal. Besides, a program’s execution time depends in part on the particular computer and the pro-
gramming language used. It would be much better to measure an algorithm’s efficiency before you
implement it.

VideoNote

For example, suppose that you want to go to a store downtown. Your options are to walk, drive
your car, ask a friend to take you, or take a bus. What is the best way? First, what is your concept of
best? Is it the way that saves money, your time, your friend’s time, or the environment? Let’s say that
the best option for you is the fastest one. After defining your criterion, how do you evaluate your
options? You certainly do not want to try all four options so you can discover which is fastest. That
would be like writing four different programs that perform the same task so you can measure which
one is fastest. Instead you would investigate the “cost” of each option, considering the distance, the
speed at which you can travel, the amount of other traffic, the number of stops at traffic lights, the
weather, and so on. That is, you would consider the factors that have the most impact on the cost.

4.4 The same considerations apply when deciding what algorithm is best. Again, we need to define what we
mean by best. An algorithm has both time and space requirements, called its complexity, that we can
measure. When we assess an algorithm’s complexity, we are not measuring how involved or difficult it
is. Instead, we measure an algorithm’s time complexity—the time it takes to execute—or its space
complexity—the memory it needs to execute. Typically we analyze these requirements separately. So a
“best” algorithm might be the fastest one or the one that uses the least memory.

Note: As the previous example shows, even a simple program can be noticeably inefficient.

Note: If an algorithm takes longer to execute than is practical, try to reformulate it to make
it more efficient of time.

Measuring efficiency

90 CHAPTER 4 The Efficiency of Algorithms

The process of measuring the complexity of algorithms is called the analysis of algorithms. We
will concentrate on the time complexity of algorithms, because it is usually more important than the
space complexity. You should realize that an inverse relationship often exists between an algorithm’s
time complexity and its space complexity. If you revise an algorithm to save execution time, you usually
will need more space. If you reduce an algorithm’s space requirement, it likely will require more time to
execute. Sometimes, however, you will be able to save both time and space.

Your measure of the complexity of an algorithm should be easy to compute, certainly easier
than implementing the algorithm. You should express this measure in terms of the size of the prob-
lem. This problem size is the number of items that an algorithm processes. For example, if you are
searching a collection of data, the problem size is the number of items in the collection. Such a
measure enables you to compare the relative cost of algorithms as a function of the size of the prob-
lem. Typically, we are interested in large problems; a small problem is likely to take little time,
even if the algorithm is inefficient.

4.5 Realize that you cannot compute the actual time requirement of an algorithm. After all, you have
not implemented the algorithm in Java and you have not chosen the computer. Instead, you find a
function of the problem size that behaves like the algorithm’s actual time requirement. Therefore,
as the time requirement increases by some factor, the value of the function increases by the same
factor, and vice versa. The value of the function is said to be directly proportional to the time
requirement. Such a function is called a growth-rate function because it measures how an algo-
rithm’s time requirement grows as the problem size grows. Because they measure time require-
ments, growth-rate functions have positive values. By comparing the growth-rate functions of two
algorithms, you can see whether one algorithm is faster than the other for large-size problems.

4.6 Example. Consider again the problem of computing the sum 1 + 2 + . . . + n for any positive integer
n. Figure 4-1 gives three algorithms—A, B, and C— to perform this computation. Algorithm A
computes the sum 0 + 1 + 2 + . . . + n from left to right. Algorithm B computes 0 + (1) + (1 + 1) + (1
+ 1 + 1) + . . . + (1 + 1 + . . . + 1), and Algorithm C uses an algebraic identity to compute the sum. By
executing the Java code in Segment 4.2, we found that Algorithm B is the slowest. We now want to
predict this behavior without actually running the code.

So how can we tell which algorithm is slowest and which is fastest? We can begin to answer
these questions by considering both the size of the problem and the effort involved. The integer n is
a measure of the problem size: As n increases, the sum involves more terms. To measure the effort,
or time requirement, of an algorithm, we must find an appropriate growth-rate function. To do so,
we might begin by counting the number of operations required by the algorithm.

For example, Algorithm A in Figure 4-1 contains the pseudocode statement
for i = 1 to n

This statement represents the following loop-control logic:
i = 1
while (i <= n)
{

...
i = i + 1

}

Note: What’s best?
Usually the “best” solution to a problem balances various criteria such as time, space, gener-
ality, programming effort, and so on.

Measuring an Algorithm’s Efficiency 91

This logic requires an assignment to i, n + 1 comparisons between i and n, n additions to i, and n
more assignments to i. In total, the loop-control logic requires n + 1 assignments, n + 1 compari-
sons, and n additions. Furthermore, Algorithm A requires for its initialization and loop body
another n + 1 assignments and n additions. All together, Algorithm A requires 2n + 2 assignments,
2n additions, and n + 1 comparisons.

These various operations probably take different amounts of time to execute. For example, if
each assignment takes no more than t= time units, each addition takes no more than t+ time units,
and each comparison takes no more than tc time units, Algorithm A would require no more than

(2n + 2) t= + (2n) t+ + (n + 1) tc time units

If we replace t=, t+, and tc with the largest of the three values and call it t, Algorithm A requires no
more than (5n + 3) t time units. We conclude that Algorithm A requires time directly proportional to
5n + 3.

What is important, however, is not the exact count of operations, but the general behavior of
the algorithm. The function 5n + 3 is directly proportional to n. As you are about to see, we do not
have to count every operation to see that Algorithm A requires time that increases linearly with n.

Counting Basic Operations
4.7 An algorithm’s basic operation is the most significant contributor to its total time requirement. For

example, Algorithms A and B in Figure 4-1 have addition as their basic operation. An algorithm
that sees whether an array contains a particular object has comparison as its basic operation. Real-
ize that the most frequent operation is not necessarily the basic operation. For example, assign-
ments are often the most frequent operation in an algorithm, but they rarely are basic.

Ignoring operations that are not basic, such as initializations of variables, the operations
that control loops, and so on, will not affect our final conclusion about algorithm speed. For
example, Algorithm A requires n additions of i to sum in the body of the loop. We can conclude
that Algorithm A requires time that increases linearly with n, even though we ignored opera-
tions that are not basic to the algorithm.

Whether we look at the number, n, of basic operations or the total number of operations, 5n + 3,
we can draw the same conclusion: Algorithm A requires time directly proportional to n. Thus,
Algorithm A’s growth-rate function is n.

4.8 Example continued. Now let’s count the number of basic operations required by Algorithms B and
C. The basic operation for Algorithm B is addition; for Algorithm C, the basic operations are addition,
multiplication, and division. Figure 4-2 tabulates the number of basic operations that Algorithms A,
B, and C require. Remember, these counts do not include assignments and the operations that control
the loops. Our discussion in the previous segment should have convinced you that we can ignore these
operations.

FIGURE 4-2 The number of basic operations required by the algorithms in
Figure 4-1

 Algorithm A Algorithm B Algorithm C

Additions n n (n + 1) / 2 1
Multiplications 1
Divisions 1
Total basic operations n (n2 + n) / 2 3

92 CHAPTER 4 The Efficiency of Algorithms

Algorithm B requires time directly proportional to (n2 + n) / 2, and Algorithm C requires time
that is constant and independent of the value of n. Figure 4-3 plots these time requirements as a
function of n. You can see from this figure that as n grows, Algorithm B requires the most time.

FIGURE 4-3 The number of basic operations required by the algorithms in
Figure 4-1 as a function of n

4.9 Typical growth-rate functions are algebraically simple. Why? Recall that since you are not likely to
notice the effect of an inefficient algorithm when the problem is small, you should focus on large
problems. Thus, if we care only about large values of n when comparing the algorithms, we can
consider only the dominant term in each growth-rate function.

For example, (n2 + n) / 2 behaves like n2 when n is large. First, n2 is much larger than n for
large values of n, so (n2 + n) / 2 behaves like n2 / 2. Moreover, n2 / 2 behaves like n2 when n is
large. In other words, for large n, the difference between the value of (n2 + n) / 2 and that of n2 is
relatively small and can be ignored. So instead of using (n2 + n) / 2 as Algorithm B’s growth-rate

N
um

be
r

of
 b

as
ic

 o
pe

ra
ti

on
s

n

Algorithm A:
n operations

Algorithm C: 3 operations

Algorithm B:
(n2 � n) / 2 operations

Question 1 For any positive integer n, the identity
1 + 2 + . . . + n = n (n + 1) / 2

is one that you will encounter while analyzing algorithms. Can you derive it? If you can, you
will not need to memorize it. Hint: Write 1 + 2 + . . . + n. Under it write n + (n - 1) + . . . + 1.
Then add the terms from left to right.

Question 2 Can you derive the values in Figure 4-2? Hint: For Algorithm B, use the iden-
tity given in Question 1.

Note: Useful identities
1 + 2 + . . . + n = n (n + 1) / 2
1 + 2 + . . . + (n - 1) = n (n - 1) / 2

Measuring an Algorithm’s Efficiency 93

function, we can use n2—the term with the largest exponent—and say that Algorithm B requires
time proportional to n2. On the other hand, Algorithm C requires time that is independent of n, and
we saw earlier that Algorithm A requires time proportional to n. We conclude that Algorithm C is
the fastest and Algorithm B is the slowest.

FIGURE 4-4 Typical growth-rate functions evaluated at increasing values of n

Best, Worst, and Average Cases
4.10 For some algorithms that operate on a data set, the execution time depends only on the size of the

data set. For example, the time needed to find the smallest integer in an array of integers depends
only on the number of integers, not on the integers themselves. Finding the smallest of 100 integers
takes the same amount of time regardless of the values of the integers.

Other algorithms, however, have time requirements that depend not only on the size of the data
set, but also on the data itself. For example, imagine that an array contains a certain value, and we
want to know where in the array it occurs. Suppose our search algorithm examines each value in
the array until it finds the desired one. If the algorithm finds this desired value in the first array ele-
ment it examines, it makes only one comparison. In this best case, the algorithm takes the least

Note: The relative magnitudes of common growth-rate functions
The growth-rate functions that you are likely to encounter grow in magnitude as follows
when n > 10:

1 < log(log n) < log n < log2 n < n < n log n < n2 < n3 < 2n < n!

The logarithms given here are base 2. As you will see later in Segment 4.16, the choice of
base does not matter.

Figure 4-4 tabulates the magnitudes of these functions for increasing values of the prob-
lem size n. From this data you can see that algorithms whose growth-rate functions are log(log
n), log n, or log2 n take much less time than algorithms whose growth-rate function is n.
Although the value of n log n is significantly larger than n, either of those functions describes
a growth rate that is markedly faster than n2.

n log(log n) log n log2 n n n log n n2 n3 2n n!

10 2 3 11 10 33 102 103 103 105

102 3 7 44 100 664 104 106 1030 1094
103 3 10 99 1000 9966 106 109 10301 101435

104 4 13 177 10,000 132,877 108 1012 103010 1019,335

105 4 17 276 100,000 1,660,964 1010 1015 1030,103 10243,338

106 4 20 397 1,000,000 19,931,569 1012 1018 10301,030 102,933,369

Note: When analyzing the time efficiency of an algorithm, consider large problems. For
small problems, the difference between the execution times of two solutions to the same
problem is usually insignificant.

94 CHAPTER 4 The Efficiency of Algorithms

time. The algorithm can do no better than its best-case time. If the best-case time is still too slow,
you need another algorithm.

Now suppose that the algorithm locates the desired value after comparing it to every value in
the array. This would be the algorithm’s worst case, since it requires the most time. If you can tol-
erate this worst-case time, your algorithm is acceptable. For many algorithms, the worst and best
cases rarely occur. Thus, we consider an algorithm’s average case, when it processes a typical data
set. The average-case time requirement of an algorithm is more useful, but harder to estimate. Note
that the average-case time is not the average of the best-case and worst-case times.

Big Oh Notation

4.11 Computer scientists use a notation to represent an algorithm’s complexity. For example, consider
the algorithms A, B, and C given in Figure 4-1 and the number of basic operations that each
requires, as shown in Figure 4-2. Instead of saying that Algorithm A has a time requirement propor-
tional to n, we say that A is O(n). We call this notation Big Oh since it uses the capital letter O. We
read O(n) as either “Big Oh of n” or “order of at most n.” Similarly, since Algorithm B has a time
requirement proportional to n2, we say that B is O(n2). Algorithm C always requires three basic
operations. Regardless of the problem size n, this algorithm requires the same time. We say that
Algorithm C is O(1).

4.12 Example. Imagine that you are at a wedding reception, seated at a table of n people. In preparation
for the toast, the waiter pours champagne into each of n glasses. That task is O(n). Someone makes
a toast. It is O(1), even if the toast seems to last forever, because it is independent of the number of
guests. If you clink your glass with everyone at your table, you perform an O(n) operation. If every-
one at your table does likewise, a total of O(n2) clinks are performed.

4.13 Big Oh notation has a formal mathematical meaning that can justify our discussion in the previous
sections. You saw that an algorithm’s actual time requirement is directly proportional to a function
f of the problem size n. For example, f(n) might be n2 + n + 1. In this case, we would conclude that
the algorithm is of order at most n2—that is, O(n2). We essentially have replaced f(n) with a sim-
pler function—let’s call it g(n). In this example, g(n) is n2.

What does it really mean to say that a function f(n) is of order at most g(n)—that is, f(n) is O(g(n)),
or f(n) = O(g(n))? Formally, its meaning is described by the following mathematical definition:

Note: The time requirements of some algorithms depend on the data values given to them.
Those times range from a minimum, or best-case, time to a maximum, or worst-case, time.
Typically, the best and worst cases do not occur. A more useful measure of such an algo-
rithm’s time requirement is its average-case time.

Some algorithms, however, do not have a best, worst, and average case. Their time require-
ments depend only on the number of data items given them, not on the values of that data.

Note: Formal definition of Big Oh
A function f(n) is of order at most g(n)—that is, f(n) is O(g(n))—if

• A positive real number c and positive integer N exist such that f(n) ≤ c x g(n) for all n ≥
N. That is, c x g(n) is an upper bound on f(n) when n is sufficiently large.

Big Oh Notation 95

In simple terms, f(n) is O(g(n)) means that c x g(n) provides an upper bound on f(n)’s growth
rate when n is large enough. For all data sets of a sufficient size, the algorithm will always require
fewer than c x g(n) basic operations.

Figure 4-5 illustrates the formal definition of Big Oh. You can see that when n is large
enough—that is, when n ≥ N—f(n) does not exceed c x g(n). The opposite is true for smaller values
of n. That is unimportant, since we can ignore these values of n.

FIGURE 4-5 An illustration of the definition of Big Oh

4.14 Example. In Segment 4.6, we said that if an algorithm uses 5n + 3 operations, it requires time pro-
portional to n. We now can show that 5n + 3 is O(n) by using the formal definition of Big Oh.

When n ≥ 3, 5n + 3 ≤ 5n + n = 6n. Thus, if we let f(n) = 5n + 3, g(n) = n, c = 6, and N = 3, we
have shown that f(n) ≤ 6 g(n) for n ≥ 3, or 5n + 3 = O(n). That is, if an algorithm requires time
directly proportional to 5n + 3, it is O(n).

Other values for the constants c and N will also work. For example, 5n + 3 ≤ 5n + 3n = 8n when
n ≥ 1. Thus, by choosing c = 8 and N = 1, we have shown that 5n + 3 is O(n).

You need to be careful when choosing g(n). For example, we just found that 5n + 3 ≤ 8n when
n ≥ 1. But 8n < n2 when n ≥ 9. So why wouldn’t we let g(n) = n2 and conclude that our algorithm is
O(n2)? Although this conclusion is correct, it is not as good—or tight—as it could be. You want the
upper bound on f(n) to be as small as possible.

4.15 Example. Let’s show that 4n2 + 50n - 10 is O(n2). It is easy to see that

4n2 + 50n - 10 ≤ 4n2 + 50n for any n

Since 50n ≤ 50n2 for n ≥ 50,

4n2 + 50n - 10 ≤ 4n2 + 50n2 = 54n2 for n ≥ 50

Thus, with c = 54 and N = 50, we have shown that 4n2 + 50n - 10 is O(n2).

c g(n)

f(n)

25

20

15

10

5

0V
al

ue
 o

f g
ro

w
th

-r
at

e
fu

nc
ti

on

0 5 N 10 15
n

20 25 30

Note: The upper bound on an algorithm’s time requirement should be as small as possible
and should involve simple functions like the ones given in Figure 4-4.

96 CHAPTER 4 The Efficiency of Algorithms

4.16 Example: Show that logb n is O(log2 n). Let L = logb n and B = log2 b. From the meaning of a log-
arithm, we can conclude that n = bL and b = 2B. Combining these two conclusions, we have

n = bL = (2B)L = 2BL

Thus, log2 n = BL = B logb n or, equivalently, logb n = (1 / B) log2 n for any n ≥ 1. Taking c = 1 / B
and N = 1 in the definition of Big Oh, we reach the desired conclusion.

It follows from this example that the general behavior of a logarithmic function is the same
regardless of its base. Often the logarithms used in growth-rate functions are base 2. But since the
base really does not matter, we typically omit it.

Note: To show that f(n) is O(g(n)), replace the smaller terms in f(n) with larger terms until
only one term is left.

Question 3 Show that 3n2 + 2n is O(2n). What values of c and N did you use?

Note: The base of a logarithm in a growth-rate function is usually omitted, since O(loga n)
is O(logb n).

Note: Identities
The following identities hold for Big Oh notation:

O(k g(n)) = O(g(n)) for a constant k
O(g1(n)) + O(g2(n)) = O(g1(n) + g2(n))
O(g1(n)) x O(g2(n)) = O(g1(n) x g2(n))
O(g1(n) + g2(n) + . . . + gm(n)) = O(max(g1(n), g2(n), . . ., gm(n))
O(max(g1(n), g2(n), . . ., gm(n)) = max(O(g1(n)), O(g2(n)), . . ., O(gm(n)))

By using these identities and ignoring smaller terms in a growth-rate function, you can usu-
ally find the order of an algorithm’s time requirement with little effort. For example, if the
growth-rate function is 4n2 + 50n - 10,

O(4n2 + 50n - 10) = O(4n2) by ignoring the smaller terms
= O(n2) by ignoring the constant multiplier

Question 4 If Pk(n) = a0 nk + a1nk - 1 + . . . + ak for k > 0 and n > 0, what is O(Pk(n))?

Big Oh Notation 97

The Complexities of Program Constructs
4.17 The time complexity of a sequence of statements in an algorithm or program is the sum of the

statements’ individual complexities. However, it is sufficient to take instead the largest of these
complexities. In general, if S1, S2, . . . , Sk is a sequence of program segments, and if gi is the growth-rate
function for segment Si, the time complexity of the sequence would be O(max(g1, g2, . . . , gk)), which is
equivalent to max(O(g1), O(g2), . . . , O(gk)).

The time complexity of the if statement

if (condition)
S1

else
S2

is the sum of the complexity of the condition and the complexity of S1 or S2, whichever is largest.
The time complexity of a loop is the complexity of its body times the number of times the body

executes. Thus, the complexity of a loop such as

for i = 1 to m
S

is O(m x g(n)), or m x O(g(n)), where g(n) is the growth-rate function for S. Note that the loop
variable i in this example increments by 1. In the following loop, i is doubled at each iteration:

for i = 1 to m, i = 2 * i
S

The complexity of this loop is O(log(m) x g(n)), or O(log(m)) x O(g(n)).

Note: The complexities of program constructs

Construct Time Complexity

Consecutive program segments S1, S2, . . . , Sk whose
growth-rate functions are g1, . . . , gk, respectively

max(O(g1), O(g2), . . . , O(gk))

An if statement that chooses between program segments
S1 and S2 whose growth-rate functions are g1and g2,
respectively

O(condition) + max(O(g1), O(g2))

A loop that iterates m times and has a body whose
growth-rate function is g

m x O(g(n))

98 CHAPTER 4 The Efficiency of Algorithms

Picturing Efficiency

4.18 Much of an algorithm’s work occurs during its repetitive phases, that is, during the execution of
loops or—as you will see in Chapter 7—as a result of recursive calls. In this section, we will illus-
trate the time efficiency of several examples.

We begin with the loop in Algorithm A of Figure 4-1, which appears in pseudocode as follows:

for i = 1 to n
sum = sum + i

The body of this loop requires a constant amount of execution time, and so it is O(1). Figure 4-6
represents that time with one icon, and so a row of n icons represents the loop’s total execution
time. This algorithm is O(n): Its time requirement grows as n grows.

FIGURE 4-6 An O(n) algorithm

Note: Other notations
Although we will use Big Oh notation most often in this book, other notations are sometimes
useful when describing an algorithm’s time requirement f(n). We mention them here primar-
ily to expose you to them. Beginning with the definition of Big Oh that you saw earlier, we
define Big Omega and Big Theta.

• Big Oh. f(n) is of order at most g(n)—that is, f(n) is O(g(n))—if positive constants c and
N exist such that f(n) ≤ c x g(n) for all n ≥ N. That is, c x g(n) is an upper bound on the
time requirement f(n). In other words, f(n) is no larger than c x g(n). Thus, an analysis that
uses Big Oh produces a maximum time requirement for an algorithm.

• Big Omega. f(n) is of order at least g(n)—that is, f(n) is Ω(g(n))—if g(n) is O(f(n)). In
other words, f(n) is Ω(g(n)) if positive constants c and N exist such that f(n) ≥ c x g(n) for
all n ≥ N. The time requirement f(n) is not smaller than c x g(n), its lower bound. Thus, a
Big Omega analysis produces a minimum time requirement for an algorithm.

• Big Theta. f(n) is of order g(n)—that is, f(n) is Θ(g(n))—if f(n) is O(g(n)) and g(n) is
O(f(n)). Alternatively, we could say that f(n) is O(g(n)) and f(n) is Ω(g(n)). The time
requirement f(n) is the same as g(n). That is, c x g(n) is both a lower bound and an upper
bound on f(n). A Big Theta analysis assures us that the time estimate is as good as possi-
ble. Even so, Big Oh is the more common notation.

for i = 1 to n
 sum = sum + i

... O(n)

1 2 3 n

Picturing Efficiency 99

4.19 Algorithm B in Figure 4-1 contains nested loops, as follows:
for i = 1 to n
{

for j = 1 to i
sum = sum + 1

}

When loops are nested, you examine the innermost loop first. Here, the body of the inner loop
requires a constant amount of execution time, and so it is O(1). If we again represent that time with
an icon, a row of i icons represents the time requirement for the inner loop. Since the inner loop is
the body of the outer loop, it executes n times. Figure 4-7 illustrates the time requirement for these
nested loops, which is proportional to 1 + 2 + . . . + n. Question 1 asked you to show that

1 + 2 + . . . + n = n (n + 1) / 2

which is n2 / 2 + n / 2. Thus, the computation is O(n2).

FIGURE 4-7 An O(n2) algorithm

4.20 The body of the inner loop in the previous segment executes a variable number of times that
depends on the outer loop. Suppose we change the inner loop so that it executes the same number
of times for each repetition of the outer loop, as follows:

for i = 1 to n
{

for j = 1 to n
sum = sum + 1

}

Figure 4-8 illustrates these nested loops and shows that the computation is O(n2).

for i = 1 to n
{ for j = 1 to i
 sum = sum + 1
}

i = 1

i = 2

i = 3

.

.

.

i = n

1 2 3

...

n

O(1 � 2 � ... � n) = O(n2)

100 CHAPTER 4 The Efficiency of Algorithms

FIGURE 4-8 Another O(n2) algorithm

4.21 Let’s get a feel for the growth-rate functions in Figure 4-4. As we mentioned, the time requirement
for an O(1) algorithm is independent of the problem size n. We can apply such an algorithm to
larger and larger problems without affecting the execution time. This situation is ideal, but not typical.

For other orders, what happens if we double the problem size? The time requirement for an
O(log n) algorithm will change, but not by much. An O(n) algorithm will need twice the time, an
O(n2) algorithm will need four times the time, and an O(n3) algorithm will need eight times the
time. Doubling the problem size for an O(2n) algorithm squares the time requirement. Figure 4-9
tabulates these observations.

for i = 1 to n
{ for j = 1 to n
 sum = sum + 1
}

i = 1

i = 2

i = 3

.

.

.

i = n

1 2 3 n

O(n � n) = O(n2)

...

...

...

...

Question 5 Using Big Oh notation, what is the order of the following computation’s time
requirement?

for i = 1 to n
{

for j = 1 to 5
sum = sum + 1

}

Question 6 Suppose that you can solve a problem of a certain size on a given computer in
time t by using an O(n) algorithm. If you double the size of the problem, how fast must your
computer be to solve the problem in the same time?

Question 7 Repeat the previous question, but instead use an O(n2) algorithm.

Picturing Efficiency 101

FIGURE 4-9 The effect of doubling the problem size on an algorithm’s time
requirement

4.22 Now suppose that your computer can perform one million operations per second. How long will it
take an algorithm to solve a problem whose size is one million? We cannot answer this question
exactly without knowing the algorithm, but the computations in Figure 4-10 will give you a sense
of how the algorithm’s Big Oh would affect our answer. An O(log n) algorithm would take a frac-
tion of a second, whereas an O(2n) algorithm would take many trillions of years! Note that these
computations estimate the time requirement of an O(g(n)) algorithm as g(n). Although this approx-
imation is not universally valid, for many algorithms it is reasonable.

FIGURE 4-10 The time required to process one million items by algorithms of
various orders at the rate of one million operations per second

Growth-Rate Function
for Size n Problems

1 1 None
log n 1 + log n Negligible
n 2n Doubles
n log n 2n log n + 2n Doubles and then adds 2n
n2 (2n)2 Quadruples
n3 (2n)3 Multiplies by 8
2n 22n Squares

Growth-Rate Function
for Size 2n Problems

Effect on Time
Requirement

Growth-Rate
Function g

log n 0.0000199 seconds
n 1 second
n log n 19.9 seconds
n2 11.6 days
n3 31,709.8 years
2n 10301,016 years

g(106) / 106

Note: You can use O(n2), O(n3), or even O(2n) algorithms as long as your problem size is
small. For example, at the rate of one million operations per second, an O(n2) algorithm
would take one second to solve a problem whose size is 1000. An O(n3) algorithm would
take one second to solve a problem whose size is 100. And an O(2n) algorithm would take
about one second to solve a problem whose size is 20.

102 CHAPTER 4 The Efficiency of Algorithms

The Efficiency of Implementations of the ADT Bag

VideoNote

We now consider the time efficiency of two of the implementations of the ADT bag that we dis-
cussed in previous chapters.

An Array-Based Implementation
One of the implementations of the ADT bag given in Chapter 2 used a fixed-size array to repre-
sent the bag’s entries. We can now assess the efficiency of the bag operations when implemented
in this way.

4.23 Adding an entry to a bag. Let’s begin with the operation that adds a new entry to a bag.
Segment 2.10 in Chapter 2 provided the following implementation for this operation:

public boolean add(T newEntry)
{

boolean result = true;
if (isFull())
{

result = false;
}
else
{ // assertion: result is true here

bag[numberOfEntries] = newEntry;
numberOfEntries++;

} // end if

return result;
} // end add

Each step in this method—detecting whether the bag is full, assigning a new entry to an array ele-
ment, and incrementing the length—is an O(1) operation. It follows then that this method is O(1).
Intuitively, since the method adds the new entry right after the last entry in the array, we know the
index of the array element that will contain the new entry. Thus, we can make this assignment inde-
pendently of any other entries in the bag.

4.24 Searching a bag for a given entry. The ADT bag has a method contains that detects whether a
bag contains a given entry. The array-based implementation of the method, as given in
Segment 2.29 of Chapter 2, is:

public boolean contains(T anEntry)
{

return getIndexOf(anEntry) > -1;
} // end contains

Question 8 The following algorithm discovers whether an array contains duplicate entries
within its first n elements. What is the Big Oh of this algorithm in the worst case?

Algorithm hasDuplicates(array, n)
for index = 0 to n - 2

for rest = index + 1 to n - 1
if (array[index] equals array[rest])

return true
return false

Comparing ADT bag
implementations

The Efficiency of Implementations of the ADT Bag 103

By calling the private method getIndexOf, the method locates the first array element, if any, that
contains the entry we seek. Let’s examine getIndexOf, as described in Segment 2.28 of Chapter 2:

private int getIndexOf(T anEntry)
{

int where = -1;
boolean found = false;

for (int index = 0; !found && (index < numberOfEntries); index++)
{

if (anEntry.equals(bag[index]))
{

found = true;
where = index;

} // end if
} // end for
return where;

} // end getIndexOf

This method searches the array bag for the given entry anEntry. The basic operation for the method is
comparison. As we described earlier in Segment 4.10, the method would make one comparison in the
best case and n comparisons in the worst case, assuming that the bag contains n entries. Typically, the
method would make about n / 2 comparisons. We can conclude that the method contains is O(1) in
the best case and O(n) in both the worst and average cases.

A Linked Implementation
4.25 Adding an entry to a bag. Now consider a linked implementation of the ADT bag as given in

Chapter 3. Let’s begin with Segment 3.12 and the method add that adds an entry to a bag:

public boolean add(T newEntry) // OutOfMemoryError possible
{

// add to beginning of chain:
Node newNode = new Node(newEntry);
newNode.next = firstNode; // make new node reference rest of chain
 // (firstNode is null if chain is empty)

firstNode = newNode; // new node is at beginning of chain
numberOfEntries++;

return true;
} // end add

All of the statements in this method represent O(1) operations, and so the method is O(1).

Note: To simplify our example, we have considered a fixed-size array. Typically, an array-
based bag resizes the array as needed. Doubling the size of an array is an O(n) operation. As
Segment 2.35 of Chapter 2 noted, the next n additions would share the cost of this doubling.

Question 9 What is the Big Oh of the bag’s remove methods? Assume that a fixed-size
array represents the bag, and use an argument similar to the one we just made for contains.

Question 10 Repeat Question 9, but instead analyze the method getFrequencyOf.

Question 11 Repeat Question 9, but instead analyze the method toArray.

104 CHAPTER 4 The Efficiency of Algorithms

4.26 Searching a bag for a given entry. The method contains, given in Segment 3.17 of Chapter 3,
searches a chain of nodes for a given entry:

public boolean contains(T anEntry)
{

boolean found = false;
Node currentNode = firstNode;

while (!found && (currentNode != null))
{

if (anEntry.equals(currentNode.data))
found = true;

else
currentNode = currentNode.next;

} // end while

return found;
} // end contains

The best case occurs when the desired entry is in the first node of the chain of nodes. Since the
method has a reference to the chain’s first node, no traversal is needed. Thus, the method is O(1) in
this case.

In the worst case, the traversal of the chain continues to the last node. The operation is O(n) in
this case. Finally, in the typical, or average, case, the traversal would examine n / 2 nodes, making
it an O(n) operation.

Comparing the Implementations
4.27 Using Big Oh notation, Figure 4-11 summarizes the time complexities of the operations of the ADT

bag for the implementations that use a fixed-size array and a chain of linked nodes. For some oper-
ations, multiple time requirements indicate the best, worst, and average cases.

Note: Searching a bag that has a linked implementation
Searching for an item that is at the beginning of a chain of nodes is an O(1) operation. It takes
the least time of any search of the chain, making this case the best case. If the item is in the
last node of the chain, searching for it is O(n). This search takes the most time among the
searches for an item that is in one of the nodes, and so this is the worst case. The actual time
required to find an entry in a chain of nodes depends on which node contains it.

Question 12 What is the Big Oh of the method contains when it searches for an entry that
is not in the bag? Assume that a chain of linked nodes represents the bag.

Question 13 What is the Big Oh of the bag’s remove methods? Assume that a chain of linked
nodes represents the bag, and use an argument similar to the one you just made for contains.

Question 14 Repeat Question 13, but instead analyze the method getFrequencyOf.

Question 15 Repeat Question 13, but instead analyze the method toArray.

Exercises 105

FIGURE 4-11 The time efficiencies of the ADT bag operations for two imple-
mentations, expressed in Big Oh notation

As you can see, all of the operations have the same Big Oh for both implementations. This phe-
nomenon is unusual, but it reflects the simplicity of the ADT bag. Subsequent ADTs will have at
least some operations whose time efficiencies differ according to their implementations.

CHAPTER SUMMARY

EXERCISES

Operation Fixed-Size Array Linked

add(newEntry) O(1) O(1)
remove() O(1) O(1)
remove(anEntry) O(1), O(n), O(n) O(1), O(n), O(n)
clear() O(n) O(n)
getFrequencyOf(anEntry) O(n) O(n)
contains(anEntry) O(1), O(n), O(n) O(1), O(n), O(n)
toArray() O(n) O(n)
getCurrentSize(), isEmpty(), isFull() O(1) O(1)

• An algorithm’s complexity is described in terms of the time and space required to execute it.

• An algorithm’s time requirement f(n) is of order at most g(n)—that is, f(n) is O(g(n))—if positive constants
c and N exist such that f(n) ≤ c x g(n) for all n ≥ N.

• The relationships among typical growth-rate functions are as follows:
1 < log(log n) < log n < log2 n < n < n log n < n2 < n3 < 2n < n!

• The time complexity of an ADT bag operation is the same for the fixed-size array implementation and the
linked implementation. This situation is atypical of ADTs but reflects the details of the implementations that
are possible due to the nature of a bag.

1. Using Big Oh notation, indicate the time requirement of each of the following tasks in the worst case.
Describe any assumptions that you make.

a. After arriving at a party, you shake hands with each person there.
b. Each person in a room shakes hands with everyone else in the room.
c. You climb a flight of stairs.
d. You slide down the banister.
e. After entering an elevator, you press a button to choose a floor.
f. You ride the elevator from the ground floor up to the nth floor.
g. You read a book twice.

2. Describe a way to climb from the bottom of a flight of stairs to the top in time that is no better than O(n2).

106 CHAPTER 4 The Efficiency of Algorithms

3. Using Big Oh notation, indicate the time requirement of each of the following tasks in the worst case.
a. Display all the integers in an array of integers.
b. Display all the integers in a chain of linked nodes.
c. Display the nth integer in an array of integers.
d. Compute the sum of the first n even integers in an array of integers.

4. By using the definition of Big Oh, show that
a. 6n2 + 3 is O(n2)
b. n2 + 17n + 1 is O(n2)
c. 5n3 + 100 n2 - n - 10 is O(n3)
d. 3n2 + 2n is O(2n)

5. Algorithm X requires n2 + 9n + 5 operations, and Algorithm Y requires 5n2 operations. What can you conclude
about the time requirements for these algorithms when n is small and when n is large? Which is the faster algo-
rithm in these two cases?

6. Show that O(loga n) = O(logb n) for a, b > 1. Hint: loga n = logb n / logb a.

7. If f(n) is O(g(n)) and g(n) is O(h(n)), use the definition of Big Oh to show that f(n) is O(h(n)).

8. Segment 4.9 and the chapter summary showed the relationships among typical growth-rate functions. Indicate
where the following growth-rate functions belong in this ordering:

a. n2 log n
b.
c. n2 / log n
d. 3n

9. Show that 7n2 + 5n is not O(n).

10. What is the Big Oh of the following computation?
int sum = 0;
for (int counter = n; counter > 0; counter = counter - 2)

sum = sum + counter;

11. What is the Big Oh of the following computation?
int sum = 0;
for (int counter = 0; counter < n; counter = 2 * counter)

sum = sum + counter;

12. Suppose that your implementation of a particular algorithm appears in Java as follows:
for (int pass = 1; pass <= n; pass++)
{

for (int index = 0; index < n; index++)
{

for (int count = 1; count < 10; count++)
{

. . .
} // end for

} // end for
} // end for

The algorithm involves an array of n items. The previous code shows the only repetition in the algorithm, but it
does not show the computations that occur within the loops. These computations, however, are independent of n.
What is the order of the algorithm?

n

Exercises 107

13. Repeat the previous exercise, but replace 10 with n in the inner loop.

14. What is the Big Oh of method1? Is there a best case and a worst case?
public static void method1(int[] array, int n)
{

for (int index = 0; index < n - 1; index++)
{

int mark = privateMethod1(array, index, n - 1);
int temp = array[index];
array[index] = array[mark];
array[mark] = temp;

} // end for
} // end method1

public static int privateMethod1(int[] array, int first, int last)
{

int min = array[first];
int indexOfMin = first;
for (int index = first + 1; index <= last; index++)
{

if (array[index] < min)
{

min = array[index];
indexOfMin = index;

} // end if
} // end for

return indexOfMin;
} // end privateMethod1

15. What is the Big Oh of method2? Is there a best case and a worst case?
public static void method2(int[] array, int n)
{

for (int index = 1; index <= n - 1; index++)
privateMethod2(array[index], array, 0, index - 1);

} // end method2

public static void privateMethod2(int entry, int[] array, int begin, int end)
{

int index;
for (index = end; (index >= begin) && (entry < array[index]); index--)

array[index + 1] = array[index];

array[index + 1] = entry;
} // end privateMethod2

16. Consider two programs, A and B. Program A requires 1000 x n2 operations and Program B requires 2n operations.
For which values of n will Program A execute faster than Program B?

17. Consider four programs—A, B, C, and D—that have the following performances:
A: O(log n)
B: O(n)
C: O(n2)
D: O(2n)

If each program requires 10 seconds to solve a problem of size 1000, estimate the time required by each program
for a problem of size 2000.

108 CHAPTER 4 The Efficiency of Algorithms

PROJECTS

18. Suppose that you have a dictionary whose words are not sorted in alphabetical order. As a function of the number,
n, of words, what is the time complexity of searching for a particular word in this dictionary?

19. Repeat the previous exercise for a dictionary whose words are sorted alphabetically. Compare your results with
those for the previous exercise.

20. Consider a football player who runs wind sprints on a football field. He begins at the 0-yard line and runs to
the 1-yard line and then back to the 0-yard line. Then he runs to the 2-yard line and back to the 0-yard line,
runs to the 3-yard line and back to the 0-yard line, and so on until he has reached the 10-yard line and
returned to the 0-yard line.

a. How many total yards does he run?
b. How many total yards does he run if he reaches the n-yard line instead of the 10-yard line?
c. How does his total distance run compare to that of a sprinter who simply starts at the 0-yard line and races

to the n-yard line?

21. Consider the following definition of a sequence A of positive integers:

Ai + 1 =

If A0 has some value v, give a Big Oh expression for the

a. Minimum value
b. Maximum value

that Ak can have in terms of k and v.

22. Chapter 2 describes an implementation of the ADT bag that uses a fixed-size array. Of the following operations,
which ones have a constant growth-rate function: add, remove, contains?

23. Chapter 2 describes an implementation of the ADT bag that uses an array that can be resized. Using Big Oh
notation, derive the time complexity of the method ensureCapacity, as given in Segment 2.38.

24. Consider an array of length n containing unique integers in random order and in the range 1 to n + 1. For example,
an array of length 5 would contain 5 unique integers selected randomly from the integers 1 through 6. Thus, the
array might contain 3 6 5 1 4. Of the integers 1 through 6, notice that the 2 was not chosen and is not in the array.

Write Java code that finds the integer that does not appear in such an array. Your solution should use

a. O(n2) operations
b. O(n) operations

25. Consider an array of length n containing positive and negative integers in random order. Write Java code that rear-
ranges the integers so that the negative integers appear before the positive integers. Your solution should use

a. O(n2) operations
b. O(n) operations

}Ai / 2 if Ai is even
3Ai - 1 if Ai is odd

For the following projects, you should know how to time a section of code in Java. One approach is to use the class
java.util.Date. A Date object contains the time at which it was constructed. This time is stored as a long integer
equal to the number of milliseconds that have passed since 00:00:00.000 GMT on January 1, 1970. By subtracting
the starting time in milliseconds from the ending time in milliseconds, you get the run time—in milliseconds—of a
section of code.

Projects 109

For example, suppose that thisMethod is the name of a method you wish to time. The following statements
will compute the number of milliseconds that thisMethod requires to execute:

Date current = new Date(); // get current time
long startTime = current.getTime();
thisMethod(); // code to be timed
current = new Date(); // get current time
long stopTime = current.getTime();
long elapsedTime = stopTime - startTime; // milliseconds

1. Write a Java program that implements the three algorithms in Figure 4-1 and times them for various values of n.
The program should display a table of the run times of each algorithm for various values of n.

2. Consider the following two loops:

// Loop A
for (i = 1; i <= n; i++)

for (j = 1; j <= 10000; j++)
sum = sum + j;

// Loop B
for (i = 1; i <= n; i++)

for (j = 1; j <= n; j++)
sum = sum + j;

Although Loop A is O(n) and Loop B is O(n2), Loop B can be faster than Loop A for small values of n. Design
and implement an experiment to find a value of n for which Loop B is faster.

3. Repeat the previous project, but use the following for Loop B:

// Loop B
for (i = 1; i <= n; i++)

for (j = 1; j <= n; j++)
for (k = 1; k <= n; k++)

sum = sum + k;

4. Segment 2.12 of Chapter 2 gave the definition of the method toArray for the ADT bag, as follows:

public T[] toArray()
{

// the cast is safe because the new array contains null entries
@SuppressWarnings("unchecked")
T[] result = (T[])new Object[numberOfEntries]; // unchecked cast
for (int index = 0; index < numberOfEntries; index++)
{

result[index] = bag[index];
} // end for

return result;
} // end toArray

An alternate definition calls the method Arrays.copyOf and appears as follows:

public T[] toArray()
{

return Arrays.copyOf(bag, bag.length);
} // end toArray

Compare the execution times of these two methods for bags of various sizes.

110 CHAPTER 4 The Efficiency of Algorithms

ANSWERS TO SELF-TEST QUESTIONS

5. Suppose that you have several numbered billiard balls on a pool table. At each step you remove a billiard ball
from the table. If the ball removed is numbered n, you replace it with n balls whose number is n / 2, where the
division is truncated to an integer. For example, if you remove the 5 ball, you replace it with five 2 balls.

Write a program that simulates this process. Use a bag of positive integers to represent the balls on the pool table.
Using Big Oh notation, predict the time requirement for this algorithm when the initial bag contains only the value n.

Then time the actual execution of the program for various values of n and plot its performance as a function of n.

6. Repeat the previous project, but instead replace the n ball with n balls randomly numbered less than n.

7. In mythology, the Hydra was a monster with many heads. Every time the hero chopped off a head, two smaller
heads would grow in its place. Fortunately for the hero, if the head was small enough, he could chop it off without
two more growing in its place. To kill the Hydra, all our hero needed to do was to chop off all the heads.

Write a program that simulates the Hydra. Instead of heads, we will use strings. A bag of strings, then, repre-
sents the Hydra. Every time you remove a string from the bag, delete the first letter of the string and put two cop-
ies of the remaining string back into the bag. For example, if you remove HYDRA, you add two copies of YDRA to
the bag. If you remove a one-letter word, you add nothing to the bag. To begin, read one word from the keyboard
and place it into an empty bag. The Hydra dies when the bag becomes empty.

Using Big Oh notation, predict the time requirement for this algorithm in terms of the number n of characters
in the initial string. Then time the actual execution of the program for various values of n and plot its performance
as a function of n.

1. If you follow the hint given in the question, you will get the sum of n occurrences of n + 1, which is (n + 1) + (n +
1) + . . . + (n + 1). This sum is simply the product n (n + 1). To get this sum, we added 1 + 2 + . . . + n to itself. Thus,
n(n + 1) is 2 (1 + 2 + . . . + n). The desired conclusion follows immediately from this fact.

2. Algorithm A: The loop iterates n times, so there are n additions and a total of n + 1 assignments. We ignore the
assignments.
Algorithm B: For each value of i, the inner loop iterates i times, and so performs i additions and i assignments.
The outer loop iterates n times. Together, the loops perform 1 + 2 + . . . + n additions and the same number of
assignments. Using the identity given in Question 1, the number of additions is n (n + 1) / 2. The additional assign-
ment to set sum to zero makes the total number of assignments equal to 1 + n (n + 1) / 2, which we ignore.

3. 3n2 + 2n < 2n + 2n = 2 x 2n when n ≥ 8. So 3n2 + 2n = O(2n), using c = 2 and N = 8.

4. nk.

5. The inner loop requires a constant amount of time, and so it is O(1). The outer loop is O(n), and so the entire com-
putation is O(n).

6. Twice as fast.

7. Four times as fast.

8. Let’s tabulate the maximum number of times the inner loop executes for various values of index:

As you can see, the maximum number of times the inner loop executes is 1 + 2 + . . . + n - 1, which is n (n - 1) / 2.
Thus, the algorithm is O(n2) in the worst case.

index Inner Loop Iterations
0 n - 1
1 n - 2
2 n - 3
.
n - 2 1

Answers to Self-Test Questions 111

9. Removing an unspecified entry is O(1). Removing a particular entry is O(1) in the best case and O(n) in the worst
and average cases.

10. O(n).

11. O(n).

12. O(n).

13. Removing an unspecified entry is O(1). Removing a particular entry is O(1) in the best case and O(n) in the worst
and average cases.

14. O(n).

15. O(n).

This page intentionally left blank

Chapter

5Stacks
Contents
Specifications of the ADT Stack
Using a Stack to Process Algebraic Expressions

A Problem Solved: Checking for Balanced Delimiters in an Infix Algebraic Expression
A Problem Solved: Transforming an Infix Expression to a Postfix Expression
A Problem Solved: Evaluating Postfix Expressions
A Problem Solved: Evaluating Infix Expressions

The Program Stack
Java Class Library: The Class Stack

Prerequisites
Appendix D Designing Classes
Chapter 1 Bags

Objectives
After studying this chapter, you should be able to
● Describe the operations of the ADT stack
● Use a stack to decide whether the delimiters in an algebraic expression are paired correctly
● Use a stack to convert an infix expression to a postfix expression
● Use a stack to evaluate a postfix expression
● Use a stack to evaluate an infix expression
● Use a stack in a program
● Describe how the Java run-time environment uses a stack to track the execution of methods

In everyday life, a stack is a familiar thing. You might see a stack of books on your
desk, a stack of dishes in the cafeteria, a stack of towels in the linen closet, or a stack
of boxes in the attic. When you add an item to a stack, you place it on top of the stack.
When you remove an item, you take the topmost one. This topmost item is the last
one that was added to the stack. So when you remove an item, you remove the item
added most recently. That is, the last item added to the stack is the first one removed.

114 CHAPTER 5 Stacks

VideoNote

In spite of our examples of a stack, everyday life usually does not follow this last-in, first-out,
or LIFO, behavior. Although the employee hired most recently is often the first one fired during a
layoff, we live in a first-come, first-served society. In the computer science world, however, last-in,
first-out is exactly the behavior required by many important algorithms. These algorithms often use
the abstract data type stack, which is an ADT that exhibits a last-in, first-out behavior. For example,
a compiler uses a stack to interpret the meaning of an algebraic expression, and a run-time environ-
ment uses a stack when executing a recursive method.

This chapter describes the ADT stack and provides several examples of its use.

Specifications of the ADT Stack

5.1 The ADT stack organizes its entries according to the order in which they were added. All additions
are to one end of the stack called the top. The top entry—that is, the entry at the top—is thus the
newest item among the items currently in a stack. Figure 5-1 shows some stacks that should be
familiar to you.

FIGURE 5-1 Some familiar stacks

The stack restricts access to its entries. A client can look at or remove only the top entry. The
only way to look at an entry that is not at the top of the stack is to repeatedly remove items from the
stack until the desired item reaches the top. If you were to remove all of a stack’s entries, one by
one, you would get them in reverse chronological order, beginning with the most recent and ending
with the first item added to the stack.

5.2 The operation that adds an entry to a stack is traditionally called push. The remove operation is pop.
The operation that retrieves the top entry without removing it is named peek. Typically, you cannot
search a stack1 for a particular entry. The following specifications define a set of operations for the
ADT stack.

The ADT stack

Note: Among the items currently in a stack, the one added most recently is at the top of the
stack. (Other items might have been added to the stack more recently and then removed.)

1. However, the Java Class Library has a class of stacks that does define a search method, as you will see later in
this chapter.

Specifications of the ADT Stack 115

ABSTRACT DATA TYPE: STACK

DATE

• A collection of objects in reverse chronological order and having the same data type

OPERATIONS

PSEUDOCODE UML DESCRIPTION

push(newEntry) +push(newEntry: T): void Task: Adds a new entry to the top of the
stack.

Input: newEntry is the new entry.
Output: None.

pop() +pop(): T Task: Removes and returns the stack’s top
entry.

Input: None.
Output: Returns either the stack’s top entry

or, if the stack is empty before the
operation, null.

peek() +peek(): T Task: Retrieves the stack’s top entry without
changing the stack in any way.

Input: None.
Output: Returns either the stack’s top entry

or, if the stack is empty, null.

isEmpty() +isEmpty(): boolean Task: Detects whether the stack is empty.
Input: None.
Output: Returns true if the stack is empty.

clear() +clear(): void Task: Removes all entries from the stack.
Input: None.
Output: None.

Note: Alternate names for methods
It is not unusual for a class designer to include aliases for certain methods. For example, you
could include the additional methods add and remove (or insert and delete) in the ADT
stack to mean push and pop. Moreover, pull is sometimes used to mean pop, and getTop can
mean peek, so including them as aliases is reasonable.

116 CHAPTER 5 Stacks

5.3 The Java interface in Listing 5-1 specifies a stack of objects. The generic type T—which represents
any class type—is the data type of the items in the stack.

5.4 Example: Demonstrating the stack methods. The following statements add, retrieve, and remove
strings from a stack. We assume that the class OurStack implements StackInterface and is avail-
able for our use.

StackInterface<String> stringStack = new OurStack<String>();
stringStack.push("Jim");
stringStack.push("Jess");
stringStack.push("Jill");
stringStack.push("Jane");
stringStack.push("Joe");

String top = stringStack.peek(); // returns "Joe"
System.out.println(top + " is at the top of the stack.");

top = stringStack.pop(); // removes and returns "Joe"
System.out.println(top + " is removed from the stack.");

top = stringStack.peek(); // returns "Jane"
System.out.println(top + " is at the top of the stack.");

LISTING 5-1 An interface for the ADT stack

public interface StackInterface<T>
{

/** Adds a new entry to the top of this stack.
@param newEntry an object to be added to the stack */

public void push(T newEntry);

/** Removes and returns this stack’s top entry.
@return either the object at the top of the stack or, if the

stack is empty before the operation, null */
public T pop();

/** Retrieves this stack’s top entry.
@return either the object at the top of the stack or null if

the stack is empty */
public T peek();

/** Detects whether this stack is empty.
@return true if the stack is empty */

public boolean isEmpty();

/** Removes all entries from this stack */
public void clear();

} // end StackInterface

Specifications of the ADT Stack 117

top = stringStack.pop(); // removes and returns "Jane"
System.out.println(top + " is removed from the stack.");

Parts a through e of Figure 5-2 show five additions to the stack. At this point, the stack contains—
from top to bottom—the strings Joe, Jane, Jill, Jess, and Jim. The string at the top of the stack is Joe;
peek retrieves it. The method pop retrieves Joe again and then removes it (Figure 5-2f). A subsequent
call to peek retrieves Jane. Then pop retrieves Jane and removes it (Figure 5-2g).

Three more calls to pop would remove Jill, Jess, and Jim, leaving the stack empty. A subse-
quent call to either pop or peek would return null.

FIGURE 5-2 A stack of strings after (a) push adds Jim; (b) push adds Jess;
(c) push adds Jill; (d) push adds Jane; (e) push adds Joe; (f) pop
retrieves and removes Joe; (g) pop retrieves and removes Jane

(g)(f)(e)(d)(c)(b)(a)

Jim Jim

Jess

Jim

Jill

Jess

Jim

Jill

Jane

Jess

Jim

Jill

Jane

Joe

Jess

Jim

Jill

Jane

Jess

Jim

Jill

Jane

Joe

Jess

Programming Tip: Methods such as peek and pop must behave reasonably when the
stack is empty. Here, we specify that they return null. Another possibility is to have them
throw an exception.

Question 1 After the following statements execute, what string is at the top of the stack
and what string is at the bottom?

StackInterface<String> stringStack = new OurStack<String>();
stringStack.push("Jim");
stringStack.push("Jess");
stringStack.pop();
stringStack.push("Jill");
stringStack.push("Jane");
stringStack.pop();

Question 2 Consider the stack that was created in Question 1, and define a new empty
stack nameStack.

a. Write a loop that pops the strings from stringStack and pushes them onto nameStack.
b. Describe the contents of the stacks stringStack and nameStack when the loop that you

just wrote completes its execution.

118 CHAPTER 5 Stacks

Using a Stack to Process Algebraic Expressions

5.5 In mathematics, an algebraic expression is composed of operands that are variables or constants
and operators, such as + and *. We will use the Java notation +, -, *, and / to indicate addition, sub-
traction, multiplication, and division. We will use ^ to indicate exponentiation, with the warning
that Java has no operator for exponentiation; in Java ^ is the exclusive-or operator.

Operators generally have two operands, and so are called binary operators. For example, the +
in a + b is a binary operator. The operators + and - can also be unary operators when they have
one operand. For example, the minus sign in -5 is a unary operator.

When an algebraic expression has no parentheses, operations occur in a certain order. Expo-
nentiations occur first; they take precedence over the other operations. Next, multiplications and
divisions occur, and then additions and subtractions. For example, the expression

20 - 2 * 2 ^ 3

evaluates as 20 - 2 * 8, then as 20 - 16, and finally as 4.
But what happens when two or more adjacent operators have the same precedence? Exponenti-

ations, such as those in a ^ b ^ c, occur right to left. Thus, 2 ^ 2 ^ 3 means 2 ^ (2 ^ 3), or 28, instead
of (2 ^ 2) ^ 3, which is 43. Other operations occur left to right, such as the multiplication and divi-
sion in a * b / c or the addition and subtraction in a - b + c. Therefore, 8 - 4 + 2 means (8 - 4) + 2,
or 6, instead of 8 - (4 + 2), which is 2. Parentheses in an expression override the normal operator
precedence.

Ordinarily, we place a binary operator between its operands, as in a + b. An expression in this
familiar notation is called an infix expression. Other notations are possible. For example, you
could write a binary operator before its two operands. Thus, a + b becomes + a b. This expression is
called a prefix expression. Or you could write a binary operator after its two operands, so a + b
becomes a b +. This expression is a postfix expression. Although infix expressions are more famil-
iar to us, both prefix and postfix expressions are simpler to process because they do not use prece-
dence rules or parentheses. The precedence of an operator in either a prefix expression or a postfix
expression is implied by the order in which the operators and operands occur in the expression. We
will learn more about these types of expressions later in this chapter.

Our first example looks at ordinary infix expressions.

Note: Algebraic expressions
In an infix expression, each binary operator appears between its operands, as in a + b.
In a prefix expression, each binary operator appears before its operands, as in + a b.
In a postfix expression, each binary operator appears after its operands, as in a b +.

Note: The notation in a prefix expression is sometimes called Polish notation, because it
was invented by the Polish mathematician Jan Lukasiewicz in the 1920s. The notation in a
postfix expression is sometimes called reverse Polish notation.

Using a Stack to Process Algebraic Expressions 119

A Problem Solved: Checking for Balanced Delimiters in an Infix Algebraic Expression

5.6 Example: A balanced expression. Let’s see whether the expression
a {b [c (d + e)/2 - f] + 1}

is balanced. We scan the expression from left to right, looking for delimiters and ignoring any char-
acters that are not delimiters. When we encounter an open delimiter, we must save it. When we find
a close delimiter, we must see whether it corresponds to the most recently encountered open delim-
iter. If it does, we discard the open delimiter and continue scanning the expression. If we are able to
scan the entire expression without a mismatch, the delimiters in the expression are balanced.

The ADT that enables us to store objects and then retrieve or remove the most recent one is a
stack. Figure 5-3 shows the contents of a stack as we scan the previous expression. Since we ignore
all characters that are not delimiters, it is sufficient for us to represent the expression here as

{ [()] }

FIGURE 5-3 The contents of a stack during the scan of an expression that
contains the balanced delimiters { [()] }

Although programmers use parentheses when writing arithmetic expressions in Java, mathema-
ticians use parentheses, square brackets, and braces for the same purpose. These delimiters must
be paired correctly. For example, an open parenthesis must correspond to a close parenthesis. In
addition, pairs of delimiters must not intersect. Thus, an expression can contain a sequence of
delimiters such as

{ [() ()] () }

but not

[(])

For convenience, we will say that a balanced expression contains delimiters that are paired cor-
rectly, or are balanced.

We want an algorithm that detects whether an infix expression is balanced.

{

After
push('{')

After
push('[')

[

After
push('(')

After
pop()

After
pop()

After
pop()

()
(

]
[

}
{

{
[
{{{{

[[

Delimiters in expression

Delimiters popped from stack

(

120 CHAPTER 5 Stacks

After pushing the first three open delimiters onto the stack, the open parenthesis is at the top of
the stack. The next delimiter, the close parenthesis, pairs with the open parenthesis at the top of the
stack. We pop the stack and continue by comparing the close bracket with the delimiter now at the
top of the stack. They correspond, so we pop the stack again and continue by comparing the close
brace with the top entry of the stack. These delimiters correspond, so we pop the stack. We have
reached the end of the expression, and the stack is empty. Each open delimiter correctly corre-
sponds to a close delimiter, so the delimiters are balanced.

5.7 Examples: Unbalanced expressions. Let’s examine some expressions that contain unbalanced
delimiters. Figure 5-4 shows a stack during the scan of an expression that contains the delimiters
{ [(]) }. This is an example of intersecting pairs of delimiters. After we push the first three open
delimiters onto the stack, the open parenthesis at the top of the stack does not correspond to the
close bracket that comes next in the expression.

FIGURE 5-4 The contents of a stack during the scan of an expression that
contains the unbalanced delimiters { [(]) }

Figure 5-5 shows a stack during the scan of an expression that contains the unbalanced delimiters
[()] }. The close brace does not have a corresponding open brace. When we finally reach the close
brace, the stack is empty. Since the stack does not contain an open brace, the delimiters are unbalanced.

FIGURE 5-5 The contents of a stack during the scan of an expression that
contains the unbalanced delimiters [()] }

After
push('{')

After
push('[')

After
push('(')

After
pop()

{ [

(

]
(

{

[
{{

Delimiters in expression

Delimiter popped from stack

Delimiters are not a pair

{

[[

(

After
push('[')

[

After
push('(')

After
pop()

After
pop()

()
(

]
[

}

[[[
(

Delimiters in expression

Delimiters popped from stack

Stack is empty when
} is encountered

A pair of brackets

A pair of parentheses

Using a Stack to Process Algebraic Expressions 121

Figure 5-6 shows a stack during the scan of an expression that contains the unbalanced delim-
iters { [()]. The open brace does not have a corresponding close brace. When you reach the end of
the expression, having processed the brackets and parentheses, the stack still contains the open
brace. Since this delimiter is left over, the expression contains unbalanced delimiters.

FIGURE 5-6 The contents of a stack during the scan of an expression that
contains the unbalanced delimiters { [()]

5.8 The algorithm. The previous discussion and figures reveal the paths that our algorithm must take.
We formalize these observations in the following pseudocode:

Algorithm checkBalance(expression)
// Returns true if the parentheses, brackets, and braces in an expression are paired correctly.

isBalanced = true
while ((isBalanced == true) and not at end of expression)
{

nextCharacter = next character in expression
switch (nextCharacter)
{

case '(': case '[': case '{':
Push nextCharacter onto stack
break

case ')': case ']': case '}':
if (stack is empty)

isBalanced = false
else
{

openDelimiter = top entry of stack
Pop stack
isBalanced = true or false according to whether openDelimiter and

nextCharacter are a pair of delimiters
}
break

}
}

if (stack is not empty)
isBalanced = false

return isBalanced

{

After
push('{')

After
push('[')

[

After
push('(')

After
pop()

After
pop()

()
(

]
[

{
[
{{{{

[[

Delimiters in expression

Delimiters popped from stack

(

A pair of brackets

A pair of parentheses

{
Brace is left over in stack

122 CHAPTER 5 Stacks

5.9 Let’s examine this algorithm for each of the examples given in the previous figures. For the balanced
expression in Figure 5-3, the while loop ends with an empty stack and isBalanced set to true. For
the expression in Figure 5-4, the loop ends when it finds that the close bracket does not correspond to
the open parenthesis. The flag isBalanced is false; the fact that the stack is not empty does not
affect the outcome of the algorithm.

With the expression in Figure 5-5, the loop ends at the close brace because the stack is empty
at that point. Retrieving or popping the top entry of the empty stack results in null, so the flag
isBalanced is set to false. Finally, with the expression in Figure 5-6, the loop ends at the end of the
expression with isBalanced set to true. But the stack is not empty—it contains an open brace—so
after the loop, isBalanced becomes false.

5.10 Java implementation. The class BalanceChecker, shown in Listing 5-2, implements our algorithm as
the static method checkBalance. The method has one parameter, the expression as a string. We assume
that the class OurStack implements StackInterface and is available. Since StackInterface specifies
a stack of objects, but the previous algorithm uses a stack of characters, checkBalance uses the wrapper
class Character to create objects suitable for the stack.

Question 3 Show the contents of the stack as you trace the algorithm checkBalance, as
given in Segment 5.8, for each of the following expressions. What does checkBalance
return in each case?

a. [a {b / (c - d) + e/(f + g)} - h]
b. {a [b + (c + 2)/d] + e) + f }
c. [a {b + [c (d + e) - f] + g}

LISTING 5-2 The class BalanceChecker

public class BalanceChecker
{

/** Decides whether the parentheses, brackets, and braces
in a string occur in left/right pairs.
@param expression a string to be checked
@return true if the delimiters are paired correctly */

public static boolean checkBalance(String expression)
{

int characterCount = expression.length();
boolean isBalanced = true;
int index = 0;
char nextCharacter = ' ';

for (; isBalanced && (index < characterCount); index++)
{

nextCharacter = expression.charAt(index);

StackInterface<Character> openDelimiterStack =
new OurStack<Character>();

Using a Stack to Process Algebraic Expressions 123

The following statements provide an example of how you might use this class:
String expression = "a {b [c (d + e)/2 - f] + 1}";
boolean isBalanced = BalanceChecker.checkBalance(expression);
if (isBalanced)

System.out.println(expression + " is balanced");
else

System.out.println(expression + " is not balanced");

A Problem Solved: Transforming an Infix Expression to a Postfix Expression

switch (nextCharacter)
{

case '(': case '[': case '{':

break;
case ')': case ']': case '}':

isBalanced = false;
else
{

isBalanced = isPaired(openDelimiter, nextCharacter);
} // end if
break;

default: break;
} // end switch

} // end for

isBalanced = false;
return isBalanced;

} // end checkBalance

// Returns true if the given characters, open and close, form a pair
// of parentheses, brackets, or braces.
private static boolean isPaired(char open, char close)
{

return (open == '(' && close == ')') ||
(open == '[' && close == ']') ||
(open == '{' && close == '}');

} // end isPaired
} // end BalanceChecker

openDelimiterStack.push(nextCharacter);

if (openDelimiterStack.isEmpty())

char openDelimiter = openDelimiterStack.pop();

if (!openDelimiterStack.isEmpty())

Our ultimate goal is to show you how to evaluate infix algebraic expressions, but postfix expres-
sions are easier to evaluate. So we first look at how to represent an infix expression by using
postfix notation.

124 CHAPTER 5 Stacks

5.11 Recall that in a postfix expression, a binary operator follows its two operands. Here are a few
examples of infix expressions and their corresponding postfix forms:

Notice that the order of the operands a, b, and c in an infix expression is the same in the corre-
sponding postfix expression. However, the order of the operators might change. This order depends
on the precedence of the operators and the existence of parentheses. As we mentioned, parentheses
do not appear in a postfix expression.

5.12 A pencil and paper scheme. One way to determine where the operators should appear in a postfix
expression begins with a fully parenthesized infix expression. For example, we write the infix expres-
sion (a + b) * c as ((a + b) * c). By adding parentheses, we remove the expression’s dependence on the
rules of operator precedence. Each operator is now associated with a pair of parentheses. We now
move each operator to the right so that it appears immediately before its associated close parenthesis
to get ((a b +) c *). Finally, we remove the parentheses to obtain the postfix expression a b + c *.

This scheme should give you some understanding of the order of the operators in a postfix
expression. It also can be useful when checking the results of a conversion algorithm. However, the
algorithm that we will develop next is not based on this approach.

5.13 The basics of a conversion algorithm. To convert an infix expression to postfix form, we scan the
infix expression from left to right. When we encounter an operand, we place it at the end of the new
expression that we are creating. Recall that operands in an infix expression remain in the same
order in the corresponding postfix expression. When we encounter an operator, we must save it
until we determine where in the output expression it belongs. For example, to convert the infix
expression a + b, we append a to the initially empty output expression, save +, and append b to the
output expression. We now need to retrieve the + and put it at the end of the output expression to get
the postfix expression a b +. Retrieving the operator saved most recently is easy if we have saved it
in a stack.

In this example, we saved the operator until we processed its second operand. In general, we
hold the operator in a stack at least until we compare its precedence with that of the next operator.
For example, to convert the expression a + b * c, we append a to the output expression, push + onto
a stack, and then append b to the output. What we do now depends on the relative precedences of
the next operator, *, and the + at the top of the stack. Since * has a greater precedence than +, b is
not the addition’s second operand. Instead, the addition waits for the result of the multiplication.
Thus, we push * onto the stack and append c to the output expression. Having reached the end of
the input expression, we now pop each operator from the stack and append it to the end of the out-
put expression, getting the postfix expression a b c * +. Figure 5-7 illustrates these steps. The stack
is shown horizontally; the leftmost element is at the bottom of the stack.

Infix Postfix
a + b a b +
(a + b) * c a b + c *
a + b * c a b c * +

Question 4 Using the previous scheme, convert each of the following infix expressions to
postfix expressions:

a. a + b * c
b. a * b / (c - d)
c. a / b + (c - d)
d. a / b + c - d

Using a Stack to Process Algebraic Expressions 125

FIGURE 5-7 Converting the infix expression a + b * c to postfix form

5.14 Successive operators with the same precedence. What if two successive operators have the same
precedence? We need to distinguish between operators that have a left-to-right association—
namely +, -, *, and /—and exponentiation, which has a right-to-left association. For example, con-
sider the expression a - b + c. When we encounter the +, the stack will contain the operator - and
the incomplete postfix expression will be ab. The subtraction operator belongs to the operands a
and b, so we pop the stack and append - to the end of the expression ab. Since the stack is empty,
we push the + onto the stack. We then append c to the result, and finally we pop the stack and
append the +. The result is a b - c +. Figure 5-8a illustrates these steps.

Now consider the expression a ^ b ^ c. By the time we encounter the second exponentiation
operator, the stack contains ^, and the result so far is ab. As before, the current operator has the
same precedence as the top entry of the stack. But since a ^ b ^ c means a ^ (b ^ c), we must push
the second ^ onto the stack, as Figure 5-8b shows.

FIGURE 5-8 Converting an infix expression to postfix form:
(a) a - b + c; (b) a ^ b ^ c

Next Character in
Infix Expression

Postfix Form Operator Stack
(bottom to top)

a
+
b
*
c

a
a
a b
a b
a b c
a b c *
a b c * +

+
+
+ *
+ *
+

Next Character in
Infix Expression

Postfix Form Operator Stack
(bottom to top)

a
–
b
+

c

a
a
a b
a b –
a b –
a b – c
a b – c +

–
–

+
+

(a)

Next Character in
Infix Expression

Postfix Form Operator Stack
(bottom to top)

a
^
b
^
c

a
a
a b
a b
a b c
a b c ^
a b c ^ ^

^
^
^ ^
^ ^
^

(b)

126 CHAPTER 5 Stacks

5.15 Parentheses. Parentheses override the rules of operator precedence. We always push an open
parenthesis onto the stack. Once it is in the stack, we treat an open parenthesis as an operator with
the lowest precedence. That is, any subsequent operator will get pushed onto the stack. When we
encounter a close parenthesis, we pop operators from the stack and append them to the forming
postfix expression until we pop an open parenthesis. The algorithm continues with no parentheses
added to the postfix expression.

5.16 The infix-to-postfix algorithm. The following algorithm encompasses the previous observations
about the conversion process. For simplicity, all operands in our expression are single-letter variables.

Algorithm convertToPostfix(infix)
// Converts an infix expression to an equivalent postfix expression.

operatorStack = a new empty stack
postfix = a new empty string
while (infix has characters left to parse)
{

nextCharacter = next nonblank character of infix
switch (nextCharacter)
{

case variable:
Append nextCharacter to postfix
break

case '^' :
operatorStack.push(nextCharacter)
break

case '+' : case '-' : case '*' : case '/' :

Question 5 In general, when should you push an exponentiation operator ^ onto the stack?

Note: Infix-to-postfix conversion
To convert an infix expression to postfix form, you take the following actions, according to the
symbols you encounter, as you process the infix expression from left to right:

• Operand Append each operand to the end of the output expression.

• Operator ^ Push ^ onto the stack.

• Operator +, -, *, or / Pop operators from the stack, appending them to the output
expression, until the stack is empty or its top entry has a lower
precedence than the new operator. Then push the new operator
onto the stack.

• Open parenthesis Push (onto the stack.

• Close parenthesis Pop operators from the stack and append them to the output
expression until an open parenthesis is popped. Discard both
parentheses.

Using a Stack to Process Algebraic Expressions 127

while (!operatorStack.isEmpty() and
 precedence of nextCharacter <= precedence of operatorStack.peek())

{
Append operatorStack.peek() to postfix
operatorStack.pop()

}
operatorStack.push(nextCharacter)
break

case '(' :
operatorStack.push(nextCharacter)
break

case ')' : // stack is not empty if infix expression is valid
topOperator = operatorStack.pop()
while (topOperator != '(')
{

Append topOperator to postfix
topOperator = operatorStack.pop()

}
break

default: break
}

}

while (!operatorStack.isEmpty())
{

topOperator = operatorStack.pop()
Append topOperator to postfix

}
return postfix

Figure 5-9 traces this algorithm for the infix expression a / b * (c + (d - e)). The resulting post-
fix expression is a b / c d e - + *.

FIGURE 5-9 The steps in converting the infix expression a / b * (c + (d - e))
to postfix form

Next Character from
Infix Expression

Postfix Form Operator Stack
(bottom to top)

 a
 /
 b
 *

 (
 c
 +
 (
 d
 –
 e
)

)

a
a
a b
a b /
a b /
a b /
a b / c
a b / c
a b / c
a b / c d
a b / c d
a b / c d e
a b / c d e –
a b / c d e –
a b / c d e – +
a b / c d e – +
a b / c d e – + *

/
/

*
* (
* (
* (+
* (+ (
* (+ (
* (+ (–
* (+ (–
* (+ (
* (+
* (
*

128 CHAPTER 5 Stacks

A Problem Solved: Evaluating Postfix Expressions

5.17 Evaluating a postfix expression requires no rules of operator precedence, since the order of its oper-
ators and operands dictates the order of the operations. Additionally, a postfix expression contains
no parentheses to complicate the evaluation.

VideoNote

As we scan the postfix expression, we must save operands until we find the operators that
apply to them. For example, to evaluate the postfix expression a b /, we locate the variables a
and b and save their values.2 When we identify the operator /, its second operand is the most
recently saved value—that is, b’s value. The value saved before that—a’s value—is the opera-
tor’s first operand. Storing values in a stack enables us to access the necessary operands for an
operator. Figure 5-10 traces the evaluation of a b / when a is 2 and b is 4. The result of 0 assumes
integer division.

FIGURE 5-10 The stack during the evaluation of the postfix expression a b /
when a is 2 and b is 4

Now consider the postfix expression a b + c /, where a is 2, b is 4, and c is 3. The expression
corresponds to the infix expression (a + b) / c, so its value should be 2. After finding the variable a,
we push its value 2 onto a stack. Likewise, we push b’s value 4 onto the stack. The + operator is
next, so we pop two values from the stack, add them, and push their sum 6 onto the stack. Notice
that this sum will be the first operand of the / operator. The variable c is next in the postfix
expression, so we push its value 3 onto the stack. Finally, we encounter the operator /, so we pop
two values from the stack and form their quotient, 6 / 3. We push this result onto the stack. We are

Question 6 Using the previous algorithm, represent each of the following infix expres-
sions as a postfix expression:

a. (a + b) / (c - d)
b. a / (b - c) * d
c. a - (b / (c - d) * e + f) ^ g
d. (a - b * c) / (d * e ^ f * g + h)

Evaluate a postfix expression that uses the operators +, -, *, /, and ^ to indicate addition, sub-
traction, multiplication, division, and exponentiation.

Using the ADT stack

2. Finding the value of a variable is not an easy task, but we will not explore this detail in this book.

a

2 2
4

b /

2
4

2 2 02

/ / 4 / 4 2 / 42 / 4

4

Using a Stack to Process Algebraic Expressions 129

at the end of the expression, and one value, 2, is in the stack. This value is the value of the expres-
sion. Figure 5-11 traces the evaluation of this postfix expression.

FIGURE 5-11 The stack during the evaluation of the postfix expression a b + c /
when a is 2, b is 4, and c is 3

5.18 The evaluation algorithm follows directly from these examples:

Algorithm evaluatePostfix(postfix)
// Evaluates a postfix expression.

valueStack = a new empty stack
while (postfix has characters left to parse)
{

nextCharacter = next nonblank character of postfix
switch (nextCharacter)
{

case variable:
valueStack.push(value of the variable nextCharacter)
break

case '+' : case '-' : case '*' : case '/' : case '^' :
operandTwo = valueStack.pop()
operandOne = valueStack.pop()
result = the result of the operation in nextCharacter and its operands

operandOne and operandTwo
valueStack.push(result)
break

default: break
}

}

return valueStack.peek()

We can implement this algorithm and the algorithm convertToPostfix given in Segment 5.16
as static methods of a class Postfix.The implementations are left as an exercise.

2

� 4

6

/ 3

6
3

6
3

6
3

2 � 4 2 � 4 c / /

6 2

6 / 3 6 / 3

2 2
4

2
4

�a b �

4
2 2

� 4 / 3

6

Question 7 Using the previous algorithm, evaluate each of the following postfix expres-
sions. Assume that a = 2, b = 3, c = 4, d = 5, and e = 6.

a. a e + b d - /
b. a b c * d * -
c. a b c - / d *
d. e b c a ^ * + d -

130 CHAPTER 5 Stacks

A Problem Solved: Evaluating Infix Expressions

5.19 Using the two algorithms in Segments 5.16 and 5.18, we could evaluate an infix expression by con-
verting it to an equivalent postfix expression and then evaluating it. We can save some intermediate
work, however, by combining the two algorithms into one that evaluates an infix expression
directly by using two stacks. This combined algorithm maintains a stack of operators according to
the algorithm that converts an infix expression to postfix form. But instead of appending operands
to the end of an expression, the new algorithm pushes the value of an operand onto a second stack
according to the algorithm that evaluates a postfix expression.

5.20 Example. Consider the infix expression a + b * c. When a is 2, b is 3, and c is 4, the expression’s
value is 14. To compute this result, we push the value of the variable a onto a stack of values, push
the + onto a stack of operators, and push the value of b onto the stack of values. Since * has a higher
precedence than the + at the top of the operator stack, we push it onto the stack. Finally, we push the
value of c onto the stack of values. Figure 5-12a shows the state of the two stacks at this point.

FIGURE 5-12 Two stacks during the evaluation of a + b * c when a is 2, b is 3,
and c is 4:
(a) after reaching the end of the expression;
(b) while performing the multiplication;
(c) while performing the addition

Evaluate an infix expression that uses the operators +, -, *, /, and ^ to indicate addition, subtrac-
tion, multiplication, division, and exponentiation.

� 2
3

� 2
3

2 2�

* 4 3 * 4

3 12
4

*

* 4

� 2

3 * 4

�

2
3
4

*
�

(a)

(b)

� 2
12

2 14

� 12 2 � 12(c) 2 � 12

Using a Stack to Process Algebraic Expressions 131

We now pop the operator stack and get the *. We get this operator’s second and first operands,
respectively, by popping the stack of values twice. After computing the product 3 * 4, we push the
result 12 onto the stack of values, as Figure 5-12b shows. In a similar fashion, we pop the operator
stack once and the value stack twice, compute 2 + 12, and push the result, 14, onto the stack of val-
ues. Since the operator stack is now empty, the value of the expression—14—is at the top of the
stack of values. Figure 5-12c shows these final steps.

5.21 The algorithm. The algorithm to evaluate an infix expression follows. You should recognize
aspects of its logic from the previous algorithms.

Algorithm evaluateInfix(infix)
// Evaluates an infix expression.

operatorStack = a new empty stack
valueStack = a new empty stack
while (infix has characters left to process)
{

nextCharacter = next nonblank character of infix
switch (nextCharacter)
{

case variable:
valueStack.push(value of the variable nextCharacter)
break

case '^' :
operatorStack.push(nextCharacter)
break

case '+' : case '-' : case '*' : case '/' :
while (!operatorStack.isEmpty() and

precedence of nextCharacter <= precedence of operatorStack.peek())
{

// Execute operator at top of operatorStack
topOperator = operatorStack.pop()
operandTwo = valueStack.pop()
operandOne = valueStack.pop()
result = the result of the operation in topOperator and its operands

operandOne and operandTwo
valueStack.push(result)

}
operatorStack.push(nextCharacter)
break

case '(' :
operatorStack.push(nextCharacter)
break

case ')' : // stack is not empty if infix expression is valid
topOperator = operatorStack.pop()
while (topOperator != '(')
{

operandTwo = valueStack.pop()
operandOne = valueStack.pop()
result = the result of the operation in topOperator and its operands

operandOne and operandTwo
valueStack.push(result)
topOperator = operatorStack.pop()

}
break

132 CHAPTER 5 Stacks

default: break
}

}

while (!operatorStack.isEmpty())
{

topOperator = operatorStack.pop()
operandTwo = valueStack.pop()
operandOne = valueStack.pop()
result = the result of the operation in topOperator and its operands

operandOne and operandTwo
valueStack.push(result)

}
return valueStack.peek()

The Program Stack

5.22 When a program executes, a special location called the program counter references the current
instruction. The program counter might be part of an actual computer or, in the case of Java, part of
a virtual computer.3

When a method is called, the program’s run-time environment creates an object called an activation
record, or frame, for the method. The activation record shows the method’s state during its execution. In
particular, the activation record contains the method’s arguments, local variables, and a reference to the cur-
rent instruction—that is, a copy of the program counter. At the time the method is called, the activation
record is pushed onto a stack called the program stack or, in Java, the Java stack. Since one method can
call another, the program stack often contains more than one activation record. The record at the top of the
stack belongs to the method that is currently executing. The record just beneath the top record belongs to
the method that called the current method, and so on.

Figure 5-13 illustrates a program stack for a main method that calls methodA, which then
calls methodB. When main begins execution, its activation record is at the top of the program
stack (Figure 5-13a). When main calls methodA, a new record is pushed onto the stack. The pro-
gram counter is 50 at that time. Figure 5-13b shows the updated record for main and the new
record for methodA just as the method begins execution. When methodA calls methodB, the pro-
gram counter is 120. A new activation record is pushed onto the stack. Figure 5-13c shows the
unchanged record for main, the updated record for methodA, and the new record for methodB
just as it begins execution.

Question 8 Using the previous algorithm, evaluate each of the following infix expres-
sions. Assume that a = 2, b = 3, c = 4, d = 5, and e = 6.

a. a + b * c - 9
b. (a + e) / (b - d)
c. a + (b + c * d) - e / 2
d. e - b * c ^ a + d

3. To maintain computer independence, Java runs on a virtual computer called the Java Virtual Machine (JVM).

Java Class Library: The Class Stack 133

FIGURE 5-13 The program stack at three points in time: (a) when main begins
execution; (b) when methodA begins execution; (c) when methodB
begins execution

As methodB executes, its activation record is updated, but the records for main and methodA
remain unchanged. The record for methodA, for example, represents the method’s state at the time it
called methodB. When methodB completes its execution, its record is popped from the stack. The
program counter is reset to 120 and then advanced to the next instruction. Thus, methodA resumes
execution with the values of its argument and local variable as given in its activation record. Ulti-
mately, methodA completes its execution, its activation record is popped from the program stack,
and main continues its execution to completion.

Java Class Library: The Class Stack

5.23 The Java Class Library contains the class Stack, which is an implementation of the ADT stack,
within the package java.util. This class has only one constructor—a default constructor that cre-
ates an empty stack. In addition, the following four methods in this class are similar to methods in
our StackInterface. We have highlighted where they differ from our methods.

methodB
 PC = 150
 b = 2

main
 PC = 50
 arg = ...
 x = 5
 y = 0

methodA
 PC = 120
 a = 5
 z = 2

1 public static
 void main(string[] arg)
 {
 . . .
 int x = 5;
50 int y = methodA(x);
 . . .
 } // end main

100 public static
 int methodA(int a)
 {
 . . .
 int z = 2;
120 methodB(z);
 . . .
 return z;
 } // end methodA

150 public static
 void methodB(int b)
 {
 . . .
 } // end methodB

Program

main
 PC = 1
 arg = ...

methodA
 PC = 100
 a = 5

(a) (b) (c)

main
 PC = 50
 arg = ...
 x = 5
 y = 0

Program stack at three points in time (PC is the program counter)

134 CHAPTER 5 Stacks

Stack also defines methods that enable you to search or traverse the entries in the stack, as well
as other methods not supported by a traditional stack ADT.

CHAPTER SUMMARY

PROGRAMMING TIP

public T push(T item);
public T pop();
public T peek();
public boolean empty();

Note: The standard class java.util.Stack is now considered a legacy class. As you will
see in Chapter 10, you instead should use the class java.util.ArrayDeque when you do not
want to define your own class of stacks. However, you can use Stack for now, and we will
define our own stack classes in the next chapter.

● The ADT stack organizes its entries on a last-in, first-out basis. The entry at the top of the stack is the one
added most recently.

● A stack’s major operations—push, pop, and peek—deal only with the top of the stack. The method push
adds an entry to the top of the stack; pop removes and returns the top entry, and peek just returns it.

● Arithmetic operators that have two operands are binary operators. When an operator such as + or - has one
operand, it is a unary operator.

● An algebraic expression often contains parentheses, square brackets, and braces. You can use a stack to dis-
cover whether these delimiters are paired correctly.

● Ordinary algebraic expressions are called infix expressions, because each binary operator appears between
its two operands. An infix expression requires rules of operator precedence and can use parentheses to over-
ride these rules.

● In a postfix expression, each binary operator appears after its two operands. In a prefix expression, each
binary operator appears before its two operands. Postfix and prefix expressions use no parentheses and have
no rules of operator precedence.

● You can use a stack of operators when forming a postfix expression that is equivalent to a given infix expression.

● You can use a stack of values to evaluate a postfix expression.

● You can use two stacks—one for operators and one for values—to evaluate an infix expression.

● When a method is called, the Java run-time environment creates an activation record, or frame, to record the
status of the method. The record contains the method’s arguments and local variables, along with the address
of the current instruction. The record is placed in a stack called the program stack.

● Methods such as peek and pop must behave reasonably when the stack is empty. For example, they could
return null or throw an exception.

Exercises 135

EXERCISES

1. If you push the objects x, y, and z onto an initially empty stack, in what order will three pop operations remove
them from the stack?

2. What pseudocode statements create a stack of the three strings "Jill", "Jane", and "Joe", in that order with
"Jill" at the top?

3. Suppose that s and t are empty stacks and a, b, c, and d are objects. What do the stacks contain after the following
sequence of operations executes?

s.push(a);
s.push(b);
s.push(c);
t.push(d);
t.push(s.pop());
t.push(s.peek());
s.push(t.pop());
t.pop();

4. What are the contents of the stack pile after the following statements execute? Assume that MyStack is a class
that implements the interface StackInterface.

StackInterface<String> pile = new MyStack<String>();
pile.push("Jane");
pile.push("Jess");
pile.push("Jill");
pile.push(pile.pop());
pile.push(pile.peek());
pile.push("Jim");
String name = pile.pop();
pile.push(pile.peek());

5. Consider the following Java statements, assuming that MyStack is a class that implements the interface
StackInterface:

int n = 4;
StackInterface<Integer> stack = new MyStack<Integer>();
while (n > 0)
{

stack.push(n);
n--;

} // end while

int result = 1;
while (!stack.isEmpty())
{

int integer = stack.pop();
result = result * integer;

} // end while
System.out.println("result = " + result);

a. What value is displayed when this code executes?
b. What mathematical function does the code evaluate?

136 CHAPTER 5 Stacks

6. Show the contents of the stack as you trace the algorithm checkBalance, given in Segment 5.8, for each of the fol-
lowing expressions:

a. a {b [c * (d + e)] - f }
b. {a (b * c) / [d + e] / f)- g}
c. a {b [c - d] e]) f

7. Using the algorithm convertToPostfix, given in Segment 5.16, convert each of the following infix expressions
to postfix expressions:

a. a * b / (c - d)
b. (a - b * c) / (d * e * f + g)
c. a / b * (c + (d - e))
d. (a ^ b * c - d) ^ e + f ^ g ^ h

8. Using the algorithm evaluatePostfix, given in Segment 5.18, evaluate each of the following postfix expres-
sions. Assume that a = 2, b = 3, c = 4, d = 5, and e = 6.

a. a b + c * d -
b. a b * c a - / d e * +
c. a c - b ^ d +

9. What infix expressions are represented by the postfix expressions given in the previous exercise?

10. Show the contents of the two stacks as you trace the algorithm evaluateInfix, given in Segment 5.21, to evalu-
ate each of the following infix expressions. Assume that a = 2, b = 3, c = 4, d = 5, e = 6, and f = 7.

a. (a + b) / (c - d) - 5
b. (d * f + 1)* e / (a ^ b - b * c + 1) - 72
c. (a ^ c - f) ^ a - a ^ b ^ a

11. A palindrome is a string of characters (a word, phrase, or sentence) that is the same regardless of whether you read
it forward or backward—assuming that you ignore spaces, punctuation, and case. For example, Race car is a pal-
indrome. So is A man, a plan, a canal: Panama. Describe how you could use a stack to test whether a string is a
palindrome.

12. Suppose that you read a binary string—that is, a string of 0s and 1s—one character at a time. Describe how you
could use a stack but no arithmetic to see whether the number of 0s is equal to the number of 1s. When these
counts are not equal, state how you could tell which character—0 or 1—occurs most frequently and by how much
its count exceeds the other’s.

13. Write Java code that displays all the objects in a stack in the order in which they were pushed onto it. After all the
objects are displayed, the stack should have the same contents as when you started.

14. Using the class java.util.Stack, define a class OurStack that implements the interface StackInterface, as
given in Listing 5-1.

15. Use the class OurStack from the previous exercise in a program that demonstrates the class BalanceChecker, as
given in Listing 5-2.

Projects 137

PROJECTS

Whenever you need a stack for any of the following projects, use the class OurStack that Exercise 14 asks you to define.

1. Write a Java program that uses a stack to test whether an input string is a palindrome. Exercise 11 defines “palin-
drome” and asks you to describe a solution to this problem.

2. Define a class Postfix that includes the static methods convertToPostfix and evaluatePostfix. These methods
should implement the algorithms given in Segments 5.16 and 5.18, respectively. Assume that the given algebraic
expressions are syntactically correct. The standard class StringBuilder, which is in the Java Class Library and is
described in Segment A.79 of Appendix A, will be helpful.

3. Define and demonstrate a method that evaluates infix expressions using the algorithm given in Segment 5.21.
Assume that expressions are syntactically correct and use single-letter operands.

4. Repeat the previous project, but remove the assumption that the expressions are syntactically correct.

5. Consider the following algorithm to sort the entries in a stack S1. First create two empty stacks, S2 and S3. At any
given time, stack S2 will hold the entries in sorted order, with the smallest at the top of the stack. Move the top
entry of S1 to S2. Pop and consider the top entry t of S1. Pop entries of stack S2 and push them onto stack S3 until
you reach the correct place to put t. Then push t onto S2. Next move all the entries from S3 to S2.

a. Write an iterative implementation of this algorithm.
b. Consider the following revision of this algorithm. After moving the top entry of S1 to S2, compare the new

top entry t of S1 with the top entry of S2 and the top entry of S3. Then either move entries from S2 to S3 or
from S3 to S2 until you locate the correct position for t. Push t onto S2. Continue until S1 is empty. Finally,
move any entries remaining in S3 to S2. Implement this revised algorithm.

6. In the language Lisp, each of the four basic arithmetic operators appears before an arbitrary number of operands,
which are separated by spaces. The resulting expression is enclosed in parentheses. The operators behave as follows:

• (+ a b c ...) returns the sum of all the operands, and (+) returns 0.
• (- a b c ...) returns a - b - c - ..., and (- a) returns -a. The minus operator must have at least one

operand.
• (* a b c ...) returns the product of all the operands, and (*) returns 1.
• (/ a b c ...) returns a / b / c / ..., and (/ a) returns 1 / a. The divide operator must have at least

one operand.

You can form larger arithmetic expressions by combining these basic expressions using a fully parenthesized
prefix notation. For example, the following is a valid Lisp expression:

(+ (- 6) (* 2 3 4) (/ (+ 3) (*) (- 2 3 1)))

This expression is evaluated successively as follows:
(+ (- 6) (* 2 3 4) (/ 3 1 -2))
(+ -6 24 -1.5)
16.5

Design and implement an algorithm that uses a stack to evaluate a legal Lisp expression composed of the four
basic operators and integer values. Write a program that reads such expressions and demonstrates your algorithm.

138 CHAPTER 5 Stacks

ANSWERS TO SELF-TEST QUESTIONS

7. Consider arithmetic expressions like the ones described in the previous project. Allow operands to be either integer values
or variable names that are strings of letters. Design and implement an iterative algorithm that uses a stack to test whether
an expression is legal in Lisp. Write a program that reads potential expressions and demonstrates your algorithm.

Each expression that your program reads can be split across several lines, which is the style used by typical
Lisp programmers. For example, the following expression is legal in Lisp:

(+ (- height)
(* 3 3 4)
(/ 3 width length)
(* radius radius)

)

In contrast, the following expressions are illegal in Lisp:

8. Write a program that graphically displays a working calculator for simple infix expressions that consist of single-
digit operands; the operators +, -, *, and /; and parentheses. Make the following assumptions:

● Unary operators (as in -2) are illegal.
● All operations, including division, are integer operations.
● The input expression contains no embedded spaces and no illegal characters, since it is entered by

using a keypad.
● The input expression is a syntactically correct infix expression.
● Division by zero will not occur. (Consider how you can remove this restriction.)
The calculator has a display and a keypad of 20 keys, which are arranged as follows:
C < Q /
7 8 9 *
4 5 6 -
1 2 3 +
0 () =

As the user presses keys to enter an infix expression, the corresponding characters appear in the display. The C (Clear) key
erases all input entered so far; the < (Backspace) key erases the last character entered. When the user presses the = key, the
expression is evaluated and the result replaces the expression in the display window. The user can then press C and enter
another expression. If the user presses the Q (Quit) key, the calculator ceases operation and is erased from the screen.

(+ (-)
(* 3 3 4)
(/ 3 width length)
(* radius radius)

)

(+ (- height)
(* 3 3 4))s

(* (/ 3 width length)
(* radius radius)

)

(+ (- height)
(* 3 3 4)
(/ 3 width length))
(* radius radius)

)

(+ (- height)
(* 3 3 4)
((/ 3 width length))
(* radius radius)

)

1. Jill is at the top, and Jim is at the bottom.

2. a. StackInterface<String> nameStack = new LinkedStack<String>();
 while (!stringStack.isEmpty())

nameStack.push(stringStack.pop());
b. stringStack is empty, and nameStack contains the strings that were in stringStack but in reverse order (Jim

is at the top, and Jill is at the bottom).

Answers to Self-Test Questions 139

3. The following stacks are shown bottom to top when read from left to right:

The algorithm checkBalance returns true for the expression in Part a and false for the other two.

4. a. a b c * +
b. a b * c d - /
c. a b / c d - +
d. a b / c + d -

5. Always. Segment 5.14 showed that you push ^ onto the stack if another ^ is already at the top of the stack. But if a
different operator is at the top, ^ has a higher precedence, so you push it onto the stack in that situation as well.

6. a. a b + c d - /
b. a b c - / d *
c. a b c d - / e * f + g ^ -
d. a b c * - d e f ^ * g * h + /

7. a. -4.
b. -58.
c. -10.
d. 49.

8. a. 5.
b. -4.
c. 22.
d. -37.

a. [b. { c. [

[{ { [[{

[{ ({ [([{ [

[{ { [[{ [(

{ { ({ [{ [

[{ [{

[[

empty

This page intentionally left blank

Chapter

6StackImplementations
Contents
A Linked Implementation
An Array-Based Implementation
A Vector-Based Implementation

Java Class Library: The Class Vector
Using a Vector to Implement the ADT Stack

Prerequisites
Chapter 2 Bag Implementations That Use Arrays
Chapter 3 A Bag Implementation That Links Data
Chapter 4 The Efficiency of Algorithms
Chapter 5 Stacks

Objectives
After studying this chapter, you should be able to
● Implement the ADT stack by using either a linked chain, an array, or a vector
● Compare and contrast the various implementations and their performance

Two of the implementations of the ADT stack described in this chapter use
techniques like the ones we used to implement the ADT bag. We will use, in turn, a
chain of linked nodes and an array to store the stack’s entries. We also will introduce
the standard class Vector as a part of the Java Class Library and use an instance of
Vector to represent a stack. You should be pleasantly surprised by the simplicity and
efficiency of these implementations.

A Linked Implementation

6.1 Each of the operations push, pop, and peek of the ADT stack involve the top of
the stack. If we use a chain of linked nodes to implement a stack, where in the
chain should we place the stack’s top entry? If we have only the chain’s head

142 CHAPTER 6 Stack Implementations

reference, we can add, remove, or access its first node faster than any other node. Thus, the
stack operations will execute fastest if the first node in the chain references the top entry in
the stack, as Figure 6-1 illustrates.

VideoNote

Also note in the figure that each node in the chain references one entry in the stack. Nodes are
allocated—that is, created—only when needed for a new entry. They are deallocated when an entry
is removed. Recall from the note in Segment 3.24 of Chapter 3 that the Java run-time environment
automatically reclaims, or deallocates, memory that a program no longer references, without
explicit instruction from the programmer.

FIGURE 6-1 A chain of linked nodes that implements a stack

6.2 An outline of the class. The linked implementation of the stack has a data field topNode, which is
the head reference of the chain of nodes. The default constructor sets this field to null. An outline
of our class appears in Listing 6-1.

Each node in the chain is an instance of the private class Node that is defined within the class
LinkedStack. This class has set and get methods and is like the one you saw in Listing 3-4 of Chapter 3.

The Class LinkedStack

Top entry of stack

Stack

Chain

topNode

Note: If you use a chain of linked nodes to implement a stack, the first node should refer-
ence the stack’s top entry.

LISTING 6-1 An outline of a linked implementation of the ADT stack

/**
A class of stacks whose entries are stored in a chain of nodes.
@author Frank M. Carrano

*/
public class LinkedStack<T> implements StackInterface<T>
{

private Node topNode; // references the first node in the chain

public LinkedStack()
{

topNode = null;
} // end default constructor

A Linked Implementation 143

6.3 Adding to the top. We push an entry onto the stack by first allocating a new node that references
the stack’s existing chain, as Figure 6-2a illustrates. This reference is in topNode, the head refer-
ence to the chain. We then set topNode to reference the new node, as in Figure 6-2b. Thus, the
method push has the following definition:

public void push(T newEntry)
{

Node newNode = new Node(newEntry, topNode);
topNode = newNode;

} // end push

This operation is independent of the other entries in the stack. Its performance is thus O(1).

FIGURE 6-2 (a) A new node that references the node at the top of the stack;
(b) the new node is now at the top of the stack

6.4 Retrieving the top. We get the top entry in the stack by accessing the data portion of the first node in
the chain. Thus, peek, like push, is an O(1) operation. Note that if the stack is empty, peek returns null.

public T peek()
{

T top = null;

< Implementations of the stack operations go here. >
. . .

private class Node
{

private T data; // entry in stack
private Node next; // link to next node

< Constructors and the methods getData, setData, getNextNode, and setNextNode
are here. >

} // end Node
} // end LinkedStack

(a)

(b)

newNode

topNode

topNode

144 CHAPTER 6 Stack Implementations

if (topNode != null)
top = topNode.getData();

return top;
} // end peek

6.5 Removing the top. We pop, or remove, the top entry in the stack by setting topNode to the refer-
ence in the first node. Thus, topNode will reference what was the second node in the chain, as
Figure 6-3 shows. Moreover, the original first node will no longer be referenced, so it will be deal-
located. Since we also want the operation to return the stack’s top entry before it is removed, the
method pop has the following implementation:

public T pop()
{

T top = peek();

if (topNode != null)
topNode = topNode.getNextNode();

return top;
} // end pop

This operation also is O(1).

FIGURE 6-3 The stack (a) before and (b) after the first node in the chain is
deleted

Top entry of stack

Stack

Chain

(a)

(b)

Returned to client

top

Stack

topNode

topNode

An Array-Based Implementation 145

6.6 The rest of the class. The remaining public methods isEmpty and clear involve only topNode:
public boolean isEmpty()
{

return topNode == null;
} // end isEmpty

public void clear()
{

topNode = null;
} // end clear

An Array-Based Implementation

6.7 If we use an array to implement the stack, where should we place the stack’s top entry? If the first
location of the array references the top entry, as shown in Figure 6-4a, we must move all the
entries in the array any time we add or remove a stack entry. We can have more efficient stack
operations if the first array location references the bottom entry of the stack. The top entry of the
stack is then referenced by the last occupied location in the array, as Figure 6-4b shows. This con-
figuration allows us to add or remove stack entries without moving other array elements. Thus, one
disadvantage of a typical array-based implementation does not apply here. The exercises at the end
of this chapter consider other ways to place a stack’s entries in an array.

VideoNote

Resizing the array avoids a stack that is too full to accept another entry. However, unlike the
linked chain in the previous section, the array in Figure 6-4 contains locations that are unused. If we
eventually fill the array with additional stack entries, we can expand the size of the array—but then
we will have more unused locations. The chain has its downside as well, in that it uses additional
memory for the link portions of its nodes.

FIGURE 6-4 An array that implements a stack; its first location references
(a) the top entry in the stack; (b) the bottom entry in the stack

Question 1 Revise the previous implementation of pop so that it does not call peek.

Question 2 Is an implementation of the ADT stack reasonable if the top of the stack is at
the end of a chain of linked nodes instead of its beginning? Explain.

The Class ArrayStack

Note: If you use an array to implement a stack, the array’s first location is the bottom of the
stack. The last occupied location in the array, then, references the stack’s top entry.

Stack

Top entry of stack

10 2 3
(a)

bottomIndex

3Array

146 CHAPTER 6 Stack Implementations

(Figure 6-4 continued)

6.8 An outline of the class. The array-based implementation of the stack has as data fields an array
of stack entries and an index to the top entry. The default constructor creates a stack with a
default capacity; another constructor lets the client choose the stack’s capacity. Listing 6-2
outlines our class.

Stack

Top entry of stack

topIndex

3

10 2 3
(b)

Array

LISTING 6-2 An outline of an array-based implementation of the ADT stack

/**
A class of stacks whose entries are stored in an array.
@author Frank M. Carrano

*/
public class ArrayStack<T> implements StackInterface<T>
{

private T[] stack; // array of stack entries
private int topIndex; // index of top entry
private static final int DEFAULT_INITIAL_CAPACITY = 50;

public ArrayStack()
{

this(DEFAULT_INITIAL_CAPACITY);
} // end default constructor

public ArrayStack(int initialCapacity)
{

// the cast is safe because the new array contains null entries
@SuppressWarnings("unchecked")
T[] tempStack = (T[])new Object[initialCapacity];
stack = tempStack;
topIndex = -1;

} // end constructor

< Implementations of the stack operations go here. >
. . .

} // end ArrayStack

An Array-Based Implementation 147

To indicate an empty stack, we have assigned -1 to topIndex as its initial value. This choice
allows push to simply increment topIndex before using it when placing a new entry in the array.

6.9 Adding to the top. The push method checks whether the array has room for a new entry by calling
the private method ensureCapacity. It then places the new entry immediately after the last occu-
pied location in the array:

public void push(T newEntry)
{

ensureCapacity();
topIndex++;
stack[topIndex] = newEntry;

} // end push

private void ensureCapacity()
{

if (topIndex == stack.length - 1) // if array is full,
// double size of array
stack = Arrays.copyOf(stack, 2 * stack.length);

} // end ensureCapacity

Note that ensureCapacity is similar to the ensureCapacity method in the class Resizable-
ArrayBag, which we encountered in Chapter 2. Both private methods double the size of an array
after it becomes full.

When ensureCapacity does not resize the array stack, push is an O(1) operation, since its
performance is independent of the size of the stack. However, resizing the array is an O(n) opera-
tion, so when the array is full, the performance of push degrades to O(n). If this happens, however,
the very next push is O(1) again. To be fair, all push operations should share the cost of the occa-
sional resize of the array. That is, we amortize the cost of doubling the array size over all additions
to the stack. Unless we must resize the array many times, each push is almost O(1).

6.10 Retrieving the top. The operation peek returns either the array entry at topIndex or null if the
stack is empty:

public T peek()
{

T top = null;

if (!isEmpty())
top = stack[topIndex];

return top;
} // end peek

This operation is O(1).

6.11 Removing the top. The pop operation, like peek, retrieves the top entry in the stack, but then
removes it. To remove the stack’s top entry in Figure 6-4b, we could simply decrement topIndex,
as Figure 6-5a illustrates. This simple step would be sufficient, since the other methods would
behave correctly. For example, given the stack pictured in Figure 6-5a, peek would return the item
that stack[2] references. However, the object that previously was the top entry and has now been
returned to the client would still be referenced by the array. No harm will come from this situation
if our implementation is correct. To be safe, pop can set stack[topIndex] to null before decre-
menting topIndex. Figure 6-5b illustrates the stack in this case.

148 CHAPTER 6 Stack Implementations

FIGURE 6-5 An array-based stack after its top entry is removed by
(a) decrementing topIndex; (b) setting stack[topIndex] to
null and then decrementing topIndex

The following implementation of pop reflects these comments:

public T pop()
{

T top = null;

if (!isEmpty())
{

top = stack[topIndex];
stack[topIndex] = null;
topIndex--;

} // end if

return top;
} // end pop

Like peek, pop is an O(1) operation.

6.12 The methods isEmpty and clear. The method isEmpty involves only topIndex:
public boolean isEmpty()
{

2

Stack

Returned to client

topIndex

2

10

(a)

Stack

Returned to client

topIndex

10
(b)

null

Top entry of stack

Top entry of stack

Array

Array

2 3

2 3

Question 3 Revise the previous implementation of pop so that it calls peek.

Question 4 If we were to implement a stack of primitives instead of a stack of objects,
what changes should we make to the method pop?

A Vector-Based Implementation 149

return topIndex < 0;
} // end isEmpty

The method clear could simply set topIndex to -1, because the stack methods would behave
correctly as though the stack were empty. However, the objects that were in the stack would remain
allocated. Just as pop sets stack[topIndex] to null, clear should set to null each array location
that was used for the stack. Alternatively, clear could call pop repeatedly until the stack is empty.
We leave the implementation of clear as an exercise.

A Vector-Based Implementation

6.13 One way to let a stack grow as needed is to store its entries in an array that you resize, as we did in
the implementation of ArrayStack. Another way is to use a vector instead of an array. A vector is
an object that behaves like a high-level array. A vector’s entries are indexed beginning with 0, just
like an array’s entries. But unlike an array, a vector has methods to set or access its entries. You can
create a vector of a given size, and it will grow in size as needed. The details of this process are hid-
den from the client.

 If we store a stack’s entries in a vector, we can use the vector’s methods to manipulate the stack’s
entries. Figure 6-6 shows a client interacting with a stack by using the methods in StackInterface.
The implementations of these methods in turn interact with the vector’s methods to produce the
desired effects on the stack.

A vector is an instance of the standard class Vector, which we describe next.

FIGURE 6-6 A client using the methods given in StackInterface; these
methods interact with a vector’s methods to perform stack
operations

Question 5 If stack is an array that contains the entries in a stack, what is a disadvantage
of maintaining the top entry of the stack in stack[0]?

Question 6 If you use the locations at the end of an array stack for a stack’s entries before
you use the array’s first locations, should the stack’s top entry or its bottom entry be in
stack[stack.length - 1]? Why?

Question 7 Write an implementation of clear that sets to null each array location that
was used for the stack.

Question 8 Write an implementation of clear that repeatedly calls pop until the stack is empty.

Implementation of a stack

A vectorStackInterfaceClient

150 CHAPTER 6 Stack Implementations

Java Class Library: The Class Vector
6.14 The Java Class Library contains a class Vector, whose instances—called vectors—behave like a

resizable array.
Here are some constructors and methods that we will use to implement the ADT stack:

public Vector()
Creates an empty vector, or arraylike container, with an initial capacity of 10. When the vector
needs to increase its capacity, the capacity doubles.

public Vector(int initialCapacity)
Creates an empty vector with the specified initial capacity. When the vector needs to increase
its capacity, the capacity doubles.

public boolean add(T newEntry)
Adds a new entry to the end of this vector.

public T remove(int index)
Removes and returns the entry at the given index in this vector.

public void clear()
Removes all entries from this vector.

public T lastElement()
Returns the entry at the end of this vector.

public boolean isEmpty()
Returns true if this vector is empty.

public int size()
Returns the number of entries currently in this vector.

You can learn more about Vector at download.oracle.com/javase/7/docs/api/.

Using a Vector to Implement the ADT Stack
6.15 Using a vector to contain a stack’s entries is like using an array, but easier. We let the first element

of the vector reference the bottom entry of the stack. Thus, the vector looks like the array in
Figure 6-4b. We do not need to maintain an index to the top entry of the stack, however, as we can
infer this index from the vector’s size, which is readily available. Also, the vector expands as neces-
sary, so we do not have to worry about this detail.

Since the implementation of Vector is based on an array that can be resized dynamically, the
performance of this implementation of the stack is like that of the array-based implementation
given in the previous section.

Note: Java Class Library: The class Vector
The Java Class Library has the class Vector in the package java.util. A vector is analogous
to a resizable array in that its elements are indexed beginning with 0. You work with a vector
by using its methods.

Note: If you use a vector to implement a stack, the vector’s first element should reference
the stack’s bottom entry. Then the last occupied location in the vector references the stack’s
top entry.

A Vector-Based Implementation 151

6.16 An outline of the class. The class that implements the stack begins by declaring a vector as a data
field and allocating the vector in its constructors. Thus, we must provide an import statement prior
to the class definition. Listing 6-3 outlines our class.

6.17 Adding to the top. We use Vector’s method add to add an entry to the end of the vector, that is, to
the top of the stack.

public void push(T newEntry)
{

stack.add(newEntry);
} // end push

6.18 Retrieving the top. We retrieve the stack’s top entry by using Vector’s method lastElement.
public T peek()
{

T top = null;

if (!isEmpty())
top = stack.lastElement();

return top;
} // end peek

LISTING 6-3 An outline of a vector-based implementation of the ADT stack

import java.util.Vector;
/**

A class of stacks whose entries are stored in a vector.
@author Frank M. Carrano

*/
public class VectorStack<T> implements StackInterface<T>
{

private Vector<T> stack; // last element is the top entry in stack
private static final int DEFAULT_INITIAL_CAPACITY = 50;

public VectorStack()
{

this(DEFAULT_INITIAL_CAPACITY);
} // end default constructor

public VectorStack(int initialCapacity)
{

stack = new Vector<T>(initialCapacity);// size doubles as needed
} // end constructor

< Implementations of the stack operations go here. >
. . .

} // end VectorStack

152 CHAPTER 6 Stack Implementations

6.19 Removing the top. We can remove the stack’s top entry by using Vector’s method remove. The
argument to this method is the index of the last entry in the vector, since that entry is at the top of
the stack. This index is 1 less than the vector’s current size stack.size().

public T pop()
{

T top = null;

if (!isEmpty())
top = stack.remove(stack.size() - 1);

return top;
} // end pop

6.20 The rest of the class. The remaining public methods isEmpty and clear invoke analogous Vector
methods:

public boolean isEmpty()
{

return stack.isEmpty();
} // end isEmpty

public void clear()
{

stack.clear();
} // end clear

Design Decision: Should VectorStack extend Vector?
The previous implementation of VectorStack contains an instance of Vector. Suppose that we
instead used inheritance to derive VectorStack from Vector. The resulting class would have all the
methods of Vector in addition to those in StackInterface. However, these Vector methods would
allow a client to add or remove entries anywhere within the stack, thus violating the premise of the
ADT stack. Instead of a stack, we would have an enhanced vector. But a stack is not a vector. Since
we do not have an is-a relationship between stacks and vectors, we should not use inheritance to
define VectorStack.

The class java.util.Stack in the Java Class Library that we introduced in Segment 5.23 of
the previous chapter does extend Vector. Thus, an instance of Stack is not really a stack.

CHAPTER SUMMARY

Question 9 If a vector contains the entries in a stack, is it reasonable to maintain the
stack’s top entry in the vector’s first element?

● You can implement a stack by using a chain of linked nodes that has only a head reference. The stack opera-
tions execute fastest if the first node in the chain references the stack’s top entry. This is true because you
can add, remove, or access a chain’s first node faster than any other node.

● The stack operations are O(1) for a linked implementation.

● You can implement a stack by using an array. If the first location in the array contains the stack’s bottom
entry, no array elements will be moved when you add or remove stack entries.

● Resizing an array avoids a stack that is too full to accept another entry. However, the array generally contains
locations that are unused.

Exercises 153

EXERCISES

● The stack operations are O(1) for an array-based implementation. However, when the array is full, push dou-
bles the size of the array. In that case, push is O(n). If you spread this extra cost over all other pushes, and if
doubling the array is not frequent, push is almost O(1).

● You can implement a stack by using a vector. You maintain the stack’s bottom entry at the beginning of
the vector.

● Since the implementation of Vector is based on an array that can be resized dynamically, the performance of
a vector-based implementation is like that of the array-based implementation.

1. Discuss the advantages and disadvantages of an array-based implementation of the ADT stack as compared to a
linked implementation.

2. Consider the ADT bag, as described in Chapters 1 through 3.
a. Would you be able to implement the ADT stack by using a bag to contain its entries? Justify your answer.
b. Would you be able to implement the ADT bag by using a stack to contain its entries? Justify your answer.

3. Suppose that the ADT stack included the void method display, which displays the entries in a stack. Implement
this method for each of the following classes:

a. LinkedStack, as outlined in Listing 6-1.
b. ArrayStack, as outlined in Listing 6-2.
c. VectorStack, as outlined in Listing 6-3.
d. Any client of LinkedStack, ArrayStack, or VectorStack.

4. Repeat the previous exercise, but define the method toArray instead of the method display.

5. Suppose that the ADT stack included a void method remove(n) that removes the topmost n entries from a stack.
Specify this method by writing comments and a header. Consider the possible outcomes for stacks that do not con-
tain n entries.

6. Repeat Exercise 3, but define the method remove(n), as described in the previous exercise, instead of the
method display.

7. Imagine a linked implementation of the ADT stack that places the top entry of the stack at the end of a chain of
linked nodes. Describe how you can define the stack operations push, pop, and peek so that they do not traverse
the chain.

8. Segment 6.9 noted that an array-based push method is normally O(1), but when a stack needs to be doubled in
size, push is O(n). This observation is not as bad as it seems, however. Suppose that you double the size of a stack
from n elements to 2n elements.

a. How many calls to push can you make before the stack must double in size again?
b. Remembering that each of these calls to push is O(1), what is the average cost of all the push operations?

(The average cost is the total cost of all calls to push divided by the number of calls to push.)

9. Suppose that instead of doubling the size of an array-based stack when it becomes full, you just increase the size
of the array by some positive constant k.

a. If you have an empty stack that uses an array whose initial size is k, and you perform n pushes, how many
resize operations will be performed? Assume that n > k.

b. What is the average cost of the n push operations?

154 CHAPTER 6 Stack Implementations

PROJECTS

10. Suppose that instead of doubling the size of an array-based stack when it becomes full, you increase the size of the
array by the following sequence 3k, 5k, 7k, 9k, ... for some positive constant k.

a. If you have an empty stack that uses an array whose initial size is k, and you perform n pushes, how many
resize operations will be performed? Assume that n > k.

b. What is the average cost of the n push operations?

11. When an array becomes full, you can double its size or use one of the schemes described in Exercises 9 and 10.
What are the advantages and disadvantages of each of these three schemes?

12. Imagine several stack operations on an array-based stack. Suppose that the array doubles in size, but later fewer
than half of the array’s locations are actually used by the stack. Describe an implementation that halves the size of
the array in this case. What are the advantages and disadvantages of such an implementation?

1. Implement the ADT stack by using an array stack to contain its entries. Expand the array dynamically, as neces-
sary. Maintain the stack’s bottom entry in stack[stack.length - 1].

2. Repeat Project 1, but maintain the stack’s top entry in stack[stack.length - 1].

3. Repeat Project 1, but maintain the stack’s top entry in stack[0].

4. Write the implementation of the ADT stack that Exercise 7 describes.

5. The ADT stack lets you peek at its top entry without removing it. For some applications of stacks, you also need
to peek at the entry beneath the top entry without removing it. We will call such an operation peek2. If the stack
has more than one entry, peek2 returns the second entry from the top without altering the stack. If the stack has
fewer than two entries, peek2 returns null. Write a linked implementation of a stack that includes a method
peek2.

6. When the client attempts to either retrieve or remove an item from an empty stack, our stacks return null. An
alternative action is to throw an exception.

a. Modify the interface StackInterface so that an EmptyStackException is thrown in these cases. (This
exception is defined in the package java.util.)

b. Modify the array-based implementation of the stack to conform to your changes to StackInterface.
Write a program that demonstrates the modifications.

c. Repeat Part b for the linked implementation of the stack.

7. Suppose that we wish to implement the resizing schemes described in Exercises 9 and 10 in addition to the dou-
bling scheme.

a. Write a new version of the array-based stack that lets the client specify the resizing scheme and the associ-
ated constant when a stack is created.

b. Write a program that demonstrates the modifications.
c. Discuss the advantages and disadvantages of adding methods that allow the client to change the resize

scheme and constant after the stack has been created.

8. Implement the ADT bag by using a vector to contain its entries.

Answers to Self-Test Questions 155

ANSWERS TO SELF-TEST QUESTIONS

1. public T pop()
{

T top = null;

if (topNode != null)
{

top = topNode.getData();
topNode = topNode.getNextNode();

} // end if

return top;
} // end pop

2. No. Although maintaining an external reference to the chain’s last node, in addition to the chain’s head reference,
would enable you to either access the stack’s top entry or push a new entry onto the stack efficiently, it is not
enough to pop the stack. You need a reference to the next-to-last node to remove the chain’s last node. To get that
reference, you could either traverse the chain or maintain a reference to the next-to-last node in addition to refer-
ences to the first and last nodes. Thus, placing the stack’s top entry at the end of the chain is not as efficient or
easy to implement as placing it at the beginning.

3. public T pop()
{

T top = peek();

if (!isEmpty()) // or (top != null)
{

stack[topIndex] = null;
topIndex--;

} // end if

return top;
} // end pop

4. Change T to the primitive type and do not assign null to stack[topIndex].

5. Each push or pop would need to move all of the entries currently in the stack.

6. The bottom entry. You can then push entries onto the stack without moving the other entries already in the array.

7. public void clear()
{

for (; topIndex > -1; topIndex--)
stack[topIndex] = null;

// Assertion: topIndex is -1
} // end clear

8. public void clear()
{

while (!isEmpty())
pop();

// Assertion: topIndex is -1
} // end clear

9. No. Since Vector uses an array to store a vector’s entries, each push would need to move all of the entries in the
vector to vacate its first location, thus making room for the addition to the stack.

This page intentionally left blank

Chapter

7Recursion
Contents
What Is Recursion?
Tracing a Recursive Method
Recursive Methods That Return a Value
Recursively Processing an Array
Recursively Processing a Linked Chain
The Time Efficiency of Recursive Methods

The Time Efficiency of countDown
The Time Efficiency of Computing xn

A Simple Solution to a Difficult Problem
A Poor Solution to a Simple Problem
Tail Recursion
Indirect Recursion
Using a Stack Instead of Recursion

Prerequisites
Appendix B Java Classes
Chapter 2 Bag Implementations That Use Arrays
Chapter 3 A Bag Implementation That Links Data
Chapter 4 The Efficiency of Algorithms
Chapter 5 Stacks

Objectives
After studying this chapter, you should be able to
• Decide whether a given recursive method will end successfully in a finite amount of time
• Write a recursive method
• Estimate the time efficiency of a recursive method
• Identify tail recursion and replace it with iteration

158 CHAPTER 7 Recursion

Repetition is a major feature of many algorithms. In fact, repeating actions rapidly is a key ability
of computers. Two problem-solving processes involve repetition; they are called iteration and
recursion. In fact, most programming languages provide two kinds of repetitive constructs, iterative
and recursive.

You know about iteration because you know how to write a loop. Regardless of the loop con-
struct you use—for, while, or do—your loop contains the statements that you want to repeat and a
mechanism for controlling the number of repetitions. You might have a counted loop that counts
repetitions as 1, 2, 3, 4, 5, or 5, 4, 3, 2, 1. Or the loop might execute repeatedly while a boolean
variable or expression is true. Iteration often provides a straightforward and efficient way to imple-
ment a repetitive process.

At times, iterative solutions are elusive or hopelessly complex. For some problems, discovering
or verifying such solutions is not a simple task. In these cases, recursion can provide an elegant alter-
native. Some recursive solutions can be the best choice, some provide insight for finding a better
iterative solution, and some should not be used at all because they are grossly inefficient. Recursion,
however, remains an important problem-solving strategy.

This chapter will show you how to think recursively.

What Is Recursion?

7.1 You can build a house by hiring a contractor. The contractor in turn hires several subcontractors to
complete portions of the house. Each subcontractor might hire other subcontractors to help. You
use the same approach when you solve a problem by breaking it into smaller problems. In one spe-
cial variation of this problem-solving process, the smaller problems are identical except for their
size. This special process is called recursion.

VideoNote

Suppose that you can solve a problem by solving an identical but smaller problem. How will
you solve the smaller problem? If you use recursion again, you will need to solve an even smaller
problem that is just like the original problem in every other respect. How will replacing a problem
with another one ever lead to a solution? One key to the success of recursion is that eventually you
will reach a smaller problem whose solution you know because either it is obvious or it is given.
The solution to this smallest problem is probably not the solution to your original problem, but it
can help you reach it. Either just before or just after you solve a smaller problem, you usually con-
tribute a portion of the solution. This portion, together with the solutions to the other, smaller prob-
lems, provides the solution to the larger problem.

Let’s look at an example.

7.2 Example: The countdown. It’s New Year’s Eve and the giant ball is falling in Times Square. The
crowd counts down the last 10 seconds: “10, 9, 8, . . .” Suppose that I ask you to count down to 1
beginning at some positive integer like 10. You could shout “10” and then ask a friend to count
down from 9. Counting down from 9 is a problem that is exactly like counting down from 10,
except that there is less to do. It is a smaller problem.

To count down from 9, your friend shouts “9” and asks a friend to count down from 8. This
sequence of events continues until eventually someone’s friend is asked to count down from 1. That
friend simply shouts “1.” No other friend is needed. You can see these events in Figure 7-1.

Introducing recursion

What Is Recursion? 159

In this example, I’ve asked you to complete a task. You saw that you could contribute a part of
the task and then ask a friend to do the rest. You know that your friend’s task is just like the original
task, but it is smaller. You also know that when your friend completes this smaller task, your job
will be done. What is missing from the process just described is the signal that each friend gives to
the previous person at the completion of a task.

FIGURE 7-1 Counting down from 10

To provide this signal, when you count down from 10, I need you to tell me when you are
done. I don’t care how—or who—does the job, as long as you tell me when it is done. I can take a
nap until I hear from you. Likewise, when you ask a friend to count down from 9, you do not care
how your friend finishes the job. You just want to know when it is done so you can tell me that you
are done. You can take a nap while you are waiting.

10 !
You count down

from 9.

9 !
You count down

from 8.

8 !
You count down

from 7.

Several friends later...

2 !
You count down

from 1.

1 !
I'm done

I'm done

Several friends later...

I'm done.

I'm done
too.

160 CHAPTER 7 Recursion

Ultimately, we have a group of napping people waiting for someone to say “I’m done.” The
first person to make that claim is the person who shouts “1,” as Figure 7-1 illustrates, since that per-
son needs no help in counting down from 1. At this time in this particular example, the problem is
solved, but I don’t know that because I’m still asleep. The person who shouted “1” says “I’m done”
to the person who shouted “2.” The person who shouted “2” says “I’m done” to the person who
shouted “3,” and so on, until you say “I’m done” to me. The job is done; thanks for your help; I
have no idea how you did it, and I don’t need to know!

7.3 What does any of this have to do with Java? In the previous example, you play the role of a Java
method. I, the client, have asked you, the recursive method, to count down from 10. When you ask
a friend for help, you are invoking a method to count down from 9. But you do not invoke another
method; you invoke yourself!

The following Java method counts down from a given positive integer, displaying one integer
per line.

/** Counts down from a given positive integer.
@param integer an integer > 0 */

public static void countDown(int integer)
{

System.out.println(integer);
if (integer > 1)

countDown(integer - 1);
} // end countDown

Since the given integer is positive, the method can display it immediately. This step is analogous to
you shouting “10” in the previous example. Next the method asks whether it is finished. If the
given integer is 1, there is nothing left to do. But if the given integer is larger than 1, we need to
count down from integer - 1. We’ve already noted that this task is smaller but otherwise identical
to the original problem. How do we solve this new problem? We invoke a method, but countDown
is such a method. It does not matter that we have not finished writing it at this point!

7.4 Will the method countDown actually work? Shortly we will trace the execution of countDown both
to convince you that it works and to show you how it works. But traces of recursive methods are
messy, and you usually do not have to trace them. If you follow certain guidelines when writing a
recursive method, you can be assured that it will work.

In designing a recursive solution, you need to answer certain questions:

Note: Recursion is a problem-solving process that breaks a problem into identical but
smaller problems.

Note: A method that calls itself is a recursive method. The invocation is a recursive call
or recursive invocation.

Note: Questions to answer when designing a recursive solution

• What part of the solution can you contribute directly?
• What smaller but identical problem has a solution that, when taken with your contribution,

provides the solution to the original problem?
• When does the process end? That is, what smaller but identical problem has a known

solution, and have you reached this problem, or base case?

What Is Recursion? 161

For the method countDown, we have the following answers to these questions:

• The method countDown displays the given integer as the part of the solution that it contributes
directly. This happens to occur first here, but it need not always occur first.

• The smaller problem is counting down from integer - 1. The method solves the smaller
problem when it calls itself recursively.

• The if statement asks if the process has reached the base case. Here the base case occurs
when integer is 1. Because the method displays integer before checking it, nothing is left
to do once the base case is identified.

7.5 Before we trace the method countDown, we should note that we could have written it in other ways.
For example, a first draft of this method might have looked like this:

public static void countDown(int integer)
{

if (integer == 1)
System.out.println(integer);

else
{

System.out.println(integer);
countDown(integer - 1);

} // end if
} // end countDown

Here, the programmer considered the base case first. The solution is clear and perfectly acceptable,
but you might want to avoid the redundant println statement that occurs in both cases.

7.6 Removing the redundancy just mentioned could result in either the version given earlier in
Segment 7.3 or the following one:

public static void countDown(int integer)
{

Note: Design guidelines for successful recursion
To write a recursive method that behaves correctly, you generally should adhere to the fol-
lowing design guidelines:

• The method must be given an input value, usually as an argument, but sometimes as a
value read.

• The method definition must contain logic that involves this input value and leads to differ-
ent cases. Typically, such logic includes an if statement or a switch statement.

• One or more of these cases should provide a solution that does not require recursion.
These are the base cases, or stopping cases.

• One or more cases must include a recursive invocation of the method. These recursive
invocations should in some sense take a step toward a base case by using “smaller”
arguments or solving “smaller” versions of the task performed by the method.

Programming Tip: Infinite recursion
A recursive method that does not check for a base case, or that misses the base case, will exe-
cute “forever.” This situation is known as infinite recursion.

162 CHAPTER 7 Recursion

if (integer >= 1)
{

System.out.println(integer);
countDown(integer - 1);

} // end if
} // end countDown

When integer is 1, this method will produce the recursive call countDown(0). This turns out to be
the base case for this method, and nothing is displayed.

All three versions of countDown produce correct results; there are probably others as well.
Choose the one that is clearest to you.

7.7 The version of countDown just given in Segment 7.6 provides us an opportunity to compare it with
the following iterative version:

// Iterative version.
public static void countDown(int integer)
{

while (integer >= 1)
{

System.out.println(integer);
integer--;

} // end while
} // end countDown

The two methods have a similar appearance. Both compare integer with 1, but the recursive ver-
sion uses an if, and the iterative version uses a while. Both methods display integer. Both com-
pute integer - 1.

Tracing a Recursive Method

7.8 Now let’s trace the method countDown given in Segment 7.3:
public static void countDown(int integer)
{

System.out.println(integer);
if (integer > 1)

countDown(integer - 1);
} // end countDown

Programming Tip: An iterative method contains a loop. A recursive method calls itself.
Although some recursive methods contain a loop and call themselves, if you have written a while
statement within a recursive method, be sure that you did not mean to write an if statement.

Question 1 Write a recursive void method that skips n lines of output, where n is a posi-
tive integer. Use System.out.println() to skip one line.

Question 2 Describe a recursive algorithm that draws a given number of concentric cir-
cles. The innermost circle should have a given diameter. The diameter of each of the other
circles should be four-thirds the diameter of the circle just inside it.

Tracing a Recursive Method 163

For simplicity, suppose that we invoke this method with the statement
countDown(3);

from within a main method of the class that defines countDown. This call behaves like any other call
to a nonrecursive method. The argument 3 is copied into the parameter integer and the following
statements are executed:

System.out.println(3);
if (3 > 1)

countDown(3 - 1); // first recursive call

A line containing 3 is displayed, and the recursive call countDown(2) occurs, as Figure 7-2a shows.
Execution of the method is suspended until the results of countDown(2) are known. In this

particular method definition, no statements appear after the recursive call. So although it
appears that nothing will happen when execution resumes, it is here that the method returns to
the client.

FIGURE 7-2 The effect of the method call countDown(3)

7.9 Continuing our trace, countDown(2) causes the following statements to execute:
System.out.println(2);
if (2 > 1)

countDown(2 - 1); // second recursive call

A line containing 2 is displayed, and the recursive call countDown(1) occurs, as shown in
Figure 7-2b. Execution of the method is suspended until the results of countDown(1) are known.

The call countDown(1) causes the following statements to execute:

System.out.println(1);
if (1 > 1)

A line containing 1 is displayed, as Figure 7-2c shows, and no other recursive call occurs.
Figure 7-3 illustrates the sequence of events from the time that countDown is first called. The

numbered arrows indicate the order of the recursive calls and the returns from the method. After 1
is displayed, the method completes execution and returns to the point (arrow 4) after the call
countDown(2 - 1). Execution continues from there and the method returns to the point (arrow 5)
after the call countDown(3 - 1). Ultimately, a return to the point (arrow 6) after the initial recursive
call in main occurs.

(a)

countDown(3)

(b)

countDown(2)

(c)

countDown(1)

Display 3
Call countDown(2)

Display 2
Call countDown(1)

Display 1

164 CHAPTER 7 Recursion

FIGURE 7-3 Tracing the recursive call countDown(3)

Although tracking these method returns seems like a formality that has gained us nothing, it is
an important part of any trace because some recursive methods will do more than simply return to
their calling method. You will see an example of such a method shortly.

7.10 Figure 7-3 appears to show multiple copies of the method countDown. In reality, however, multiple
copies do not exist. Instead, for each call to a method—be it recursive or not—Java records the cur-
rent state of the method’s execution, including the values of its parameters and local variables as
well as the location of the current instruction. As Segment 5.22 of Chapter 5 described, each record
is called an activation record and provides a snapshot of a method’s state during its execution. The
records are placed into the program stack. The stack organizes the records chronologically, so that
the record of the currently executing method is on top. In this way, Java can suspend the execution
of a recursive method and invoke it again with new argument values. The boxes in Figure 7-3 cor-
respond roughly to activation records, although the figure does not show them in the order in which
they would appear in a stack. Figure 7-4 illustrates the stack of activation records as a result of the
call countDown(3) in a main method.

// Client
public static void main(...)
{
 countDown(3);
 ...
} // end main

public static void countDown(3)
{
 System.out.println(3); . 3 is displayed
 if (3 > 1)
 countDown(3 – 1);
} // end countDown

public static void countDown(2)
{
 System.out.println(2); . 2 is displayed
 if (2 > 1)
 countDown(2 – 1);
} // end countDown

public static void countDown(1)
{
 System.out.println(1); . 1 is displayed
 if (1 > 1)

} // end countDown

6

5

4

1

2

3

Tracing a Recursive Method 165

FIGURE 7-4 The stack of activation records during the execution of the call
countDown(3)

(g)

main(. . .):

main(. . .):

(a) (b) (c) (d)

(e) (f)

main(. . .):

countDown(3):

 integer: 3
 Return to calling point
 in main

main(. . .):

countDown(3):

countDown(2):

 integer: 2
 Return to calling point
 in countDown

main(. . .):

countDown(3):

countDown(2):

countDown(1):

 integer: 1
 Return to calling point
 in countDown

main(. . .):

countDown(3):

countDown(2):

 integer: 2
 Return to calling point
 in countDown

main(. . .):

countDown(3):

 integer: 3
 Return to calling point
 in main

Note: The stack of activation records
Each call to a method generates an activation record that captures the state of the method’s execution
and that is placed into the program stack. Figure 5-13 in Chapter 5 illustrated the program stack
when methodA calls the distinct method methodB. However, these methods need not be distinct.
That is, the program stack enables a run-time environment to execute recursive methods. Each invo-
cation of any method produces an activation record that is pushed onto the program stack. The acti-
vation record of a recursive method is not special in any way.

Note: A recursive method uses more memory than an iterative method, in general, because
each recursive call generates an activation record.

Programming Tip: Stack overflow
A recursive method that makes many recursive calls will place many activation records in the
program stack. Too many recursive calls can use all the memory available for the program
stack, making it full. As a result, the error message “stack overflow” occurs. Infinite recur-
sion or large-size problems are the likely causes of this error.

166 CHAPTER 7 Recursion

Recursive Methods That Return a Value

7.11 The recursive method countDown in the previous sections is a void method. Valued methods can
also be recursive. The guidelines for successful recursion given in Segment 7.4 apply to valued
methods as well, with an additional note. Recall that a recursive method must contain a statement
such as an if that chooses among several cases. Some of these cases lead to a recursive call, but at
least one case has no recursive call. For a valued method, each of these cases must provide a value
for the method to return.

7.12 Example: Compute the sum 1 + 2 + . . . + n for any integer n > 0. The given input value for this
problem is the integer n. Beginning with this fact will help us to find the smaller problem because
its input will also be a single integer. The sum always starts at 1, so that can be assumed.

So suppose that I have given you a positive integer n and asked you to compute the sum of the
first n integers. You need to ask a friend to compute the sum of the first m integers for some positive
integer m. What should m be? Well, if your friend computes 1 + . . . + (n - 1), you can simply add n
to that sum to get your sum. Thus, if sumOf(n) is the method call that returns the sum of the first n
integers, adding n to your friend’s sum occurs in the expression sumOf(n-1) + n.

What small problem can be the base case? That is, what value of n results in a sum that you
know immediately? One possible answer is 1. If n is 1, the desired sum is 1.

With these thoughts in mind, we can write the following method:

/** @param n an integer > 0
@return the sum 1 + 2 + ... + n */

public static int sumOf(int n)
{

int sum;
if (n == 1)

sum = 1; // base case
else

sum = sumOf(n - 1) + n; // recursive call

return sum;
} // end sumOf

7.13 The definition of the method sumOf satisfies the design guidelines for successful recursion. There-
fore, you should be confident that the method will work correctly without tracing its execution.
However, a trace will be instructive here because it will not only show you how a valued recursive
method works, but also demonstrate actions that occur after a recursive call is complete.

Suppose that we invoke this method with the statement
System.out.println(sumOf(3));

The computation occurs as follows:

1. sumOf(3) is sumOf(2) + 3; sumOf(3) suspends execution, and sumOf(2) begins.
2. sumOf(2) is sumOf(1) + 2; sumOf(2) suspends execution, and sumOf(1) begins.
3. sumOf(1) returns 1.

Question 3 Write a recursive void method countUp(n) that counts up from 1 to n, where n
is a positive integer. Hint: A recursive call will occur before you display anything.

Recursive Methods That Return a Value 167

Once the base case is reached, the suspended executions resume, beginning with the most recent.
Thus, sumOf(2) returns 1 + 2, or 3; then sumOf(3) returns 3 + 3, or 6. Figure 7-5 illustrates this
computation.

FIGURE 7-5 Tracing the execution of sumOf(3)

Question 4 Write a recursive valued method that computes the product of the integers
from 1 to n, where n > 0.

Note: Should you trace a recursive method?
We have shown you how to trace the execution of a recursive method primarily to show you how
recursion works and to give you some insight into how a typical compiler implements recursion.
Should you ever trace a recursive method? Usually no. You certainly should not trace a recursive
method while you are writing it. If the method is incomplete, your trace will be, too, and you are
likely to become confused. If a recursive method does not work, follow the suggestions given in
the next programming tip. You should trace a recursive method only as a last resort.

(a) (b) (c)

(d) (e) (f)

sumOf(3):
 return sumOf(2) + 3;

sumOf(2):
 return sumOf(1) + 2;

sumOf(3):
 return sumOf(2) + 3;

sumOf(1):
 return 1;

sumOf(2):
 return sumOf(1) + 2;

sumOf(3):
 return sumOf(2) + 3;

sumOf(2):
 return 1 + 2 = 3;

sumOf(3):
 return sumOf(2) + 3;

sumOf(3):
 return 3 + 3 = 6;

6 is displayed

168 CHAPTER 7 Recursion

7.14 Our previous examples were simple so that you could study the construction of recursive methods.
Since you could have solved these problems iteratively with ease, should you actually use their
recursive solutions? Nothing is inherently wrong with these recursive methods. However, given the
way that typical present-day systems execute recursive methods, a stack overflow is likely for large
values of n. Iterative solutions to these simple examples would not have this difficulty and are easy
to write. Realize, however, that future computing systems might be able to execute these recursive
methods without difficulty.

Recursively Processing an Array

VideoNote

Later in this book we will talk about searching an array for a particular item. We will also look at
algorithms that sort, or arrange, the items in an array into either ascending or descending order.
Some of the more powerful searching and sorting algorithms often are stated recursively. In this
section, we will process arrays recursively in ways that will be useful to us later. We have chosen a
simple task—displaying the integers in an array—for our examples so that you can focus on the
recursion without the distraction of the task. We will consider more-complex tasks later in this book
and in the exercises at the end of this chapter.

7.15 Suppose that we have an array of integers and we want a method that displays it. So that we can
display all or part of the array, the method will display the integers in the array elements whose
indices range from first through last. Thus, we can declare the method as follows:

/** Displays the integers in an array.
@param array an array of integers
@param first the index of the first element displayed
@param last the index of the last element displayed,

0 <= first <= last < array.length */
public static void displayArray(int[] array, int first, int last)

This task is simple and could readily be implemented using iteration. You might not imagine,
however, that we could also implement it recursively in a variety of ways. But we can and will.

Programming Tip: Debugging a recursive method
If a recursive method does not work, answer the following questions. Any “no” answers
should guide you to the error.

● Does the method have at least one input value?
● Does the method contain a statement that tests an input value and leads to different cases?
● Did you consider all possible cases?
● Does at least one of these cases cause at least one recursive call?
● Do these recursive calls involve smaller arguments, smaller tasks, or tasks that get closer to

the solution?
● If these recursive calls produce or return correct results, will the method produce or return a

correct result?
● Is at least one of the cases a base case that has no recursive call?
● Are there enough base cases?
● Does each base case produce a result that is correct for that case?
● If the method returns a value, does each of the cases return a value?

Using recursion to solve
problems

Recursively Processing an Array 169

7.16 Starting with array[first]. An iterative solution would certainly start at the first element,
array[first], so it is natural to have our first recursive method begin there also. If I ask you to
display the array, you could display array[first] and then ask a friend to display the rest of the
array. Displaying the rest of the array is a smaller problem than displaying the entire array. You
wouldn’t have to ask a friend for help if you had to display only one element—that is, if first and
last were equal. This is the base case. Thus, we could write the method displayArray as follows:

public static void displayArray(int array[], int first, int last)
{

System.out.print(array[first] + " ");
if (first < last)

displayArray(array, first + 1, last);
} // end displayArray

For simplicity, we assume that the integers will fit on one line. Notice that the client would follow a
call to displayArray with System.out.println() to get to the next line.

7.17 Starting with array[last]. Strange as it might seem, we can begin with the last element in the
array and still display the array from its beginning. Rather than displaying the last element right
away, you would ask a friend to display the rest of the array. After the elements array[first]
through array[last - 1] had been displayed, you would display array[last]. The resulting out-
put would be the same as in the previous segment.

The method that implements this plan follows:

public static void displayArray(int array[], int first, int last)
{

if (first <= last)
{

displayArray(array, first, last - 1);
System.out.print (array[last] + " ");

} // end if
} // end displayArray

7.18 Dividing the array in half. A common way to process an array recursively divides the array into
two pieces. You then process each of the pieces separately. Since each of these pieces is an array
that is smaller than the original array, each defines the smaller problem necessary for recursion. Our
first two examples also divided the array into two pieces, but one of the pieces contained only one
element. Here we divide the array into two approximately equal pieces. To divide the array, we find
the element at or near the middle of the array. The index of this element is

int mid = (first + last) / 2;

Figure 7-6 shows two arrays and their middle elements. Suppose that we include array[mid]
in the left “half ” of the array, as the figure shows. In Part b, the two pieces of the array are equal in
length; in Part a they are not. This slight difference in length doesn’t matter.

FIGURE 7-6 Two arrays with their middle elements within their left halves

0 1 2 3 4 5 6

(a)

(b)

0 1 2 3 4 5 6 7

170 CHAPTER 7 Recursion

Once again, the base case is an array of one element. You can display it without help. But if the
array contains more than one element, you divide it into halves. You then ask a friend to display one
half and another friend to display the other half. These two friends, of course, represent two recur-
sive calls in the following method:

public static void displayArray(int array[], int first, int last)
{

if (first == last)
System.out.print(array[first] + " ");

else
{

int mid = (first + last) / 2;
displayArray(array, first, mid);
displayArray(array, mid + 1, last);

} // end if
} // end displayArray

7.19 Displaying a bag. In Chapter 2, we used an array to implement the ADT bag. Suppose that a bag had a
method display to display its contents. Although we could define this method iteratively, we’ll use
recursion instead. Since display has no parameters, it must call another method—displayArray—
that has parameters and displays the array of bag entries. The arguments in the call to displayArray
would be zero for the first index and numberOfEntries - 1 for the last index, where numberOfEntries
is a data field of the bag’s class. Since the array, bag, of bag entries is a data field of the class that
implements the bag, it need not be a parameter of displayArray. Finally, since display is not a static
method, displayArray is not static.

We can use the approach of any version of displayArray given previously. However, we will display
objects, one per line, instead of integers on one line. Using the technique shown in Segment 7.16, we
revised the methods as follows:

public void display()
{

Question 5 In Segment 7.18, suppose that the array’s middle element is not in either half of the
array. Instead you can recursively display the left half, display the middle element, and then recursively
display the right half. What is the implementation of displayArray if you make these changes?

Note: When you process an array recursively, you can divide it into two pieces. For exam-
ple, the first or last element could be one piece, and the rest of the array could be the other
piece. Or you could divide the array into halves or in some other way.

Note: Finding an array’s midpoint
To compute the index of an array’s middle element, we should use the statement

int mid = first + (last - first) / 2;

instead of
int mid = (first + last) / 2;

If we were to search an array of at least 230, or about one billion, elements, the sum of first and
last could exceed the largest possible int value of 231 – 1. Thus, the computation first + last
would overflow to a negative integer and result in a negative value for mid. If this negative value of
mid was used as an array index, an ArrayIndexOutOfBoundsException would occur. The compu-
tation first + (last - first)/2, which is algebraically equivalent to (first + last)/2,
avoids this error.

Recursively Processing a Linked Chain 171

displayArray(0, numberOfEntries - 1);
} // end display

private void displayArray(int first, int last)
{

System.out.println(bag[first]);
if (first < last)

displayArray(first + 1, last);
} // end displayArray

Recursively Processing a Linked Chain

7.20 We can illustrate the recursive processing of a chain of linked nodes by performing a simple task
such as displaying the data in the chain. Once again, we’ll implement the method display for the
ADT bag, but this time let’s use the linked implementation introduced in Chapter 3. That imple-
mentation defines the field firstNode as a reference to the first node in the chain.

Dividing a linked chain into pieces is not as easy as dividing an array, since we cannot access any
particular node without traversing the chain from its beginning. Hence, our first approach displays the
data in the first node and then recursively displays the data in the rest of the chain. Thus, as it did in
Segment 7.19, display will call a private recursive method. We will name that method displayChain.
As a recursive method, displayChain needs an input value. That input should represent the chain, so
we give displayChain a parameter that references the first node in the chain.

Suppose that we name displayChain’s parameter nodeOne. Then nodeOne.getData() is the
data in the first node, and nodeOne.getNextNode() is a reference to the rest of the chain. What
about the base case? Although a one-element array was a fine base case for displayArray, using an
empty chain as the base case is easier here because we can simply compare nodeOne to null. Thus,
we have the following implementations for the methods display and displayChain:

public void display()
{

displayChain(firstNode);
} // end display

private void displayChain(Node nodeOne)
{

if (nodeOne != null)
{

System.out.println(nodeOne.getData()); // display first node
displayChain(nodeOne.getNextNode()); // display rest of chain

} // end if
} // end displayChain

Note: A recursive method that is part of an implementation of an ADT often is private,
because its use requires knowledge of the underlying data structure. Such a method is unsuit-
able as an ADT operation.

Note: When you write a method that processes a chain of linked nodes recursively, you use
a reference to the chain’s first node as the method’s parameter. You then can process the first
node followed by the rest of the chain.

172 CHAPTER 7 Recursion

7.21 Displaying a chain backwards. Suppose that you want to traverse a chain of linked nodes in
reverse order. In particular, suppose that you want to display the object in the last node, then the one
in the next-to-last node, and so on working your way toward the beginning of the chain. Since each
node references the next node but not the previous one, using iteration for this task would be diffi-
cult. You could traverse to the last node, display its contents, go back to the beginning and traverse
to the next-to-last node, and so on. Clearly, however, this is a tedious and time-consuming
approach. Alternatively, you could traverse the chain once and save a reference to each node. You
could then use these references to display the objects in the chain’s nodes in reverse order. A recur-
sive solution would do this for you.

If a friend could display the nodes in reverse order, beginning with the second node, you could
display the first node and complete the task. The following recursive solution implements this idea:

public void displayBackward()
{

displayChainBackward(firstNode);
} // end displayBackward

private void displayChainBackward(Node nodeOne)
{

if (nodeOne != null)
{

displayChainBackward(nodeOne.getNextNode());
System.out.println(nodeOne.getData());

} // end if
} // end displayChainBackward

The Time Efficiency of Recursive Methods
Chapter 4 showed you how to measure an algorithm’s time requirement by using Big Oh notation.
We used a count of the algorithm’s major operations as a first step in selecting an appropriate
growth-rate function. For the iterative examples we examined, that process was straightforward.
We will use a more formal technique here to measure the time requirement of a recursive algorithm
and thereby choose the right growth-rate function.

The Time Efficiency of countDown
7.22 As a first example, consider the countDown method given in Segment 7.3. The size of the prob-

lem of counting down to 1 from a given integer is directly related to the size of that integer. Since
Chapter 4 used n to represent the size of the problem, we will rename the parameter integer in
countDown to n to simplify our discussion. Here is the revised method:

public static void countDown(int n)
{

System.out.println(n);
if (n > 1)

countDown(n - 1);
} // end countDown

Note: Traversing a chain of linked nodes in reverse order is easier when done recursively
than iteratively.

Question 6 Trace the previous method displayBackward for a chain of three nodes.

The Time Efficiency of Recursive Methods 173

When n is 1, countDown displays 1. This is the base case and requires a constant amount of
time. When n > 1, the method requires a constant amount of time for both the println statement
and the comparison. In addition, it needs time to solve the smaller problem represented by the
recursive call. If we let t(n) represent the time requirement of countDown(n), we can express these
observations by writing

t(1) = 1
t(n) = 1 + t(n - 1) for n > 1

The equation for t(n) is called a recurrence relation, since the definition of the function t con-
tains an occurrence of itself—that is, a recurrence. What we need is an expression for t(n) that is not
given in terms of itself. One way to find such an expression is to pick a value for n and to write out
the equations for t(n), t(n - 1), and so on, until we reach t(1). From these equations, we should be
able to guess at an appropriate expression to represent t(n). We then need only to prove that we are
right. This is actually easier than it sounds.

7.23 Solving a recurrence relation. To solve the previous recurrence relation for t(n), let’s begin with
n = 4. We get the following sequence of equations:

t(4) = 1 + t(3)
t(3) = 1 + t(2)
t(2) = 1 + t(1) = 1 + 1 = 2

Substituting 2 for t(2) in the equation for t(3) results in

t(3) = 1 + 2 = 3

Substituting 3 for t(3) in the equation for t(4) results in

t(4) = 1 + 3 = 4

It appears that

t(n) = n for n ≥ 1

We can start with a larger value of n, get the same result, and convince ourselves that it is true.
But we need to prove that this result is true for every n ≥ 1. This is not hard to do.

7.24 Proving that t(n) = n. To prove that t(n) = n for n ≥ 1, we begin with the recurrence relation for t(n),
since we know it is true:

t(n) = 1 + t(n - 1) for n > 1

We need to replace t(n - 1) on the right side of the equation. Now if t(n - 1) = n - 1 when n > 1, the
following would be true for n > 1:

t(n) = 1 + n - 1 = n

Thus, if we can find an integer k that satisfies the equation t(k) = k, the next larger integer will also
satisfy it. By a similar chain of reasoning, the equation is true for all integers larger than k. Since we
are given that t(1) = 1, all integers larger than 1 will satisfy the equation. This proof is an example
of a proof by induction.

To conclude, we now know that countDown’s time requirement is given by the function t(n) = n.
Thus, the method is O(n).

174 CHAPTER 7 Recursion

The Time Efficiency of Computing xn

7.25 We can compute xn for some real number x and an integral power n ≥ 0 more efficiently than the
approach that Question 8 suggests. To reduce the number of recursive calls and therefore the num-
ber of multiplications, we can express xn as follows:

xn = (xn/2)2 when n is even and positive
xn = x (x(n - 1)/2)2 when n is odd and positive
x0 = 1

This computation could be implemented by a method power(x, n) that contains the recursive call
power(x, n/2). Since integer division in Java truncates its result, this call is appropriate regardless
of whether n is even or odd. Thus, power(x, n) would invoke power(x, n/2) once, square the
result, and, if n is odd, multiply the square by x. These multiplications are O(1) operations. Thus,
the execution time for power(x, n) is proportional to the number of recursive calls.

The recurrence relation that represents the number of recursive calls and, therefore, the
method’s time requirement to compute xn is then

t(n) = 1 + t(n/2) when n ≥ 2
t(1) = 1
t(0) = 1

Again, n/2 truncates to an integer.
7.26 Since the recurrence relation involves n/2, let’s choose a power of 2—such as 16—as n’s initial

value. We then write the following sequence of equations:

t(16) = 1 + t(8)
t(8) = 1 + t(4)
t(4) = 1 + t(2)
t(2) = 1 + t(1)

By substituting repeatedly, we get the following:

t(16) = 1 + t(8) = 1 + (1 + t(4)) = 2 + (1 + t(2)) = 3 + (1 + t(1)) = 4 + t(1)

Since 16 = 24, 4 = log2 16. This fact, together with the base case t(1) = 1, leads us to guess that

t(n) = 1 + log2 n

7.27 Now we need to prove that this guess is, in fact, true for n ≥ 1. It is true for n = 1, because
t(1) = 1 + log2 1 = 1

For n > 1, we know that the recurrence relation for t(n)

t(n) = 1 + t(n/2)

is true. Remember that n/2 truncates to an integer.

Question 7 What is the Big Oh of the method sumOf given in Segment 7.12?

Question 8 Computing xn for some real number x and an integral power n ≥ 0 has a simple
recursive solution:

xn = x xn - 1
x0 = 1

a. What recurrence relation describes this algorithm’s time requirement?
b. By solving this recurrence relation, find the Big Oh of this algorithm.

A Simple Solution to a Difficult Problem 175

We need to replace t(n/2). If our guess t(n) = 1 + log2 n were true for all values of n < k, we
would have t(k/2) = 1 + log2 (k/2), since k/2 < k. Thus,

t(k) = 1 + t(k/2)
= 1 + (1 + log2 (k/2))
= 2 + log2 (k/2)
= log2 4 + log2 (k/2)
= log2 (4k/2)
= log2 (2k)
= log2 2 + log2 k
= 1 + log2 k

To summarize, we assumed that t(n) = 1 + log2 n for all values of n < k and showed that t(k) = 1
+ log2 k. Thus, t(n) = 1 + log2 n for all n ≥ 1. Since power’s time requirement is given by t(n), the
method is O(log n).

A Simple Solution to a Difficult Problem

7.28 The Towers of Hanoi is a classic problem in computer science whose solution is not obvious. Imagine three
poles and a number of disks of varying diameters. Each disk has a hole in its center so that it can fit over
each of the poles. Suppose that the disks have been placed on the first pole in order from largest to smallest,
with the smallest disk on top. Figure 7-7 illustrates this initial configuration for three disks.

FIGURE 7-7 The initial configuration of the Towers of Hanoi for three disks.

The problem is to move the disks from the first pole to the third pole so that they remain piled
in their original order. But you must adhere to the following rules:

1. Move one disk at a time. Each disk you move must be a topmost disk.
2. No disk may rest on top of a disk smaller than itself.
3. You can store disks on the second pole temporarily, as long as you observe the previous two rules.

7.29 The solution is a sequence of moves. For example, if three disks are on pole 1, the following
sequence of seven moves will move the disks to pole 3, using pole 2 temporarily:

Move a disk from pole 1 to pole 3
Move a disk from pole 1 to pole 2
Move a disk from pole 3 to pole 2
Move a disk from pole 1 to pole 3
Move a disk from pole 2 to pole 1
Move a disk from pole 2 to pole 3
Move a disk from pole 1 to pole 3

Figure 7-8 illustrates these moves.

1 2 3

Question 9 We discovered the previous solution for three disks by trial and error. Using the
same approach, find a sequence of moves that solves the problem for four disks.

176 CHAPTER 7 Recursion

With four disks, the problem’s solution requires 15 moves, so it is somewhat difficult to find by
trial and error. With more than four disks, the solution is much more difficult to discover. What we
need is an algorithm that produces a solution for any number of disks. Even though discovering a
solution by trial and error is hard, finding a recursive algorithm to produce the solution is fairly easy.

FIGURE 7-8 The sequence of moves for solving the Towers of Hanoi problem
with three disks

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

A Simple Solution to a Difficult Problem 177

7.30 A recursive algorithm solves a problem by solving one or more smaller problems of the
same type. The problem size here is simply the number of disks. So imagine that the first
pole has four disks, as in Figure 7-9a, and that I ask you to solve the problem. Eventually,
you will need to move the bottom disk, but first you need to move the three disks on top of
it. Ask a friend to move these three disks—a smaller problem—according to our rules, but
make pole 2 the destination. Allow your friend to use pole 3 as a spare. Figure 7-9b shows
the final result of your friend’s work.

When your friend tells you that the task is complete, you move the one disk left on pole 1 to
pole 3. Moving one disk is a simple task. You don’t need help—or recursion—to do it. This disk
is the largest one, so it cannot rest on top of any other disk. Thus, pole 3 must be empty before
this move. After the move, the largest disk will be first on pole 3. Figure 7-9c shows the result of
your work.

Now ask a friend to move the three disks on pole 2 to pole 3, adhering to the rules. Allow your
friend to use pole 1 as a spare. When your friend tells you that the task is complete, you can tell me
that your task is complete as well. Figure 7-9d shows the final results.

FIGURE 7-9 The smaller problems in a recursive solution for four disks

Note: Invented in the late 1800s, the Towers of Hanoi problem was accompanied by this
legend. A group of monks was said to have begun moving 64 disks from one tower to
another. When they finish, the world will end. When you finish reading this section, you will
realize that the monks—or their successors—could not have finished yet. By the time they
do, it is quite plausible that the disks, if not the world, will have worn out!

(a)

1 2 3

(b)

1 2 3

(c)

1 2 3

(d)

1 2 3

178 CHAPTER 7 Recursion

7.31 Before we write some pseudocode to describe the algorithm, we need to identify a base case. If
only one disk is on pole 1, we can move it directly to pole 3 without using recursion. With this as
the base case, the algorithm is as follows:

Algorithm to move numberOfDisks disks from startPole to endPole using tempPole
as a spare according to the rules of the Towers of Hanoi problem

if (numberOfDisks == 1)
Move disk from startPole to endPole

else
{

Move all but the bottom disk from startPole to tempPole
Move disk from startPole to endPole
Move all disks from tempPole to endPole

}

At this point, we can develop the algorithm further by writing

Algorithm solveTowers(numberOfDisks, startPole, tempPole, endPole)
if (numberOfDisks == 1)

Move disk from startPole to endPole
else
{

solveTowers(numberOfDisks - 1, startPole, endPole, tempPole)
Move disk from startPole to endPole
solveTowers(numberOfDisks - 1, tempPole, startPole, endPole)

}

If we choose zero disks as the base case instead of one disk, we can simplify the algorithm a
bit, as follows:

Algorithm solveTowers(numberOfDisks, startPole, tempPole, endPole)
// Version 2
if (numberOfDisks > 0)
{

solveTowers(numberOfDisks - 1, startPole, endPole, tempPole)
Move disk from startPole to endPole
solveTowers(numberOfDisks - 1, tempPole, startPole, endPole)

}

Although somewhat easier to write, the second version of the algorithm executes many more recur-
sive calls. Both versions, however, make the same moves.

Your knowledge of recursion should convince you that both forms of the algorithm are correct.
Recursion has enabled us to solve a problem that appeared to be difficult. But is this algorithm effi-
cient? Could we do better if we used iteration?

7.32 Efficiency. Let’s look at the efficiency of our algorithm. How many moves occur when we begin
with n disks? Let m(n) denote the number of moves that solveTowers needs to solve the problem
for n disks. Clearly,

m(1) = 1

Question 10 For two disks, how many recursive calls are made by each version of the algo-
rithm just given?

A Simple Solution to a Difficult Problem 179

For n > 1, the algorithm uses two recursive calls to solve problems that have n - 1 disks each. The
required number of moves in each case is m(n - 1). Thus, you can see from the algorithm that

m(n) = m(n - 1) + 1 + m(n - 1) = 2 m(n - 1) + 1

From this equation, you can see that m(n) > 2 m(n - 1). That is, solving the problem with n disks
requires more than twice as many moves as solving the problem with n - 1 disks.

It appears that m(n) is related to a power of 2. Let’s evaluate the recurrence for m(n) for a few
values of n:

m(1) = 1, m(2) = 3, m(3) = 7, m(4) = 15, m(5) = 31, m(6) = 63

It seems that

m(n) = 2n - 1

We can prove this conjecture by using mathematical induction, as follows.
7.33 Proof by induction that m(n) = 2n - 1. We know that m(1) = 1 and 21 - 1 = 1, so the conjecture is

true for n = 1. Now assume that it is true for n = 1, 2, . . . , k, and consider m(k + 1).

m(k + 1) = 2 m(k) + 1 (use the recurrence relation)
= 2 (2k - 1) + 1 (we assumed that m(k) = 2k - 1)
= 2k + 1 - 1

Since the conjecture is true for n = k + 1, it is true for all n ≥ 1.
7.34 Exponential growth. The number of moves required to solve the Towers of Hanoi problem grows

exponentially with the number of disks n. That is, m(n) = O(2n). This rate of growth is alarming, as
you can see from the following values of 2n:

25 = 32
210 = 1024
220 = 1,048,576
230 = 1,073,741,824
240 = 1,099,511,627,776
250 = 1,125,899,906,842,624
260 = 1,152,921,504,606,846,976

Remember the monks mentioned at the end of Segment 7.29? They are making 264 - 1 moves. It
should be clear that you can use this exponential algorithm only for small values of n, if you want
to live to see the results.

Before you condemn recursion and discard our algorithm, you need to know that you cannot
do any better. Not you, not the monks, not anyone. We demonstrate this observation next by using
mathematical induction.

7.35 Proof that Towers of Hanoi cannot be solved in fewer than 2n - 1 moves. We have shown that our
algorithm for the Towers of Hanoi problem requires m(n) = 2n - 1 moves. Since we know that at least
one algorithm exists—we found one—there must be a fastest one. Let M(n) represent the number of
moves that this optimal algorithm requires for n disks. We need to show that M(n) = m(n) for n ≥ 1.

When the problem has one disk, our algorithm solves it in one move. We cannot do better, so
we have that M(1) = m(1) = 1. If we assume that M(n - 1) = m(n - 1), consider n disks. Looking
back at Figure 7-9b, you can see that at one point in our algorithm the largest disk is isolated on one
pole and n - 1 disks are on another. This configuration would have to be true of an optimal algo-
rithm as well, for there is no other way to move the largest disk. Thus, the optimal algorithm must
have moved these n - 1 disks from pole 1 to pole 2 in M(n - 1) = m(n - 1) moves.

180 CHAPTER 7 Recursion

After moving the largest disk (Figure 7-9c), the optimal algorithm moves n - 1 disks from
pole 2 to pole 3 in another M(n - 1) = m(n - 1) moves. Altogether, the optimal algorithm makes at
least 2 M(n - 1) + 1 moves. Thus,

M(n) ≥ 2 M(n - 1) + 1

Now apply the assumption that M(n - 1) = m(n - 1) and then the recurrence for m(n) given in
Segment 7.32 to get

M(n) ≥ 2 m(n - 1) + 1 = m(n)

We have just shown that M(n) ≥ m(n). But since the optimal algorithm cannot require
more moves than our algorithm, the expression M(n) > m(n) cannot be true. Thus, we must
have M(n) = m(n) for all n ≥ 1.

7.36 Finding an iterative algorithm to solve the Towers of Hanoi problem is not as easy as finding a recur-
sive algorithm. We now know that any iterative algorithm will require at least as many moves as the
recursive algorithm. An iterative algorithm will save the overhead—space and time—of tracking the
recursive calls, but it will not really be more efficient than solveTowers. An algorithm that uses both iter-
ation and recursion to solve the Towers of Hanoi problem is discussed in the section “Tail Recursion,” and
an entirely iterative algorithm is the subject of Project 7 at the end of this chapter.

A Poor Solution to a Simple Problem
Some recursive solutions are so inefficient that you should avoid them. The problem that we will
look at now is simple, occurs frequently in mathematical computations, and has a recursive solution
that is so natural that you are likely to be tempted to use it. Don’t!

7.37 Example: Fibonacci numbers. Early in the 13th century, the mathematician Leonardo Fibonacci
proposed a sequence of integers to model the number of descendants of a pair of rabbits. Later
named the Fibonacci sequence, these numbers occur in surprisingly many applications.

The first two terms in the Fibonacci sequence are 1 and 1. Each subsequent term is the sum of
the preceding two terms. Thus, the sequence begins as 1, 1, 2, 3, 5, 8, 13, . . . Typically, the
sequence is defined by the equations

F0 = 1
F1 = 1
Fn = Fn - 1 + Fn - 2 when n ≥ 2

You can see why the following recursive algorithm would be a tempting way to generate the sequence:

Algorithm Fibonacci(n)
if (n <= 1)

return 1
else

return Fibonacci(n - 1) + Fibonacci(n - 2)

7.38 This algorithm makes two recursive calls. That fact in itself is not the difficulty. Earlier, you saw
perfectly good algorithms—displayArray in Segment 7.18 and solveTowers in Segment 7.31—
that make several recursive calls. The trouble here is that the same recursive calls are made
repeatedly. A call to Fibonacci(n) invokes Fibonacci(n - 1) and then Fibonacci(n - 2). But
the call to Fibonacci(n - 1) has to compute Fibonacci(n - 2), so the same Fibonacci number is
computed twice.

A Poor Solution to a Simple Problem 181

Things get worse. The call to Fibonacci(n - 1) calls Fibonacci(n - 3) as well. The two previous
calls to Fibonacci(n - 2) each invoke Fibonacci(n - 3), so Fibonacci(n - 3) is computed three
times. Figure 7-10a illustrates the dependency of F6 on previous Fibonacci numbers and so indicates the
number of times a particular number is computed repeatedly by the method Fibonacci. In contrast,
Figure 7-10b shows that an iterative computation of F6 computes each prior term once. The recursive
solution is clearly less efficient. The next segments will show you just how inefficient it is.

FIGURE 7-10 The computation of the Fibonacci number F6 using (a) recursion;
(b) iteration

7.39 The time efficiency of the algorithm Fibonacci. We can investigate the efficiency of the Fibonacci
algorithm by using a recurrence relation, as we did in Segments 7.22 through Segment 7.27. First, notice
that Fn requires one add operation plus the operations that Fn - 1 and Fn - 2 require. So if t(n) represents
the time requirement of the algorithm in computing Fn, we have

t(n) = 1 + t(n - 1) + t(n - 2) for n ≥ 2
t(1) = 1
t(0) = 1

This recurrence relation looks like the recurrence for the Fibonacci numbers themselves. It should not
surprise you then that t(n) is related to the Fibonacci numbers. In fact, if you look at Figure 7-10a and
count the occurrences of the Fibonacci numbers F2 through F6, you will discover a Fibonacci sequence.

To find a relationship between t(n) and Fn, let’s expand t(n) for a few values of n:

t(2) = 1 + t(1) + t(0) = 1 + F1 + F0 = 1 + F2 > F2
t(3) = 1 + t(2) + t(1) > 1 + F2 + F1 = 1 + F3 > F3
t(4) = 1 + t(3) + t(2) > 1 + F3 + F2 = 1 + F4 > F4

We guess that t(n) > Fn for n ≥ 2. Notice that t(0) = 1 = F0 and t(1) = 1 = F1. These do not satisfy the
strict inequality of our guess.

We now prove that our guess is indeed fact. (You can skip the proof on your first reading.)

(a) F2 is computed 5 times
F3 is computed 3 times
F4 is computed 2 times
F5 is computed once
F6 is computed once

(b) F0 � 1
F1 � 1
F2 � F1 � F0 � 2
F3 � F2 � F1 � 3
F4 � F3 � F2 � 5
F5 � F4 � F3 � 8
F6 � F5 � F4 � 13

F6

F5 F4

F4

F3 F2 F2 F1

F3 F3 F2

F0F1F1F2

F0F1

F0F1

F2 F1 F1 F0 F1 F0

182 CHAPTER 7 Recursion

7.40 Proof by induction that t(n) > Fn for n ≥≥≥≥ 2. Since the recurrence relation for t(n) involves two recursive
terms, we need two base cases. In the previous segment, we already showed that t(2) > F2 and t(3) > F3.
Now if t(n) > Fn for n = 2, 3, . . . , k, we need to show that t(k + 1) > Fk + 1. We can do this as follows:

t(k + 1) = 1 + t(k) + t(k - 1) > 1 + Fk + Fk - 1 = 1 + Fk + 1 > Fk + 1

We can conclude that t(n) > Fn for all n ≥ 2.
Since we know that t(n) > Fn for all n ≥ 2, we can say that t(n) = Ω(Fn). Recall that the Big Omega

notation means that t(n) is at least as large as the Fibonacci number Fn. It turns out that we can compute
Fn directly without using the recurrence relation given in Segment 7.37. It can be shown that

Fn = (an − bn)/

where a = /2 and b = /2. Since < 2, we have and . There-
fore, we have

Fn > (an − 1)/

Thus, Fn = Ω(an), and since we know that t(n) = Ω(Fn), we have t(n) = Ω(an). Some arithmetic shows
that the previous expression for a equals approximately 1.6. We conclude that t(n) grows exponentially
with n. That is, the time required to compute Fn recursively increases exponentially as n increases.

7.41 At the beginning of this section, we observed that each Fibonacci number is the sum of the preced-
ing two Fibonacci numbers in the sequence. This observation should lead us to an iterative solution
that is O(n). (See Exercise 9 at the end of this chapter.) Although the clarity and simplicity of the
recursive solution makes it a tempting choice, it is much too inefficient to use.

Tail Recursion

7.42 Tail recursion occurs when the last action performed by a recursive method is a recursive call. For
example, the following method countDown from Segment 7.6 is tail recursive:

public static void countDown(int integer)
{

if (integer >= 1)
{

System.out.println(integer);
countDown(integer - 1);

} // end if
} // end countDown

A method that implements the algorithm Fibonacci given in Segment 7.37 will not be tail recur-
sive, even though a recursive call appears last in the method. A closer look reveals that the last
action is an addition.

The tail recursion in a method simply repeats the method’s logic with changes to parameters and
variables. Thus, you can perform the same repetition by using iteration. Converting a tail-recursive
method to an iterative one is usually a straightforward process. For example, let’s see how to convert

5

1 5+() 1 5–() 1 5– b 1< b
n

1<

5

Programming Tip: Do not use a recursive solution that repeatedly solves the same
problem in its recursive calls.

Question 11 If you compute the Fibonnaci number F6 recursively, how many recursive
calls are made, and how many additions are performed?

Question 12 If you compute the Fibonnaci number F6 iteratively, how many additions
are performed?

Tail Recursion 183

the recursive method countDown just given. First we replace the if statement with a while statement.
Then, instead of the recursive call, we assign its argument integer - 1 to the method’s formal param-
eter integer. Doing so gives us the following iterative version of the method:

public static void countDown(int integer)
{

while (integer >= 1)
{

System.out.println(integer);
integer = integer - 1;

} // end while
} // end countDown

This method is essentially the same as the iterative method given in Segment 7.7.
Because converting tail recursion to iteration is often uncomplicated, some languages other

than Java automatically convert tail-recursive methods to iterative methods to save the overhead
involved with recursion. Most of this overhead involves memory, not time. If you need to save
space, you should consider replacing tail recursion with iteration.

7.43 Example. Let’s replace the tail recursion in the second version of the algorithm solveTowers given
in Segment 7.31:

Algorithm solveTowers(numberOfDisks, startPole, tempPole, endPole)
if (numberOfDisks > 0)
{

solveTowers(numberOfDisks - 1, startPole, endPole, tempPole)
Move disk from startPole to endPole
solveTowers(numberOfDisks - 1, tempPole, startPole, endPole)

}

This algorithm contains two recursive calls. The second one is tail recursive, since it is the algorithm’s last
action. Thus, we could try replacing the second recursive call with appropriate assignment statements and
use a loop to repeat the method’s logic, including the first recursive call, as follows:

Algorithm solveTowers(numberOfDisks, startPole, tempPole, endPole)
while (numberOfDisks > 0)
{

solveTowers(numberOfDisks - 1, startPole, endPole, tempPole)
Move disk from startPole to endPole
numberOfDisks = numberOfDisks - 1
startPole = tempPole
tempPole = startPole
endPole = endPole

}

This isn’t quite right, however. Obviously, assigning endPole to itself is superfluous.
Assigning tempPole to startPole and then assigning startPole to tempPole destroys startPole
but leaves tempPole unchanged. What we need to do is exchange tempPole and startPole. Let’s
look at what is really happening here.

The only instruction that actually moves disks is Move disk from startPole to endPole. This
instruction moves the largest disk that is not already on endPole. The disk to be moved is at the bot-
tom of a pole, so any disks that are on top of it need to be moved first. Those disks are moved by the
first recursive call. If we want to omit the second recursive call, what would we need to do instead
before repeating the first recursive call? We must make sure that startPole contains the disks that
have not been moved to endPole. Those disks are on tempPole as a result of the first recursive call.
Thus, we need to exchange the contents of tempPole and startPole.

184 CHAPTER 7 Recursion

Making these changes results in the following revised algorithm:
Algorithm solveTowers(numberOfDisks, startPole, tempPole, endPole)
while (numberOfDisks > 0)
{

solveTowers(numberOfDisks - 1, startPole, endPole, tempPole)
Move disk from startPole to endPole
numberOfDisks--
Exchange the contents of tempPole and startPole

}

This revised algorithm is unusual in that its loop contains a recursive call. The base case for
this recursion occurs when numberOfDisks is zero. Even though the method does not contain an if
statement, it does detect the base case, ending the recursive calls.

Indirect Recursion

7.44 Some recursive algorithms make their recursive calls indirectly. For example, we might have the
following chain of events: Method A calls Method B, Method B calls Method C, and Method C
calls Method A. Such recursion—called indirect recursion—is more difficult to understand and
trace, but it does arise naturally in certain applications.

For example, the following rules describe strings that are valid algebraic expressions:

• An algebraic expression is either a term or two terms separated by a + or - operator.
• A term is either a factor or two factors separated by a * or / operator.
• A factor is either a variable or an algebraic expression enclosed in parentheses.
• A variable is a single letter.

Suppose that the methods isExpression, isTerm, isFactor, and isVariable detect whether a
string is, respectively, an expression, a term, a factor, or a variable. The method isExpression calls
isTerm, which in turn calls isFactor, which then calls isVariable and isExpression. Figure 7-11
illustrates these calls.

A special case of indirect recursion, where Method A calls Method B, and Method B calls Method A,
is called mutual recursion. Project 10 at the end of this chapter describes an example of mutual recursion.

FIGURE 7-11 An example of indirect recursion

Note: In a tail-recursive method, the last action is a recursive call. This call performs a rep-
etition that can be done by using iteration. Converting a tail-recursive method to an iterative
one is usually a straightforward process.

isExpression isTerm isFactor

isExpression isTerm isFactor

isExpression isTerm isFactor isVariable

Using a Stack Instead of Recursion 185

Using a Stack Instead of Recursion

7.45 One way to replace recursion with iteration is to simulate the program stack. In fact, we can imple-
ment a recursive algorithm by using a stack instead of recursion. As an example of converting a
recursive method to an iterative one, we will consider the method displayArray, as given in
Segment 7.18. For this demonstration, we will define displayArray as a nonstatic method in a
class that has an array as a data field. With these changes, the method appears as follows:

public void displayArray(int first, int last)
{

if (first == last)
System.out.println(array[first] + " ");

else
{

int mid = first + (last - first) / 2; // improved calculation of
// midpoint

displayArray(first, mid);
displayArray(mid + 1, last);

} // end if
} // end displayArray

7.46 We can replace the recursive method displayArray given in the previous segment with an itera-
tive version by using a stack that mimics the program stack. To do so, we create a stack that is
local to the method. We push objects onto this stack that are like the activation records described in
Segment 7.10. An activation record in Java’s program stack contains the method’s arguments, local
variables, and a reference to the current instruction. Since both recursive calls to displayArray are
consecutive, there is no need for our activation records to distinguish between them by storing a repre-
sentation of the program counter in the record. This simplification is not true in general, however.

To represent a record, we define a class that, in this case, has data fields for the method’s argu-
ments first and last. The following simple class is sufficient if we make it internal to our class
containing displayArray:

private class Record
{

private int first, last;

private Record(int firstIndex, int lastIndex)
{

first = firstIndex;
last = lastIndex;

} // end constructor
} // end Record

7.47 In general, when a method begins execution, it pushes an activation record onto a program stack. At its
return, a record is popped from this stack. We want an iterative displayArray to maintain its own stack.
When the method begins execution, it should push a record onto this stack. Each recursive call should do
likewise. As long as the stack is not empty, the method should remove a record from the stack and act
according to the contents of the record. The method ends its execution when the stack becomes empty.

Here is an iterative version of displayArray that uses a stack as we just described:
private void displayArray(int first, int last)
{

boolean done = false;
StackInterface<Record> programStack = new LinkedStack<Record>();
programStack.push(new Record(first, last));
while (!done && !programStack.isEmpty())
{

Record topRecord = programStack.pop();
first = topRecord.first;
last = topRecord.last;

186 CHAPTER 7 Recursion

if (first == last)
System.out.println(array[first] + " ");

else
{

int mid = first + (last - first) / 2;
// Note the order of the records pushed onto the stack
programStack.push(new Record(mid + 1, last));
programStack.push(new Record(first, mid));

} // end if
} // end while

} // end displayArray

This approach does not always produce an elegant solution. We certainly could write an iterative
version of displayArray that was easier to understand than this version and did not require a stack. But
sometimes a simple iterative solution is not apparent; in such cases, the stack approach offers a possible
solution. You will see a more useful example of a stack-based iteration in Segment 24.14 of Chapter 24.

CHAPTER SUMMARY

● Recursion is a problem-solving process that breaks a problem into identical but smaller problems.

● The definition of a recursive method must contain logic that involves an input—often a parameter—to the method
and leads to different cases. One or more of these cases are base cases, or stopping cases, because they provide a
solution that does not require recursion. One or more cases include a recursive invocation of the method that takes
a step toward a base case by solving a “smaller” version of the task performed by the method.

● For each call to a method, Java records the values of the method’s parameters and local variables in an acti-
vation record. The records are placed into an ADT called a stack that organizes them chronologically. The
record most recently added to the stack is of the currently executing method. In this way, Java can suspend
the execution of a recursive method and invoke it again with new argument values.

● A recursive method that processes an array often divides the array into portions. Recursive calls to the
method work on each of these array portions.

● A recursive method that processes a chain of linked nodes needs a reference to the chain’s first node as its parameter.

● A recursive method that is part of an implementation of an ADT often is private, because its use requires
knowledge of the underlying data structure. Although such a method is unsuitable as an ADT operation, it
can be called by a public method that implements the operation.

● A recurrence relation expresses a function in terms of itself. You can use a recurrence relation to describe the
work done by a recursive method.

● Any solution to the Towers of Hanoi problem with n disks requires at least 2n - 1 moves. A recursive solution to this
problem is clear and as efficient as possible. As an O(2n) algorithm, however, it is practical for small values of n.

● Each number in the Fibonacci sequence—after the first two—is the sum of the previous two numbers. Computing a
Fibonacci number recursively is quite inefficient, as the required previous numbers are computed several times each.

● Tail recursion occurs when the last action of a recursive method is a recursive call. This recursive call per-
forms a repetition that can be done by using iteration. Converting a tail-recursive method to an iterative one
is usually a straightforward process.

● Indirect recursion results when a method calls a method that calls a method, and so on until the first method
is called again.

● You can use a stack instead of recursion to implement a recursive algorithm. This stack mimics the behavior
of the program stack.

Exercises 187

PROGRAMMING TIPS

EXERCISES

• An iterative method contains a loop. A recursive method calls itself. Although some recursive methods con-
tain a loop and call themselves, if you have written a while statement within a recursive method, be sure that
you did not mean to write an if statement.

• A recursive method that does not check for a base case, or that misses the base case, will not terminate nor-
mally. This situation is known as infinite recursion.

• Too many recursive calls can cause the error message “stack overflow.” This means that the stack of activa-
tion records has become full. In essence, the method uses too much memory. Infinite recursion or large-size
problems are the likely causes of this error.

• Do not use a recursive solution that repeatedly solves the same problem in its recursive calls.

• If a recursive method does not work, answer the following questions. Any “no” answers should guide you to
the error.
• Does the method have at least one parameter or input value?
• Does the method contain a statement that tests a parameter or input value, leading to different cases?
• Did you consider all possible cases?
• Does at least one of these cases cause at least one recursive call?
• Do these recursive calls involve smaller arguments, smaller tasks, or tasks that get closer to the solution?
• If these recursive calls produce or return correct results, will the method produce or return a correct result?
• Is at least one of the cases a base case that has no recursive call?
• Are there enough base cases?
• Does each base case produce a result that is correct for that case?
• If the method returns a value, does each of the cases return a value?

1. Consider the method displayRowOfCharacters that displays any given character the specified number of times
on one line. For example, the call

displayRowOfCharacters('*', 5);

produces the line

Implement this method in Java by using recursion.

2. Describe a recursive algorithm that draws concentric circles, given the diameter of the outermost circle. The diam-
eter of each inner circle should be three-fourths the diameter of the circle that encloses it. The diameter of the
innermost circle should exceed 1 inch.

3. Write a method that asks the user for integer input that is between 1 and 10, inclusive. If the input is out of range,
the method should recursively ask the user to enter a new input value.

4. The factorial of a positive integer n—which we denote as n!—is the product of n and the factorial of n - 1. The
factorial of 0 is 1. Write two different recursive methods that each return the factorial of n.

5. Write a recursive method that writes a given array backward. Consider the last element of the array first.

6. Repeat Exercise 5, but instead consider the first element of the array first.

7. Repeat Exercises 5 and 6, but write a string backward instead of an array.

188 CHAPTER 7 Recursion

8. A palindrome is a string that reads the same forward and backward. For example deed and level are palindromes.
Write an algorithm in pseudocode that tests whether a string is a palindrome. Implement your algorithm as a static
method in Java. Exercise 11 and Project 1 in Chapter 5 asked you to describe how to do this using a stack.

9. Segment 7.37 introduced the Fibonacci sequence. Computing this sequence recursively is inefficient and takes too
much time. Write two methods that each compute the nth term in the Fibonacci sequence by using iteration instead
of recursion. One method should use an array to store the Fibonacci numbers. The other method should use three
variables to contain the current term in the sequence and the two terms before it.

What is the Big Oh for each of your iterative methods? Compare these results with the performance of the
recursive algorithm.

10. For three disks, how many recursive calls are made by each of the two solveTowers algorithms given in Segment 7.31?

11. Write a recursive method that counts the number of nodes in a chain of linked nodes.

12. If n is a positive integer in Java, n % 10 is its rightmost digit and n / 10 is the integer obtained by dropping the
rightmost digit from n. Using these facts, write a recursive method that displays an integer n in decimal. Now
observe that you can display n in any base between 2 and 9 by replacing 10 with the new base. Revise your
method to accommodate a given base.

13. Consider the method getFrequencyOf in the class ArrayBag, as given in Segment 2.17 of Chapter 2. Write a pri-
vate recursive method that getFrequencyOf can call, and revise the definition of getFrequencyOf accordingly.

14. Repeat Exercise 13, but instead use the class LinkedBag and the method getFrequencyOf in Segment 3.16 of Chapter 3.

15. Write four different recursive methods that each compute the sum of integers in an array of integers. Model your
methods after the displayArray methods given in Segments 7.15 through 7.18 and described in Question 5.

16. Write a recursive method that returns the smallest integer in an array of integers. If you divide the array into two pieces—
halves, for example—and find the smallest integer in each of the two pieces, the smallest integer in the entire array will be
the smaller of the these two integers. Since you will be searching a portion of the array—for example, the elements
array[first] through array[last]—it will be convenient for your method to have three parameters: the array and two
indices, first and last. You can refer to the method displayArray in Segment 7.18 for inspiration.

17. Trace the call f(16) to the following method by showing a stack of activation records:
public int f(int n)
{

int result = 0;
if (f <= 4)

result = 1;

else
result = f(n / 2) + f(n / 4);

return result;
} // end f

18. Write a recursive algorithm in pseudocode that finds the second smallest object in an array of Comparable objects.
Implement your algorithm as a static method in Java.

19. Consider the class ArrayBag, as given in Chapter 2. Implement the method equals for ArrayBag so that it calls a
private recursive method.

20. If
t(1) = 2
t(n) = 1 + t(n - 1) for n > 1

find an expression for t(n) that is not given in terms of itself. Prove that your result is correct by using induction.

Projects 189

PROJECTS

21. If
t(1) = 1
t(n) = 2 * t(n - 1) for n > 1

find an expression for t(n) that is not given in terms of itself. Prove that your result is correct by using induction.

22. Consider a checkerboard that has a dollar amount printed on each of its squares. You can place a checker on the
board anywhere you want and then move it across the board with standard diagonal moves. Once you reach the other
side, you are finished. You will collect an amount of money equal to the sum of the values written on the squares that
your checker traveled over.

a. Give a recursive algorithm that will compute the maximum amount you can collect.
b. Give an iterative algorithm that uses a stack to compute the maximum amount you can collect.

23. Consider the recursive method given in Segment 7.21 that displays the contents of a chain of linked nodes in
backward order. Also consider the recursive method described in Exercise 5 that displays the contents of an array
in backward order.

a. What is the time complexity of each of these two methods, and how do they compare?
b. Write an iterative method that displays the contents of a chain of linked nodes in backward order.

What is this method’s time complexity, and how does it compare to the complexities that you com-
puted in Part a?

1. The following algorithm finds the square root of a positive number:
Algorithm squareRoot(number, lowGuess, highGuess, tolerance)
newGuess = (lowGuess + highGuess) / 2
if ((highGuess - newGuess) / newGuess < tolerance)

return newGuess
else if (newGuess * newGuess > number)

return squareRoot(number, lowGuess, newGuess, tolerance)
else if (newGuess * newGuess < number)

return squareRoot(number, newGuess, highGuess, tolerance)
else

return newGuess

To begin the computation, you need a value lowGuess less than the square root of the number and a value highGuess
that is larger. You can use zero as lowGuess and the number itself as highGuess. The parameter tolerance controls the
precision of the result independently of the magnitude of number. For example, computing the square root of 250 with
tolerance equal to 0.00005 results in 15.81. This result has four digits of accuracy.

Implement this algorithm.

2. Implement the two versions of the solveTower algorithm given in Segment 7.31. Represent the towers by either
single characters or strings. Each method should display directions that indicate the moves that must be made.
Insert counters into each method to count the number of times it is called. These counters can be data fields of
the class that contains these methods. Compare the number of recursive calls made by each method for various
numbers of disks.

3. Repeat Project 5a of Chapter 5, but write a recursive implementation of the algorithm.

4. Implement the algorithms that Exercise 22 describes.

190 CHAPTER 7 Recursion

5. Imagine an array of n items from which you can choose. You will place the items you choose into a knapsack of
size k. Each item has a size and a value. Of course, you cannot take more items than you have space for in the
knapsack. Your goal is to maximize the total value of the items you take.

a. Design a recursive algorithm maxKnapsack to solve this knapsack problem. The parameters to the algo-
rithm are the knapsack, the array of items, and the position within the array of the next item to consider.
The algorithm chooses the items for the knapsack and returns a knapsack containing the chosen items.
A knapsack can report its size, its contents, the value of its contents, and the size of its contents.
Hint: If any items in the array have not yet been considered, retrieve the next item in the array. You can
either ignore the item or, if it fits, put it in the knapsack. To decide, make a recursive call for each of these
two cases. Compare the knapsacks returned by these calls to see which one has the most valuable contents.
Then return that knapsack.

b. Write the classes Knapsack and KnapsackItem. Then write a program that defines the method maxKnapsack.
The program should read the size of the knapsack and then the size, value, and name of each available item.
Here is some sample input data for a knapsack of size 10:

Size Value Name
1 50000 rare coin
2 7000 small gold coin
4 10000 packet of stamps
4 11000 pearl necklace
5 12000 silver bar

10 60000 painting

After displaying the items, call maxKnapsack. Then display the chosen items, their values, and their total value.

6. Suppose that you are scheduling a room. You are given a group of activities each of which has a start time and
stop time. Two activities are compatible if they do not overlap. For example, in the following activities, activity
A is compatible with activities B and D, but not activity C:

Your goal is to schedule compatible activities that result in a maximum usage of the room.
a. Design a recursive algorithm to solve this room-scheduling problem. The method whose signature is

maxRoomUse(int startTime, int stopTime, Activity[] activities)

returns a pair consisting of the maximum usage in hours and an array of activities scheduled. Note that
startTime is the first time that an activity can be scheduled, stopTime is the final time, and activities is
an array of possible activities.

b. Write the class Activity and a class Schedule that represents the pair that maxRoomUse returns. Then write a
program that defines the method maxRoomUse. The program should read the start time and stop time for the
room followed by the start and stop times for each activity (one activity per line). After displaying the given
activities, display the maximum usage in hours of the room along with a list of the scheduled activities.

Activity Start Time Stop Time

A 1 2

B 2 5

C 1 3

D 5 6

Projects 191

7. You can get a solution to the Towers of Hanoi problem by using the following iterative algorithm. Beginning with
pole 1 and moving from pole to pole in the order pole 1, pole 3, pole 2, pole 1, and so on, make at most one move
per pole according to the following rules:

• Move the topmost disk from a pole to the next possible pole in the specified order. Remember that
you cannot place a disk on top of a smaller one.

• If the disk that you are about to move is the smallest of all the disks and you just moved it to the
present pole, do not move it. Instead, consider the next pole.

This algorithm should make the same moves as the recursive algorithms given in Segment 7.31 and pictured in
Figure 7-8. Thus, this iterative algorithm is O(2n) as well.

Implement this algorithm.

8. Write an application or applet that animates the solution to the Towers of Hanoi problem. The problem asks you to
move n disks from one pole to another, one at a time. You move only the top disk on a pole, and you place a disk only
on top of larger disks on a pole. Since each disk has certain characteristics, such as its size, it is natural to define a
class of disks.

Design and implement an ADT tower that includes the following operations:

• Add a disk to the top of the disks on the pole
• Remove the topmost disk

Also, design and implement a class that includes a recursive method to solve the problem.

9. Java’s class Graphics has the following method to draw a line between two given points:
/** Draws a line between the points (x1, y1) and (x2, y2).*/
public void drawLine(int x1, int y1, int x2, int y2)

Graphics uses a coordinate system that measures points from the top left corner of a window.
Write a recursive method that draws a picture of a 12-inch ruler. Mark inches, half inches, quarter inches, and

eighth inches. Mark the half inches with marks that are smaller than those that mark the inches. Mark the quarter
inches with marks that are smaller than those that mark the half inches, and so on. Your picture need not be full
size. Hint: Draw a mark in the middle of the ruler and then draw rulers to the left and right of this mark.

10. Imagine a row of n lights that can be turned on or off only under certain conditions, as follows. The first light
can be turned on or off anytime. Each of the other lights can be turned on or off only when the preceding
light is on and all other lights before it are off. If all the lights are on initially, how can you turn them off?
For three lights numbered 1 to 3, you can take the following steps, where 1 is a light that is on and 0 is a light
that is off:

1 1 1 All on initially
0 1 1 Turn off light 1
0 1 0 Turn off light 3
1 1 0 Turn on light 1
1 0 0 Turn off light 2
0 0 0 Turn off light 1

You can solve this problem in general by using mutual recursion, as follows:

Algorithm turnOff(n)
// Turns off n lights that are initially on.
if (n == 1)

Turn off light 1

192 CHAPTER 7 Recursion

ANSWERS TO SELF-TEST QUESTIONS

else
{

if (n > 2)
turnOff(n - 2)

Turn off light n
if (n > 2)

turnOn(n - 2)
turnOff(n - 1)

}

Algorithm turnOn(n)
// Turns on n lights that are initially off.
if (n == 1)

Turn on light 1
else
{

turnOn(n - 1)
if (n > 2)

turnOff(n - 2)
Turn on light n
if (n > 2)

turnOn(n - 2)
}

a. Implement these algorithms in Java. Use the results in a program to display directions to turn off n lights
that initially are on.

b. What recurrence relation expresses the number of times that lights are switched on or off during the course
of solving this problem for n lights?

11. Consider a maze made up of a rectangular array of squares, such as the following one:
X X X X X X X X X X X X X

 X X X X X X
X X X X X
X X X X X X X X
X X X X X
X X X X X X X
X X X X X X X X X X X X X

The Xs represent a blocked square and form the walls of the maze. Let’s consider mazes that have only one
entrance and one exit on opposite sides of the maze, as in our example. Beginning at the entrance at the top left
side of the maze, find a path to the exit at the bottom right side. You can move only up, down, left, or right.

Each square in the maze can be in one of four states: clear, blocked, path, or visited. Initially, each square is
either clear or blocked. If a square lies on a successful path, mark it with a period. If you enter a square but it does
not lead to a successful path, mark the square as visited.

Let a two-dimensional array represent the maze. Use a recursive algorithm to find a path through the maze.
Some mazes might have more than one successful path, while others have no path.

1. public static void skipLines(int givenNumber)
{

if (givenNumber >= 1)
{

System.out.println();
skipLines(givenNumber - 1);

} // end if
} // end skipLines

Answers to Self-Test Questions 193

2. Algorithm drawConcentricCircles(givenNumber, givenDiameter, givenPoint)
if (givenNumber >= 1)
{

Draw a circle whose diameter is givenDiameter and whose center is at givenPoint
givenDiameter = 4 * givenDiameter / 3

drawConcentricCircles(givenNumber - 1, givenDiameter, givenPoint)
}

3. public static void countUp(int n)
{

if (n >= 1)
{

countUp(n - 1);
System.out.println(n);

} // end if
} // end countUp

4. public static int productOf(int n)
{

int result = 1;
if (n > 1)

result = n * productOf(n - 1);
return result;

} // end productOf

5. public static void displayArray(int[] array, int first, int last)
{

if (first == last)
System.out.print(array[first] + " ");

else
{

int mid = (first + last) / 2;
displayArray(array, first, mid - 1);
System.out.print(array[mid] + " ");
displayArray(array, mid + 1, last);

} // end if
} // end displayArray

6. The order of events is as follows:

displayBackward()
displayChainBackward(firstNode)
displayChainBackward(a reference to the second node)
displayChainBackward(a reference to the third node)
displayChainBackward(null)

Print the data in the third node
Print the data in the second node
Print the data in the first node

Activation records for the calls to displayChainBackward appear in a stack, as follows (dCB is an abbreviation for
displayChainBackward; the stack is shown top to bottom):

dCB(firstNode)
dCB(reference to second node) dCB(firstNode)
dCB(reference to third node) dCB(reference to second node) dCB(firstNode)
dCB(null) dCB(reference to third node) dCB(reference to second node) dCB(firstNode)
dCB(reference to third node) dCB(reference to second node) dCB(firstNode)
Print the data in the third node
dCB(reference to second node) dCB(firstNode)

194 CHAPTER 7 Recursion

Print the data in the second node
dCB(firstNode)

Print the data in the first node

7. O(n). You can use the same recurrence relation that was shown in Segments 7.22 and 7.23 for the method countDown.

8. a. t(n) = 1 + t(n - 1) for n > 0, t(0) = 1.
b. Since t(n) = n +1, the algorithm is O(n).

9. Move a disk from pole 1 to pole 2
Move a disk from pole 1 to pole 3
Move a disk from pole 2 to pole 3
Move a disk from pole 1 to pole 2
Move a disk from pole 3 to pole 1
Move a disk from pole 3 to pole 2
Move a disk from pole 1 to pole 2
Move a disk from pole 1 to pole 3
Move a disk from pole 2 to pole 3
Move a disk from pole 2 to pole 1
Move a disk from pole 3 to pole 1
Move a disk from pole 2 to pole 3
Move a disk from pole 1 to pole 2
Move a disk from pole 1 to pole 3
Move a disk from pole 2 to pole 3

10. 2 and 6, respectively.

11. 24 recursive calls and 12 additions.

12. 5 additions.

Chapter

8An Introductionto Sorting
Contents
Organizing Java Methods That Sort an Array
Selection Sort

Iterative Selection Sort
Recursive Selection Sort
The Efficiency of Selection Sort

Insertion Sort
Iterative Insertion Sort
Recursive Insertion Sort
The Efficiency of Insertion Sort
Insertion Sort of a Chain of Linked Nodes

Shell Sort
The Java Code
The Efficiency of Shell Sort

Comparing the Algorithms

Prerequisites
Chapter 3 A Bag Implementation That Links Data
Chapter 4 The Efficiency of Algorithms
Chapter 7 Recursion

Objectives
After studying this chapter, you should be able to
• Sort an array into ascending order by using the following methods: selection sort, insertion sort, and Shell sort
• Sort a chain of linked nodes into ascending order by using an insertion sort
• Assess the efficiency of a sort and discuss the relative efficiencies of the various methods

We are all familiar with arranging objects in order from smallest to largest or from
largest to smallest. Not only do we order numbers this way, but we also can arrange

196 CHAPTER 8 An Introduction to Sorting

people by height, age, or name; music by title, artist, or album; and so on. Arranging things into
either ascending or descending order is called sorting. You can sort any collection of items that can
be compared with one another. Exactly how you compare two objects depends on the nature of the
objects. For example, you can arrange a row of books on your bookshelf in several ways: by title,
by author, by height, by color, and so on. The designer of a class of book objects would choose one
of these ways when implementing the method compareTo.

Suppose you have a collection of items that need to be sorted in some way. For example, you
might want to arrange a group of numbers from lowest to highest or from highest to lowest, or you
might want to place some strings in alphabetical order. This chapter discusses and implements a
few simple algorithms that sort items into ascending order. That is, our algorithms rearrange the
first n entries in a collection so that

entry 1 entry 2 . . . entry n

With only small changes to our algorithms, you will be able to sort entries into descending order.
Sorting an array is usually easier than sorting a chain of linked nodes. For this reason, typical

sorting algorithms sort an array. In particular, our algorithms will rearrange the first n values in an
array a so that

a[0] a[1] a[2] . . . a[n - 1]

However, we also will use one of our algorithms to sort a chain of linked nodes.
Sorting is such a common and important task that many sorting algorithms exist. This chapter

examines some basic algorithms for sorting data. Although most of our examples will sort integers,
the Java implementations given will sort any Comparable objects—that is, objects of any class that
implements the interface Comparable and, therefore, defines the method compareTo.

 The efficiency of a sorting algorithm is significant, particularly when large amounts of data
are involved. We will examine the performance of the algorithms in this chapter and find that they
are relatively slow. The next chapter will present sorting algorithms that usually are much faster.

Organizing Java Methods That Sort an Array

8.1 One way to organize methods that sort an array is to create a class of static methods that perform
the various sorts. The methods define a generic type T for the objects in the array. For example, we
could write the header of such a method as follows:

public static <T> void sort(T[] a, int n)

Recall that the array passed to this method can contain objects of any one class.
For an array to be sortable, the objects in that array must be Comparable. Thus, the class that T

represents must implement the interface Comparable. To ensure this requirement, we write
<T extends Comparable<T>>

instead of simply <T> before the return type in the headers of the sort methods. We then can use T as
the data type of the parameters and local variables within the methods. For example, our class could
begin as follows:

public class SortArray
{

public static <T extends Comparable<T>> void sort(T[] a, int n)
{ . . .

A client could sort an array of 50 objects, for example, by using the statement
SortArray.sort(myArray, 50);

Organizing Java Methods That Sort an Array 197

If the objects in myArray are all of type Gadget, the compiler will discover that fact without our
help. Gadget, however, must implement Comparable and have a compareTo method.

8.2 An improvement. By writing T extends Comparable<T>, we require that Gadget implement the
interface Comparable<Gadget>. But insisting that a Gadget object be compared only to another
Gadget object is more restrictive than we really need to be. What would happen if we had derived
Gadget from Widget, where Widget implements Comparable<Widget>, as Figure 8-1 shows? If
gadgets and widgets are similar enough to have the same basis for comparison, Gadget could use
the method compareTo it inherits from Widget without defining its own. But then a call to the
method sort with an array of gadgets and widgets as an argument would not compile.

FIGURE 8-1 The class Gadget is derived from the class Widget, which
implements the interface Comparable

Instead of comparing an object of T only with other objects of T, we can allow comparisons of
objects of a superclass of T. So instead of writing T extends Comparable<T>, we write

T extends Comparable<? super T>

The wildcard ? represents any type, but the notation ? super T means any superclass of T. Thus, the
header for the method sort would be

public static <T extends Comparable<? super T>> void sort(T[] a, int n)

<<interface>>
Comparable<T>

+compareTo(other: T): integer

Widget

+compareTo(other: Widget): integer

Gadget

Programming Tip: To use Comparable with arbitrary types, write Comparable<? super T>
instead of Comparable<T>.

198 CHAPTER 8 An Introduction to Sorting

We now turn our attention to several ways of sorting an array.

Selection Sort

8.3 Imagine that you want to rearrange the books on your bookshelf by height, with the shortest book
on the left. You might begin by tossing all of the books onto the floor. You then could return them
to the shelf one by one, in their proper order. If you first return the shortest book to the shelf, and
then the next shortest, and so on, you would perform a kind of selection sort. But using the floor—
or another shelf—to store your books temporarily uses extra space needlessly.

VideoNote

Instead, approach your intact bookshelf and select the shortest book. Since you want it to be
first on the shelf, you remove the first book on the shelf and put the shortest book in its place. You
still have a book in your hand, so you put it into the space formerly occupied by the shortest book.
That is, the shortest book has traded places with the first book, as Figure 8-2 illustrates. You now
ignore the shortest book and repeat the process for the rest of the bookshelf.

FIGURE 8-2 Before and after exchanging the shortest book and the first book

In terms of an array a, the selection sort finds the smallest entry in the array and exchanges it
with a[0]. Then, ignoring a[0], the sort finds the next smallest entry and swaps it with a[1], and so
on. Notice that we use only one array. We sort it by making entries trade places with other entries.

We could have copied the array into a second array and then moved the entries back to the original
array in their proper order. But that would be like using the floor to store books temporarily. Fortunately,
all of that extra space is unnecessary.

8.4 Figure 8-3 shows how a selection sort rearranges an array of integers by interchanging values.
Beginning with the original array, the sort locates the smallest value in the array, that is, the 2 in
a[3]. The value in a[3] is interchanged with the value in a[0]. After that interchange, the smallest
value is in a[0] where it belongs.

Note: Bounded wildcards
When using generic types, the wild card ? represents any class. You can bound, or limit, the
wildcard in one of two ways. For example, ? super Gizmo means any superclass of Gizmo. We
say that Gizmo is the lower bound of the wildcard. Analogously, ? extends Gizmo means any
subclass of Gizmo. Here, Gizmo is the upper bound of the wildcard. In Chapter 4,
Segments 4.13 and 4.17, respectively, provide other meanings for the terms upper bound and
lower bound.

Selection sort

Before

After

Swap

Selection Sort 199

The next smallest value is the 5 in a[4]. The sort then interchanges the value in a[4] with the
value in a[1]. So far, the values in a[0] and a[1] are the smallest in the array and are in their cor-
rect position within the final sorted array. The algorithm then interchanges the next smallest
entry—the 8—with a[2], and so on until the entire array is sorted.

FIGURE 8-3 A selection sort of an array of integers into ascending order

Iterative Selection Sort
8.5 The following pseudocode describes an iterative algorithm for the selection sort:

Algorithm selectionSort(a, n)
// Sorts the first n entries of an array a.

for (index = 0; index < n - 1; index++)
{

indexOfNextSmallest = the index of the smallest value among
a[index], a[index + 1], . . . , a[n - 1]

Interchange the values of a[index] and a[indexOfNextSmallest]
// Assertion: a[0] a[1] . . . a[index], and these are the smallest
// of the original array entries. The remaining array entries begin at a[index + 1].

}

Notice that during the last iteration of the for loop, the value of index is n - 2, even though the
last array entry is a[n - 1]. Once the entries a[0] through a[n - 2] are in their correct places, only
the one entry a[n - 1] remains to be positioned. But since the other entries are correctly positioned,
it must already be in the correct place as well.

a[0] a[1] a[2] a[3] a[4]

15 8 10 2 5

15 8 10 2 5

2 8 10 15 5

2 8 10 15 5

2 5 10 15 8

2 5 10 15 8

2 5 8 15 10

2 5 8 15 10

2 5 8 10 15

200 CHAPTER 8 An Introduction to Sorting

8.6 The class in Listing 8-1 contains the public method selectionSort and two private methods that
assist in sorting. We can add other sorting methods as we develop them.

It is easy to see that the definition of selectionSort is a direct translation of the previous
pseudocode into Java code. The method getIndexOfSmallest searches the array entries a[first]
through a[last] and returns the index of the smallest among them. The method uses two local vari-
ables, min and indexOfMin. At any point in the search, min references the smallest value found so far.
That value occurs at a[indexOfMin]. At the end of the search, the method returns indexOfMin.
Notice that for our purposes here, we could have assumed that last is always n - 1 and omitted it as a
parameter. However, this general version will be useful in other settings.

Since exchanging entries in an array does not involve the method compareTo, the method swap
can simply use Object as the type of these entries.

Note: Notation
In mathematics, one-letter variable names are common. Recognizing this, and seeking to
save some space, we use a and n within the text and pseudocode to represent, respectively, an
array and its number of entries. Within Java code elsewhere, we have tried to avoid one-letter
identifiers, using them only sparingly. However, the code that you will see in this chapter and
the next uses a and n simply to maintain consistency with the text.

LISTING 8-1 A class for sorting an array using selection sort

/**
Class for sorting an array of Comparable objects from smallest to
largest.

*/
public class SortArray
{

/** Sorts the first n objects in an array into ascending order.
@param a an array of Comparable objects
@param n an integer > 0 */

public static <T extends Comparable<? super T>>
void selectionSort(T[] a, int n)

{
for (int index = 0; index < n - 1; index++)
{

int indexOfNextSmallest = getIndexOfSmallest(a, index, n - 1);
swap(a, index, indexOfNextSmallest);
// Assertion: a[0] <= a[1] <= . . . <= a[index] <= all other
// a[i]

} // end for
} // end selectionSort

/** Finds the index of the smallest value in a portion of an array.
@param a an array of Comparable objects

Selection Sort 201

Recursive Selection Sort
8.7 Selection sort also has a natural recursive form. Often recursive algorithms that involve arrays operate

on a portion of the array. Such algorithms use two parameters, first and last, to designate the portion
of the array containing the entries a[first] through a[last]. The method getIndexOfSmallest in
Listing 8-1 illustrates this technique. The recursive selection sort algorithm uses this notation as well:

@param first an integer >= 0 and < a.length that is the index of
the first array entry to consider

@param last an integer >= first and < a.length that is the
index of the last array entry to consider

@return the index of the smallest value among
a[first], a[first + 1], . . . , a[last] */

private static <T extends Comparable<? super T>>
int getIndexOfSmallest(T[] a, int first, int last)

{
T min = a[first];
int indexOfMin = first;
for (int index = first + 1; index <= last; index++)
{

if (a[index].compareTo(min) < 0)
{

min = a[index];
indexOfMin = index;

} // end if
// Assertion: min is the smallest of a[first] through a[index].

} // end for

return indexOfMin;
} // end getIndexOfSmallest

/** Swaps the array entries a[i] and a[j].
@param a an array of objects
@param i an integer >= 0 and < a.length
@param j an integer >= 0 and < a.length */

private static void swap(Object[] a, int i, int j)
{

Object temp = a[i];
a[i] = a[j];
a[j] = temp;

} // end swap
} // end SortArray

Question 1 Trace the steps that a selection sort takes when sorting the following array into
ascending order: 9 6 2 4 8.

202 CHAPTER 8 An Introduction to Sorting

Algorithm selectionSort(a, first, last)
// Sorts the array entries a[first] through a[last] recursively.

if (first < last)
{

indexOfNextSmallest = the index of the smallest value among
a[first], a[first + 1], . . . , a[last]

Interchange the values of a[first] and a[indexOfNextSmallest]
// Assertion: a[0] a[1] . . . a[first] and these are the smallest
// of the original array entries. The remaining array entries begin at a[first + 1].
selectionSort(a, first + 1, last)

}

After we place the smallest entry into the first position of the array, we ignore it and sort the
rest of the array by using a selection sort. If the array has only one entry, sorting is unnecessary. In
this case, first and last are equal, so the algorithm leaves the array unchanged.

8.8 When we implement the previous recursive algorithm in Java, the resulting method will have
first and last as parameters. Thus, its header will differ from the header of the iterative method
selectionSort given in Segment 8.6. We could, however, provide the following method to sim-
ply invoke the recursive method:

public static <T extends Comparable<? super T>>
void selectionSort(T[] a, int n)

{
selectionSort(a, 0, n - 1); // invoke recursive method

} // end selectionSort

Whether you make the recursive method selectionSort private or public is up to you, but making
it public provides the client with a choice of two ways in which to invoke the sort. In a similar fash-
ion, you could revise the iterative selection sort given in Segment 8.6 to use the parameters first
and last (see Exercise 6) and then provide the method just given to invoke it.

With these observations in mind, we will make the subsequent sorting algorithms more general
by giving them three parameters—a, first, and last—so that they sort the entries a[first]
through a[last].

The Efficiency of Selection Sort
8.9 In the iterative method selectionSort, the for loop executes n - 1 times, so it invokes the methods

getIndexOfSmallest and swap n - 1 times each. In the n - 1 calls to getIndexOfSmallest, last is
n - 1 and first ranges from 0 to n - 2. Each time getIndexOfSmallest is invoked, its loop exe-
cutes last - first times. Thus, this loop executes a total of

(n - 1) + (n - 2) + . . . + 1

times. This sum is n (n - 1)/2. Since the operations in the loop are O(1), the selection sort is O(n2).
Notice that our discussion does not depend on the nature of the data in the array. It could be wildly
out of order, nearly sorted, or completely sorted; in any case, selection sort would be O(n2).

The recursive selection sort performs the same operations as the iterative selection sort, and so
it is also O(n2).

Note: The time efficiency of selection sort
Selection sort is O(n2) regardless of the initial order of the entries in an array. Although the
sort requires O(n2) comparisons, it performs only O(n) swaps. Thus, the selection sort
requires little data movement.

Insertion Sort 203

Insertion Sort

8.10 Another intuitive sorting algorithm is the insertion sort. Suppose again that you want to rear-
range the books on your bookshelf by height, with the shortest book on the left. If the leftmost
book on the shelf were the only book, your shelf would be sorted. But you also have all the other
books to sort. Consider the second book. If it is taller than the first book, you now have two
sorted books. If not, you remove the second book, slide the first book to the right, and insert the
book you just removed into the first position on the shelf. The first two books are now sorted.

VideoNote

Now consider the third book. If it is taller than the second book, you now have three sorted
books. If not, remove the third book and slide the second book to the right, as Parts a through c of
Figure 8-4 illustrate. Now see whether the book in your hand is taller than the first book. If so, insert
the book into the second position on the shelf, as shown in Figure 8-4d. If not, slide the first book to
the right, and insert the book in your hand into the first position on the shelf. If you repeat this pro-
cess for each of the remaining books, your bookshelf will be arranged by the heights of the books.

FIGURE 8-4 The placement of the third book during an insertion sort

Figure 8-5 shows the bookshelf after several steps of the insertion sort. The books on the left
side of the shelf are sorted. You remove the next unsorted book from the shelf and slide sorted
books to the right, one at a time, until you find the right place for the book in your hand. You then
insert this book into its new sorted location.

Insertion sort

(a)

(b)

(c)

(d)

204 CHAPTER 8 An Introduction to Sorting

FIGURE 8-5 An insertion sort of books

Iterative Insertion Sort
8.11 An insertion sort of an array partitions—that is, divides—the array into two parts. One part is

sorted and initially contains just the first entry in the array. The second part contains the remaining
entries. The algorithm removes the first entry from the unsorted part and inserts it into its proper
sorted position within the sorted part. Just as you did with the bookshelf, you choose the proper
position by comparing the unsorted entry with the sorted entries, beginning at the end of the sorted
part and continuing toward its beginning. As you compare, you shift array entries in the sorted part
to make room for the insertion.

Figure 8-6 illustrates these steps for a sort that has already positioned the first three entries of
the array. The 3 is the next entry that must be placed into its proper position within the sorted
region. Since 3 is less than 8 and 5 but greater than 2, the 8 and 5 are shifted to make room for the 3.

Figure 8-7 illustrates an entire insertion sort of an array of integers. At each pass of the algo-
rithm, the sorted part expands by one e ntry as the unsorted part shrinks by one entry. Eventually,
the unsorted part is empty and the array is sorted.

The following iterative algorithm describes an insertion sort of the entries at indices first
through last of the array a. To sort the first n entries in the array, the call to the algorithm would be
insertionSort(a, 0, n - 1).

Algorithm insertionSort(a, first, last)
// Sorts the array entries a[first] through a[last] iteratively.

for (unsorted = first + 1 through last)
{

nextToInsert = a[unsorted]
insertInOrder(nextToInsert, a, first, unsorted - 1)

}

The sorted part contains one entry, a[first], and so the loop in the algorithm begins at index
first + 1 and processes the unsorted part. It then invokes another method—insertInOrder—to
perform the insertions. In the pseudocode that follows for this method, anEntry is the value to be
inserted into its proper position, and begin and end are array indices.

Algorithm insertInOrder(anEntry, a, begin, end)
// Inserts anEntry into the sorted entries a[begin] through a[end].
index = end // index of last entry in the sorted portion
// make room, if needed, in sorted portion for another entry

Sorted

1. Remove the next unsorted book.
2. Slide the sorted books to the right one by one until
 you find the right spot for the removed book.
3. Insert the book into its new position.

Insertion Sort 205

while ((index >= begin) and (anEntry < a[index]))
{

a[index + 1] = a[index] // make room
index--

}
// Assertion: a[index + 1] is available.
a[index + 1] = anEntry // insert

FIGURE 8-6 Inserting the next unsorted entry into its proper location within
the sorted portion of an array during an insertion sort

FIGURE 8-7 An insertion sort of an array of integers into ascending order

Sorted Unsorted

2 5 8 3 9 4 1

2 5 8 9 4 1

2 5 8 9 4 1
3

2 5 8 9 4 1

2 5 8 9 4 1

Sorted Unsorted

2 3 5 8 9 4 1

8 2 6 4 9 7 1

8 2 6 4 9 7 1

2 8 6 4 9 7 1

2 6 8 4 9 7 1

2 4 6 8 9 7 1

2 4 6 8 9 7 1

2 4 6 7 8 9 1

1 2 4 6 7 8 9

206 CHAPTER 8 An Introduction to Sorting

Recursive Insertion Sort
8.12 You can describe an insertion sort recursively as follows. If you sort all but the last item in the array—a

smaller problem than sorting the entire array—you then can insert the last item into its proper position
within the rest of the array. The following pseudocode describes a recursive insertion sort:

Algorithm insertionSort(a, first, last)
// Sorts the array entries a[first] through a[last] recursively.

if (the array contains more than one entry)
{

Sort the array entries a[first] through a[last - 1]
Insert the last entry a[last] into its correct sorted position within the rest of the array

}

We can implement this algorithm in Java as follows:

public static <T extends Comparable<? super T>>
void insertionSort(T[] a, int first, int last)

{
if (first < last)
{

// sort all but the last entry
insertionSort(a, first, last - 1);

// insert the last entry in sorted order
insertInOrder(a[last], a, first, last - 1);

} // end if
} // end insertionSort

8.13 The algorithm insertInOrder: first draft. The previous method can call the iterative version of
insertInOrder, given earlier, or the recursive version that we now describe. If the entry to insert is
greater than or equal to the last item in the sorted portion of the array, the entry belongs immediately
after this last item, as Figure 8-8a illustrates. Otherwise, we move the last sorted item to the next
higher position in the array and insert the entry into the remaining portion, as shown in Figure 8-8b.

We can describe these steps more carefully as follows:

Algorithm insertInOrder(anEntry, a, begin, end)
// Inserts anEntry into the sorted array entries a[begin] through a[end].
// First draft.

if (anEntry >= a[end])
a[end + 1] = anEntry

else
{

a[end + 1] = a[end]
insertInOrder(anEntry, a, begin, end - 1)

}

Question 2 Trace the steps that an insertion sort takes when sorting the following array
into ascending order: 9 6 2 4 8.

Insertion Sort 207

FIGURE 8-8 Inserting the first unsorted entry into the sorted portion of the
array. (a) The entry is greater than or equal to the last sorted
entry; (b) the entry is smaller than the last sorted entry

8.14 The algorithm insertInOrder: final draft. This algorithm is not quite right. The else clause will
work only if we have more than one entry in the remaining portion of the array—that is, if begin < end.
If begin and end were equal, for example, the recursive call would be equivalent to

insertInOrder(anEntry, a, begin, begin - 1);

which is incorrect.
Will end ever equal begin, if they were not equal initially? Yes. When anEntry is less than all

entries a[begin], . . . , a[end], each recursive call decreases end by 1 until eventually end equals
begin. What should we do when this happens? Since the sorted portion consists of one entry
a[end], we will move a[end] to the next higher position and place anEntry in a[end].

The following revised algorithm reflects these changes:
Algorithm insertInOrder(anEntry, a, begin, end)
// Inserts anEntry into the sorted array entries a[begin] through a[end].
// Revised draft.

if (anEntry >= a[end])
a[end + 1] = anEntry

9 � 8, so it belongs after 8

3 � 8, so...

shift 8, and ...

insert 3 into the rest of the sorted portion

(a)

(b)

4 6 8

9

Sorted

4 6 8 9

3

2 5 8

Sorted

2 5 8

Sorted

Sorted

3

2 5 8

Sorted

208 CHAPTER 8 An Introduction to Sorting

else if (begin < end)
{

a[end + 1] = a[end]
insertInOrder(anEntry, a, begin, end - 1)

}
else // begin == end and anEntry < a[end]
{

a[end + 1] = a[end]
a[end] = anEntry

}

The Efficiency of Insertion Sort
8.15 Look back at the iterative algorithm insertionSort given in Segment 8.11. For an array of n

entries, first is 0 and last is n - 1. The for loop then executes n - 1 times, and so the method
insertInOrder is invoked n - 1 times. Thus, within insertInOrder, begin is 0 and end ranges
from 0 to n - 2. The loop within insertInOrder executes at most end - begin + 1 times each time
the method is invoked. Thus, this loop executes at most a total of

1 + 2 + . . . + (n - 1)

times. This sum is n (n - 1)/2, so the insertion sort is O(n2). The recursive insertion sort performs
the same operations as the iterative insertion sort, so it is also O(n2).

This analysis provides a worst-case scenario. In the best case, the loop in insertInOrder
would exit immediately. Such is the case if the array is sorted already. In the best case, then, inser-
tion sort is O(n). In general, the more sorted an array is, the less work insertInOrder needs to do.
This fact and its relatively simple implementation make the insertion sort popular for applications
in which the array does not change much. For example, some customer databases add only a small
percentage of new customers each day.

The next chapter will use the insertion sort when the array size is small.

Insertion Sort of a Chain of Linked Nodes
8.16 Usually you will sort arrays, but sometimes you might need to sort a chain of linked nodes. When

you do, the insertion sort is one that is easy to understand.
Figure 8-9 shows a chain whose nodes contain integers that are sorted into ascending order. To

begin to see how we can construct an insertion sort for a chain, imagine that we want to insert a
node into this chain so that the integers in the nodes remain in sorted order.

FIGURE 8-9 A chain of integers sorted into ascending order

Note: The time efficiency of insertion sort
Insertion sort is at best O(n) and at worst O(n2). The closer an array is to sorted order, the less
work an insertion sort does.

firstNode

2 3 5 8 10

Insertion Sort 209

Suppose that the node to be inserted into the chain contains the integer 6. We need to locate
where in the chain the new node belongs. Since we have a reference, firsNode, to the first node in
the chain, we can start there. We make comparisons as we move toward the end of the chain until
we find the correct insertion point. Thus, we would compare 6 with 2, then with 3, with 5, and
finally with 8 to see that 6 belongs between 5 and 8.

To insert a node into a chain, we need a reference to the node prior to the point of insertion.
Thus, during the traversal of the chain, we save a reference to the node before the current one, as
Figure 8-10 illustrates. Note that inserting at the beginning of the chain differs somewhat from
inserting anywhere else in the chain.

FIGURE 8-10 During the traversal of a chain to locate the insertion point, save
a reference to the node before the current one

8.17 Now imagine that we have a method insertInOrder(nodeToInsert) that inserts a node into its
correct sorted position within a chain, as just described. We can use this method to implement an
insertion sort by adopting the same strategy that we used to sort an array: Divide the chain into two parts.
The first part is sorted, and it initially contains only the first node. The second part is unsorted and
initially is the rest of the chain. Figure 8-11 illustrates how to make this division. We first make the
variable unsortedPart reference the second node and then set the link portion of the first node to null.

FIGURE 8-11 Breaking a chain of nodes into two pieces as the first step in an
insertion sort: (a) the original chain; (b) the two pieces

To sort the nodes, we use the method insertInOrder to take each node from the unsorted part and
insert it into the sorted part. Notice that our plan relinks existing nodes instead of creating new ones.

6 belongs here; it is greater than
2, 3, and 5 but less than 8

firstNode

previousNode currentNode

2 3 5 8 10

(a)

5 9 4 1 2

firstNode

(b)

firstNode

unsortedPart

5 9 4 1 2

210 CHAPTER 8 An Introduction to Sorting

8.18 To give this discussion some context, suppose that we plan to add a sort method to a class LinkedGroup
that uses a linked chain to represent a certain collection. As sorting requires us to compare the objects in
the collection, they must belong to a class that implements the interface Comparable. Thus, the class
definition begins as follows:

public class LinkedGroup<T extends Comparable<? super T>>
implements GroupInterface<T>

{
private Node firstNode;
int length; // number of objects in the group
. . .

assuming that we add the declaration of the sort method to GroupInterface.
This class has an inner class Node that has set and get methods for its private data fields. The

following private method inserts the node that nodeToInsert references into the sorted chain that
firstNode references.

private void insertInOrder(Node nodeToInsert)
{

T item = nodeToInsert.getData();
Node currentNode = firstNode;
Node previousNode = null;

// locate insertion point
while ((currentNode != null) &&

(item.compareTo(currentNode.getData()) > 0))
{

previousNode = currentNode;
currentNode = currentNode.getNextNode();

} // end while

// make the insertion
if (previousNode != null)
{ // insert between previousNode and currentNode

previousNode.setNextNode(nodeToInsert);
nodeToInsert.setNextNode(currentNode);

}
else // insert at beginning
{

nodeToInsert.setNextNode(firstNode);
firstNode = nodeToInsert;

} // end if
} // end insertInOrder

The local variable item is the data portion of the node to be inserted. The while loop compares
item to the data in each node in the chain until either item is less than or equal to a data value or the
end of the chain is reached. The references previousNode and currentNode are then used to insert
the given node into its proper position.

8.19 The method to perform the insertion sort appears as follows. The local variable unsortedPart
starts at the second node and then references each node in the rest of the chain as the loop executes.
Each of these nodes is inserted in turn into the sorted part of the chain. Note that length is the num-
ber of nodes in the chain.

public void insertionSort()
{

// if zero or one item is in the chain, there is nothing to do
if (length > 1)
{

assert firstNode != null;

Shell Sort 211

// break chain into 2 pieces: sorted and unsorted
Node unsortedPart = firstNode.getNextNode();
assert unsortedPart != null;
firstNode.setNextNode(null);

while (unsortedPart != null)
{

Node nodeToInsert = unsortedPart;
unsortedPart = unsortedPart.getNextNode();
insertInOrder(nodeToInsert);

} // end while
} // end if

} // end insertionSort

8.20 The efficiency of an insertion sort of a chain. For a chain of n nodes, the number of comparisons
that the method insertInOrder makes is at most the number of nodes in the sorted portion of the
chain. The method insertionSort calls insertInOrder n - 1 times. The first time it does so, the
sorted portion contains one item, so one comparison is made. The second time, the sorted portion
contains two items, so at most two comparisons are made. Continuing in this fashion, you can see
that the maximum number of comparisons is

1 + 2 + … + (n - 1)

This sum is n (n - 1)/2, so this insertion sort is O(n2).

Shell Sort

8.21 The sorting algorithms that we have discussed so far are simple and often useful, but they are too inef-
ficient to use on large arrays. The Shell sort is a variation of the insertion sort that is faster than O(n2).

During an insertion sort, an array entry moves to an adjacent location. When an entry is far from
its correct sorted position, it must make many such moves. So when an array is completely scrambled,
an insertion sort takes a good deal of time. But when an array is almost sorted, an insertion sort is
more efficient. In fact, Segment 8.15 showed that the more sorted an array is, the less work the
method insertInOrder needs to do.

By capitalizing on these observations, Donald Shell devised in 1959 an improved insertion
sort, now called the Shell sort. Shell wanted entries to move beyond their adjacent locations. To do
so, he sorted subarrays of entries at equally spaced indices. Instead of moving to an adjacent loca-
tion, an entry moves several locations away. The result is an array that is almost sorted—one that
can be sorted efficiently by using an ordinary insertion sort.

8.22 For example, Figure 8-12 shows an array and the subarrays obtained by considering every sixth
entry. The first subarray contains the integers 10, 9, and 7; the second subarray contains 16 and 6;
and so on. There happen to be six of these subarrays.

Question 3 In the previous method insertionSort, if you move the line
unsortedPart = unsortedPart.getNextNode();

after the call to insertInOrder, will the method still work? Explain.

Question 4 The previous method insertionSort is not a static method. Why?

Note: Sorting a chain of linked nodes can be difficult. The insertion sort, however, pro-
vides a reasonable way to perform this task.

212 CHAPTER 8 An Introduction to Sorting

Now we sort each of the six subarrays separately by using an insertion sort. Figure 8-13 shows
the sorted subarrays and the state of the original array as a result. Notice that the array is “more
sorted” than it was originally.

FIGURE 8-12 An array and the subarrays formed by grouping entries whose
indices are 6 apart

FIGURE 8-13 The subarrays of Figure 8-12 after each is sorted, and the array
that contains them

8.23 Now we form new subarrays, but this time we reduce the separation between indices. Shell sug-
gested that the initial separation between indices be n/2 and that you halve this value at each pass
until it is 1. The array in our example has 13 entries, so we began with a separation of 6. We now
reduce the separation to 3. Figure 8-14 shows the resulting subarrays, and Figure 8-15 shows the
subarrays after they are sorted.

FIGURE 8-14 The subarrays of the array in Figure 8-13 formed by grouping
entries whose indices are 3 apart

0 1 2 3 4 5 6 7 8 9 10 11 12

10 16 11 4 15 3 9 6 1 17 8 12 7

10 9 7

16 6
11 1

4 17

15 8

3 12

7 9 10

6 16
1 11

4 17

8 15

3 12

7 6 1 4 8 3 9 16 11 17 15 12 10

0 1 2 3 4 5 6 7 8 9 10 11 12

7 4 9 17 10
6 8 16 15

1 3 11 12

7 6 1 4 8 3 9 16 11 17 15 12 10

0 1 2 3 4 5 6 7 8 9 10 11 12

Shell Sort 213

FIGURE 8-15 The subarrays of Figure 8-14 after each is sorted, and the array
that contains them

Dividing the current separation, 3, by 2 results in 1. Therefore, the final step is simply an
ordinary insertion sort of the entire array. This last step will sort the array regardless of what we
have done to it beforehand. Thus, Shell sort will work if you use any sequence of index separations,
as long as the last one is 1. But not just any sequence will make the Shell sort efficient, as you will
see in Segment 8.25.

The Java Code
8.24 The heart of the Shell sort is the adaptation of the insertion sort to work on a subarray of equally

spaced entries. By combining and modifying the two algorithms that describe the insertion sort, as
given in Segment 8.11, we obtain the following method that sorts array entries whose indices are
separated by an increment of space.

/** Sorts equally spaced entries of an array into ascending order.
@param a an array of Comparable objects
@param first the integer index of the first array entry to

consider; first >= 0 and < a.length
@param last the integer index of the last array entry to

consider; last >= first and < a.length
@param space the difference between the indices of the

entries to sort */
private static <T extends Comparable<? super T>>

void incrementalInsertionSort(T[] a, int first, int last, int space)
{

int unsorted, index;

for (unsorted = first + space; unsorted <= last;
unsorted = unsorted + space)

{
T nextToInsert = a[unsorted];

for (index = unsorted - space; (index >= first) &&
(nextToInsert.compareTo(a[index]) < 0);
index = index - space)

{
a[index + space] = a[index];

} // end for

a[index + space] = nextToInsert;
} // end for

} // end incrementalInsertionSort

4 7 9 10 17
6 8 15

1 3 11 12

4 6 1 7 8 3 9 15 11 10 16 12 17

0 1 2 3 4 5 6 7 8 9 10 11 12

16

Question 5 Apply the Shell sort to the array 9 8 2 7 5 4 6 3 1, with index separations
of 4, 2, and 1. What are the intermediate steps?

214 CHAPTER 8 An Introduction to Sorting

A method to perform a Shell sort will invoke incrementalInsertionSort and supply any
sequence of spacing factors. For example, we might write the following method, using the spacing
that Segment 8.23 described:

public static <T extends Comparable<? super T>>
void shellSort(T[] a, int first, int last)

{
int n = last - first + 1; // number of array entries

for (int space = n / 2; space > 0; space = space / 2)
{

for (int begin = first; begin < first + space; begin++)
incrementalInsertionSort(a, begin, last, space);

} // end for
} // end shellSort

The Efficiency of Shell Sort
8.25 Since the Shell sort uses an insertion sort repeatedly, it certainly seems like much more work than using

only one insertion sort. Actually, however, it is not. Although we used an insertion sort several times instead
of just once, the initial sorts are of arrays that are much smaller than the original one, the later sorts are on
arrays that are partially sorted, and the final sort is on an array that is almost entirely sorted. Intuitively, this
seems good. But even though the Shell sort is not very complicated, its analysis is.

Since incrementalInsertionSort involves a loop and is called from within nested loops, the
Shell sort uses three nested loops. Often such algorithms are O(n3), but it turns out that the worst-
case behavior of the Shell sort is still O(n2). If n is a power of 2, the average-case behavior is
O(n1.5). And if you tweak the spacing a bit, you can make the Shell sort even more efficient.

One improvement is to avoid even values of space. Figure 8-12 provided an example of the
subarrays when space was 6. The first subarray contained 10, 9, and 7, for instance. Later, after we
halved space, the first subarrray contained 7, 4, 9, 17, and 10, as Figure 8-14 shows. Notice that
these two subarrays have entries in common, namely the 10, 9, and 7. Thus, the comparisons that
you make when space is even will be repeated on the next pass when the increment is space/2.

To avoid this inefficiency, simply add 1 to space whenever it is even. This simple change results in
consecutive increments that have no factor in common. The worst-case behavior of the Shell sort is then
O(n1.5). Other sequences for space result in even greater efficiencies, although the proof that this is the
case remains elusive. An improved Shell sort can be a reasonable choice for moderately large arrays.

Comparing the Algorithms

8.26 Figure 8-16 summarizes the time efficiencies of the three sorting algorithms presented in this chapter.
Generally, the selection sort is the slowest algorithm. The Shell sort, by capitalizing on the best-case
behavior of the insertion sort, is the fastest.

Question 6 Trace the steps that a Shell sort takes when sorting the following array into
ascending order: 9 6 2 4 8 7 5 3.

Note: The time efficiency of Shell sort
The Shell sort, as implemented in this chapter, is O(n2) in the worst case. By adding 1 to
space anytime that it is even, you can improve the worst-case behavior to O(n1.5).

Exercises 215

FIGURE 8-16 The time efficiencies of three sorting algorithms, expressed in
Big Oh notation

CHAPTER SUMMARY

PROGRAMMING TIP

EXERCISES

Best Case Average Case Worst Case

Selection sort
Insertion sort
Shell sort

O(n2)
O(n)
O(n)

O(n2)
O(n2)
O(n1.5)

O(n2)
O(n2)
O(n2) or O(n1.5)

• A selection sort of an array selects the smallest entry and swaps it with the first one. Ignoring the new first
entry, the sort then finds the smallest entry in the rest of the array and swaps it with the second entry, and so on.

• Typically, you perform a selection sort iteratively, although a simple recursive form is possible.

• A selection sort is O(n2) in all cases.

• An insertion sort divides an array into two portions, sorted and unsorted. Initially, the array’s first entry is in
the sorted portion. The sort takes the next unsorted entry and compares it with entries in the sorted portion.
As the comparisons continue, each sorted entry is shifted by one position toward the end of the array until the
unsorted entry’s correct position is located. The sort then inserts the entry into its correct position, which has
been vacated by the shifts.

• You can perform an insertion sort either iteratively or recursively.

• An insertion sort is O(n2) in the worst case but is O(n) in the best case. The more sorted an array is, the less
work an insertion sort does.

• You can use an insertion sort to sort a chain of linked nodes, a task that typically is difficult.

• The Shell sort is a modification of the insertion sort that sorts subarrays of entries that are equally spaced
within the array. The strategy efficiently arranges the array so that it is almost sorted, enabling an ordinary
insertion sort to quickly finish the job.

• The worst-case behavior of Shell sort, as implemented in this chapter, is O(n2). With a simple change, its
worst-case behavior can be improved to at least O(n1.5).

• To use Comparable with arbitrary types, write Comparable<? super T> instead of Comparable<T>

1. Show the contents of the array of integers 5 7 4 9 8 5 6 3 each time a selection sort changes it while sorting
the array into ascending order.

2. Repeat Exercise 1, but use an insertion sort instead.

3. Repeat Exercise 1, but use a Shell sort instead.

216 CHAPTER 8 An Introduction to Sorting

4. a. Write pseudocode for a selection sort algorithm that selects the largest, instead of the smallest, entry in the
array and sorts the array into descending order.

b. Using your algorithm, repeat Exercise 1.
c. Revise the iterative method selectionSort, as given in Segment 8.6, so that it implements your algorithm.

5. Repeat Exercise 4, but this time sort the array into ascending order.

6. Revise the iterative method selectionSort, as given in Segment 8.6, so that it has first and last as parameters
instead of n.

7. Consider a revised selection sort algorithm so that on each pass it finds both the largest and smallest values in the unsorted
portion of the array. The sort then moves each of these values into its correct location by swapping array entries.

a. How many comparisons are necessary to sort n values?
b. Is the answer to Part a greater than, less than, or equal to the number of comparisons required by the original

version of selection sort?

8. A bubble sort can sort an array of n entries into ascending order by making n – 1 passes through the array. On each pass,
it compares adjacent entries and swaps them if they are out of order. For example, on the first pass, it compares the first and
second entries, then the second and third entries, and so on. At the end of the first pass, the largest entry is in its proper
position at the end of the array. We say that it has bubbled to its correct spot. Each subsequent pass ignores the entries at the
end of the array, since they are sorted and are larger than any of the remaining entries. Thus, each pass makes one fewer
comparison than the previous pass. Figure 8-17 gives an example of a bubble sort.

Implement the bubble sort

a. Iteratively
b. Recursively

FIGURE 8-17 A bubble sort of an array (see Exercise 8)

Original array

8 2 6 4 9 7 1

After pass 1
Sorted

After pass 2
Sorted

After pass 3
Sorted

After pass 4
Sorted

After pass 5
Sorted

After pass 6
Sorted

2 6 4 8 7 1 9

2 4 6 7 1 8 9

2 4 6 1 7 8 9

2 4 1 6 7 8 9

2 1 4 6 7 8 9

1 2 4 6 7 8 9

Exercises 217

9. How does the efficiency of the bubble sort compare to the other sorting algorithms in this chapter?

10. The bubble sort in Exercise 8 always makes n passes. However, it is possible for the array to become sorted before
all n passes are complete. For example, a bubble sort of the array

9 2 1 6 4 7 8

is sorted after only two passes:

2 1 6 4 7 8 9 (end of pass 1)
1 2 4 6 7 8 9 (end of pass 2)

But since a swap occurred during the second pass, the sort needs to make one more pass to check that the array is in
order. Additional passes, such as the ones that the algorithm in Exercise 8 would make, are unnecessary.

You can skip these unnecessary passes and even do less work by remembering where the last swap
occurred. During the first pass, the last swap is of the 9 and 8. The second pass checks up to the 8. But during
the second pass, the last swap is of the 6 and 4. You now know that 6, 7, 8, and 9 are sorted. The third pass
needs only to check up to the 4, instead of the 7, as an ordinary bubble sort would do. No swaps occur during
the third pass, so the index of the last swap during this pass is taken as zero, indicating that no further passes
are necessary. Implement this revised bubble sort.

11. Devise an algorithm that detects whether a given array is sorted into ascending order. Write a Java method that
implements your algorithm. You can use your method to test whether a sort method has executed correctly.

12. Imagine wanting to perform a selection sort on a collection of Comparable objects. The collection is an instance of
the class Group.

a. What private methods would you need?
b. Implement a method to perform a selection sort on the objects in an instance of Group.
c. Using Big Oh notation, describe the time efficiency of your method.

13. Which recursive algorithms in this chapter are tail recursive?

14. As Segment 8.25 suggests, you can improve the efficiency of the Shell sort by adding 1 to space any time it
is even.

a. By looking at several examples, convince yourself that consecutive increments do not have a common factor.
b. Subtracting 1 from space any time that it is even does not produce consecutive increments without common

factors. Find an example of n that demonstrates this phenomenon.
c. Revise the implementation of the Shell sort given in Segment 8.24 so that space is not even.

15. Suppose you want to find the largest entry in an unsorted array of n entries. Algorithm A searches the entire array
sequentially and records the largest entry seen so far. Algorithm B sorts the array into descending order and then
reports the first entry as the largest. Compare the time efficiency of the two approaches.

16. Consider the method insertInOrder, as given in Segment 8.11, that inserts an object into its correct position
within a sorted portion of an array. If we were to use a similar algorithm to insert a node into a sorted chain of
linked nodes, we would begin at the end of the chain. For example, to insert a node containing 6 into the chain
shown in Figure 8-9, we first would compare 6 with the integer 10. Since 6 belongs before 10, we would then
compare 6 with 8. Since 6 belongs before 8, we compare 6 with 5 and discover that 6 belongs between 5 and 8.

Describe how you could use this algorithm to define a method insertInOrder for a sorted chain of linked nodes.

17. Consider a class Person that has a string phoneNumber as a private data field. Phone numbers have an optional area
code, but are written with dashes. For example, two possible phone numbers are 443-555-1232 and 555-0009. Write
a method compareTo for Person that enables an array of Person objects to be sorted by phone number.

218 CHAPTER 8 An Introduction to Sorting

PROJECTS

18. Consider a class Student that has private data fields for name, class rank, identification number, and grade point aver-
age. Imagine an array of Student objects that you want to sort according to any one of the previously given fields.

a. What difficulty will you encounter in implementing such a sort?
b. One solution to this problem defines a new class for each criterion for sorting. Each of these classes encap-

sulates a Student object. In this way, you can use the sorting methods given in this chapter. Provide the
details necessary for another programmer to implement this solution.

c. Another solution to this problem changes the signature and definition of the sorting method. One parame-
ter of the method is an object that can compare two Student objects according to a certain criterion. This
parameter belongs to one of several new classes that correspond to the sorting criteria. Provide the details
necessary for another programmer to implement this solution.

1. Graphical demonstrations of various sorting algorithms are instructive, as they provide insight into how an algo-
rithm behaves. Consider a collection of vertical lines of varying lengths, such as the ones in Figure 8-18a. Create
a sorting demonstration that sorts the lines by length, as shown in Figure 8-18b. You should draw the configura-
tion of lines after every swap or move that a given sorting algorithm makes. If you delay execution very briefly
after each redraw, the result will be an animation of the sort.

You could begin by drawing 256 lines, each one pixel wide but of different lengths—and perhaps different
colors—arranged from shortest to longest so that they appear as a triangle. The user then should exercise an
option to scramble the lines. At a user signal, your sorting algorithm should sort the lines.

You can provide individual demonstrations, perhaps as applets, for each sort algorithm. Or you can include
all the algorithms in one program that asks the user to choose an algorithm. Each sort should start with the same
scrambled lines so the user can compare methods. You might also choose a sort algorithm at random and see
whether the user can guess which one it is.

FIGURE 8-18 An animated sorting demonstration that sorts vertical lines (a) before its
execution; (b) after its execution

2. Revise the implementations of the insertion sort and the Shell sort so that they count the number of comparisons made
during a sort. Use your implementations to compare the two sorts on arrays of random Integer objects of various sizes.
Also, compare the Shell sort as implemented in Segment 8.24 with a revised Shell sort that adds 1 to space any time it
is even. For what array size does the difference in the number of comparisons become significant? Is the size consistent
with the size predicted by the algorithm’s Big Oh?

3. Complete the implementations of the sorting algorithms given in this chapter. Use your implementations to com-
pare the run times of the sorts on various arrays of 50,000 random Integer objects. See the projects at the end of
Chapter 4 for a description of how to time a block of Java code. Write a summary of which algorithm you find to
be more efficient and why.

(a) (b)

Answers to Self-Test Questions 219

ANSWERS TO SELF-TEST QUESTIONS

4. Consider an n by n array of integer values.
a. Write an algorithm to sort the rows of the array by their first value.
b. Using Big Oh notation, describe the efficiency of your algorithm.
c. Implement your algorithm.

5. Suppose that you want to perform a Shell sort on a linked chain.
a. Revise the method incrementalInsertionSort to work with a linked chain instead of an array.
b. Compare the performance of incrementalInsertionSort on an array with its performance on a linked chain.
c. Using the revised method, implement a Shell sort for a linked chain.
d. Find the run time required to sort n values in a linked chain for different values of n. (See the projects at

the end of Chapter 4 for a description of how to time a block of Java code.) Graph the run time versus n.
e. Assuming that the performance of your sort is O(nk), make an estimate for the value of k.

6. You can sort a large array of integers that are in the range 1 to n by using an array count of n entries to count the
number of occurrences of each integer in the array. For example, consider the following array of 14 integers that
range from 1 to 9:

9 2 4 8 9 4 3 2 8 1 2 7 2 5
Form an array count of 9 elements such that count[i- 1] contains the number of times that i occurs in the array
to be sorted. Thus, count is

1 4 1 2 1 0 1 2 2
We now know that 1 occurs once in the original array, 2 occurs four times, and so on. Thus, the sorted array is

1 2 2 2 2 3 4 4 5 7 8 8 9 9

a. Implement this sorting algorithm.
b. Using Big Oh notation, describe the efficiency of this algorithm.
c. Is this algorithm useful as a general sorting algorithm? Explain.

1. 9 6 2 4 8
2 6 9 4 8
2 4 9 6 8
2 4 6 9 8
2 4 6 8 9

2. 9 6 2 4 8
6 9 2 4 8
2 6 9 4 8
2 4 6 9 8
2 4 6 8 9

3. No; insertInOrder links the node to be inserted into the sorted part of the chain so that the node no longer refer-
ences the rest of the unsorted part. Since unsortedPart still references the inserted node, executing the line in
question next would make unsortedPart either reference a node in the sorted part or be null.

4. The public method insertionSort is to be invoked by using an object of LinkedGroup, which is the class that
defines this method. Thus, the method should not be static.

220 CHAPTER 8 An Introduction to Sorting

5. First, you consider the subarray of equally spaced integers at the indices 0, 4, and 8 (they appear in bold):
9 8 2 7 5 4 6 3 1

Now sort them to get

1 8 2 7 5 4 6 3 9

The indices 0, 4, and 8 have a separation of 4. Next, consider the integers at indices 1 and 5:

1 8 2 7 5 4 6 3 9

Sort them to get

1 4 2 7 5 8 6 3 9

Then sort the integers at indices 2 and 6; they already are in order:

1 4 2 7 5 8 6 3 9

Next, consider the integers at indices 3 and 7. Sort them to get

1 4 2 3 5 8 6 7 9

Now decrease the separation between indices to 2. You consider the integers at the indices 0, 2, 4, 6, and 8:

1 4 2 3 5 8 6 7 9

You find that they are sorted. Then consider the integers at indices 1, 3, 5, and 7:

1 4 2 3 5 8 6 7 9

Sort them to get

1 3 2 4 5 7 6 8 9

Decreasing the separation to 1 results in an ordinary insertion sort of an array that is almost sorted.

6. 9 6 2 4 8 7 5 3
8 6 2 4 9 7 5 3
8 6 2 4 9 7 5 3
8 6 2 4 9 7 5 3
8 6 2 4 9 7 5 3
8 6 2 3 9 7 5 4
8 6 2 3 9 7 5 4
2 6 5 3 8 7 9 4
2 6 5 3 8 7 9 4
2 3 5 4 8 6 9 7

Now apply a regular insertion sort.

Chapter

9Faster SortingMethods
Contents
Merge Sort

Merging Arrays
Recursive Merge Sort
The Efficiency of Merge Sort
Iterative Merge Sort
Merge Sort in the Java Class Library

Quick Sort
The Efficiency of Quick Sort
Creating the Partition
Java Code for Quick Sort
Quick Sort in the Java Class Library

Radix Sort
Pseudocode for Radix Sort
The Efficiency of Radix Sort

Comparing the Algorithms

Prerequisites
Chapter 4 The Efficiency of Algorithms
Chapter 7 Recursion
Chapter 8 An Introduction to Sorting

Objectives
After studying this chapter, you should be able to
• Sort an array into ascending order by using the following methods: merge sort, quick sort, and radix sort
• Assess the efficiency of a sort and discuss the relative efficiencies of the various methods

The sorting methods that you saw in the previous chapter often are sufficient when
you want to sort small arrays. They even can be a reasonable choice if you need to sort a
larger array once. Additionally, the insertion sort is a good way to sort a chain of linked
nodes. However, when you need to sort very large arrays frequently, those methods take

222 CHAPTER 9 Faster Sorting Methods

too much time. This chapter presents sorting algorithms that are much faster in general than the
methods in Chapter 8.

Merge Sort

9.1 The merge sort divides an array into halves, sorts the two halves, and then merges them into one sorted
array. The algorithm for merge sort is usually stated recursively. You know that a recursive algorithm
expresses the solution to a problem in terms of a smaller version of the same problem. When you divide
a problem into two or more smaller but distinct problems, solve each new problem, and then combine
their solutions to solve the original problem, the strategy is said to be a divide and conquer algorithm.
That is, you divide the problem into pieces and conquer each piece to reach a solution. Although divide
and conquer algorithms often are expressed recursively, this is not a requirement.

VideoNote

When expressed recursively, a divide and conquer algorithm contains two or more recursive
calls. Most of the recursive solutions that you have seen so far do not use the divide and conquer strat-
egy. For example, Segment 8.7 gave a recursive version of the selection sort. Even though that algo-
rithm considers smaller and smaller arrays, it does not divide the problem into two sorting problems.

The real effort during the execution of a merge sort occurs during the merge step, and this is
also the step that involves most of the programming effort, so we will begin there.

Merging Arrays
9.2 Imagine that you have two distinct arrays that are sorted. Merging two sorted arrays is not difficult,

but it does require an additional array. Processing both arrays from beginning to end, you compare
an entry in one array with an entry in the other and copy the smaller entry to a new third array, as
Figure 9-1 shows. After reaching the end of one array, you simply copy the remaining entries from
the other array to the new third array.

FIGURE 9-1 Merging two sorted arrays into one sorted array

Merge sort

First array Second array

3 5 7 9 0 2 4 6

3 � 0, so copy 0 to new array

3 5 7 9 0 2 4 6

3 � 2, so copy 2 to new array

3 5 7 9 0 2 4 6
3 � 4, so copy 3 to new array

3 5 7 9 0 2 4 6

5 � 4, so copy 4 to new array

3 5 7 9 0 2 4 6
5 � 6, so copy 5 to new array

3 5 7 9 0 2 4 6
7 � 6, so copy 6 to new array

3 5 7 9 0 2 4 6

The entire second array has been copied to the new array
Copy the rest of the first array to the new array

0

2

3

4

5

6

7

9

New merged array

Merge Sort 223

Recursive Merge Sort
9.3 The algorithm. In a merge sort, you merge two sorted arrays that are actually halves of the original

array. That is, you divide the array into halves, sort each half, and merge the sorted halves into a second
temporary array, as Figure 9-2 shows. You then copy the temporary array back to the original array.

FIGURE 9-2 The major steps in a merge sort

This sounds like a simple plan, but how did we sort the two halves of the array? By using a
merge sort, of course! If mid is the index of the approximate midpoint of an array of n entries, we
need to sort the entries indexed by 0 through mid, and then the entries indexed by mid + 1 through
n - 1. Since we perform these sorts by making recursive calls to the merge sort algorithm, the algo-
rithm needs two parameters—first and last—to specify the first and last indices of the subrange
of the array to be sorted. We will use the notation a[first..last] to mean the array entries
a[first], a[first + 1], ..., a[last].

Merge sort has the following recursive formulation:
Algorithm mergeSort(a, tempArray, first, last)
// Sorts the array entries a[first] through a[last] recursively.

if (first < last)
{

mid = (first + last) / 2
mergeSort(a, tempArray, first, mid)
mergeSort(a, tempArray, mid + 1, last)
Merge the sorted halves a[first..mid] and a[mid + 1..last] using the array tempArray

}

Notice that the algorithm ignores arrays of one or fewer entries.
The following pseudocode describes the merge step:
Algorithm merge(a, tempArray, first, mid, last)
// Merges the adjacent subarrays a[first..mid] and a[mid + 1..last].

beginHalf1 = first
endHalf1 = mid
beginHalf2 = mid + 1
endHalf2 = last

// While both subarrays are not empty, compare an entry in one subarray with
// an entry in the other; then copy the smaller item into the temporary array
index = 0 // next available location in tempArray

7 5 9 3 6 0 2 4
0 1 2 3 4 5 6 7

3 5 7 9 0 2 4 6

0 2 3 4 5 6 7 9

0 2 3 4 5 6 7 9

Divide the array into two halves

Sort the two halves

Merge the sorted halves into
another array

Copy the merged array back into
the original array

224 CHAPTER 9 Faster Sorting Methods

while ((beginHalf1 <= endHalf1) and (beginHalf2 <= endHalf2))
{

if (a[beginHalf1] <= a[beginHalf2])
{

tempArray[index] = a[beginHalf1]
beginHalf1++

}
else
{

tempArray[index] = a[beginHalf2]
beginHalf2++

}
index++

}
// Assertion: One subarray has been completely copied to tempArray.

Copy remaining entries from other subarray to tempArray
Copy entries from tempArray to array a

9.4 Tracing the steps in the algorithm. Let’s examine what happens when we invoke mergeSort on the
array halves. Figure 9-3 shows that mergeSort divides an array into two halves and then recursively
divides each of those halves into two halves until each half contains only one entry. At this point in the
algorithm, the merge steps begin. Pairs of one-entry subarrays are merged to form a two-entry subarray.
Pairs of two-entry subarrays are merged to form a four-entry subarray, and so on.

FIGURE 9-3 The effect of the recursive calls and the merges during a merge sort

Numbers on the arrows in the figure indicate the order in which the recursive calls and the
merges occur. Notice that the first merge occurs after four recursive calls to mergeSort and before
other recursive calls to mergeSort. Thus, the recursive calls to mergeSort are interwoven with calls
to merge. The actual sorting takes place during the merge steps and not during the recursive calls.

7 5 9 3 6 0 2 4

1 11

7 5 9 3 6 0 2 4

2 6 12 16

7 5 9 3 6 0 2 4
3 4 7 8 13 14 17 18

7 5 9 3 6 0 2 4

5 9 15 19

5 7 3 9 0 6 2 4

10 20

3 5 7 9 0 2 4 6

21

0 2 3 4 5 6 7 9

0 2 3 4 5 6 7 9

Effect of
recursive
calls to
mergeSort

Merge steps

Copy to
original array

Merge Sort 225

As you will see, we can use these observations in two ways. First, we can ascertain the algorithm’s
efficiency. Second, we can formulate the mergeSort algorithm iteratively.

9.5 Implementation note. Although the implementation of the recursive mergesort is straightforward,
you should be careful to allocate the temporary array only once. Since the array is an implementa-
tion detail, you might be tempted to hide its allocation in the method merge. But since merge is
called each time mergesort is called recursively, a temporary array would be allocated and initial-
ized many times. Instead, we can allocate a temporary array in the following public version of
mergesort and pass it to a private mergesort that implements the pseudocode given previously:

public static <T extends Comparable<? super T>>
void mergeSort(T[] a, int first, int last)

{
// the cast is safe because the new array contains null entries
@SuppressWarnings("unchecked")
T[] tempArray = (T[])new Comparable<?>[a.length]; // unchecked cast
mergeSort(a, tempArray, first, last);

} // end mergeSort

Segment 8.2 in the previous chapter introduced the notation ? super T to mean any superclass of T.
When we allocate an array of Comparable objects, we use a wildcard ? to represent any object. We
then cast the array to an array of type T objects.

The Efficiency of Merge Sort
9.6 Assume for now that n is a power of 2, so that we can divide n by 2 evenly. The array in Figure 9-3

has n = 8 entries. The initial call to mergeSort makes two recursive calls to mergeSort, dividing the
array into two subarrays of n/2, or 4, entries each. Each of the two recursive calls to mergeSort
makes two recursive calls to mergeSort, dividing the two subarrays into four subarrays of n/22, or 2,
entries each. Finally, recursive calls to mergeSort divide the four subarrays into eight subarrays of
n/23, or 1, entry each. It takes three levels of recursive calls to obtain subarrays of one entry each.
Notice that the original array contained 23 entries. The exponent 3 is the number of levels of recursive
calls. In general, if n is 2k, k levels of recursive calls occur.

Now consider the merge steps, because that is where the real work occurs. The merge step
makes at most n - 1 comparisons among the n entries in the two subarrays. Figure 9-4 provides an
example of a merge that requires n - 1 comparisons, while Figure 9-1 shows an example where
fewer than n - 1 comparisons occur. Each merge also requires n moves to a temporary array and n
moves back to the original array. In total, each merge requires at most 3n - 1 operations.

Each call to mergeSort calls merge once. The merge operation as a result of the original call to
mergeSort requires at most 3n - 1 operations. It is O(n). An example of this merge appears as step 21 in
Figure 9-3. The two recursive calls to mergeSort result in two calls to merge. Each call merges n/2
entries in at most 3n/2 - 1 operations. The two merges then require at most 3n - 2 operations. They
are O(n). The next level of recursion involves 22 calls to mergeSort resulting in four calls to merge.
Each call to merge merges n/22 entries in at most 3n/22 - 1 operations. Together these four merges use
at most 3n - 22 operations, so are O(n).

Note: Merge sort rearranges the entries in an array during its merge steps.

Question 1 Trace the steps that a merge sort takes when sorting the following array into
ascending order: 9 6 2 4 8 7 5 3.

226 CHAPTER 9 Faster Sorting Methods

FIGURE 9-4 A worst-case merge of two sorted arrays

If n is 2k, the k levels of recursive calls to mergeSort result in k levels of merges. The merges at
each level are O(n). Since k is log2 n, mergeSort is O(n log n). When n is not a power of 2, we can
find an integer k so that 2k - 1 < n < 2k. For example, when n is 15, k is 4. Thus,

k – 1 < log2 n < k

so if we round log2 n up, we will get k. Therefore, the merge sort is O(n log n) in this case as well.
Notice that the merge steps are O(n) regardless of the initial order of the array. Merge sort is then
O(n log n) in the worst, best, and average cases.

A disadvantage of merge sort is the need for the temporary array during the merge step. At the
beginning of Chapter 8, we spoke of sorting the books on your bookshelf by height. We were able
to do so without the extra space that another shelf or the floor would provide. You can see now that
the merge sort would require this extra space. Later in this chapter, you will see another algorithm
that sorts in O(n log n) time without a second array.

9.7 Assessing efficiency another way. In Chapter 7, we used a recurrence relation to estimate the time
efficiency of recursive algorithms. We can use the same technique here. If t(n) represents the time
requirement of mergeSort in the worst case, the two recursive calls each require time t(n/2). The
merge step is O(n). Thus, we have the following:

t(n) = t(n/2) + t(n/2) + n
= 2 t(n/2) + n when n > 1

t(1) = 0

As a first step in solving this recurrence relation, we evaluate it for a specific value of n. Since
t(n) involves n/2, choosing n to be a power of 2—8, for example—is convenient. We then have

t(8) = 2 t(4) + 8
t(4) = 2 t(2) + 4
t(2) = 2 t(1) + 2 = 2

By substituting repeatedly, we get the following for t(8):

t(8) = 2 t(4) + 8
= 2 [2 t(2) + 4] + 8
= 4 t(2) + 8 + 8

b c d
2 8

a

First array Second array

2 6 4 8

4 6

New merged array

a. 2 < 4, so copy 2 to new array

b. 6 > 4, so copy 4 to new array

c. 6 < 8, so copy 6 to new array

d. Copy 8 to new array

Note: The time efficiency of merge sort
Merge sort is O(n log n) in all cases. Its need for a temporary array is a disadvantage. The
time required for copying entries, however, is less in Java than in other programming lan-
guages, since references are copied instead of the actual objects.

Merge Sort 227

= 4 [2 t(1) + 2] + 8 + 8
= 8 + 8 + 8
= 8 × 3

Since 8 = 23, 3 = log2 8, so we guess that

t(n) = n log2 n

Just as we did in Chapter 7, we now need to prove that our guess is in fact true. We leave this proof
as an exercise.

Iterative Merge Sort
9.8 Once we have the merge algorithm, developing the recursive merge sort is easy. Developing an itera-

tive merge sort is not as simple. We begin by making some observations about the recursive solution.
The recursive calls simply divide the array into n one-entry subarrays, as you can see in

Figure 9-3. Although we do not need recursion to isolate the entries in an array, the recursion con-
trols the merging process. To replace the recursion with iteration, we will need to control the
merges. Such an algorithm will be more efficient of both time and space than the recursive algo-
rithm, since it will eliminate the recursive calls and, therefore, the stack of activation records. But
an iterative merge sort will be trickier to code without error.

Basically, an iterative merge sort starts at the beginning of the array and merges pairs of indi-
vidual entries to form two-entry subarrays. Then it returns to the beginning of the array and merges
pairs of the two-entry subarrays to form four-entry subarrays, and so on. However, after merging all
pairs of subarrays of a particular length, we might have entries left over. Merging these requires
some care. Project 2 at the end of this chapter asks you to develop an iterative merge sort. You will
see there that you can save much of the time necessary to copy the temporary array back to the orig-
inal array during the merges.

Merge Sort in the Java Class Library
9.9 The class Arrays in the package java.util defines several versions of a static method sort to sort

an array into ascending order. For an array of objects, sort uses a merge sort. The method
public static void sort(Object[] a)

sorts an entire array a of objects, while the method
public static void sort(Object[] a, int first, int after)

sorts the objects in a[first] through a[after - 1]. For both methods, objects in the array must
define the Comparable interface.

The merge sort used by these methods skips the merge step if none of the entries in the left half
of the array are greater than the entries in the right half. Since both halves are sorted already, the
merge step is unnecessary in this case.

Note: Stable sorts
A sorting algorithm is stable if it does not change the relative order of objects that are equal.
For example, if object x appears before object y in a collection of data, and x.compareTo(y)
is zero, a stable sorting algorithm will leave object x before object y after sorting the data.
Stability is important to certain applications. For example, suppose that you sort a group of
people, first by name and then by age. A stable sorting algorithm will ensure that people of
the same age will remain in alphabetical order.

The merge sorts in the Java Class Library are stable. Exercise 10 at the end of this chapter
asks you to identify the stable sorting algorithms presented in this chapter and the previous one.

228 CHAPTER 9 Faster Sorting Methods

Quick Sort

9.10 We now look at another divide and conquer strategy for sorting an array. The quick sort divides an array
into two pieces, but unlike merge sort, these pieces are not necessarily halves of the array. Instead, quick
sort chooses one entry in the array—called the pivot—and rearranges the array entries so that

• The pivot is in the position that it will occupy in the final sorted array
• Entries in positions before the pivot are less than or equal to the pivot
• Entries in positions after the pivot are greater than or equal to the pivot

This arrangement is called a partition of the array.

VideoNote

Creating the partition divides the array into two pieces, which we will call Smaller and Larger,
separated by the pivot, as Figure 9-5 illustrates. Since the entries in Smaller are less than or equal to
the pivot, and the entries in Larger are greater than or equal to the pivot, the pivot is in its correct
and final position within the sorted array. If we now sort the two subarrays Smaller and Larger—by
using quick sort, of course—the original array will be sorted. The following algorithm describes
our sorting strategy:

Algorithm quickSort(a, first, last)
// Sorts the array entries a[first] through a[last] recursively.

if (first < last)
{

Choose a pivot
Partition the array about the pivot
pivotIndex = index of pivot
quickSort(a, first, pivotIndex - 1) // sort Smaller
quickSort(a, pivotIndex + 1, last) // sort Larger

}

FIGURE 9-5 A partition of an array during a quick sort

The Efficiency of Quick Sort
9.11 Notice that creating the partition—which accounts for most of quickSort’s work—occurs before

the recursive calls to quickSort. Contrast this with merge sort, where most of the work occurs dur-
ing the merge phase after the recursive calls to mergeSort. Partitioning will require no more than n
comparisons, and so, like merging, it will be an O(n) task. Thus, we can assess the efficiency of
quick sort, even though we have not yet developed a partitioning strategy.

The ideal situation occurs when the pivot moves to the center of the array, so the two subarrays
that the partition forms are the same size. If every recursive call to quickSort forms a partition
with equal-sized subarrays, the quick sort will be like merge sort in that the recursive calls halve the
array. Thus, quick sort would be O(n log n), and this would be its best case.

Question 2 Modify the merge sort algorithm given in Segment 9.3 so that it skips any
unnecessary merges, as just described.

Quick sort

� pivot pivot � pivot

Smaller Larger

Quick Sort 229

This ideal situation might not always occur, however. In the worst case, each partition has one empty
subarray. Although one recursive call will have nothing to do, the other call must sort n – 1 entries instead
of n/2. The result is n levels of recursive calls instead of log n. Thus, in the worst case, quick sort is O(n2).

The choice of pivots, then, affects quick sort’s efficiency. Some pivot-selection schemes can
lead to worst-case behavior if the array is already sorted or nearly sorted. In practice, nearly sorted
arrays can occur more frequently than you might imagine. As you will see later, our pivot-selection
scheme will avoid worst-case behavior for sorted arrays.

Although we will not prove it, quick sort is O(n log n) in the average case. While merge sort is
always O(n log n), quick sort can be faster than merge sort in practice and does not require the additional
memory that merge sort needs for merging.

Creating the Partition
9.12 Various strategies are possible for choosing a pivot and for creating the partition in Figure 9-5. For

now, we will assume that you have chosen a pivot, and so we will describe how to create a partition
independently of your pivot-selection strategy. Later, our actual pivot-selection scheme will sug-
gest minor changes to this partitioning process.

After choosing a pivot, swap it with the last entry in the array so that the pivot is not in your way
while you create the partition. Figure 9-6a shows an array after this step. Starting at the beginning of the
array and moving toward the end (left to right in the figure), look for the first entry that is greater than or
equal to the pivot. In Figure 9-6b, that entry is 5 and occurs at the index indexFromLeft. In a similar
fashion, starting at the next-to-last entry and moving toward the beginning of the array (right to left in the
figure), look for the first entry that is less than or equal to the pivot. In Figure 9-6b, that entry is 2 and
occurs at the index indexFromRight. Now, if indexFromLeft is less than indexFromRight, swap the
two entries at those indices. Figure 9-6c shows the result of this step. The 2, which is less than the pivot,
has moved toward the beginning of the array while the 5, which is greater than the pivot, has moved in
the opposite direction.

Continue the searches from the left and from the right. Figure 9-6d shows that the search from the left
stops at 4 and the search from the right stops at 1. Since indexFromLeft is less than indexFromRight,
swap 4 and 1. The array now appears as in Figure 9-6e. Entries equal to the pivot are allowed in either piece
of the partition.

Continue the searches again. Figure 9-6f shows that the search from the left stops at 6 while the search
from the right goes beyond the 6 to stop at 1. Since indexFromLeft is not less than indexFromRight, no
swap is necessary and the searches end. The only remaining step is to place the pivot between the subarrays
Smaller and Larger by swapping a[indexFromLeft] and a[last], as Figure 9-6g shows. The com-
pleted partition appears in Figure 9-6h.

Note that the previous searches must not go beyond the ends of the array. Soon, in Segment 9.15,
you will see a convenient way to implement this requirement.

9.13 Entries equal to the pivot. Notice that both of the subarrays Smaller and Larger can contain
entries equal to the pivot. This might seem a bit strange to you. Why not always place any entries
that equal the pivot into the same subarray? Such a strategy would tend to make one subarray larger
than the other. However, to enhance quick sort’s performance, we want the subarrays to be as
nearly equal in size as possible.

Note: The time efficiency of quick sort
Quick sort is O(n log n) in the average case but O(n2) in the worst case. The choice of pivots
affects its behavior.

230 CHAPTER 9 Faster Sorting Methods

Notice that both the search from the left and the search from the right stop when they encounter
an entry that equals the pivot. This means that rather than leaving such entries in place, they are
swapped. It also means that such an entry has a chance of landing in each of the subarrays.

9.14 Pivot selection. Ideally, the pivot should be the median value in the array, so that the subarrays
Smaller and Larger each have the same—or nearly the same—number of entries. One way to find the
median value is to sort the array and then get the value in the middle. But sorting the array is the orig-
inal problem, so this circular logic is doomed. Other ways to find the median are too slow to use.

FIGURE 9-6 A partitioning strategy for quick sort

Since choosing the best pivot takes too much time, we should at least try to avoid a bad pivot.
So instead of finding the median of all values in the array, we will take as our pivot the median of
three entries in the array: the first entry, the middle entry, and the last entry. One way to accomplish
this task is to sort only those three entries and use the middle entry of the three as the pivot.
Figure 9-7 shows an array both before and after its first, middle, and last entries are sorted. The
pivot is the 5. This pivot selection strategy is called median-of-three pivot selection.

(a) 3 5 0 4 6 1 2 4
0 1 2 3 4 5 6 7

Pivot
(b)

indexFromLeft 1 3 5 0 4 6 1 2 4 6 indexFromRight

0 1 2 3 4 5 6 7

(c)

indexFromLeft 1 3 2 0 4 6 1 5 4 6 indexFromRight
0 1 2 3 4 5 6 7

(d)

indexFromLeft 3 3 2 0 4 6 1 5 4 5 indexFromRight
0 1 2 3 4 5 6 7

(e)

indexFromLeft 3 3 2 0 1 6 4 5 4 5 indexFromRight
0 1 2 3 4 5 6 7

(f)

indexFromLeft 4 3 2 0 1 6 4 5 4 3 indexFromRight
0 1 2 3 4 5 6 7

(g) 3 2 0 1 6 4 5 4
0 1 2 3 4 5 6 7

(h) 3 2 0 1 4 4 5 6
0 1 2 3 4 5 6 7

Smaller Pivot Larger

Quick Sort 231

FIGURE 9-7 Median-of-three pivot selection: (a) The original array; (b) the
array with its first, middle, and last entries sorted

9.15 Adjusting the partition algorithm. Median-of-three pivot selection suggests some minor adjust-
ments to our partitioning scheme. Previously, we swapped the pivot with the last entry in the array
prior to partitioning. But here, the first, middle, and last entries in the array are sorted, so we know
that the last entry is at least as large as the pivot. Thus, the last entry belongs in the subarray Larger.
We can simply leave the last entry in place. To get the pivot out of the way, we can swap it with the
next-to-last entry, a[last - 1], as Figure 9-8 shows. Thus, the partition algorithm can begin its
search from the right at index last – 2.

FIGURE 9-8 (a) The array with its first, middle, and last entries sorted;
(b) the array after positioning the pivot and just before partitioning

Also notice that the first entry is at least as small as the pivot, and so it belongs in the subarray Smaller.
Thus, we can leave the first entry in place and have the partition algorithm begin its search from the left at
index first + 1. Figure 9-8b shows the status of the array at this point, just prior to partitioning.

This scheme provides a side benefit that simplifies the loops for the two searches. The search from
the left looks for an entry that is greater than or equal to the pivot. That search will terminate because, at
worst, it will stop at the pivot. The search from the right looks for an entry that is less than or equal to the
pivot. That search will terminate because, at worst, it will stop at the first entry. Thus, the loops need not
do anything special to prevent the searches from going beyond the ends of the array.

After the search loops end, we need to position the pivot between the subarrays Smaller and
Larger. We do this by swapping the entries a[indexFromLeft] and a[last - 1].

(a) 5 8 6 4 9 3 7 1 2

(b) 2 8 6 4 5 3 7 1 9

Pivot

Note: Median-of-three pivot selection avoids worst-case performance by quick sort when
the given array is already sorted or nearly sorted. While it theoretically does not avoid worst-
case performance for other arrays, such performance is unlikely in practice.

(a) 2 8 6 4 5 3 7 1 9

Pivot

(b) 2 8 6 4 1 3 7 5 9

indexFromLeft

Pivot

indexFromRight

232 CHAPTER 9 Faster Sorting Methods

Java Code for Quick Sort
9.16 Pivot selection. Median-of-three pivot selection requires us to sort three entries. We do this with

simple comparisons and swaps, as follows:
/** Sorts the first, middle, and last entries of an array

into ascending order.
@param a an array of Comparable objects
@param first the integer index of the first array entry;

first >= 0 and < a.length
@param mid the integer index of the middle array entry
@param last the integer index of the last array entry;

last - first >= 2, last < a.length */
private static <T extends Comparable<? super T>>

void sortFirstMiddleLast(T[] a, int first, int mid, int last)
{

order(a, first, mid); // make a[first] <= a[mid]
order(a, mid, last); // make a[mid] <= a[last]
order(a, first, mid); // make a[first] <= a[mid]

} // end sortFirstMiddleLast

/** Orders two given array entries into ascending order
so that a[i] <= a[j].
@param a an array of Comparable objects
@param i an integer >= 0 and < array.length
@param j an integer >= 0 and < array.length */

private static <T extends Comparable<? super T>>
void order(T[] a, int i, int j)

{
if (a[i].compareTo(a[j]) > 0)

swap(a, i, j);
} // end order

/** Swaps the array entries array[i] and array[j]. */
private static void swap(Object[] array, int i, int j)
{

Object temp = array[i];
array[i] = array[j];
array[j] = temp;

} // end swap

After passing the indices of the first, middle, and last entries of the array to the method
sortFirstMiddleLast, we will have the pivot at the middle index.

9.17 Partitioning. Median-of-three pivot selection assumes that the array has at least three entries. If you have
only three entries, the pivot selection sorts them, so there is no need for the partition method or for quick
sort. Thus, the following partition method assumes that the array contains at least four entries:

/** Partitions an array as part of quick sort into two subarrays
called Smaller and Larger that are separated by a single
entry called the pivot.
Entries in Smaller are <= pivot and appear before the
pivot in the array.
Entries in Larger are >= pivot and appear after the
pivot in the array.

Note: Quick sort rearranges the entries in an array during the partitioning process. Each
partition places one entry—the pivot—in its correct sorted position. The entries in each of the
two subarrays that are before and after the pivot will remain in their respective subarrays.

Quick Sort 233

@param a an array of Comparable objects
@param first the integer index of the first array entry;

first >= 0 and < a.length
@param last the integer index of the last array entry;

last - first >= 3; last < a.length
@return the index of the pivot */

private static <T extends Comparable<? super T>>
int partition(T[] a, int first, int last)

{
int mid = (first + last) / 2;
sortFirstMiddleLast(a, first, mid, last);

// Assertion: The pivot is a[mid]; a[first] <= pivot and
// a[last] >= pivot, so do not compare these two array entries
// with pivot.

// move pivot to next-to-last position in array
swap(a, mid, last - 1);
int pivotIndex = last - 1;
T pivot = a[pivotIndex];

// determine subarrays Smaller = a[first..endSmaller]
// and Larger = a[endSmaller+1..last-1]
// such that entries in Smaller are <= pivot and
// entries in Larger are >= pivot; initially, these subarrays are empty

int indexFromLeft = first + 1;
int indexFromRight = last - 2;

boolean done = false;
while (!done)
{

// starting at beginning of array, leave entries that are < pivot;
// locate first entry that is >= pivot; you will find one,
// since last entry is >= pivot
while (a[indexFromLeft].compareTo(pivot) < 0)

indexFromLeft++;

// starting at end of array, leave entries that are > pivot;
// locate first entry that is <= pivot; you will find one,
// since first entry is <= pivot

while (a[indexFromRight].compareTo(pivot) > 0)
indexFromRight--;

assert a[indexFromLeft].compareTo(pivot) >= 0 &&
a[indexFromRight].compareTo(pivot) <= 0;

if (indexFromLeft < indexFromRight)
{

swap(a, indexFromLeft, indexFromRight);
indexFromLeft++;
indexFromRight--;

}
else

done = true;
} // end while

// place pivot between Smaller and Larger subarrays
swap(a, pivotIndex, indexFromLeft);
pivotIndex = indexFromLeft;

// Assertion:
// Smaller = a[first..pivotIndex-1]

234 CHAPTER 9 Faster Sorting Methods

// Pivot = a[pivotIndex]
// Larger = a[pivotIndex+1..last]

return pivotIndex;
} // end partition

9.18 The quick sort method. Before completing the Java code for quick sort, we need to think about
small arrays. You have seen that the array should contain at least four entries before you call the
partition method. But simply agreeing to use quick sort only on large arrays is not enough. The
pseudocode given for quick sort in Segment 9.10 shows that partitioning even a very large array
will eventually lead to a recursive call that involves an array as small as two entries. The code for
quick sort needs to screen out these small arrays and use another way to sort them. An insertion sort
is a good choice for small arrays. In fact, using it instead of quick sort on arrays of as many as ten
entries is reasonable. The following method implements quick sort with these observations in mind.
The method assumes a constant MIN_SIZE that specifies the size of the smallest array on which we
will use a quick sort.

/** Sorts an array into ascending order. Uses quick sort with
median-of-three pivot selection for arrays of at least
MIN_SIZE entries, and uses insertion sort for other arrays. */

public static <T extends Comparable<? super T>>
void quickSort(T[] a, int first, int last)

{
if (last - first + 1 < MIN_SIZE)
{

insertionSort(a, first, last);
}
else
{

// create the partition: Smaller | Pivot | Larger
int pivotIndex = partition(a, first, last);

// sort subarrays Smaller and Larger
quickSort(a, first, pivotIndex - 1);
quickSort(a, pivotIndex + 1, last);

} // end if
} // end quickSort

Quick Sort in the Java Class Library
9.19 The class Arrays in the package java.util uses a quick sort to sort arrays of primitive types into

ascending order. The method

public static void sort(type[] a)

sorts an entire array a, while the method

public static void sort(type[] a, int first, int after)

Question 3 Trace the steps that the method quickSort takes when sorting the following
array into ascending order: 9 6 2 4 8 7 5 3. Assume that MIN_SIZE is 4.

Radix Sort 235

sorts the entries in a[first] through a[after - 1]. Note that type is either byte, char, double,
float, int, long, or short.

Radix Sort

9.20 The sorting algorithms that you have seen so far sort objects that can be compared. The radix sort
does not use comparison, but to work, it must restrict the data that it sorts. For this restricted data,
the radix sort is O(n), and so it is faster than any other sort in this chapter. However, it is not suit-
able as a general-purpose sorting algorithm, because it treats array entries as if they were strings
that have the same length.

Let’s look at an example of a radix sort of the following three-digit positive integers:

123 398 210 019 528 003 513 129 220 294

Notice that 19 and 3 are padded with zeros to make them three-digit integers. The radix sort begins
by grouping the integers according to their rightmost digits. Since a digit can have one of 10 values,
we need 10 groups, or buckets. If bucket d corresponds to the digit d, we place 123 into bucket 3,
398 into bucket 8, and so on. Figure 9-9a shows the result of this process. Notice that each bucket
must retain the order in which it receives the integers.

Looking at the buckets sequentially, we see that the integers are now in the following order:

210 220 123 003 513 294 398 528 019 129

We move these integers from the buckets to the original array. We then group the integers by their
middle digits, using the now empty buckets. Thus, 210 goes into bucket 1, 220 goes into bucket 2,
123 goes into bucket 2, and so on. Figure 9-9b shows the result of this pass.

The integers in the buckets are now in this order:

003 210 513 019 220 123 528 129 294 398

After moving these integers from the buckets back to the array, we group them by their leftmost
digits. Thus, 003 goes into bucket 0, 210 goes into bucket 2, 513 goes into bucket 5, and so on.
Figure 9-9c shows the result of this pass.

The integers in the buckets are now in their final sorted order:

003 019 123 129 210 220 294 398 513 528

Aside: Origin of the radix sort

During the early days of computing, data was stored on punched cards. Each card had 80 columns
in which to store 80 characters. Each column had 12 rows that were the possible positions for
holes. A machine called a card sorter distributed the cards among 12 bins according to the row
punched in the column chosen by the machine’s operator. These bins are analogous to the buckets
in a radix sort. After running a stack of cards through the card sorter, the operator would gather the
cards a bin at a time to create a new stack. The cards would be run through the sorter again to sort
the next column of holes. By repeating this process, the operator could sort the cards.

236 CHAPTER 9 Faster Sorting Methods

FIGURE 9-9 Radix sort: (a) Original array and buckets after first distribution;
(b) reordered array and buckets after second distribution;
(c) reordered array and buckets after third distribution;
(d) sorted array

Pseudocode for Radix Sort
9.21 Our previous description of radix sort assumed that the integers to be sorted each contain the same number

of digits. Actually, this requirement is unnecessary as long as you get 0 when you ask for a digit that does
not exist. For example, if you ask for the hundreds digit of a two-digit integer, you should get 0.

The following algorithm describes a radix sort of an array of positive decimal integers. We
number the digits in each integer from the right beginning at zero. Thus, the units digit is digit 0,
the tens digit is digit 1, and so on.

(a) 123 398 210 019 528 003 513 129 220 294 Unsorted array

Distribute integers into buckets according to the rightmost digit

210 220 123 003 513 294

0 1 2 3 4 Buckets

398 528 019 129

5 6 7 8 9

(b) 210 220 123 003 513 294 398 528 019 129

Distribute integers into buckets according to the middle digit

003 210 513 019 220 123 528 129

0 1 2 3 4

5 6 7 8 9

294 398

(c) 003 210 513 019 220 123 528 129 294 398

Distribute integers into buckets according to the leftmost digit

003 019 123 129 210 220 294 398

0 1 2 3 4

513 528

5 6 7 8 9

(d) 003 019 123 129 210 220 294 398 513 528

Comparing the Algorithms 237

Algorithm radixSort(a, first, last, maxDigits)
// Sorts the array of positive decimal integers a[first..last] into ascending order;
// maxDigits is the number of digits in the longest integer.

for (i = 0 to maxDigits - 1)
{

Clear bucket[0], bucket[1], . . . , bucket[9]
for (index = first to last)
{

digit = digit i of a[index]
Place a[index] at end of bucket[digit]

}
Place contents of bucket[0], bucket[1], . . . , bucket[9] into the array a

}

This algorithm uses an array of buckets. The nature of a bucket is unspecified, but after you
read Chapter 10, you will see that a bucket can be an instance of the ADT queue.

The Efficiency of Radix Sort
9.22 If an array contains n integers, the inner loop in the previous algorithm iterates n times. If each inte-

ger contains d digits, the outer loop iterates d times. Thus, the radix sort is O(d x n). The d in this
expression tells us that the actual running time for a radix sort depends on the size of the integers.
But on a computer, the typical integer is restricted in size to about 10 decimal digits, or 32 bits. As
long as d is fixed and is much smaller than n, radix sort is simply an O(n) algorithm.

Comparing the Algorithms

9.23 Figure 9-10 summarizes the efficiencies of the sorting algorithms presented in this chapter and the
previous chapter. Although a radix sort is fastest, it is not always applicable. The merge sort and
quick sort are generally faster than any of the other algorithms.

Question 4 Trace the steps that the algorithm radixSort takes when sorting the following
array into ascending order:

6340 1234 291 3 6325 68 5227 1638

Note: Although radix sort is an O(n) algorithm for certain data, it is not appropriate for all data.

Question 5 One of the difficulties with the radix sort is that the number of buckets depends on
the kind of strings you are sorting. You saw that sorting integers requires 10 buckets; sorting
words requires at least 26 buckets. If you use radix sort to alphabetize an array of words, what
changes would be necessary to the given algorithm?

238 CHAPTER 9 Faster Sorting Methods

FIGURE 9-10 The time efficiency of various sorting algorithms, expressed in
Big Oh notation

To give you an idea of how the problem size affects time efficiency, Figure 9-11 tabulates the
four growth-rate functions that appear in Figure 9-10 for several values of n. You certainly could
use an O(n2) sort algorithm when n is 10. When n is 100, a Shell sort is almost as fast as a quick
sort in the average case. But when n is one million, an average-case quick sort is much faster than a
Shell sort and much, much faster than an insertion sort.

If your array has relatively few entries, or if it is nearly sorted, the insertion sort is a
good choice. Otherwise, the quick sort is generally preferable. Note that merge sort is useful
when the data collection is in an external file because it is too large to reside in main mem-
ory all at once.

We will discuss another sorting algorithm, the heap sort, in Chapter 26. This technique is also
O(n log n), but the quick sort is usually preferable.

FIGURE 9-11 A comparison of growth-rate functions as n increases

CHAPTER SUMMARY

Average Case Best Case Worst Case

Radix sort
Merge sort
Quick sort
Shell sort
Insertion sort
Selection sort

 O(n)
 O(n log n)
 O(n log n)
 O(n1.5)
 O(n2)
 O(n2)

 O(n)
 O(n log n)
 O(n log n)
 O(n)
 O(n)
 O(n2)

 O(n)
 O(n log n)
 O(n2)
 O(n2) or O(n1.5)
 O(n2)
 O(n2)

n
n log2 n
n1.5

n2

10
33
32
102

102

664
103

104

103

9966
31,623
106

104

132,877
106

108

105

1,660,964
31,622,777
1010

106

19,931,569
109

1012

• Merge sort is a divide and conquer algorithm that halves an array, recursively sorts the two halves, and then
merges them into one sorted array.

• Merge sort is O(n log n). However, it does use additional memory to perform the merge step.

• Quick sort is another divide and conquer algorithm that partitions an array into two subarrays that are sepa-
rated by one entry, the pivot. The pivot is in its correct sorted position. The entries in one subarray are less
than or equal to the pivot, while the entries in the second subarray are greater than or equal to the pivot.
Quick sort recursively sorts the two subarrays.

• Quick sort is O(n log n) most of the time. Although it is O(n2) in its worst case, you usually can avoid this
case by choosing appropriate pivots.

• Even though merge sort and quick sort are O(n log n) algorithms, quick sort is usually faster in practice and
does not require additional memory.

Exercises 239

EXERCISES

• Radix sort treats array entries as if they were strings that have the same length. Initially radix sort distributes
the entries into buckets according to the character (digit) at one end of the strings. The sort then collects the
strings and distributes them again among the buckets according to the character or digit in the next position.
The sort continues this process until all character positions are considered.

• Radix sort does not compare array entries. Although it is O(n), it cannot sort all types of data. Thus, it is not
appropriate as a general-purpose sorting algorithm.

1. Suppose that 80 90 70 85 60 40 50 95 represents an array of Integer objects. Show the steps that a merge
sort takes when sorting this array.

2. Consider the method quickSort, as given in Segment 9.18, that sorts an array of objects into ascending order by
using a quick sort. Suppose that 80 90 70 85 60 40 50 95 represents an array of Integer objects.

a. What does the array look like after quickSort partitions it for the first time? (Show all intermediate results.)
b. How many comparisons did this partition process require?
c. The pivot is now between two subarrays called Smaller and Larger. Will the position of this particular

entry change during subsequent steps of the sort? Why or why not?
d. What recursive call to quickSort occurs next?

3. Consider the merge step of the merge sort.
a. What is the minimum number of comparisons needed to merge two subarrays each of size n/2?
b. Give a recurrence relation that counts the number of comparisons made in the best case.
c. Make an educated guess at the solution to the recurrence relation.

4. How many comparisons does quick sort require in the worst case when median-of-three partitioning is used?
What is the Big Oh for the worst case?

5. Show the steps that a radix sort takes when sorting the following array of Integer objects:

783 99 472 182 264 543 356 295 692 491 94

6. Show the steps that a radix sort takes when sorting the following array of strings into alphabetical order:

joke book back dig desk word fish ward dish wit deed fast dog bend

7. Describe how a card player can use a radix sort to sort a hand of cards.

8. Consider a collection of Comparable objects that is represented by a chain of linked nodes. Suppose that you want to
provide a sort operation for this collection.

a. Implement a private method that merges two sorted chains into one new sorted chain.
b. The method described in Part a could be part of a merge sort of a sorted chain. Describe how you could

implement such a sort.

9. Recall that a sorting algorithm is stable if it does not change the relative order of objects that are equal. What sorting
algorithms in this chapter and the previous one are stable?

10. Segment 9.7 showed that you can compute the efficiency of merge sort by solving the recurrence relation

t(n) = 2 t(n/2) + n when n > 1
t(1) = 0

Prove by induction that t(n) = n log2 n.

240 CHAPTER 9 Faster Sorting Methods

PROJECTS

11. A counting sort is a simple way to sort an array of n positive integers that lie between 0 and m, inclusive. You need
m + 1 counters. Then, making only one pass through the array, you count the number of times each integer occurs in
the array. For example, Figure 9-12 shows an array of integers that lie between 0 and 4 and the five counters after a
counting sort has made its pass through the array. From the counters, you can see that the array contains one 0, three
1s, two 2s, one 3, and three 4s. These counts enable you to determine that the sorted array should contain
0 1 1 1 2 2 3 4 4 4.

a. Write a method that performs a counting sort.
b. How does the efficiency of a counting sort compare to that of an insertion sort or a quick sort?

FIGURE 9-12 A counting sort of an array (see Exercise 11)

Original array 4 2 1 3 4 1 2 1 0 4

One 0
Three 1s
Two 2s
One 3
Three 4s

3
43

12
21

31
0

Counters

Sorted array 0 1 1 1 2 2 3 4 4 4

1. Implement the recursive algorithm for merge sort.

2. Segment 9.8 introduced you to an iterative merge sort. This project continues that discussion by providing more
details about the merge steps.

a. If n is a power of 2, as it is in Figure 9-3, you would merge pairs of individual entries, starting at the
beginning of the array. Then you would return to the beginning of the array and merge pairs of two-
entry subarrays. Finally, you would merge one pair of four-entry subarrays. Notice that the subarrays
in each pair of subarrays contain the same number of entries.

In general, n might not be a power of 2. After merging a certain number of pairs of subarrays, you
might have too few entries left to make up a complete pair of subarrays. In Figure 9-13a, after merging
pairs of single entries, one entry is left over. You then merge one pair of two-entry subarrays, and merge
the leftover two-entry subarray with the leftover single entry. Parts b and c of Figure 9-13 show two
other possibilities.

Implement an iterative merge sort. Use the algorithm merge that was given in Segment 9.3. A private
method that uses merge to merge the pairs of subarrays is useful. After the method completes its task, you
can handle the leftovers that we just described.

b. Merging two subarrays requires an additional temporary array. Although you need to use this extra
space, you can save much of the time that our earlier merge algorithm spends in copying entries
from the temporary array back to the original array. If a is the original array and t is the temporary
array, you first merge subarrays of a into the array t. Instead of copying t back to a and continuing
the merge, you determine subarrays of t and merge them into a. If you can do this an even number
of times, no additional copying is necessary. Make these changes to the iterative merge sort that
you wrote in Part a.

Projects 241

3. Consider the following implementation of an iterative merge sort. Scan the array from its beginning and partition
it into segments that are each sorted. As you find each segment, represent it as a pair of indices and place the pair
at the end of an initially empty vector.

Next, remove the first two pairs from the vector and merge the array segments they represent. Notice that
these segments are adjacent in the array. The merge results in a larger segment that is sorted. Place the pair of indi-
ces that represents the resulting segment at the end of the vector. Repeat the steps in this paragraph until only one
entry remains in the vector.

Sometimes during the process, the two pairs at the beginning of the vector will represent segments that are
not adjacent. In this case, move the first pair to the end of the vector and continue.

a. What is the best-case performance of this algorithm?
b. What is the worst-case performance of this algorithm?
c. Implement the algorithm.

FIGURE 9-13 Special cases in an iterative merge sort after merging one-entry subarrays

(a) 7 5 9 3 6 0 2

7 5 9 3 6 0 2

5 7 3 9 0 6

3 5 7 9 0 2 6

0 2 3 5 6 7 9

7 5 9 3 6 0

7 5 9 3 6 0

5 7 3 9 0 6

3 5 7 9

0 3 5 6 7 9

(c) 7 5 9 3 6

7 5 9 3 6

5 7 3 9

3 5 7 9

3 5 6 7 9

(b)

242 CHAPTER 9 Faster Sorting Methods

ANSWERS TO SELF-TEST QUESTIONS

4. Revise the implementation of quick sort as follows. If the array has 7 entries, choose the middle entry as the pivot.
For arrays of between 8 and 40 entries, use the median-of-three pivot-selection scheme described in Segments 9.14
and 9.16. For larger arrays, the pivot is the median of 9 entries that are about equally spaced, including the first, last,
and middle entries. For arrays of fewer than 7 entries, use insertion sort instead of quick sort.

5. Extend Project 1 of the previous chapter to provide graphical demonstrations of the merge sort and quick sort
algorithms introduced in this chapter.

6. The median of a collection of data is the middle value. One way to find the median is to sort the data and take the
value that is at—or nearly at—the center of the collection. But sorting does more than necessary to find the median.
You need to find only the kth smallest entry in the collection for an appropriate value of k. To find the median of n
items, you would take k as n/2 rounded up—that is, .

You can use the partitioning strategy of quick sort to find the kth smallest entry in an array. After choosing a
pivot and forming the subarrays Smaller and Larger, as described in Segment 9.10, you can draw one of the fol-
lowing conclusions:

• If Smaller contains k or more entries, it must contain the kth smallest entry.
• If Smaller contains k - 1 entries, the kth smallest entry is the pivot.
• If Smaller contains fewer than k - 1 entries, the kth smallest entry is in Larger.

You now can develop a recursive solution to finding the kth smallest entry. The first and last conclusions corre-
spond to the recursive calls. The remaining one is the base case.

Implement a recursive method that finds the kth smallest entry in an unsorted array. Use your method to find
the median in the array.

7. A binary radix sort will sort an array a of n integer values based on their binary bits instead of their decimal digits.
This sort will need only two buckets. Represent the buckets as a 2 by n array. You can avoid some work by not
copying the contents of the buckets back into the array a at the end of each pass. Instead just add the values from
the second bucket to the end of the first bucket.

Implement this algorithm.

8. Repeat Project 3 of the previous chapter, but instead compare the merge sort and the quick sort.

9. Implement a merge sort of the objects in a chain of linked nodes. Compare the run times of this version of merge
sort and a quick sort of the same data in an array. See the projects at the end of Chapter 4 for a description of how
to time a block of Java code.

10. Implement a radix sort of the strings in a chain of linked nodes.

n 2⁄

1. 9 6 2 4 8 7 5 3
9 6 2 4 8 7 5 3

9 6 2 4 8 7 5 3
9 6 2 4 8 7 5 3
6 9 2 4 7 8 3 5
2 4 6 9 3 5 7 8

2 3 4 5 6 7 8 9

Answers to Self-Test Questions 243

2. Algorithm mergeSort(a, tempArray, first, last)
if (first < last)
{

mid = (first + last) / 2
mergeSort(a, first, mid)
mergeSort(a, mid + 1, last)
if (array[mid] > array[mid + 1]))

Merge the sorted halves a[first..mid] and a[mid+1..last] using the array tempArray
}

3. quickSort(array, 0, 7)
partition(array, 0, 7)
9 6 2 4 8 7 5 3
3 6 2 4 8 7 5 9
3 6 2 5 8 7 4 9
3 2 6 5 8 7 4 9
3 2 4 5 8 7 6 9
quickSort(array, 0, 1)
insertionSort(array, 0, 1)
2 3 4 5 8 7 6 9
quickSort(array, 3, 7)
partition(array, 3, 7)
2 3 4 5 8 7 6 9
2 3 4 5 8 6 7 9
2 3 4 5 6 8 7 9
2 3 4 5 6 7 8 9
quickSort(array, 3, 4)
insertionSort(array, 3, 4)
2 3 4 5 6 7 8 9
quickSort(array, 6, 7)
insertionSort(array, 6, 7)
2 3 4 5 6 7 8 9

4. 6340 1234 0291 0003 6325 0068 5227 1638
6340 0291 0003 1234 6325 5227 0068 1638
0003 6325 5227 1234 1638 6340 0068 0291
0003 0068 5227 1234 0291 6325 6340 1638
0003 0068 0291 1234 1638 5227 6325 6340
0003 0068 0291 1234 1638 5227 6325 6340

5. Algorithm radixSort(a, first, last, wordLength)
// Sorts the array of lowercase words a[first..last] into ascending order;
// treats each word as if it was padded on the right with blanks to make all words have
// the same length, wordLength.

for (i = 1 to wordlength)
{

Clear bucket['a'], bucket['b'], . . . , bucket['z'], bucket[' ']
for (index = first to last)
{

letter = ith letter from the right of a[index]
Place a[index] at end of bucket[letter]

}
Place contents of bucket['a'], bucket['b'], . . . , bucket['z'], bucket[' ']

into the array a
}

This page intentionally left blank

Chapter

10
Queues, Deques,

and Priority
Queues

Contents
The ADT Queue

A Problem Solved: Simulating a Waiting Line
A Problem Solved: Computing the Capital Gain in a Sale of Stock
Java Class Library: The Interface Queue

The ADT Deque
A Problem Solved: Computing the Capital Gain in a Sale of Stock
Java Class Library: The Interface Deque
Java Class Library: The Class ArrayDeque

The ADT Priority Queue
A Problem Solved: Tracking Your Assignments
Java Class Library: The Class PriorityQueue

Prerequisites
Appendix D Designing Classes
Chapter 5 Stacks
Chapter 8 An Introduction to Sorting

Objectives
After studying this chapter, you should be able to
• Describe the operations of the ADT queue
• Use a queue to simulate a waiting line
• Use a queue in a program that organizes data in a first-in, first-out manner
• Describe the operations of the ADT deque
• Use a deque in a program that organizes data chronologically and can operate on both the oldest and newest entries
• Describe the operations of the ADT priority queue
• Use a priority queue in a program that organizes data objects according to their priorities

246 CHAPTER 10 Queues, Deques, and Priority Queues

Waiting for your turn is a fact of life. Most people have spent much time standing in lines at stores,
banks, or movie theaters. You have probably waited on the telephone for an airline representative or a
technical support person, and you may have waited for your printed output to finally reach the printer
in the computer lab. In each of these examples, people wait with the expectation that they will be
served before everyone who has come after them. That is, first come, first served.

A queue is another name for a waiting line, and it is the name of one of the ADTs that we will
investigate in this chapter. Queues are used within operating systems and to simulate real-world
events—that is, they come into play whenever processes or events must wait.

Sometimes you need more flexibility than a queue permits. A double-ended queue, or deque,
organizes data like a queue but enables you to operate on both its oldest and newest entries. And
when the importance of an object depends on criteria other than its arrival time, you can assign it
a priority. You can organize such objects within a priority queue according to their priorities
instead of chronologically.

The queue, deque, and priority queue are three ADTs that this chapter will explore.

The ADT Queue

10.1 Like a stack, the ADT queue organizes its entries according to the order in which they were added.
But while a stack has a last-in, first-out behavior, a queue exhibits a first-in, first-out, or FIFO,
behavior. To achieve this behavior, all additions to a queue are at its back. The item added most
recently, then, is at the back of a queue. The item that was added earliest is at the front of a queue.
Figure 10-1 provides examples of some common queues.

FIGURE 10-1 Some everyday queues

VideoNote

A queue, like a stack, restricts access to its entries. Although someone might cut into a line of
people, additions to a software queue must occur at its back. A client can look at or remove only the
entry at the front of the queue. The only way to look at an entry that is not at the front of a queue is

Note: Among the items in a queue, the one added first, or earliest, is at the front of the
queue, and the one added most recently is at the back of the queue.

The ADT queue

The ADT Queue 247

to repeatedly remove items from the queue until the desired item reaches the front. If you were to
remove all of a queue’s entries one by one, you would get them in chronological order, beginning
with the first item added to the queue.

The queue has no search operation. An entry’s value is not relevant to the queue or to the
entry’s position within the queue.

10.2 The operation that adds an entry to a queue is traditionally called enqueue (pronounced “N-Q”). The
operation to remove an entry is dequeue (pronounced “D-Q”). The operation that retrieves the queue’s
front entry is called getFront. The following specifications define a set of operations for the ADT queue:

ABSTRACT DATA TYPE: QUEUE

DATA

• A collection of objects in chronological order and having the same data type

OPERATIONS

PSEUDOCODE UML DESCRIPTION

enqueue(newEntry) +enqueue(newEntry: integer): void Task: Adds a new entry to the back of
the queue.

Input: newEntry is the new entry.
Output: None.

dequeue() +deque(): T Task: Removes and returns the entry at the
front of the queue.

Input: None.
Output: Returns either the queue’s front

entry or, if the queue is empty before
the operation, null.

getFront() +getFront(): T Task: Retrieves the queue’s front entry
without changing the queue in any way.

Input: None.
Output: Returns either the queue’s front entry

or, if the queue is empty, null.

isEmpty() +isEmpty(): boolean Task: Detects whether the queue is empty.
Input: None.
Output: Returns true if the queue is empty.

clear() +clear(): void Task: Removes all entries from the queue.
Input: None.
Output: None.

248 CHAPTER 10 Queues, Deques, and Priority Queues

10.3 The Java interface in Listing 10-1 specifies a queue of objects. The generic type T—which can be
any class type—represents the data type of the items in the queue.

10.4 Example: Demonstrating the queue methods. The following statements add, retrieve, and
remove strings from a queue. We assume that the class LinkedQueue implements QueueInterface
and is available.

QueueInterface<String> myQueue = new LinkedQueue<String>();
myQueue.enqueue("Jim");
myQueue.enqueue("Jess");
myQueue.enqueue("Jill");
myQueue.enqueue("Jane");
myQueue.enqueue("Joe");

String front = myQueue.getFront(); // returns "Jim"
System.out.println(front + " is at the front of the queue.");

front = myQueue.dequeue(); // removes and returns "Jim"
System.out.println(front + " is removed from the queue.");

myQueue.enqueue("Jerry");

Note: Alternate names for methods
As we mentioned in Chapter 5, class designers often include aliases for certain methods. For
a queue, you could include the additional methods put and get to mean enqueue and
dequeue. The names add, insert, remove, and delete are also reasonable aliases. Likewise,
you could provide a method peek to mean getFront.

LISTING 10-1 An interface for the ADT queue

public interface QueueInterface<T>
{

/** Adds a new entry to the back of the queue.
@param newEntry an object to be added */

public void enqueue(T newEntry);

/** Removes and returns the entry at the front of this queue.
@return either the object at the front of the queue or, if the

queue is empty before the operation, null */
public T dequeue();

/** Retrieves the entry at the front of this queue.
@return either the object at the front of the queue or, if the

queue is empty, null */
public T getFront();

/** Detects whether this queue is empty.
@return true if the queue is empty, or false otherwise */

public boolean isEmpty();

/** Removes all entries from this queue. */
public void clear();

} // end QueueInterface

The ADT Queue 249

front = myQueue.getFront(); // returns "Jess"
System.out.println(front + " is at the front of the queue.");

front = myQueue.dequeue(); // removes and returns "Jess"
System.out.println(front + " is removed from the queue.");

Parts a through e of Figure 10-2 illustrate the five additions to the queue. Following these addi-
tions, the queue contains—from front to back—the strings Jim, Jess, Jill, Jane, and Joe. The string
at the front of the queue is Jim; getFront retrieves it. The method dequeue retrieves Jim again and
then removes it from the queue (Figure 10-2f). A subsequent call to enqueue adds Jerry to the back
of the queue but does not affect the front (Figure 10-2g). Thus, getFront retrieves Jess, and
dequeue retrieves Jess and then removes it (Figure 10-2h).

If we now were to execute dequeue repeatedly until the queue was empty, an additional call to
either dequeue or getFront would return null.

FIGURE 10-2 A queue of strings after (a) enqueue adds Jim; (b) enqueue adds
Jess; (c) enqueue adds Jill; (d) enqueue adds Jane; (e) enqueue
adds Joe; (f) dequeue retrieves and removes Jim; (g) enqueue
adds Jerry; (h) dequeue retrieves and removes Jess

(h)

(g)

Jess Jill Jane Joe(f)

Jim Jess Jill Jane Joe(e)

Jim Jess Jill Jane(d)

Jim Jess Jill(c)

Jim Jess(b)

Jim(a)

Jim

Jess Jill Jane Joe Jerry

Jess Jill Jane Joe Jerry

Question 1 After the following nine statements execute, what string is at the front of the
queue and what string is at the back?

QueueInterface<String> myQueue = new LinkedQueue<String>();
myQueue.enqueue("Jim");
myQueue.enqueue("Jess");
myQueue.enqueue("Jill");
myQueue.enqueue("Jane");
String name = myQueue.dequeue();
myQueue.enqueue(name);
myQueue.enqueue(myQueue.getFront());
name = myQueue.dequeue();

250 CHAPTER 10 Queues, Deques, and Priority Queues

A Problem Solved: Simulating a Waiting Line

FIGURE 10-3 A line, or queue, of people

10.5 Most businesses are concerned with the time that their customers must wait for service. A short wait
time enables an organization to increase customer satisfaction, serve more people, and make more
money. If two agents serve one line, you will wait less time than if only one agent is on duty. A busi-
ness, however, does not want to employ more people than necessary. And a car wash certainly would
not build an additional service bay to test its effect on the time its customers wait in a single line.

Computer simulation of a real-world situation is a common way to test various business sce-
narios. In this example, we will simulate one line of people waiting for service from one agent.
Customers arrive at different intervals and require various times to complete their transactions. One
way to achieve this variety is to assume that the events are random.

In a time-driven simulation, a counter enumerates simulated units of time—minutes, for example.
Customers arrive at random times during the simulation and enter the queue. Each customer is assigned a
random transaction time—that is, the amount of time required for the customer’s transaction—that does not
exceed some arbitrary upper bound. During the simulation, the time that each customer waits in the queue
is recorded. At the conclusion of the simulation, summary statistics are generated, including the number of
customers served and the average time that each waited.

10.6 Solution design. Two kinds of objects occur in the description of this problem: the waiting line and
the customers. We can design a class for each of these.

Programming Tip: Methods such as getFront and dequeue must behave reasonably
when the queue is empty. Here, we specify that they return null. Another possibility is to
have them throw an exception.

In many everyday situations, you will wait in a line. Whether the line is at a store, a ticket win-
dow, or a car wash, a line behaves like the ADT queue. The person at the front of the line is
served first; newcomers go to the back of the line, as Figure 10-3 shows. In this problem, we
will perform a computer simulation of a waiting line.

The ADT Queue 251

The class WaitLine simulates the waiting line for a given period of time. During this time, cus-
tomers enter the line at random intervals and leave it after being served. At the conclusion of the
simulation, the class computes the summary statistics. Figure 10-4 shows a CRC card for this class.

The class Customer records and makes available the customer’s arrival time, transaction time,
and customer number. Figure 10-5 contains a class diagram for WaitLine and Customer.

FIGURE 10-4 A CRC card for the class WaitLine

FIGURE 10-5 A diagram of the classes WaitLine and Customer

10.7 The method simulate. The method simulate is the heart of this example and of the class WaitLine.
To maintain the clock for this time-driven simulation, simulate contains a loop that counts up to a
given duration. For example, the clock could simulate one hour by counting minutes, beginning at 0
and continuing until 60.

WaitLine
Responsibilities
 Simulate customers entering and leaving a
 waiting line
 Display number served, total wait time,
 average wait time, and number left in line

Collaborations
 Customer

line—a queue of customers
numberOfArrivals—number of customers
numberServed—number of customers actually served
totalTimeWaited—total time customers have waited

Customer

WaitLine

arrivalTime
transactionTime
customerNumber

getArrivalTime()
getTransactionTime()
getCustomerNumber()

simulate(duration, arrivalProbability, maxTransactionTime)
displayResults()

1

*

252 CHAPTER 10 Queues, Deques, and Priority Queues

At each value of the clock, the method sees whether the current customer is still being served and
whether a new customer has arrived. If a new customer arrives, the method creates a new customer
object, assigns it a random transaction time, and places the customer into the queue. If a customer is still
being served, the clock advances; if not, a customer leaves the front of the queue and begins service. At
this point, the time the customer waited is noted. Figure 10-6 provides an example of the queue for a por-
tion of the simulation.

The following pseudocode describes the method simulate. It assumes that the class WaitLine has
initialized its data fields as follows: line is an empty queue, and numberOfArrivals, numberServed,
and totalTimeWaited are each zero.

Algorithm simulate(duration, arrivalProbability, maxTransactionTime)
transactionTimeLeft = 0
for (clock = 0; clock < duration; clock++)
{

if (a new customer arrives)
{

numberOfArrivals++
transactionTime = a random time that does not exceed maxTransactionTime
nextArrival = a new customer containing clock, transactionTime, and

a customer number that is numberOfArrivals
line.enqueue(nextArrival)

}

if (transactionTimeLeft > 0) // if present customer is still being served
transactionTimeLeft--

else if (!line.isEmpty())
{

nextCustomer = line.dequeue()
transactionTimeLeft = nextCustomer.getTransactionTime() - 1
timeWaited = clock - nextCustomer.getArrivalTime()
totalTimeWaited = totalTimeWaited + timeWaited
numberServed++

}
}

10.8 Implementation details for simulate. At each value of the clock, simulate must determine
whether a new customer has arrived. To do so, it needs the probability that a customer will arrive.
This arrival probability is a parameter of the method and has a value between 0 and 1. For exam-
ple, if there is a 65 percent chance that a customer will arrive at any given time, the arrival prob-
ability is 0.65. We then generate a random number between 0 and 1 by using the method random
in Java’s class Math. If the value returned by Math.random() is less than the given arrival proba-
bility, simulate creates a new customer and places it into the queue.

The method assigns to each new customer a random transaction time. Given a maximum value
for this time, we can multiply it by Math.random() to get a random transaction time. Adding 1 to the
result ensures that the transaction time is never 0 but allows a small chance that the transaction time
will exceed the given maximum value by 1. For simplicity, we will tolerate this small imprecision.

Question 2 Consider the simulation begun in Figure 10-6.
a. At what time does Customer 4 finish and depart?
b. How long does Customer 5 wait before beginning the transaction?

The ADT Queue 253

FIGURE 10-6 A simulated waiting line

Transaction time left: 5

Time: 0
1

Customer 1 enters line with a 5-minute transaction.
Customer 1 begins service after waiting 0 minutes.

Wait: 0

Transaction time left: 2 3

Time: 3
1 2

Customer 1 continues to be served.

Transaction time left: 4

Time: 1

Customer 1 continues to be served.
1

Transaction time left: 3 3

Time: 2

Transaction time left: 1 3 1

Time: 4

Customer 1 continues to be served.
Customer 2 enters line with a 3-minute transaction.1 2

Customer 1 continues to be served.
Customer 3 enters line with a 1-minute transaction.

1 2 3

Transaction time left: 1 1 2 4

Transaction time left: 3 1 2

Transaction time left: 2 1 2

Transaction time left: 1 2 4

Transaction time left: 2 4

Time: 7

Time: 5

Time: 6

Time: 8

Time: 9

Customer 1 finishes and departs.
Customer 2 begins service after waiting 3 minutes.
Customer 4 enters line with a 2-minute transaction.2

Wait: 3
3 4

Customer 2 continues to be served.
2 3 4

Customer 2 continues to be served.
Customer 5 enters line with a 4-minute transaction.2 3 4 5

Customer 2 finishes and departs.
Customer 3 begins service after waiting 4 minutes.

Wait: 4
3 4 5

Customer 3 finishes and departs.
Customer 4 begins service after waiting 4 minutes.

Wait: 4
4 5

254 CHAPTER 10 Queues, Deques, and Priority Queues

An implementation of the class WaitList appears in Listing 10-2. The definition of the method
simulate contains print statements to help you follow the simulation. The other methods in the
class are straightforward.

LISTING 10-2 The class WaitLine

/** Simulates a waiting line. */
public class WaitLine
{

private int numberOfArrivals;
private int numberServed;
private int totalTimeWaited;

public WaitLine()
{

reset();
} // end default constructor

/** Simulates a waiting line with one serving agent.
@param duration the number of simulated minutes
@param arrivalProbability a real number between 0 and 1, and the

probability that a customer arrives at
a given time

@param maxTransactionTime the longest transaction time for a
customer */

public void simulate(int duration, double arrivalProbability,
int maxTransactionTime)

{
int transactionTimeLeft = 0;

for (int clock = 0; clock < duration; clock++)
{

if (Math.random() < arrivalProbability)
{

numberOfArrivals++;
int transactionTime = (int)(Math.random()

* maxTransactionTime + 1);
Customer nextArrival = new Customer(clock, transactionTime,

numberOfArrivals);

System.out.println("Customer " + numberOfArrivals
+ " enters line at time " + clock
+ ". Transaction time is "
+ transactionTime);

} // end if

if (transactionTimeLeft > 0)

private QueueInterface<Customer> line;

line = new LinkedQueue<Customer>();

line.enqueue(nextArrival);

The ADT Queue 255

10.9 Sample output. The Java statements
WaitLine customerLine = new WaitLine();
customerLine.simulate(20, 0.5, 5);
customerLine.displayResults();

simulate the line for 20 minutes with a 50 percent arrival probability and a 5-minute maximum trans-
action time. They produce the following results:

Customer 1 enters line at time 0. Transaction time is 4
Customer 1 begins service at time 0. Time waited is 0
Customer 2 enters line at time 2. Transaction time is 2

transactionTimeLeft--;
else if (!line.isEmpty())
{

transactionTimeLeft = nextCustomer.getTransactionTime() - 1;
int timeWaited = clock - nextCustomer.getArrivalTime();
totalTimeWaited = totalTimeWaited + timeWaited;
numberServed++;
System.out.println("Customer "

+ nextCustomer.getCustomerNumber()
+ " begins service at time " + clock
+ ". Time waited is " + timeWaited);

} // end if
} // end for

} // end simulate

/** Displays summary results of the simulation. */
public void displayResults()
{

System.out.println();
System.out.println("Number served = " + numberServed);
System.out.println("Total time waited = " + totalTimeWaited);
double averageTimeWaited = ((double)totalTimeWaited) /

numberServed;
System.out.println("Average time waited = " + averageTimeWaited);
int leftInLine = numberOfArrivals - numberServed;
System.out.println("Number left in line = " + leftInLine);

} // end displayResults

/** Initializes the simulation. */
public final void reset()
{

line.clear();
numberOfArrivals = 0;
numberServed = 0;
totalTimeWaited = 0;

} // end reset
} // end WaitLine

Customer nextCustomer = line.dequeue();

256 CHAPTER 10 Queues, Deques, and Priority Queues

Customer 3 enters line at time 4. Transaction time is 1
Customer 2 begins service at time 4. Time waited is 2
Customer 4 enters line at time 6. Transaction time is 4
Customer 3 begins service at time 6. Time waited is 2
Customer 4 begins service at time 7. Time waited is 1
Customer 5 enters line at time 9. Transaction time is 1
Customer 6 enters line at time 10. Transaction time is 3
Customer 5 begins service at time 11. Time waited is 2
Customer 7 enters line at time 12. Transaction time is 4
Customer 6 begins service at time 12. Time waited is 2
Customer 8 enters line at time 15. Transaction time is 3
Customer 7 begins service at time 15. Time waited is 3
Customer 9 enters line at time 16. Transaction time is 3
Customer 10 enters line at time 19. Transaction time is 5
Customer 8 begins service at time 19. Time waited is 4

Number served = 8
Total time waited = 16
Average time waited = 2.0
Number left in line = 2

Since this example uses random numbers, another execution of the Java statements likely will
have different results.

A Problem Solved: Computing the Capital Gain in a Sale of Stock

10.10 Solution design. To simplify the example, we assume that all transactions are for stocks of a single
company and that there is no commission charge for the transactions. The class StockPurchase
records the cost of a single share of stock.

Note: Pseudo-random numbers
Java’s method Math.random generates numbers that are uniformly distributed over the interval
from 0 to 1. Actual times for processing customer transactions, however, are not uniformly dis-
tributed. They are close together, and few times are far from the average transaction time. One
such distribution is called a Poisson distribution. Ideally, this simulation should use a different
pseudo-random number generator. Since our maximum transaction time is small, however,
using Math.random probably has little effect on the average wait time.

Suppose that you buy n shares of a stock or mutual fund for d dollars each. Later you sell some
of these shares. If the sale price exceeds the purchase price, you have made a profit—a capital
gain. On the other hand, if the sale price is lower than the purchase price, you experience a loss.
We will designate a loss as a negative capital gain.

Typically, investors buy shares in a particular company or fund over a period of time. For exam-
ple, suppose that last year you bought 20 shares of Presto Pizza at $45 per share. Last month, you
bought 20 additional shares at $75 per share, and today you sold 30 shares at $65 per share. What is
your capital gain? Well, which of your 40 shares did you actually sell? Unfortunately, you cannot
pick and choose. When computing capital gains, you must assume that you sell shares in the order in
which you purchased them (meaning that stock sales are a first-in, first-out application). So in our
example, you sold the 20 shares that you bought at $45 each and 10 of the shares that you bought at
$75 each. Your cost for the 30 shares is $1650. You sold them for $1950, a profit of $300.

 Design a way to record your investment transactions chronologically and to compute the
capital gain of any stock sale.

The ADT Queue 257

Figure 10-7 shows a CRC card for the class StockLedger. The class enables us to record stock
purchases in chronological order. At the time of sale, the class computes the capital gain and
updates the record of stocks owned. These last two steps are related, so we combine them into one
method. Thus, the class has two methods, buy and sell, as Figure 10-8 illustrates.

FIGURE 10-7 A CRC card for the class StockLedger

FIGURE 10-8 A diagram of the classes StockLedger and StockPurchase

The following statements demonstrate how we could use StockLedger to record the transac-
tions given in the problem description:

StockLedger myStocks = new StockLedger();
myStocks.buy(20, 45); // buy 20 shares at $45
myStocks.buy(20, 75); // buy 20 shares at $75
double capGain = myStocks.sell(30, 65); // sell 30 shares at $65

10.11 Implementation. In this example, StockLedger records instances of StockPurchase—which rep-
resent the shares we own—in a queue. A queue orders the shares chronologically, so we can sell
them in the order in which we purchased them. The method buy then just enqueues each share that
is bought.

The method sell removes from the queue as many shares as are sold. As it does this, it computes
the total capital gain from the sale and returns it. The class StockLedger is given in Listing 10-3.

StockLedger
Responsibilities
 Record the shares of a stock purchased, in
 chronological order
 Remove the shares of a stock sold, beginning
 with the ones held the longest
 Compute the capital gain (loss) on shares of a
 stock sold

Collaborations
 Share of stock

StockLedger

cost—cost of one share

getCostPerShare()

*

*
ledger—a collection of shares owned, in order of their purchase

buy(sharesBought, pricePerShare)
sell(sharesSold, pricePerShare)

StockPurchase

258 CHAPTER 10 Queues, Deques, and Priority Queues

10.12 An observation about this solution. A typical stock transaction involves multiple shares, and the
two methods buy and sell reflect this reality in their parameters. For example, the invocation

LISTING 10-3 The class StockLedger

/** Records the purchase and sale of stocks, and provides the capital
gain or loss. */

public class StockLedger
{

public StockLedger()
{

} // end default constructor

/** Records a stock purchase in this ledger.
@param sharesBought the number of shares purchased
@param pricePerShare the price per share */

public void buy(int sharesBought, double pricePerShare)
{

for (; sharesBought > 0; sharesBought--)
{

StockPurchase purchase = new StockPurchase(pricePerShare);

} // end for
} // end buy

/** Removes from this ledger any shares that were sold
and computes the capital gain or loss.
@param sharesSold the number of shares sold
@param pricePerShare the price per share
@return the capital gain (loss) */

public double sell(int sharesSold, double pricePerShare)
{

double saleAmount = sharesSold * pricePerShare;
double totalCost = 0;

while (sharesSold > 0)
{

double shareCost = share.getCostPerShare();
totalCost = totalCost + shareCost;
sharesSold--;

} // end while

return saleAmount - totalCost; // gain or loss
} // end sell

} // end StockLedger

private QueueInterface<StockPurchase> ledger;

ledger = new LinkedQueue<StockPurchase>();

ledger.enqueue(purchase);

StockPurchase share = ledger.dequeue();

The ADT Queue 259

myStocks.buy(30, 45) indicates a purchase of 30 shares at $45 per share. However, notice that the
implementation of buy adds each of the 30 shares to a queue. Figure 10-9a shows such a queue. The
advantage of this approach is that sell can remove as many or as few shares as necessary.

Suppose that we instead encapsulate the purchase of 30 shares into one object and add it to the queue, as
Figure 10-9b illustrates. If we then sell 20 of those shares, we would remove the object from the queue and
learn the shares’ purchase price. But we would have 10 shares that must remain in the queue. Since these are
the oldest shares, we could not simply add them to the back of the queue; they must remain at the front. The
ADT queue has no operation that modifies its front entry, nor does it have one to add an object to its front. If
each entry has set methods, however, Java will allow the client to modify the entry at the front by using the
reference that getFront returns. In this case, you would not remove the front entry until you have sold all of
the shares it represents. Exercise 10 at the end of this chapter asks you to explore this approach.

On the other hand, if each entry in the queue does not have set methods, you would not be able
to modify it. The queue would not be the right ADT to use when each entry represents more than
one share of stock. Segment 10.14 explores another ADT that you can use instead.

FIGURE 10-9 A queue of (a) individual shares of stock; (b) grouped shares

Java Class Library: The Interface Queue
10.13 The standard package java.util in the Java Class Library contains an interface Queue that is simi-

lar to our QueueInterface but specifies more methods. We list here a selection of method headers
similar to the ones you have seen in this chapter. We have highlighted where they differ from our
methods. Once again, T is the generic type.

Adds a new entry to the back of this queue, returning true if successful and throwing an exception if not.

Adds a new entry to the back of this queue, returning true or false according to the success of
the operation.

Retrieves and removes the entry at the front of this queue, but throws NoSuchElementException
if the queue is empty prior to the operation.

Retrieves and removes the entry at the front of this queue, but returns null if the queue is empty
prior to the operation.

(a)

(b)

45

30 45

45 45

Note: A class that has set methods is a class of mutable objects. A class without set meth-
ods is a class of immutable objects. Chapter 30 talks about such classes in more detail.

public boolean add(T newEntry)

public boolean offer(T newEntry)

public T remove()

public T poll()

public T element()

260 CHAPTER 10 Queues, Deques, and Priority Queues

Retrieves the entry at the front of this queue, but throws NoSuchElementException if the queue
is empty.

Retrieves the entry at the front of this queue, but returns null if the queue is empty.

public boolean isEmpty()
Detects whether this queue is empty.

public void clear()
Removes all entries from this queue.

Gets the number of elements currently in this queue.

Some of these methods occur in pairs. Both add and offer add a new entry to the queue. If the opera-
tion is unsuccessful, add throws an exception but offer returns false. Likewise, each of the methods
remove and poll removes and returns the entry at the front of the queue. If the queue is empty before the
operation, remove throws an exception but poll returns null. Finally, peek and element each retrieve the
entry at the front of the queue. If the queue is empty, element throws an exception but peek returns null.

You can learn more about Queue and the other components of the Java Class Library at
download.oracle.com/javase/7/docs/api/.

The ADT Deque

10.14 Imagine that you are in a line at the post office. When it is finally your turn, the postal agent asks
you to fill out a form. You step aside to do so and let the agent serve the next person in the line.
After you complete the form, the agent will serve you next. Essentially, you go to the front of the
line, rather than waiting in line twice.

Similarly, suppose that you join a line at its end but then immediately decide it is too long, so you
leave it. To simulate both of these examples, you want an ADT whose operations enable you to add,
remove, or retrieve entries at both the front and back of a queue. Such an ADT is called a double-
ended queue, or deque (pronounced “deck”).

A deque has both queuelike operations and stacklike operations. For example, the deque opera-
tions addToBack and removeFront resemble the queue operations enqueue and dequeue, respec-
tively. And addToFront and removeFront are like the stack operations push and pop, respectively. In
addition, a deque has the operations getFront, getBack, and removeBack. Figure 10-10 illustrates a
deque and these methods.

FIGURE 10-10 An instance d of a deque

Since the specifications for the deque operations are like those you have already seen for a
queue and a stack, we provide the brief Java interface in Listing 10-4 without comments.

public T peek()

public int size()

Note: Although the ADT deque is called a double-ended queue, it actually behaves like a double-
ended stack. As Figure 10-10 shows, you can push, pop, or get items at either of its ends.

Back

d.addToFront(item)

d.removeFront()

d.getFront()

d.addToBack(item)

d.removeBack()

d.getBack()

Front

The deque d

The ADT Deque 261

A comparison of the operations that add, remove, and retrieve the entries of a stack, queue, and
deque is provided in Figure 10-11.

FIGURE 10-11 A comparison of operations for a stack s, a queue q, and a deque d:
(a) add; (b) remove; (c) retrieve

LISTING 10-4 An interface for the ADT deque

public interface DequeInterface<T>
{

public void addToFront(T newEntry);
public void addToBack(T newEntry);
public T removeFront();
public T removeBack();
public T getFront();
public T getBack();
public boolean isEmpty();
public void clear();

} // end DequeInterface

(a) Add

(b) Remove

(c) Retrieve

Back

s.push(item)

d.addToFront(item)

q.enqueue(item)

d.addToBack(item)

Front (top)

s.pop()

q.dequeue()

d.removeFront()

d.removeBack()

s.peek()

q.getFront

d.getFront()

d.getBack()

BackFront (top)

BackFront (top)

The stack s, queue q, or deque d

Question 3 After the following nine statements execute, what string is at the front of the
deque and what string is at the back?

DequeInterface<String> myDeque = new LinkedDeque<String>();
myDeque.addToFront("Jim");
myDeque.addToBack("Jess");
myDeque.addToFront("Jill");
myDeque.addToBack("Jane");
String name = myDeque.getFront();
myDeque.addToBack(name);
myDeque.removeFront();
myDeque.addToFront(myDeque.removeBack());

262 CHAPTER 10 Queues, Deques, and Priority Queues

10.15 Example. When typing at your keyboard, you might make a mistake. If you backspace to correct
your mistake, what logic is used to decipher your intention? For example, if the symbol ← repre-
sents a backspace, and you type

cm←ompte←←utr←er

the result should be

computer

Each backspace erases the previous character entered.
To replicate this process, as characters are entered, we retain them in an ADT. We want this

ADT to be stacklike so we can access the most recently entered character. But since we ultimately
want the corrected characters to be in the order in which they were entered, we want the ADT to
also behave like a queue. The ADT deque can satisfy these requirements.

The following pseudocode uses a deque to read and display a line of keyboard input:
// read a line
d = a new empty dequeue
while (not end of line)
{

character = next character read
if (character == ←)

d.removeBack()
else

d.addToBack(character)
}
// display the corrected line
while (!d.isEmpty())

System.out.print(d.removeFront())
System.out.println()

A Problem Solved: Computing the Capital Gain in a Sale of Stock

10.16 In this section, we revise the implementation, but not the design, of the class StockLedger that was intro-
duced in Segment 10.10. We also revise the class StockPurchase so that it represents the purchase of n
shares of stock at d dollars per share, as Segment 10.12 suggests. The revised class has the data fields
shares and cost, a constructor, and the accessor methods getNumberOfShares and getCostPerShare.

We can revise the implementation of the class StockLedger given in Segment 10.11 as fol-
lows. The data field ledger is now an instance of a deque instead of a queue. The method buy cre-
ates an instance of StockPurchase and places it at the back of the deque, as follows:

public void buy(int sharesBought, double pricePerShare)
{

StockPurchase purchase = new StockPurchase(sharesBought, pricePerShare);

} // end buy

The method sell is more involved. It must remove a StockPurchase object from the front of the
deque and decide whether that object represents more shares than the number sold. If it does, the
method creates a new instance of StockPurchase to represent the shares that remain in the portfolio.

When we concluded the capital gain example, Segment 10.12 noted that our queue contained
individual shares of stock. Since a typical stock transaction involves more than one share, repre-
senting a transaction as one object is more natural. But you saw that the transaction object must
have set methods if we use a queue. That would not be the case if we used a deque instead.

ledger.addToBack(purchase);

The ADT Deque 263

It then adds that instance to the front of the deque, since it is these shares that would be sold next.

public double sell(int sharesSold, double pricePerShare)
{

double saleAmount = sharesSold * pricePerShare;
double totalCost = 0;

while (sharesSold > 0)
{

double shareCost = transaction.getCostPerShare();
int numberOfShares = transaction.getNumberOfShares();

if (numberOfShares > sharesSold)
{

totalCost = totalCost + sharesSold * shareCost;
int numberToPutBack = numberOfShares - sharesSold;
StockPurchase leftOver = new StockPurchase(numberToPutBack, shareCost);

// Note: loop will exit since sharesSold will be <= 0 later
}
else

totalCost = totalCost + numberOfShares * shareCost;

sharesSold = sharesSold - numberOfShares;
} // end while

return saleAmount - totalCost; // gain or loss
} // end sell

Java Class Library: The Interface Deque
10.17 The standard package java.util in the Java Class Library contains an interface Deque that is simi-

lar to our DequeInterface but specifies more methods. Here is a selection of the method headers
that this interface declares. The methods that either add, remove, or retrieve entries occur in pairs.
One method in a pair throws an exception if the operation is unsuccessful, while the other method
returns either null or false. T is the generic type of the entries in a deque.

StockPurchase transaction = ledger.removeFront();

ledger.addToFront(leftOver); // return leftover shares

public void addFirst(T newEntry)
Adds a new entry to the front of this deque, but throws one of several exceptions if it cannot.

public boolean offerFirst(T newEntry)
Adds a new entry to the front of this deque, returning true or false according to the success
of the operation.

public void addLast(T newEntry)
Adds a new entry to the back of this deque, but throws one of several exceptions if it cannot.

public boolean offerLast(T newEntry)
Adds a new entry to the back of this deque, returning true or false according to the success
of the operation.

public T removeFirst()
Retrieves and removes the entry at the front of this deque, but throws NoSuchElementException
if the deque is empty prior to the operation.

public T pollFirst()
Retrieves and removes the entry at the front of this deque, but returns null if the deque is
empty prior to the operation.

264 CHAPTER 10 Queues, Deques, and Priority Queues

The interface Deque extends the interface Queue, so it also has the methods add, offer, remove,
poll, element, and peek that were described earlier in Segment 10.13. In addition, Deque declares
the following two stack methods:

public void push(T newEntry)
public T pop()

These methods are like the ones defined in the class java.util.Stack, which we encountered ear-
lier in Segment 5.23 of Chapter 5, except that push is a void method in Deque. As we mentioned in
Chapter 5, you should no longer use the standard class Stack. The following segment describes an
alternate class for you to use.

The online documentation for the interface Deque, as given at download.oracle.com/javase/7/
docs/api, tabulates the correspondence between deque methods and both queue and stack methods.

Java Class Library: The Class ArrayDeque
10.18 The standard package java.util in the Java Class Library contains the class ArrayDeque, which

implements the interface Deque that we just described. Since Deque declares methods appropriate for a
deque, a queue, and a stack, you can use ArrayDeque to create instances of any of these data collections.

public T removeLast()
Retrieves and removes the entry at the back of this deque, but throws NoSuchElementException
if the deque is empty prior to the operation.

public T pollLast()
Retrieves and removes the entry at the back of this deque, but returns null if the deque is
empty prior to the operation.

public T getFirst()
Retrieves the entry at the front of this deque, but throws NoSuchElementException if the
deque is empty.

public T peekFirst()
Retrieves the entry at the front of this deque, but returns null if the deque is empty.

public T getLast()
Retrieves the entry at the back of this deque, but throws NoSuchElementException if the
deque is empty.

public T peekLast()
Retrieves the entry at the back of this deque, but returns null if the deque is empty.

public boolean isEmpty()
Detects whether this deque is empty.

public void clear()
Removes all entries from this deque.

public int size()
Gets the number of entries currently in this deque.

The ADT Priority Queue 265

The following two constructors are defined by this class:

public ArrayDeque()
Creates an empty deque whose initial capacity is 16 entries.

public ArrayDeque(int initialCapacity)
Creates an empty deque having a given initial capacity.

Instances of ArrayDeque grow in size as needed by a client.

The ADT Priority Queue

10.19 Although a bank serves its customers in the order in which they arrive, an emergency room treats
patients according to the urgency of their malady. The bank organizes its customers into chronolog-
ical order by using a queue. A hospital assigns a priority to each patient that overrides the time at
which the patient arrived.

VideoNote

The ADT priority queue organizes objects according to their priorities. Exactly what form a prior-
ity takes depends on the nature of the object. Priorities can be integers, for example. A priority of 1 can be
the highest priority, or it can be the lowest. By making the objects Comparable, we can hide this detail in
the objects’ method compareTo. The priority queue then can use compareTo to compare objects by their
priorities. Thus, the priority queue can have the Java interface given in Listing 10-5. We use the notation
? super T, which Segment 8.2 of Chapter 8 introduced, to mean any super class of the generic type T.

Note: If you want to use a standard class instead of your own to create a stack, you should
use an instance of the standard class ArrayDeque, but not the standard class Stack. Stack is
now considered a legacy class. That is, it is retained in the Java Class Library only to support
previously written Java programs.

The ADTs deque and
priority queue

LISTING 10-5 An interface for the ADT priority queue

public interface PriorityQueueInterface<T extends Comparable<? super T>>
{

/** Adds a new entry to this priority queue.
@param newEntry an object */

public void add(T newEntry);

/** Removes and returns the item with the highest priority.
@return either the object with the highest priority or, if the

priority queue is empty before the operation, null */
public T remove();

/** Retrieves the item with the highest priority.
@return either the object with the highest priority or, if the

priority queue is empty, null */
public T peek();

/** Detects whether this priority queue is empty.
@return true if the priority queue is empty, or false otherwise */

public boolean isEmpty();

266 CHAPTER 10 Queues, Deques, and Priority Queues

A Problem Solved: Tracking Your Assignments

10.20 To keep our example simple, we will order the assignments by their due dates. A task with the earliest
due date will have the highest priority.

We can define a class Assignment of tasks that includes a data field date representing a task’s due
date. Figure 10-12 shows a diagram of such a class. We assume that date is an instance of a Comparable
class such as java.sql.Date in the Java Class Library. Thus, date.compareTo(otherDate) is negative,
for example, if date occurs before otherDate. The compareTo method for Assignment is then

public int compareTo(Assignment other)
{

return -date.compareTo(other.date);
} // end compareTo

A more sophisticated version of Assignment could include other criteria in compareTo to assess priority.

FIGURE 10-12 A diagram of the class Assignment

/** Gets the size of this priority queue.
@return the number of entries currently in the priority queue */

public int getSize();

/** Removes all entries from this priority queue */
public void clear();

} // end PriorityQueueInterface

Question 4 After the following statements execute, what string is at the front of the prior-
ity queue and what string is at the back?

PriorityQueueInterface<String> myPriorityQueue =
new LinkedPriorityQueue<String>();

myPriorityQueue.add("Jane");
myPriorityQueue.add("Jim");
myPriorityQueue.add("Jill");
String name = myPriorityQueue.remove();
myPriorityQueue.add(name);
myPriorityQueue.add("Jess");

Professors and bosses like to assign tasks for us to do by certain dates. Using a priority queue,
organize these assignments in the order in which we should complete them.

Assignment

course—the course code
task—a description of the assignment
date—the due date

getCourseCode()
getTask()
getDueDate()
compareTo()

The ADT Priority Queue 267

10.21 We can either add instances of Assignment directly to a priority queue or write a simple wrapper
class AssignmentLog to organize our assignments. As Figure 10-13 shows, AssignmentLog has a
data field log, which is an instance of a priority queue that contains the assignments in priority
order. The methods addProject, getNextProject, and removeNextProject manipulate the prior-
ity queue indirectly.

FIGURE 10-13 A diagram of the class AssignmentLog

An implementation of AssignmentLog appears in Listing 10-6.

Note: The class java.sql.Date
The class Date in the package java.sql of the Java Class Library has a constructor whose
parameter specifies the date as the number of milliseconds since midnight GMT on January
1, 1970. A more convenient way for us to construct a Date object is to use the following static
method valueOf:

public static Date valueOf(String s)
Returns a Date object whose value is given by a string s in the form yyyy-mm-dd.

For example, the expression Date.valueOf("2012-02-29") returns a Date object represent-
ing February 29, 2012.

Date implements the interface Comparable<Date> and overrides toString.

AssignmentLog

log—a priority queue of assignments

addProject(newAssignment)
addProject(courseCode, task, dueDate)
getNextProject()
removeNextProject()

LISTING 10-6 The class AssignmentLog

import java.sql.Date;
public class AssignmentLog
{

private PriorityQueueInterface<Assignment> log;

public AssignmentLog()
{

log = new PriorityQueue<Assignment>();
} // end constructor

public void addProject(Assignment newAssignment)
{

log.add(newAssignment);
} // end addProject

268 CHAPTER 10 Queues, Deques, and Priority Queues

10.22 The following statements could appear in a client of AssignmentLog:
AssignmentLog myHomework = new AssignmentLog();
myHomework.addProject("CSC211", "Pg 50, Ex 2",

Date.valueOf("2012-10-21"));
Assignment pg75Ex8 = new Assignment("CSC215", "Pg 75, Ex 8",

Date.valueOf("2012-10-14"));
myHomework.addProject(pg75Ex8);
. . .
System.out.println("The following assignment is due next:");
System.out.println(myHomework.getNextProject());

The assignment with the earliest due date is displayed but is not removed from the assignment log.

Java Class Library: The Class PriorityQueue
10.23 The standard package java.util in the Java Class Library contains the class PriorityQueue. This class

implements the interface Queue that we described earlier in this chapter. An instance of PriorityQueue
behaves like a priority queue, not a queue, in that its entries are ordered, with the entry having the smallest
value, and therefore the highest priority, at the front of the priority queue. Since PriorityQueue uses the
method compareTo to order its entries, the entries must belong to a class that implements the interface
Comparable. In addition, the entries cannot be null.

Here are the basic constructors and methods of the class PriorityQueue:

public PriorityQueue()
Creates an empty priority queue whose initial capacity is 11 entries.

public PriorityQueue(int initialCapacity)
Creates an empty priority queue having a given initial capacity.

public boolean add(T newEntry)
Adds a new entry to this priority queue, returning true if successful and throwing an excep-
tion if not.

public boolean offer(T newEntry)
Adds a new entry to this priority queue, returning true or false according to the success of
the operation.

public void addProject(String courseCode, String task, Date dueDate)
{

Assignment newAssignment = new Assignment(courseCode, task,
dueDate);

addProject(newAssignment);
} // end addProject

public Assignment getNextProject()
{

return log.peek();
} // end getNextProject

public Assignment removeNextProject()
{

return log.remove();
} // end removeNextProject

} // end AssignmentLog

Programming Tip 269

public T remove()
Retrieves and removes the entry at the front of this priority queue, but throws
NoSuchElementException if the priority queue is empty prior to the operation.

public T poll()
Retrieves and removes the entry at the front of this priority queue, but returns null if the
priority queue is empty prior to the operation.

public T element()
Retrieves the entry at the front of this priority queue, but throws NoSuchElementException
if the priority queue is empty.

public T peek()
Retrieves the entry at the front of this priority queue, but returns null if the priority queue is empty.

public boolean isEmpty()
Detects whether this priority queue is empty.

public void clear()
Removes all entries from this priority queue.

public int size()
Gets the number of elements currently in this priority queue.

Instances of PriorityQueue grow in size as needed by a client.

CHAPTER SUMMARY

PROGRAMMING TIP

• The ADT queue organizes its entries on a first-in, first-out basis. Among its items, the one added first, or
earliest, is at the front of the queue, and the one added most recently is at the back of the queue.

• A queue’s major operations—enqueue, dequeue, and getFront—deal only with the ends of the queue. The
method enqueue adds an entry to the back of the queue; dequeue removes and returns the entry at the front
of the queue, and getFront just returns it.

• You can use a queue to simulate a waiting line. A time-driven simulation counts simulated units of time.
Customers arrive at random times, are assigned a random transaction time, and enter a queue.

• When computing the capital gain from a sale of stock, you must sell shares in the order in which you
purchased them. If you record your purchases of individual shares in a queue, they will be in the order in
which they must be sold.

• A double-ended queue, or deque, has operations that add, remove, or retrieve entries at both its front and
back. As such, it combines and expands the operations of a queue and a stack. The deque’s major operations
are addToFront, removeFront, getFront, addToBack, removeBack, and getBack.

• A priority queue organizes its entries according to their priorities, as determined by the entries’ compareTo
method. Besides adding entries to a priority queue, you can retrieve and remove the entry with the highest
priority.

• A mutable object has set methods; an immutable object does not.

• Methods such as getFront and dequeue must behave reasonably when a queue is empty. Here, we specify
that they return null. Another possibility is to have them throw an exception.

270 CHAPTER 10 Queues, Deques, and Priority Queues

EXERCISES

1. If you add the objects x, y, and z to an initially empty queue, in what order will three dequeue operations remove
them from the queue?

2. If you add the objects x, y, and z to an initially empty deque, in what order will three removeBack operations
remove them from the deque?

3. After the following statements execute, what are the contents of the queue?
QueueInterface<String> myQueue = new LinkedQueue<String>();
myQueue.enqueue("Jane");
myQueue.enqueue("Jess");
myQueue.enqueue("Jill");
myQueue.enqueue(myQueue.dequeue());
myQueue.enqueue(myQueue.getFront());
myQueue.enqueue("Jim");
String name = myQueue.dequeue();
myQueue.enqueue(myQueue.getFront());

4. After the following statements execute, what are the contents of the deque?
DequeInterface<String> myDeque = new LinkedDeque<String>();
myDeque.addToFront("Jim");
myDeque.addToFront("Jess");
myDeque.addToBack("Jill");
myDeque.addToBack("Jane");
String name = myDeque.removeFront();
myDeque.addToBack(name);
myDeque.addToBack(myDeque.getFront());
myDeque.addToFront(myDeque.removeBack());
myDeque.addToFront(myDeque.getBack());

5. After the following statements execute, what are the contents of the priority queue?
PriorityQueueInterface<String> myPriorityQueue = new LinkedPriorityQueue<String>();
myPriorityQueue.add("Jim");
myPriorityQueue.add("Jess");
myPriorityQueue.add("Jill");
myPriorityQueue.add("Jane");
String name = myPriorityQueue.remove();
myPriorityQueue.add(name);
myPriorityQueue.add(myPriorityQueue.peek());
myPriorityQueue.add("Jim");
myPriorityQueue.remove();

6. Consider strings that can be split so that their first half is the same as their second half (ignoring blanks, punctuation, and
case). For example, the string "booboo" can be split into "boo" and "boo". Another example is "hello, hello". After
ignoring blanks and the comma, the two halves of the string are the same. However, the string "rattan" has unequal
halves, as does the string "abcab". Describe how you could use a queue to test whether a string has this property.

7. Complete the simulation begun in Figure 10-6. Let Customer 6 enter the line at time 10 with a transaction time of 2.

8. Assume that customerLine is an instance of the class WaitLine, as given in Segment 10.8. The invocation
customerLine.simulate(15, 0.5, 5) produces the following random events:

Customer 1 enters the line at time 6 with a transaction time of 3.
Customer 2 enters the line at time 8 with a transaction time of 3.
Customer 3 enters the line at time 10 with a transaction time of 1.
Customer 4 enters the line at time 11 with a transaction time of 5.

During the simulation, how many customers are served, and what is their average waiting time?

Projects 271

PROJECTS

9. Repeat Exercise 8, but instead use the following random events:
Customer 1 enters the line at time 0 with a transaction time of 4.
Customer 2 enters the line at time 1 with a transaction time of 4.
Customer 3 enters the line at time 3 with a transaction time of 1.
Customer 4 enters the line at time 4 with a transaction time of 4.
Customer 5 enters the line at time 9 with a transaction time of 3.
Customer 6 enters the line at time 12 with a transaction time of 2.
Customer 7 enters the line at time 13 with a transaction time of 1.

10. When using a queue to compute capital gains, we observed in Segment 10.12 that the queue’s entries could repre-
sent more than one share of stock if they have set methods. Revise the class StockPurchase so that each of its
instances has set methods and represents the purchase of multiple shares of one company’s stock. Then revise the
class StockLedger, using a queue to contain the StockPurchase objects.

11. Stacks, queues, and deques are similar in operation in many ways. Suppose that we wanted to create an abstract
base class QueueBase and then use it and inheritance to implement each of the three ADTs. Design the class
QueueBase. Indicate whether each field and method should be public, protected, or private, and explain why.

12. Segment 9.21 in Chapter 9 provided the pseudocode for a radix sort of an array. Each bucket in that algorithm is
actually a queue. Describe why you can use a queue but not a stack for a radix sort.

13. Exercise 11 of Chapter 5 describes a palindrome. Can you use one of the ADTs described in this chapter instead of
a stack to see whether a string is a palindrome? If so, develop an algorithm to do so for each applicable ADT.

14. Consider a special kind of stack that has a finite size but allows an unlimited number of push operations. If the
stack is full when a push occurs, the stack makes room for the new entry by deleting the entry at its bottom. A
browser that maintains a limited history could use this kind of stack. Implement this stack by using a deque.

1. Project 3 of Chapter 9 used a vector in the implementation of an iterative merge sort. In that project, the vector
was used as if it were a queue. Repeat the project, but use a queue instead of a vector.

2. Implement the radix sort, as given in Segment 9.21 of Chapter 9, by using a queue for each bucket.

3. Expand the capital gains example described in this chapter to allow more than one type of stock in the portfolio.
Identify different stocks by using a string for the stock’s symbol. Record the shares of each company in a separate
queue, deque, or priority queue. Maintain the collection of these ADTs in a bag or stack.

4. Simulate a small airport with one runway. Airplanes waiting to take off join a queue on the ground. Planes waiting
to land join a queue in the air. Only one plane can use the runway at any given time. All planes in the air must land
before any plane can take off.

5. Repeat Project 4, but use a priority queue for the planes waiting to land. Develop a priority schedule for situations
such as low fuel or mechanical problems.

6. When each object in a collection has a priority, how should you organize several objects that have the same priority?
One way is to order the objects with the same priority in chronological order. Thus, you can create a priority queue of
queues. Design such an ADT.

7. Write a program to simulate a train route. A train route consists of a number of stations, starting and ending with a
terminal station. The time that the train needs to travel between a pair of consecutive stations on the route is given.
Associated with each station is a queue of passengers. Passengers are generated at random times, assigned to entry
stations randomly, and given random destination stations. Trains leave a terminal at regular intervals and visit the
stations on the route. When a train stops at a station, all passengers for that station exit first. Then any passengers
waiting in the queue at the station board the train until either the queue is empty or the train is full.

272 CHAPTER 10 Queues, Deques, and Priority Queues

ANSWERS TO SELF-TEST QUESTIONS

8. Write a program to simulate job scheduling in an operating system. Jobs are generated at random times. Each job
is given both a random priority from 1 to 4—where 1 is the highest priority—and a random amount of time to
complete its execution.

Jobs do not begin execution and run to completion, but instead share the processor. The operating system exe-
cutes a job for a fixed unit of time called a time slice. At the end of the time slice, the current job’s execution is
suspended. The job is then placed on a priority queue, where it waits for its next share of processor time. The job
having the highest priority is then removed from the priority queue and executed for a time slice.

When a job is first generated, it will begin executing immediately if the processor is free. Otherwise it will be
placed on the priority queue.

9. Repeat the online Project 6 for Appendix B to create the class Huge of large integers. Use a deque instead of an
array to represent the value of an integer.

10. One way to shuffle playing cards is to use a perfect shuffle. First, you divide a deck of 52 cards into two halves of
26 cards each. Next, you merge the halves by interleaving the cards as follows. Beginning with the top half and
alternating halves, you take the bottom card from a half and place it on top of a new deck.

For example, if our deck contains the six cards 1 2 3 4 5 6, the top half is 1 2 3, and the bottom half is 4 5 6. The 3 at
the bottom of the top half becomes the bottom card in the shuffled deck. We then place the 6, which is at the bottom of the
bottom half, on top of the shuffled deck. Next, we place 2 on top, then 5, 1, and finally 4. The shuffled deck is then 4 1 5
2 6 3. Notice that the card that was on top of the original deck is now second in the shuffled result, and the bottom card in
the original deck is now second from the bottom in the shuffled deck. This shuffle is called an in-shuffle and is achieved
by beginning with the top half when you move cards into the shuffled result. If you begin with the bottom half, you get an
out-shuffle, whereby the original top card and bottom card remain in their positions in the shuffled deck.

Define a class of playing-card decks by using a deque to contain the cards. Your class should define methods
to perform perfect in-shuffles and perfect out-shuffles. Using your class,

a. Determine the number of perfect out-shuffles needed to return a deck of n cards to its original order.
b. Determine the number of perfect in-shuffles needed to return a deck of n cards to its original order.
c. You can move a deck’s top card, which is at position 0, to any desired position m by performing a sequence of

in-shuffles and out-shuffles, as follows. You write m in binary. Beginning with the leftmost 1 and proceeding to
the right, you perform an in-shuffle for each 1 encountered and an out-shuffle for each 0. For example, if m is 8,
we have 1000 for its binary equivalent. We would perform one in-shuffle followed by three out-shuffles to
move the original top card to position 8, that is, so it is the ninth card from the top of the deck. Define a method
to perform this card trick.

1. Jill is at the front, Jess is at the back.

2. a. 11.
b. 4.

3. Jill is at the front, Jane is at the back.

4. Jim is at the front, Jane is at the back.

Chapter

11
Queue, Deque, and

Priority Queue
Implementations

Contents
A Linked Implementation of a Queue
An Array-Based Implementation of a Queue

A Circular Array
A Circular Array with One Unused Location

A Vector-Based Implementation of a Queue
Circular Linked Implementations of a Queue

A Two-Part Circular Linked Chain
Java Class Library: The Class AbstractQueue
A Doubly Linked Implementation of a Deque
Possible Implementations of a Priority Queue

Prerequisites
Chapter 2 Bag Implementations That Use Arrays
Chapter 3 A Bag Implementation That Links Data
Chapter 6 Stack Implementations
Chapter 10 Queues, Deques, and Priority Queues

Objectives
After studying this chapter, you should be able to
• Implement the ADT queue by using either a chain of linked nodes, an array, or a vector
• Add or delete nodes at either end of a chain of doubly linked nodes
• Implement the ADT deque by using a chain of doubly linked nodes
• Implement the ADT priority queue by using either an array or a chain of linked nodes

The implementations of the ADT queue that are in this chapter use techniques
like the ones we used to implement the ADT bag and the ADT stack. We will use
either a chain of linked nodes, an array, or an instance of Vector to store the
queue’s entries. Although the stack implementations we saw in Chapter 6 were
quite simple, the implementations of a queue are a bit more involved.

274 CHAPTER 11 Queue, Deque, and Priority Queue Implementations

We also present a linked implementation of the double-ended queue, or deque. Since the deque
allows access to both its front and its back, an ordinary chain of linked nodes is not sufficient. For
example, deleting the last node in a chain is not possible without a reference to the preceding node.
Thus, we use a new kind of chain, one that links its nodes in both directions. That is, a node in this
chain references both the next node and the one that precedes it. Such a chain provides an efficient
implementation of the deque.

Finally, we suggest some implementations of the ADT priority queue. We note, however,
that a more efficient implementation will be possible when we encounter the ADT heap in
Chapters 23 and 26.

A Linked Implementation of a Queue

11.1 If we use a chain of linked nodes to implement a queue, the two ends of the queue will be at oppo-
site ends of the chain. If we have only a head reference to the chain, accessing the chain’s last node
will be inefficient. Adding a tail reference—an external reference to the last node in the chain—is
one approach to this problem and is the one we will take here.

VideoNote

With both head and tail references, which node should be the front of the queue and which
node should be the back? We must be able to remove the entry at the front of the queue. If it is at
the beginning of the chain, we will be able to remove it easily. If it is at the end of the chain,
however, removing it requires a reference to the preceding node. To get such a reference, we
must traverse the chain. Thus, we reject this option and make the chain’s first node contain the
queue’s front entry.

Placing the front of the queue at the beginning of the chain obviously forces the back of the
queue to the chain’s end. Since we add entries only to the back of the queue, and since we have a
tail reference for the chain, this arrangement will work.

Figure 11-1 illustrates a chain of linked nodes with both head and tail references. The chain
contains one node for each entry in the queue. Nodes are allocated only when needed for a new
entry and are deallocated when an entry is removed.

FIGURE 11-1 A chain of linked nodes that implements a queue

11.2 An outline of the class. The linked implementation of the queue has two data fields. The field
firstNode references the chain’s first node, which contains the queue’s front entry. And lastNode
references the chain’s last node, which contains the entry at the back of the queue. Since both of
these fields are null when the queue is empty, the default constructor sets them to null. An outline
of our class appears in Listing 11-1.

The class also contains the private class Node, like the one you saw in Listing 3-4 of Chapter 3.
We also used this class in Chapter 6 for an implementation of the ADT stack.

The class LinkedQueue

Entry at front
of queue

Entry at back
of queue

lastNodefirstNode

A Linked Implementation of a Queue 275

11.3 Adding to the back. To add an entry to the back of the queue, we allocate a new node and add it to
the end of the chain. If the queue—and therefore the chain—is empty, we make both data fields,
firstNode and lastNode, reference the new node, as Figure 11-2 illustrates. Otherwise, both the
last node in the chain and the data field lastNode must reference the new node, as shown in
Figure 11-3. Thus, the definition of enqueue appears as follows:

public void enqueue(T newEntry)
{

Node newNode = new Node(newEntry, null);

if (isEmpty())
firstNode = newNode;

else
lastNode.setNextNode(newNode);

lastNode = newNode;
} // end enqueue

This operation requires no search and is independent of the other entries in the queue. Its per-
formance is thus O(1).

LISTING 11-1 An outline of a linked implementation of the ADT queue

/**
A class that implements a queue of objects by using
a chain of linked nodes.
@author Frank M. Carrano

*/
public class LinkedQueue<T> implements QueueInterface<T>
{

private Node firstNode; // references node at front of queue
private Node lastNode; // references node at back of queue

public LinkedQueue()
{

firstNode = null;
lastNode = null;

} // end default constructor

< Implementations of the queue operations go here. >
. . .

private class Node
{

private T data; // entry in queue
private Node next; // link to next node

< Constructors and the methods getData, setData, getNextNode, and setNextNode
are here. >

. . .
} // end Node

} // end LinkedQueue

276 CHAPTER 11 Queue, Deque, and Priority Queue Implementations

FIGURE 11-2 (a) Before adding a new node to an empty chain; (b) after adding it

FIGURE 11-3 (a) Before, (b) during, and (c) after adding a new node to the end of a
nonempty chain that has a tail reference

11.4 Retrieving the front entry. We get the entry at the front of the queue by accessing the data portion
of the first node in the chain. Like enqueue, getFront is an O(1) operation.

public T getFront()
{

T front = null;

if (!isEmpty())
front = firstNode.getData();

return front;
} // end getFront

11.5 Removing the front entry. The method dequeue retrieves the entry at the front of the queue and
then removes the chain’s first node by making firstNode reference the second node in the chain, as

lastNodelastNode

newNode

(a) (b)

firstNode firstNode

newNodelastNode

After executing
lastNode = newNode;

After executing
lastNode.setNextNode(newNode);

newNodelastNode

(c)

(b)
newNodelastNode

(a)

A Linked Implementation of a Queue 277

shown in Figure 11-4. If the chain had only one node, dequeue would make the chain empty by set-
ting both firstNode and lastNode to null, as Figure 11-5 illustrates.

public T dequeue()
{

T front = null;

if (!isEmpty())
{

front = firstNode.getData();
firstNode = firstNode.getNextNode();

if (firstNode == null)
lastNode = null;

} // end if

return front;
} // end dequeue

Like enqueue, dequeue requires no search and is independent of the other entries in the queue.
Its performance is thus O(1).

FIGURE 11-4 (a) A queue of more than one entry; (b) after removing the entry
at the front of the queue

FIGURE 11-5 (a) A queue of one entry; (b) after removing the entry at the
front of the queue

Returned
to client

lastNode

(b)

lastNode

(a)

Entry at front
of queue

Entry at back
of queue

Entry at back
of queue

Entry at front
of queue

firstNode

firstNode

front

lastNode

(a)

Returned
to client

lastNode

(b)

Entry at front
of queue

firstNode firstNode

front

278 CHAPTER 11 Queue, Deque, and Priority Queue Implementations

11.6 The rest of the class. The remaining public methods isEmpty and clear are straightforward:
public boolean isEmpty()
{

return (firstNode == null) && (lastNode == null);
} // end isEmpty

public void clear()
{

firstNode = null;
lastNode = null;

} // end clear

An Array-Based Implementation of a Queue

11.7 If we use an array queue to contain the entries in a queue, we could let queue[0] be the queue’s front,
as Figure 11-6a shows. Here, frontIndex and backIndex are the indices of the entries at the queue’s
front and back, respectively. But what happens when we remove the front entry? If we insist that the
new front entry be in queue[0], we would need to shift each array element by one position toward the
beginning of the array. This arrangement would make the operation dequeue inefficient.

Instead, we can leave other array entries in their current positions when we remove the queue’s
front entry. For example, if we begin with the array in Figure 11-6a and execute dequeue twice, the
array will be as shown in Figure 11-6b. Not moving array elements is attractive, but after several addi-
tions and removals, the array can look like the one pictured in Figure 11-6c. The queue entries have
migrated to the end of the array. The last available array location is allocated to the last entry added to
the queue. We could expand the array, but the queue has only three entries. Since most of the array is
unoccupied, why not use this space for future additions? In fact, that is just what we will do next.

A Circular Array
11.8 Once the queue reaches the end of the array, as in Figure 11-6c, we can add subsequent entries to

the queue at the beginning of the array. Figure 11-6d shows the array after two such additions to the
queue. We make the array behave as though it were circular, so that its first location follows its last
one. To do this, we use modulo arithmetic on the indices. Specifically, when we add an entry to the
queue, we first increment backIndex modulo the size of the array. For example, if queue is the
name of the array, we increment backIndex with the statement

backIndex = (backIndex + 1) % queue.length;

To remove an entry, we increment frontIndex modulo the size of the array in a similar fashion.

Question 1 Why is a tail reference desirable when you use a chain of linked nodes to
implement a queue?

Question 2 When we removed an entry from an array-based bag, as we did in Chapter 2, we
replaced the removed entry with the last one in the array. Yet the implementation of the queue
just described does not do so. Explain this difference in implementations.

An Array-Based Implementation of a Queue 279

FIGURE 11-6 An array that represents a queue without moving any entries:
(a) initially; (b) after removing the entry at the front twice;
(c) after several more additions and removals; (d) after two
additions that wrap around to the beginning of the array

11.9 Complications. Using a circular array complicates the implementation somewhat. For example,
how can we detect when the array is full? Clearly the array in Figure 11-7a is full. This array is the
result of several additions to the queue pictured in Figure 11-6d. So it appears that the queue is full
when frontIndex is backIndex + 1.

frontIndex47
10

(c)

47 48 49

backIndex49

frontIndex47
10

(d)

47 48 49

backIndex1

frontIndex2
10 2 3

(b)

4 5 49

backIndex5

frontIndex0
10 2 3

(a)

4 5 49

backIndex5

Entry at front
of queue

Entry at front
of queue

Entry at front
of queue

Entry at front
of queue

Entry at back
of queue

Entry at back
of queue

Entry at back
of queue

Entry at back
of queue

280 CHAPTER 11 Queue, Deque, and Priority Queue Implementations

FIGURE 11-7 A circular array that represents a queue: (a) when full; (b) after
removing two entries; (c) after removing three more entries; (d) after
removing all but one entry; (e) after removing the remaining entry

Now remove some entries from the queue. Figure 11-7b shows the array after executing
dequeue twice. Notice that frontIndex advances to 49. If we continue to remove items from the
queue, frontIndex will wrap around to zero and beyond. Figure 11-7c shows the array after three
more items are removed. As we remove more items from the queue, frontIndex advances.
Figure 11-7d shows the array after all but one item is removed from the queue. Now let’s remove
that one item. In Figure 11-7e, we see that this last removal has caused frontIndex to advance so
that it is 1 more than backIndex. Although the queue is empty, frontIndex is backIndex + 1. This
is exactly the same condition we encountered in Figure 11-7a when the queue was full.

As you can see, we cannot test whether the queue is empty or full by using frontIndex and
backIndex. One solution is to maintain a count of queue items. If the count is zero, the queue is
empty; if the count equals the array’s capacity, the queue is full. When the queue is full, the next
enqueue operation can double the array’s size before adding a new entry.

frontIndex210

(c)

47 48 49

backIndex46

frontIndex46
10

(d)

47 48 49

backIndex46

frontIndex4910

(b)

backIndex46

frontIndex47
10

Full queue

46

(a)

47 48 49

backIndex46

46 47 48 49

2 46

46

Empty queue

frontIndex47
10

(e)

47 48 49

backIndex46

46

Note: With a circular array, frontIndex equals backIndex + 1 both when the queue is
empty and when it is full.

An Array-Based Implementation of a Queue 281

Having a counter as a data field leads to a reasonable implementation, but each enqueue and
dequeue must update the count. We can avoid this extra work by leaving one array location unused.
We develop this approach next.

A Circular Array with One Unused Location
11.10 Not using one array location allows us to distinguish between an empty queue and a full queue by

examining only frontIndex and backIndex. In Java, each array location contains only a reference, so
we waste little memory by having an unused location. Here we will leave unused the array location
that follows the back of the queue. Project 2 at the end of this chapter considers a different location.

VideoNote

Figure 11-8 illustrates a seven-element circular array that represents a queue of at most six
entries. As we add and remove entries, you should observe the effect on the indices frontIndex
and backIndex. Part a of the figure shows the array initially, when the queue is empty. Notice that
frontIndex is zero and backIndex contains the index of the array’s last location. Adding an entry
to this queue increments the initial value of backIndex so that it becomes zero, as shown in Part b.
Part c illustrates the queue after five more additions, making it full. Now remove the front entry and
add an entry to the back, as Parts d and e show. The queue is full once again. Repeating this pair of
operations leads to the queues shown in Parts f and g. Now repeatedly remove the entry at the front
until the queue is empty. Part h shows the queue after the first of these dequeue operations, Part i
shows it after all but one entry is removed, and Part j shows the empty queue.

To summarize, the queue is full in Parts c, e, and g of this figure. In each of these examples, the
index of the unused location is 1 more than backIndex and 1 less than frontIndex, if we treat the
array as circular. That is, frontIndex is 2 more than backIndex. Thus, the queue is full when

frontIndex equals (backIndex + 2) % queue.length

The queue is empty in Parts a and j. In those cases, frontIndex is 1 more than backIndex. Thus,
the queue is empty when

frontIndex equals (backIndex + 1) % queue.length

Admittedly, these criteria are more involved than checking a counter of the number of entries in the
queue. However, once we have them, the rest of the implementation is simpler and more efficient
because there is no counter to maintain.

11.11 An outline of the class. This array-based implementation of a queue begins with four data fields
and two constructors. The fields are the array of queue entries, indices to the front and back of the
queue, and an initial capacity for the queue that the default constructor creates. Another constructor
lets the client choose the initial queue capacity. The initial size of the array is one more than the
queue’s initial capacity. Listing 11-2 outlines the class.

The class ArrayQueue

LISTING 11-2 An outline of an array-based implementation of the ADT queue

/**
A class that implements a queue of objects by using an array.
@author Frank M. Carrano

*/

public class ArrayQueue<T> implements QueueInterface<T>
{

private T[] queue; // circular array of queue entries and one unused
// location

282 CHAPTER 11 Queue, Deque, and Priority Queue Implementations

11.12 Adding to the back. The method enqueue first calls the private method ensureCapacity, which
doubles the size of the array if it is full, and then places the new entry immediately after the last
occupied location in the array. To determine the index of this location, we increment backIndex.
But since the array is circular, we use the operator % to make backIndex zero after reaching its
maximum value.

public void enqueue(T newEntry)
{

ensureCapacity();
backIndex = (backIndex + 1) % queue.length;
queue[backIndex] = newEntry;

} // end enqueue

The implementation of ensureCapacity differs from the one given in Chapter 6 because the
array here is circular. We will see how to implement it shortly.

The performance of enqueue when it does not resize the array is independent of the number
of entries in the queue. Thus, it is O(1) in this case. However, its performance degrades to O(n)
when the array is full, because resizing the array is an O(n) operation. If this happens, however,
the very next enqueue is O(1) again. As we mentioned in Segment 6.9, we could amortize the
cost of doubling the array over all additions to the queue. That is, we let all enqueue operations
share the cost of resizing the array. Unless the array is resized many times, each enqueue is
almost O(1).

11.13 Retrieving the front entry. The method getFront returns either the array element at frontIndex
or null if the queue is empty:

public T getFront()
{

T front = null;

private int frontIndex;
private int backIndex;
private static final int DEFAULT_INITIAL_CAPACITY = 50;

public ArrayQueue()
{

this(DEFAULT_INITIAL_CAPACITY);
} // end default constructor

public ArrayQueue(int initialCapacity)
{

// the cast is safe because the new array contains null entries
@SuppressWarnings("unchecked")
T[] tempQueue = (T[]) new Object[initialCapacity + 1];
queue = tempQueue;
frontIndex = 0;
backIndex = initialCapacity;

} // end constructor

< Implementations of the queue operations go here. >
. . .

} // end ArrayQueue

An Array-Based Implementation of a Queue 283

if (!isEmpty())
front = queue[frontIndex];

return front;
} // end getFront

This operation is O(1).

FIGURE 11-8 A seven-location circular array that contains at most six entries
of a queue

frontIndex0
10 3(a) 4 5 6

backIndex6

2

frontIndex
10 3(b) 4 5 6

backIndex

2

Empty queue

0

0

0

5

1

5

frontIndex

backIndex

frontIndex

backIndex

frontIndex

backIndex

frontIndex

backIndex

frontIndex

backIndex

frontIndex

backIndex

frontIndex

backIndex

frontIndex

backIndex
Full queue

10 3(f) 4 5 62

10

Full queue

3(g) 4 5 62

10 3(h) 4 5 62

10 3(i) 4 5 62

10

Empty queue

3(j) 4 5 62

Full queue

10 3(d) 4 5 62

10 3(e) 4 5 62

10 3(c) 4 5 62

1

6

2

6

2

0

3

0

0

0

1

0

284 CHAPTER 11 Queue, Deque, and Priority Queue Implementations

11.14 Removing the front entry. The method dequeue, like getFront, retrieves the entry at the front of
the queue, but then it removes it. To remove the front entry of the queue shown in Figure 11-9a, we
could simply increment frontIndex, as Figure 11-9b illustrates. This step would suffice because
the other methods would behave correctly. For example, getFront would return the item that
queue[6] references. However, the object that previously was the front of the queue and is returned
to the client would still be referenced by the array. This fact is of no real concern if our implemen-
tation is correct. To be safe, dequeue can set queue[frontIndex] to null before incrementing
frontIndex. Figure 11-9c illustrates the queue in this case.

FIGURE 11-9 An array-based queue: (a) initially; (b) after removing its
front entry by incrementing frontIndex; (c) after removing
its front entry by setting queue[frontIndex] to null and then
incrementing frontIndex

The following implementation of dequeue reflects these comments:

public T dequeue()
{

T front = null;

if (!isEmpty())
{

front = queue[frontIndex];
queue[frontIndex] = null;
frontIndex = (frontIndex + 1) % queue.length;

} // end if

frontIndex6

(c)

backIndex7

frontIndex6

(b)

backIndex7

frontIndex5
0 5

(a)

6 7 49

backIndex7

null

Returned
to client

0 5 6 7 49

Returned
to client

0 5 6 7 49

Entry at back
of queue

Entry at back
of queue

Entry at back
of queue

Entry at front
of queue

Entry at front
of queue

Entry at front
of queue

front

front

An Array-Based Implementation of a Queue 285

return front;
} // end dequeue

Like getFront, dequeue is an O(1) operation.

11.15 The private method ensureCapacity. As you saw in Segment 2.32 of Chapter 2, when we increase the
size of an array, we must copy its entries into the newly allocated space. We need to be careful, though,
because here the array is circular. We must copy entries in the order in which they appear in the queue.

For example, the seven-element array in Figure 11-8g is full and appears again in Figure 11-10.
Call this array oldQueue. After allocating a new array queue of 14 locations, we copy the front of the
queue from oldQueue[frontIndex] to queue[0]. We continue copying elements from the old array
to the new array, proceeding to the end of the old array and wrapping around to its beginning, as the
figure shows. In addition, we must set frontIndex and backIndex to reflect the reorganized array.

FIGURE 11-10 Doubling the size of an array-based queue

The following definition of ensureCapacity detects when the array is full by using the criterion
given in Segment 11.10:

// Doubles the size of the array queue if it is full
private void ensureCapacity()
{

if (frontIndex == ((backIndex + 2) % queue.length)) // if array is full,
{ // double size of array

T[] oldQueue = queue;
int oldSize = oldQueue.length;

// the cast is safe because the new array contains null entries
@SuppressWarnings("unchecked")
T[] tempQueue = (T[]) new Object[2 * oldSize];
queue = tempQueue;
for (int index = 0; index < oldSize - 1; index++)
{

queue[index] = oldQueue[frontIndex];
frontIndex = (frontIndex + 1) % oldSize;

} // end for

frontIndex = 0;
backIndex = oldSize - 2;

} // end if
} // end ensureCapacity

frontIndex

backIndex

10 3 4 5 62 2

0

0

5

frontIndex

backIndex
10 3 4 5 62 87 10 119 13

oldQueue is full

queue has a larger capacity

12

286 CHAPTER 11 Queue, Deque, and Priority Queue Implementations

You can use the method System.arraycopy to copy the array. However, since the array is cir-
cular, you will need two calls to this method. Exercise 1 at the end of this chapter asks you to revise
ensureCapacity in this way.

11.16 The rest of the class. The public method isEmpty has the following implementation, based on our
comments at the end of Segment 11.10:

public boolean isEmpty()
{

return frontIndex == ((backIndex + 1) % queue.length);
} // end isEmpty

The method clear could simply set frontIndex to 0 and backIndex to queue.length - 1. The
other queue methods would behave as expected for an empty queue. However, the objects that were in
the queue would then remain allocated. To deallocate them, clear should set to null each array location
that was used for the queue. Alternatively, clear could call dequeue repeatedly until the queue is empty,
if dequeue sets queue[frontIndex] to null. We leave the implementation of clear as an exercise.

A Vector-Based Implementation of a Queue

11.17 Using a vector to represent a queue’s entries is relatively easy. We maintain the front of the queue at
the beginning of the vector, as Figure 11-11 illustrates. We can use Vector’s method add to add an
entry to the back of the queue. When we remove the queue’s front entry from the vector, the vector’s
elements move so that the new front entry in the queue will be at the beginning of the vector. Thus, we
do not need to maintain indices to the front and back of the queue. Also, the vector expands as neces-
sary, so we do not have to worry about this detail.

FIGURE 11-11 A vector that represents a queue

Question 3 Write an implementation of clear that sets to null each array location that
was used for the queue.

Question 4 Write an implementation of clear that repeatedly calls dequeue until the queue is
empty. How does this implementation compare to the one you wrote for Question 3?

Question 5 If queue is an array that contains the entries in a queue, and queue is not treated as
a circular array, what is a disadvantage of maintaining the back of the queue at queue[0]?

Note: In some languages other than Java, leaving an array location empty wastes memory
because the location contains an object instead of a reference to an object. Project 3 at the end
of this chapter considers an array-based implementation of a queue that does not have an
unused location and does not maintain a counter.

0 491 2 3

Entry at front
of queue

Entry at back
of queue

A Vector-Based Implementation of a Queue 287

11.18 An outline of the class. The class that implements the queue begins by declaring a vector as a data
field and allocating the vector in its constructors, as Listing 11-3 shows.

11.19 Adding to the back. We use Vector’s method add to add an entry to the end of the vector—that is,
to the back of the queue.

public void enqueue(T newEntry)
{

queue.add(newEntry);
} // end enqueue

11.20 Retrieving the front entry. We retrieve the entry at the front of the queue by using Vector’s
method get with an argument of zero:

public T getFront()
{

T front = null;

if (!isEmpty())
front = queue.get(0);

return front;
} // end getFront

LISTING 11-3 An outline of a vector-based implementation of the ADT queue

import java.util.Vector;
/**

A class that implements a queue of objects by using a vector.
@author Frank Carrano

*/
public class VectorQueue<T> implements QueueInterface<T>
{

private Vector<T> queue; // queue’s front entry is first in the vector

public VectorQueue()
{

queue = new Vector<T>(); // vector doubles in size if necessary
} // end default constructor

public VectorQueue(int initialCapacity)
{

queue = new Vector<T>(initialCapacity);
} // end constructor

< Implementations of the queue operations go here. >
. . .

} // end VectorQueue

288 CHAPTER 11 Queue, Deque, and Priority Queue Implementations

11.21 Removing the front entry. We can retrieve and remove the entry at the front of the queue by using
Vector’s method remove with an argument of zero. This method returns the removed entry, which
is just what dequeue needs to do:

public T dequeue()
{

T front = null;

if (!isEmpty())
front = queue.remove(0);

return front;
} // end dequeue

11.22 The rest of the class. The remaining public methods isEmpty and clear invoke analogous Vector
methods:

public boolean isEmpty()
{

return queue.isEmpty();
} // end isEmpty

public void clear()
{

queue.clear();
} // end clear

11.23 Efficiency. The implementation of Vector is based on an array that expands dynamically, but not
one that is circular. Since we add entries to one end of a queue and remove them from the other
end, the vector implementation inherently moves its entries after each removal. Thus, dequeue is
O(n), while the other operations are O(1). However, expanding the vector degrades the perfor-
mance of enqueue. The efficiency of this implementation is not as good as that of the one that
uses a circular array.

Circular Linked Implementations of a Queue

11.24 Figure 11-1 in Segment 11.1 shows a chain of linked nodes that implements the ADT queue. This
chain has two external references—one to the first node and one to the last node in the chain. Recall
that these references are particularly useful for a queue implementation, since a queue’s operations
affect both of its ends. Like the chains you have seen before, the last node in this chain contains
null. Such chains are sometimes called linear linked chains, regardless of whether they have a tail
reference in addition to a head reference.

VideoNote

In a circular linked chain, the last node references the first node, so no node contains null
in its next field. Despite the fact that each node references the next node, a circular linked chain
has a beginning and an end. We could have an external reference to the chain’s first node, but
then a traversal of the chain would be necessary to locate the last node. Having both a reference
to the first node and a reference to the last node is usually more than is necessary. Since the
chain’s last node references its first node, we can have a solitary reference to the last node and
still locate the first node quickly. Figure 11-12 illustrates such a chain.

When a class uses a circular linked chain to represent a queue, its only data field is the refer-
ence lastNode to the chain’s last node. The implementation therefore does not have the overhead
of maintaining a data field that references the first node. Any time such a reference is needed, the
expression lastNode.getNextNode() provides it. Despite this simplification, this approach is not
necessarily better than the one used in the first section of this chapter. It is mostly just different, as
you will see if you complete Project 4 at the end of this chapter.

We now investigate another way to use a circular linked chain to represent a queue.

Other queue implementations

Circular Linked Implementations of a Queue 289

FIGURE 11-12 A circular linked chain with an external reference to its last node
that (a) has more than one node; (b) has one node; (c) is empty

A Two-Part Circular Linked Chain
11.25 When a linked chain—whether it is linear or circular—represents a queue, it has one node for each

entry in the queue. When we add an entry to the queue, we allocate a new node for the chain. When
we remove an entry from the queue, a node is deallocated.

In the circular array implementation, the queue uses a subset of the fixed number of array
locations available. When we add an entry to the queue, we use the next unoccupied location in
the array. When we remove an entry from the queue, we make its array location available for the
queue’s later use. Since additions and removals are at the ends of a queue, the queue occupies
contiguous locations in the circular array. The available locations also are contiguous, again
because the array is circular. Thus, the circular array has two parts: One part contains the queue
and the other part is available for the queue.

Suppose that we had two parts in a circular linked chain. The linked nodes that form the
queue are followed by linked nodes that are available for use in the queue, as Figure 11-13 illus-
trates. Here queueNode references the node assigned to the front of the queue; freeNode refer-
ences the first available node that follows the end of the queue. You could think of this
configuration as two chains—one for the queue and one for the available nodes—that are joined
at their ends to form a circle.

FIGURE 11-13 A two-part circular linked chain that represents both a queue
and the nodes available to the queue

lastNode

(a) (b) (c)

lastNode lastNode

freeNode

queueNode

290 CHAPTER 11 Queue, Deque, and Priority Queue Implementations

The available nodes are not allocated all at once the way locations are allocated for an array.
Initially there are no available nodes; we allocate a node each time we add a new entry to the queue.
However, when we remove an entry from the queue, we keep its node in the circle of nodes rather
than deallocating it. Thus, a subsequent addition to the queue uses a node from the chain of avail-
able nodes. But if no such node is available, we allocate a new one and link it into the chain.

11.26 Detecting an empty queue or an absence of available nodes is easier if one node in the circular linked
chain is unused. The situation is analogous to the circular array that we used in Segment 11.10.
Figure 11-14a shows the queue when it is empty. Both queueNode and freeNode reference the same
unused node. Notice that the node references itself. We can tell that the queue is empty because
queueNode equals freeNode.

To add an entry to this empty queue, we allocate a new node and link it into the circular chain.
Figure 11-14b shows the resulting chain for a queue of one entry. To simplify the figure, we have
not illustrated the actual object in the queue. Although a node in the chain references an object in
the queue, we will sometimes say that the node is in the queue.

While queueNode references the node assigned to the queue, freeNode still references the
unused node. After three more additions to the queue, three more nodes are allocated and linked
into the chain. Segment 11.28 will describe exactly how to accomplish this. The chain now appears
as in Figure 11-14c. Again, freeNode references the unused node. Since queueNode references the
node at the front of the queue, retrieving the front entry is easy.

FIGURE 11-14 A two-part circular linked chain that represents a queue: (a) when it is
empty; (b) after adding one entry; (c) after adding three more entries;
(d) after removing the front entry; (e) after adding one more entry

freeNodequeueNode

(a) (b)

freeNodequeueNode

(c)

queueNode

freeNode

Node previously at the
front of the queue

queueNodefreeNode

(d)

New entry is in
this node

freeNode(e)

queueNode

Circular Linked Implementations of a Queue 291

Now if we remove the entry at the front of the queue, we advance queueNode so the chain is as
pictured in Figure 11-14d. The node that was at the front of the queue is not deallocated. A subse-
quent addition—since it is at the back of the queue—uses the node that freeNode references. We
then advance freeNode. Figure 11-14e shows the chain at this point. Notice that we did not allocate
a new node for the additional entry in this case.

How can we tell whether we must allocate a new node when we add to the queue? We must
do so if we want to add to the queue shown in Figure 11-14e. At this point, queueNode equals
freeNode.getNextNode(). That was not the case when we added an entry to the queue in
Figure 11-14d; a node was available without allocating a new one. But notice in Figure 11-14a that
queueNode also equals freeNode.getNextNode() when the queue is empty. This makes sense,
because to add to an empty queue, we need to allocate a new node.

11.27 An outline of the class. The class that implements the queue by using a two-part circular linked chain
has the references queueNode and freeNode as data fields. Since the chain must always contain at least
one node, the default constructor allocates a node, makes the node reference itself, and sets queueNode
and freeNode to reference this new node. Thus, the class appears as outlined in Listing 11-4.

Note: In a two-part circular linked implementation of a queue, one node is unused. Two
external references partition the chain into two parts: queueNode references the front node of
the queue and freeNode references the node that follows the queue. The queue is empty if
queueNode equals freeNode. You use the node at freeNode for a new entry. This node is
either the first available node or the unused node. You must allocate a new unused node if
queueNode equals freeNode.getNextNode().

LISTING 11-4 An outline of a two-part circular linked implementation of the
ADT queue

/**
A class that implements a queue of objects by using
a two-part circular chain of linked nodes
@author Frank M. Carrano

*/
public class TwoPartCircularLinkedQueue<T> implements QueueInterface<T>
{

private Node queueNode; // references first node in queue
private Node freeNode; // references node after back of queue

public TwoPartCircularLinkedQueue()
{

freeNode = new Node(null, null);
freeNode.setNextNode(freeNode);
queueNode = freeNode;

} // end default constructor

< Implementations of the queue operations go here. >
. . .

292 CHAPTER 11 Queue, Deque, and Priority Queue Implementations

11.28 Adding to the back. Before adding an entry to the queue, we see whether a node is available in the
chain. If one is not, we must allocate a new one and link it into the chain. We insert a new node into
the chain after the node that freeNode references, as we are about to do in Figure 11-15a. We do
not insert it before this node, because we would need a reference to the previous node to do so. Get-
ting such a reference would take time. The node that freeNode references joins the queue and will
contain the new entry. The new node becomes the unused node, and we make freeNode reference
it, as Figure 11-15b shows.

FIGURE 11-15 A chain that requires a new node for an addition to a queue:
(a) before the addition; (b) after the addition

If a node is available in the chain, we use the node that freeNode references for the new entry.
Figure 11-16 shows the chain before and after two existing nodes become part of the queue. After
each addition, freeNode references the node that follows the back of the queue. In Figure 11-16b,
this node is available for another addition, but in Figure 11-16c, it is unused.

The method enqueue is easier to write and to understand if we hide the detail of seeing whether
to allocate a new node within the private method isChainFull. It returns true if the chain has no
nodes available for use in the queue. The implementation of isChainFull is not difficult and
appears later in Segment 11.31.

private class Node
{

private T data; // queue entry
private Node next; // link to next node

< Constructors and the methods getData, setData, getNextNode, and setNextNode
are here. >

. . .
} // end Node

} // end TwoPartCircularLinkedQueue

Programming Tip: When a circular linked chain has one node, the node must reference
itself. Forgetting this step is easy to do and leads to an error during execution.

(a)
queueNode

newNode
freeNode

The new node

The new entry is
in this node

(b)

freeNode

queueNode

Circular Linked Implementations of a Queue 293

FIGURE 11-16 (a) A chain with nodes available for additions to a queue;
(b) the chain after one addition; (c) the chain after another addition

The following implementation of enqueue is an O(1) operation:

public void enqueue(T newEntry)
{

freeNode.setData(newEntry);

if (isChainFull())
{

// allocate a new node and insert it after the node that
// freeNode references
Node newNode = new Node(null, freeNode.getNextNode());
freeNode.setNextNode(newNode);

} // end if

freeNode = freeNode.getNextNode();
} // end enqueue

11.29 Retrieving the front. If the queue is not empty, queueNode references its front node. The method
getFront is therefore straightforward:

public T getFront()
{

T front = null;

if (!isEmpty())
front = queueNode.getData();

return front;
} // end getFront

This method is O(1).

Unused
node

freeNode

(c)

queueNode

The new entry
is in this node

Unused
node

Unused
node

The new entry
is in this node

queueNode queueNode

freeNodefreeNode

(a) (b)

Question 6 Adding an entry to the queue pictured in Figure 11-16c requires the creation
of a new node. Where in the chain would you insert the new node? Which node would con-
tain the new entry?

294 CHAPTER 11 Queue, Deque, and Priority Queue Implementations

11.30 Removing the front. The method dequeue returns the entry at the front of the queue. It then moves
the node at the front from the queue’s part of the chain to the available part simply by advancing
queueNode. Parts c and d of Figure 11-14 show a chain before and after this step. Since the node
that contained the removed entry is not deallocated, it still references the removed entry. Thus, we
set the node’s data portion to null.

Like getFront, dequeue is an O(1) operation:

public T dequeue()
{

T front = null;

if (!isEmpty())
{

front = queueNode.getData();
queueNode.setData(null);
queueNode = queueNode.getNextNode();

} // end if

return front;
} // end dequeue

11.31 The rest of the class. The methods isEmpty and isChainFull follow from the discussion in
Segment 11.26:

public boolean isEmpty()
{

return queueNode == freeNode;
} // end isEmpty

private boolean isChainFull()
{

return queueNode == freeNode.getNextNode();
} // end isChainFull

The method clear sets queueNode equal to freeNode to make the queue appear empty. It
retains all nodes currently in the chain. However, unless you set the data portions of these nodes
to null, the objects in the queue are not deallocated. We leave the implementation of clear as an
exercise.

11.32 Choosing a linked implementation. So far, we have discussed several possible linked imple-
mentations of the ADT queue. You can use a linear chain with both head and tail references, as
shown in Figure 11-1, or an equivalent circular chain with one external reference, as shown in
Figure 11-12. In both of these implementations, removing an entry from the queue disconnects
and deallocates a node in the chain. If, after removing entries from the queue, you seldom add
entries, these implementations are fine. But if you frequently add an entry after removing one,
the two-part circular chain saves the time of deallocating and reallocating nodes.

Java Class Library: The Class AbstractQueue

11.33 The standard package java.util in the Java Class Library contains the abstract class AbstractQueue.
This class implements the interface java.util.Queue and does not allow null entries in the queue.
Recall from Segment 10.13 of the previous chapter the following methods in this interface:

Question 7 Describe two different ways in which you could implement the method clear.

A Doubly Linked Implementation of a Deque 295

public boolean add(T newEntry)
public boolean offer(T newEntry)
public T remove()
public T poll()
public T element()
public T peek()
public boolean isEmpty()
public void clear()
public int size()

AbstractQueue provides implementations of the methods add, remove, and element that invoke
offer, poll, and peek, respectively.

You can define a class of queues by using inheritance to extend AbstractQueue. Your class
must override at least the following methods: offer, poll, peek, and size. Note that the class
java.util.PriorityQueue, which we mentioned in the previous chapter, extends AbstractQueue
and, thereby, implements the methods declared in the interface java.util.Queue.

To learn more about AbstractQueue, consult the online documentation for the Java Class Library.

A Doubly Linked Implementation of a Deque

11.34 Earlier, in Segment 11.1, we planned the linked implementation of the queue and noticed that the front
of the queue should not be at the tail of the chain of linked nodes. If it were, we would have to traverse
the chain to get a reference to the preceding node so that we could remove the queue’s front entry.

Although placing the front of the queue at the head of the chain solved our problem, such is not
the case for a deque. We must be able to remove both the front and the back of a deque. So even if
the deque’s front is at the head of the chain, the deque’s back will be at the chain’s tail—and therein
lies the problem.

Each node in a chain references only the next node. Thus, a chain, with its head reference, per-
mits us to begin at the first node and move ahead from node to node. Having a tail reference lets us
access the last node in the chain, but not the next-to-last node. That is, we cannot move backward
from a node, and this is just what we need to do to remove the back of a deque.

11.35 What we need is a node that can reference the previous node as well as the next node in a chain. We
call a chain of such nodes a doubly linked chain. We sometimes will call an ordinary chain a singly
linked chain when a distinction is necessary. Figure 11-17 illustrates a doubly linked chain with its
head and tail references. While an interior node references both the next node and the previous node,
the first and last nodes each contain one null reference. Thus, when traversing the chain from the first
node to the last, we will encounter null when we reach the last node. Likewise, when traversing the
chain from the last node to the first, we will encounter null when we reach the first node.

FIGURE 11-17 A doubly linked chain with head and tail references

The node in a doubly linked chain is an instance of an inner class similar to the class Node. We
will call this inner class DLNode and give it three data fields: next and previous are references to
two other nodes, and data is a reference to the node’s data. DLNode also has the methods getData,
setData, getNextNode, setNextNode, getPreviousNode, and setPreviousNode.

firstNode lastNode

296 CHAPTER 11 Queue, Deque, and Priority Queue Implementations

11.36 An outline of the class. The doubly linked implementation of the deque begins much like the linked
implementation of the queue given in Segment 11.2. The class has two data fields—firstNode and
lastNode—that the default constructor sets to null, as you can see in Listing 11-5.

11.37 Adding an entry. The implementation of the method addToBack is like the implementation of
enqueue given in Segment 11.3. Both methods add a node to the end of a chain so that the chain’s cur-
rent last node references the new node. Here, we also make the new node reference the current last
node by passing the deque’s data field lastNode to the node’s constructor. The addition to the back of
a chain that is not empty is illustrated in Figure 11-18. An implementation of the method follows:

public void addToBack(T newEntry)
{

if (isEmpty())
firstNode = newNode;

else
lastNode.setNextNode(newNode);

LISTING 11-5 An outline of a linked implementation of the ADT deque

/**
A class that implements a deque of objects by using
a chain of doubly linked nodes.
@author Frank M. Carrano

*/
public class LinkedDeque<T> implements DequeInterface<T>
{

private DLNode firstNode; // references node for front of deque
private DLNode lastNode; // references node for back of deque

public LinkedDeque()
{

firstNode = null;
lastNode = null;

} // end default constructor

< Implementations of the deque operations go here. >
. . .

private class DLNode
{

private T data; // deque entry
private DLNode next; // link to next node
private DLNode previous; // link to previous node

< Constructors and the methods getData, setData, getNextNode, setNextNode,
getPreviousNode, and setPreviousNode are here. >

. . .
} // end DLNode

} // end LinkedDeque

DLNode newNode = new DLNode(lastNode, newEntry, null);

A Doubly Linked Implementation of a Deque 297

lastNode = newNode;
} // end addToBack

Aside from its name, this method differs from enqueue only in the statement that allocates a new node.

FIGURE 11-18 Adding to the back of a nonempty deque: (a) after the new node
is allocated; (b) after the addition is complete

The method addToFront has an analogous implementation. When adding a node to the begin-
ning of a doubly linked chain, we must make the chain’s current first node reference the new node
by passing the deque’s data field firstNode to the node’s constructor. Compare the following defi-
nition for addToFront with the one just given for addToBack:

public void addToFront(T newEntry)
{

DLNode newNode = new DLNode(null, newEntry, firstNode);

if (isEmpty())
lastNode = newNode;

else
firstNode.setPreviousNode(newNode);

firstNode = newNode;
} // end addToFront

As given here, both addToFront and addToBack are O(1) operations.

11.38 Removing an entry. The method removeFront has an implementation much like that of dequeue
given in Segment 11.5, but it has one other concern. After detaching the first node, if the deque is
not empty, removeFront must set the field previous in the new first node to null. This step occurs
in the else clause of the following definition:

public T removeFront()
{

T front = null;

if (!isEmpty())
{

front = firstNode.getData();
firstNode = firstNode.getNextNode();

if (firstNode == null)
lastNode = null;

} // end if

(a)

(b)

newNode

lastNode

lastNode

else
firstNode.setPreviousNode(null);

298 CHAPTER 11 Queue, Deque, and Priority Queue Implementations

return front;
} // end removeFront

Aside from its name, this method differs from dequeue only in the addition of the else clause.
Figure 11-19 illustrates the effect of removeFront for a deque of at least two entries.

FIGURE 11-19 (a) A deque containing at least two entries; (b) after removing the
first node and obtaining a reference to the deque’s new first entry

The method removeBack has an analogous definition:

public T removeBack()
{

T back = null;

if (!isEmpty())
{

back = lastNode.getData();
lastNode = lastNode.getPreviousNode();

if (lastNode == null)
firstNode = null;

else
lastNode.setNextNode(null);

} // end if

return back;
} // end removeBack

The implementations of removeFront and removeBack are each O(1).

11.39 Retrieving an entry. The method getFront has the same implementation as given in Segment 11.4
for a queue. The method getBack is analogous to getFront and is left as an exercise. Both
getFront and getBack are O(1) operations.

(a)

Returned
to client

(b)

Entry at front
of deque

Entry at front
of deque

firstNode

firstNode

front

Question 8 Implement the method getBack for the ADT deque when a doubly linked chain
contains the deque’s entries.

Chapter Summary 299

11.40 Reusing this implementation. Once you have implemented the ADT deque, you can use it to
implement other ADTs such as the queue and the stack. These implementations are straightforward
and are left as exercises.

Possible Implementations of a Priority Queue

11.41 We can use an array, a linked chain, or a vector to implement the ADT priority queue. In each of
these cases, we would maintain the entries in sorted order by their priorities. With an array, the
entry with the highest priority should occur at the end of the array, so removing it would leave the
other entries in their present places. Figure 11-20a illustrates this implementation.

If a linked chain contains the entries in a priority queue, the entry with the highest priority should
occur at the beginning of the chain, where it is easy to remove. Figure 11-20b shows such a chain.

The next chapter will introduce the ADT list, and Chapter 16 will discuss a kind of list called
the sorted list. A sorted list can maintain a priority queue’s entries in priority order, doing much of
the work for us. Project 10 at the end of Chapter 16 asks you to complete such an implementation.

Chapter 23 describes a more efficient implementation of a priority queue that uses an ADT
called a heap.

FIGURE 11-20 Two possible implementations of a priority queue using (a) an array;
(b) a chain of linked nodes

CHAPTER SUMMARY

Note: In a doubly linked chain, the first and last nodes each contain one null reference,
since the first node has no previous node and the last node has no node after it. In a circular
doubly linked chain, the first node references the last node, and the last node references the
first. Only one external reference is necessary—a reference to the first node—since you can
quickly get to the last node from the first node. You can use a circular doubly linked chain in
an implementation of the ADT deque. Project 8 asks you to do this.

Highest-priority entry

10 2 3

(a)

4 5 49

lastIndex3

2 5 6 9

(b)

Highest-priority entry

2569

firstNode

• You can implement a queue by using a chain of linked nodes that has both a head reference and a tail refer-
ence. The first node in the chain represents the front of the queue, because you can remove or access a
chain’s first node faster than any other node. The tail reference allows you to quickly add a node to the end
of the chain, which is the queue’s back.

• The queue operations are O(1) for a linked implementation.

300 CHAPTER 11 Queue, Deque, and Priority Queue Implementations

PROGRAMMING TIP

EXERCISES

• You can implement a queue by using an array. Once a queue entry is added to the array, it does not move.
After many additions, the last array location will be used. Removals, however, will free locations at the
beginning of the array. Thus, the array can appear full even when it is not. To solve this problem, you treat
the array as if it were circular.

• The queue operations are O(1) for an array-based implementation. However, when the array is full, enqueue
doubles the size of the array. In that case, enqueue is O(n). Typically, we amortize the cost of resizing the
array over all additions to the queue. If the array is resized occasionally, each enqueue is almost O(1).

• You can implement a queue by using a vector. Since the entry at the front of the queue is always first in the
vector, and since the implementation of Vector is based on an array that is expanded as necessary, entries in
the vector move. Thus, the vector-based implementation is less efficient than our array-based implementa-
tion. However, it is easier to write.

• In a circular linked chain, every node references the next node in the chain. No node contains null in its next field.
A circular linked chain can have a beginning and an end. Since the last node references the first node in the chain,
one external reference to the last node provides convenient access to both the chain’s last node and its first node.

• You can use a circular linked chain to implement a queue in much the same way that you use a linear linked chain
that has both head and tail references. With both kinds of chain, dequeue removes a node and deallocates it.

• Another implementation of a queue uses a circular linked chain that has two parts. One part is used for the
queue and the other part contains one unused node and any nodes that are available for use. In this imple-
mentation, dequeue removes an entry from the queue but does not remove a node from the chain. Instead,
the node joins the available part of the chain.

• Since a deque has operations that add and remove entries at both ends, you can use a doubly linked chain
whose nodes reference both the next node and the previous node. A doubly linked chain with head and tail
references provides O(1) implementations of the deque operations.

• In a circular doubly linked chain, every node references the next node as well as the previous node in the
chain. No node contains null in its next and previous fields. One external reference to the first node pro-
vides fast access to both the chain’s last node and its first node. You can use a circular doubly linked chain in
the implementation of a deque.

• You can use an array or a chain to implement a priority queue, but a more efficient implementation is possible
by using a heap.

• When a circular linked chain has one node, the node must reference itself. Forgetting this step is easy to do
and leads to an error during execution.

1. Segment 11.15 defines the private method ensureCapacity for an array-based implementation of the ADT queue.
Revise that method to use the method System.arraycopy to copy the old array to a new expanded array.

2. Segment 11.31 describes an implementation of the queue’s method clear when a two-part circular linked chain
represents the queue. Write two different implementations of clear. One version should repeatedly invoke
dequeue. The other version should set the data portion of each node in the queue to null.

3. Suppose that we want to add a method to a class of queues that will splice two queues together. This method adds
to the end of a queue all items that are in a second queue. The header of the method could be as follows:

public void splice(QueueInterface<T> anotherQueue)

Write this method in such a way that it will work in any class that implements QueueInterface<T>.

Projects 301

PROJECTS

4. Consider the method splice that Exercise 3 describes. Implement this method specifically for the class ArrayQueue.
Take advantage of your ability to manipulate the array representation of the queue.

5. Consider the method splice that Exercise 3 describes. Implement this method specifically for the class LinkedQueue.
Take advantage of your ability to manipulate the chain that represents the queue.

6. Using Big Oh notation, what is the time complexity of each queue operation in the class ArrayQueue? Briefly
explain your answers.

7. Using Big Oh notation, what is the time complexity of each deque operation in the class LinkedDeque? Briefly
explain your answers.

8. Implement the ADT queue by using an ADT deque to contain its entries.

9. Implement the ADT stack by using an ADT deque to contain its entries.

10. Describe an implementation of a queue that uses two stacks, and comment on its efficiency.

11. Implement the ADT deque by using a vector to contain its entries.

12. Consider an application that uses a priority queue. You have two implementations available. One implementation
uses an array to maintain the entries in the priority queue, while the other uses a linked chain. Compare the perfor-
mances of these implementations for each of the following sequences of operations on a priority queue.

a. Insert 100 objects having the priorities 1, 2, 3,..., 99, 100.
b. Insert 100 objects having priorities 100, 99, 98,...., 2, 1.
c. Add 100 objects having random priorities within the range 1 to 100.
d. Starting with 100 objects in the priority queue having priorities 1 through 100, remove them all.
e. Starting with 100 objects in the priority queue having priorities 1 through 100, repeat the following pair of

operations 1000 times:
• Add an item having a random priority within the range 1 to 100.
• Remove an item.

1. Use a circular array, as described in Segments 11.8 and 11.9, to implement the queue. Count entries to ascertain
whether the queue is empty or full.

2. The implementation of the ADT queue that was introduced in Segment 11.10 uses a circular array with one
unused location. Revise that implementation so that the unused location is always before the front of the queue,
with frontIndex as the index of this unused location. Let backIndex be the index of the entry at the back of the
queue. Initially, both frontIndex and backIndex are set to the maximum size of the queue (the array will be 1
larger than this number). You can distinguish an empty queue from a full queue by examining these indices. What
tests should you perform to do so?

3. The array-based implementations of the ADT queue in this chapter used a circular array. One implementation
counted the entries in the queue, while the other left one location in the array unused. We used these strategies to
tell when the queue was empty and when it was full.

A third strategy is possible. It does not count and does not have an unused location in the circular array. After ini-
tializing frontIndex to 0 and backIndex to -1, you do not use modulo arithmetic when you increment these fields.
Instead, you use modulo arithmetic when you index the array, but without changing frontIndex and backIndex. Thus,
if queue is the array, queue[frontIndex % queue.length] is the front entry, and the entry at the back of the queue is
queue[backIndex % queue.length].

Now if backIndex is less than frontIndex, the queue is empty. The number of entries in the queue is backIndex
- frontIndex + 1. You can compare this number with the size of the array to see whether the array is full.

302 CHAPTER 11 Queue, Deque, and Priority Queue Implementations

Since frontIndex and backIndex can continue to grow, they might become too large to represent. To reduce
the chance of this happening, set frontIndex to 0 and backIndex to -1 whenever the implementation detects an
empty queue. Note that adding to a full queue invokes ensureCapacity, which sets frontIndex to 0 and backIn-
dex to the index of the entry at the back of the queue.

Complete this array-based implementation of the ADT queue.

4. Implement the ADT queue by using a circular linked chain, as shown in Figure 11-12. Recall that this chain has
only an external reference to its last node.

5. Consider a new kind of queue that allows only a single copy of an object in the queue. If an object is added to the
queue, but it is already there, leave the queue unchanged. This queue has another operation moveToBack that takes
an object in the queue and moves it to the back. If an object is not in the queue, the operation adds it at the back of
the queue.

Create an interface NoDuplicatesQueueInterface that extends QueueInterface. Then write an array-based
implementation of NoDuplicatesQueueInterface. Finally, write a program that adequately demonstrates your
new class.

6. Implement the ADT deque by using an array to contain its entries. Expand the array dynamically when necessary.

7. One difficulty with implementing the doubly linked chain described in Segment 11.35 is the number of special
cases that occur at the beginning and end of the chain. You can eliminate these cases if the chain is never empty.
Thus, you begin each chain with a dummy node that you do not use for data.

Revise the implementation of the deque given in this chapter by using a dummy node.

8. Use a circular doubly linked chain (see the note at the end of Segment 11.40) to implement the ADT deque.

9. Repeat the previous project, but add a dummy node to the chain, as Project 7 describes.

10. In Project 5 you created a queue that does not allow duplicates. In this project you will create a deque that does not
allow duplicates. The function of the deque’s operations addToBack and addToFront should be analogous to the
changed enqueue method in Project 5. Add two operations, moveToBack and moveToFront.

Create an interface NoDuplicatesDequeInterface that extends DequeInterface. Then write a linked imple-
mentation of NoDuplicatesDequeInterface. Finally, write a program that adequately demonstrates your new class.

11. Implement the ADT priority queue by using an array, as pictured in Figure 11-20a.

12. Implement the ADT priority queue by using a chain of linked nodes, as pictured in Figure 11-20b.

13. Revise the interface for the ADT priority queue, as given in Segment 10.19 of the previous chapter, by replacing
the method add with the following method:

public void add(T newEntry, Comparable<? super T> priorityValue)

The client provides an entry and its priority value to this method. The priority queue does not use newEntry’s compareTo
method to assess its priority. Implement this version of the priority queue.

14. In Project 5 you created a queue that does not allow duplicates. In this project you will create a priority queue that
does not allow duplicates. The function of the add operation should be analogous to the changed enqueue method
in Project 5. In this case, the test for equals should not include the priority, so the header of the add method should
be changed to the one given in the previous project. A new operation move will change the priority of a given item,
if it is already in the priority queue. If the item is not in the priority queue, move will add it with the given priority.

Create an interface for a priority queue that does not allow duplicates. Then write a class that implements this
interface. Finally, write a program that adequately demonstrates your new class.

15. Implement a priority queue of queues, as described in Project 6 of the previous chapter.

Answers to Self-Test Questions 303

ANSWERS TO SELF-TEST QUESTIONS

16. The ADT randomized queue is like a queue, but the removal and retrieval operations involve an entry chosen at
random instead of the entry at the beginning of the queue. These operations should return null if they encounter
an empty randomized queue.

a. Write a Java interface that specifies the methods for a randomized queue.
b. Define a class of randomized queues, named RandomizedQueue, that implements the interface you created

in Part a. Name the retrieval operation get instead of getFront.

1. The back of the queue is at the end of the chain. Since you add to the back of a queue, you need to add a node to
the end of the chain. A tail reference allows you to do this without first traversing the chain to locate its last node.
Thus, a tail reference enables an efficient enqueue operation.

2. Entries in a bag are in no particular order within the bag and, thus, the array. Queue entries have an order relative
to one another that must be maintained.

3. public void clear()
{

if (!isEmpty())
{

for (int index = frontIndex; index != backIndex;
index = (index + 1) % queue.length)

{
queue[index] = null;

} // end for

queue[backIndex] = null;
} // end if

frontIndex = 0;
backIndex = queue.length - 1;

} // end clear

4. public void clear()
{

while (!isEmpty())
dequeue();

} // end clear

This version of clear is easier to write than the version given in Question 3.

5. Each enqueue operation needs to move all of the entries in the queue to vacate queue[0] before it adds a new entry.

6. You place the new entry into the node that freeNode currently references. You then insert a new node after that
node and make freeNode reference the new node. The new node is now the unused node.

7. You can repeatedly call dequeue until the queue is empty, as in the answer to Question 4. Or you can set the data
fields of each node in the queue to null and then set queueNode equal to freeNode.

8. public T getBack()
{

T back = null;

if (!isEmpty())
back = lastNode.getData();

return back;
} // end getBack

This page intentionally left blank

Chapter

12Lists
Contents
Specifications for the ADT List
Using the ADT List
Java Class Library: The Interface List
Java Class Library: The Class ArrayList

Prerequisites
Introduction
Appendix B Java Classes
Appendix D Designing Classes
Appendix E Exception Handling
Chapter 6 Stack Implementations

Objectives
After studying this chapter, you should be able to
• Describe the ADT list
• Use the ADT list in a Java program

A list provides a way to organize data. We can have to-do lists, gift lists, address
lists, grocery lists, even lists of lists. These lists provide a useful way for us to
organize our lives, as illustrated in Figure 12-1. Each list has a first item, a last item,
and usually items in between. That is, the items in a list have a position: first, second,
and so on. An item’s position might be important to you, or it might not. When adding
an item to your list, you might always add it at the end, or you might insert it between
two other items already in the list.

A list is a collection, and this chapter formalizes it as an ADT.

306 CHAPTER 12 Lists

FIGURE 12-1 A to-do list

Specifications for the ADT List

12.1 Everyday lists such as to-do lists, gift lists, address lists, and grocery lists have entries that are
strings. What can you do to such lists?

• Typically, you add a new entry at the end of the list.
• Actually, you can add a new entry anywhere: at the beginning, the end, or in between items.
• You can cross out an entry—that is, remove it.
• You can remove all entries.
• You can replace an entry.
• You can look at any entry.
• You can look at all of the entries.
• You can find out whether the list contains a particular entry.
• You can count the number of entries in the list.
• You can see whether the list is empty.

VideoNote

When you work with a list, you determine where an entry is or should be. You probably are not
conscious of its exact position: Is it tenth? Fourteenth? However, when your program uses a list, a
convenient way to identify a particular entry is by the entry’s position within the list. It could be
first, that is, at position 1, or second (position 2), and so on. This convention allows you to describe,
or specify, the operations on a list more precisely.

12.2 To specify the ADT list, we describe its data and specify the operations on that data. Unlike com-
mon lists whose entries are strings, the ADT list is more general and has entries that are objects of
the same type. The following is an initial specification of the ADT list:

I have so much to do this
weekend — I should make a list.

 To Do
1. Read Chapter 12
2. Call home
3. Buy card for Sue

The ADT list

Specifications for the ADT List 307

ABSTRACT DATA TYPE: QUEUE

DATA

• A collection of objects in a specific order and having the same data type
• The number of objects in the collection

OPERATIONS

PSEUDOCODE UML DESCRIPTION

add(newEntry) +add(newEntry: T): void Task: Adds newEntry to the end of
the list.

Input: newEntry is an object.
Output: None.

add(newPosition, newEntry) +add(newPosition: integer,
newEntry: T): void

Task: Adds newEntry at position
newPosition within the list.
Position 1 indicates the first
entry in the list.

Input: newPosition is an integer,
newEntry is an object.

Output: None.

remove(givenPosition) +remove(givenPosition: integer): T Task: Removes and returns the entry
at position givenPosition.

Input: givenPosition is an integer.
Output: None.

clear() +clear(): void Task: Removes all entries from the list.
Input: None.
Output: None.

replace(givenPosition,
newEntry)

+replace(givenPosition: integer,
newEntry: T): void

Task: Replaces the entry at position
givenPosition with
newEntry.

Input: givenPosition is an integer,
newEntry is an object.

Output: None.

getEntry(givenPosition) +getEntry(givenPosition: integer): T Task: Retrieves the entry at position
givenPosition.

Input: givenPosition is an integer.
Output: Returns the entry at position

givenPosition.

308 CHAPTER 12 Lists

We have only begun to specify the behaviors of these list operations, as the specifications just
given leave some details to the imagination. Some examples will help us to better understand these
operations so that we can improve the specifications. We’ll need precise specifications before we
implement the operations.

12.3 Example. When you first declare a new list, it is empty and its length is zero. If you add three
objects—a, b, and c—one at a time and in the order given, to the end of the list, the list will appear as

a
b
c

The object a is first, at position 1, b is at position 2, and c is last at position 3.1 To save space here,
we will sometimes write a list’s contents on one line. For example, we might write

a b c

to represent this list.
The following pseudocode represents the previous three additions to the specific list myList:
myList.add(a)
myList.add(b)
myList.add(c)

contains(anEntry) +contains(anEntry: T): boolean Task: Sees whether the list
contains anEntry.

Input: anEntry is an object.
Output: Returns true if anEntry is in

the list, or false if not.

getLength() +getLength(): integer Task: Gets the number of entries
currently in the list.

Input: None.
Output: Returns the number of

entries currently in the list.

isEmpty() +isEmpty(): boolean Task: Sees whether the list is empty.
Input: None.
Output: Returns true if the list is

empty, or false if not.

toArray() +toArray: T[] Task: Retrieves all entries that are in
the list in the order in which
they occur.

Input: None.
Output: Returns a new array of the

entries currently in the list.

1. Some people number the entries in a list beginning with 0 instead of 1.

Specifications for the ADT List 309

At this point, myList is not empty, so myList.isEmpty() is false. Since the list contains three
entries, myList.getLength() is 3. Notice that adding entries to the end of a list does not change the
positions of entries already in the list. Figure 12-2 illustrates these add operations as well as the
operations that we describe next.

FIGURE 12-2 The effect of ADT list operations on an initially empty list

12.4 Now suppose that we add entries at various positions within the list. For example,
myList.add(2, d)

places d second—that is, at position 2—within the list. Doing so, however, moves b to position 3
and c to position 4, so that the list now contains

a d b c

If we add e to the beginning of the list by writing
myList.add(1, e)

the current entries in the list move to the next higher position. The list then contains
e a d b c

Look at Figure 12-2 again to see the effect of these operations.

12.5 We can get the second entry in this list by writing
entry2 = myList.getEntry(2)

Remember that we are writing pseudocode here and ignoring details such as semicolons.
What happens when we remove an entry? For example,
myList.remove(3)

removes the third entry—d in the previous example—from the list. The list then contains
e a b c

Notice that entries after the one that was removed move to the next lower position within the
list. Figure 12-2 illustrates this change to the list.

a
b
c

a
b

a

a
d
b
c

e
a
d
b
c

e
a
b
c

myList.add(2,d) myList.add(1,e) myList.remove(3)

myList.add(a) myList.add(b) myList.add(c)

310 CHAPTER 12 Lists

 What if an application requires us to remove an entry from a list but retain the entry for
another purpose? Our specification of remove would force us to first use getEntry to obtain the
entry and then use remove to remove it from the list. We could refine the specification of remove to
return the object removed from the list. To use this revised version of remove, we would write a
pseudocode statement such as

oldEntry3 = myList.remove(3)

This change makes remove more versatile, as the client could either save or ignore the returned entry.
We can replace the third entry b of our list with f by writing
myList.replace(3, f)

No other entries move or change. We could refine the specification of replace to return the object
that was replaced. So if we wrote

ref = myList.replace(3, f)

ref would reference the former entry b.

12.6 The previous specifications and examples ignore some difficulties that might arise during the use of
the ADT list:

• The operations add, remove, replace, and getEntry are well behaved when the given
position is valid for the current list. What happens when one of these operations receives
an invalid position number?

• The methods remove, replace, and getEntry are not meaningful for empty lists. What happens
when an empty list executes one of these operations?

As usual, we must decide how to handle these conditions and refine our specifications. The documentation
for the ADT list should reflect both these decisions and the detail that the previous examples demonstrate.

As a reminder, we repeat the following note from Chapter 1.

12.7 The Java interface in Listing 12-1 contains the methods for an ADT list and detailed comments that
describe their behaviors. These comments address the situations we raised in the previous segment.
The items in the list will be objects of the same class or classes related by inheritance.

Note: The objects in an ADT list have an order determined by the client of the list. To add,
remove, or retrieve an entry, you must specify the entry’s position within the list. The first
entry in the list is at position 1.

Note: A first draft of an ADT’s specifications often overlooks or ignores situations that you
really need to consider. You might intentionally make these omissions to simplify this first
draft. Once you have written the major portions of the specifications, you can concentrate on
the details that make the specifications complete.

LISTING 12-1 The interface ListInterface

/** An interface for the ADT list.
Entries in the list have positions that begin with 1.

*/

Specifications for the ADT List 311

public interface ListInterface<T>
{

/** Adds a new entry to the end of this list.
Entries currently in the list are unaffected.
The list’s size is increased by 1.
@param newEntry the object to be added as a new entry */

public void add(T newEntry);

/** Adds a new entry at a specified position within this list.
Entries originally at and above the specified position
are at the next higher position within the list.
The list’s size is increased by 1.
@param newPosition an integer that specifies the desired

position of the new entry
@param newEntry the object to be added as a new entry
@return true if the addition is successful, or

false if newPosition < 1, or newPosition > getLength()+1
*/
public boolean add(int newPosition, T newEntry);

/** Removes the entry at a given position from this list.
Entries originally at positions higher than the given
position are at the next lower position within the list,
and the list’s size is decreased by 1.
@param givenPosition an integer that indicates the position of

the entry to be removed
@return a reference to the removed entry or null, if either

the list was empty, givenPosition < 1, or
givenPosition > getLength() */

public T remove(int givenPosition);

/** Removes all entries from this list. */
public void clear();

/** Replaces the entry at a given position in this list.
@param givenPosition an integer that indicates the position of

the entry to be replaced
@param newEntry the object that will replace the entry at the

position givenPosition
@return true if the replacement occurs, or false if either the

list is empty, givenPosition < 1, or
givenPosition > getLength() */

public boolean replace(int givenPosition, T newEntry);

/** Retrieves the entry at a given position in this list.
@param givenPosition an integer that indicates the position of

the desired entry
@return a reference to the indicated entry or null, if either

312 CHAPTER 12 Lists

Using the ADT List

VideoNote

Imagine that we hire a programmer to implement the ADT list in Java, given the interface and
specifications that we have developed so far. If we assume that these specifications are clear
enough for the programmer to complete the implementation, we can use the ADT’s operations in
a program without knowing the details of the implementation. That is, we do not need to know
how the programmer implemented the list to be able to use it. We only need to know what the
ADT list does.

This section assumes that we have an implementation for the list and demonstrates how
we can use a list in our program.The examples here can be part of a program that tests your
implementation.

12.8 Example. Imagine that we are organizing a local road race. Our job is to note the order in which the
runners finish the race. Since each runner wears a distinct identifying number, we can add each run-
ner’s number to the end of a list as the runners cross the finish line. Figure 12-3 illustrates such a list.

the list is empty, givenPosition < 1, or
givenPosition > getLength() */

public T getEntry(int givenPosition);

/** Sees whether this list contains a given entry.
@param anEntry the object that is the desired entry
@return true if the list contains anEntry, or false if not */

public boolean contains(T anEntry);

/** Gets the length of this list.
@return the integer number of entries currently in the list */

public int getLength();

/** Sees whether this list is empty.
@return true if the list is empty, or false if not */

public boolean isEmpty();

/** Retrieves all entries that are in this list in the order in which
they occur in the list. */

public T[] toArray();
} // end ListInterface

Question 1 Write pseudocode statements that add some objects to a list, as follows. First
add c, then a, then b, and then d, such that the order of the objects in the list will be a, b, c, d.

Question 2 Write pseudocode statements that exchange the third and seventh entries in a list
of 10 objects.

Note: The entries in a list of n entries are numbered from 1 to n. Although you cannot add
a new entry at position 0, you can add one at position n + 1.

Using the ADT list

Using the ADT List 313

FIGURE 12-3 A list of numbers that identify runners in the order in which
they finished a race

The Java program in Listing 12-2 shows how we can perform this task by using the ADT list. It
assumes that the class AList implements the Java interface ListInterface that you saw in the pre-
vious section. Since ListInterface assumes that the items in the list are objects, we will treat each
runner’s identifying number as a string.

16
4
33
27

LISTING 12-2 A client of a class that implements ListInterface

public class ListClient
{

public static void main(String[] args)
{

testList();
} // end main

public static void testList()
{

ListInterface<String> runnerList = new AList<String>();
// runnerList has only methods in ListInterface

runnerList.add("16"); // winner
runnerList.add(" 4"); // second place
runnerList.add("33"); // third place
runnerList.add("27"); // fourth place
displayList(runnerList);

} // end testList

public static void displayList(ListInterface<String> list)
{

314 CHAPTER 12 Lists

The data type of displayList’s input parameter list is ListInterface<String>. Thus, the
argument of the method must be an object that satisfies both of the following conditions:

• The object’s class must implement ListInterface.
• The object must be instantiated as a list of strings.

Although the method works for any implementation of the ADT list, it works only for lists of
strings. You could remove the latter restriction by revising the header of the method as follows:

public static <T> void displayList(ListInterface<T> list)

Now the list passed to the method can contain objects of any one class.

12.9 Example. A professor wants an alphabetical list of the names of the students who arrive for class
today. As each student enters the room, the professor adds the student’s name to a list. It is up to the
professor to place each name into its correct position in the list so that the names will be in alpha-
betical order. The ADT list does not choose the order of its entries.

The following Java statements place the names Amy, Ellen, Bob, Drew, Aaron, and Carol in an
alphabetical list. The comment at the end of each statement shows the list after the statement executes.

int numberOfEntries = list.getLength();
System.out.println("The list contains " + numberOfEntries +

" entries, as follows:");

for (int position = 1; position <= numberOfEntries; position++)
System.out.println(list.getEntry(position) +

" is entry " + position);

System.out.println();
} // end displayList

} // end ListClient

Output
The list contains 4 entries, as follows:
16 is entry 1
 4 is entry 2
33 is entry 3
27 is entry 4

Note: A reminder
Notice that the data type of runnerList is ListInterface<String>. This declaration obliges
runnerList to call only methods in the interface and to add only strings to the list. If the data
type was AList<String> instead, runnerList would be able to call any public methods in
AList even if they were not declared in ListInterface.

Question 3 In the previous example, what changes to testList are necessary to represent
the runner’s numbers as Integer objects instead of strings? Use Java’s auto-boxing feature,
as described in Segment A.99 of Appendix A.

Using the ADT List 315

// make an alphabetical list of names as students enter a room
ListInterface<String> alphaList = new AList<String>();

alphaList.add(1, "Amy"); // Amy
alphaList.add(2, "Ellen"); // Amy Ellen
alphaList.add(2, "Bob"); // Amy Bob Ellen
alphaList.add(3, "Drew"); // Amy Bob Drew Ellen
alphaList.add(1, "Aaron"); // Aaron Amy Bob Drew Ellen
alphaList.add(4, "Carol"); // Aaron Amy Bob Carol Drew Ellen

After initially adding Amy to the beginning of the list and Ellen to the end of the list (at posi-
tion 2), the professor inserts

• Bob between Amy and Ellen at position 2
• Drew between Bob and Ellen at position 3
• Aaron before Amy at position 1
• Carol between Bob and Drew at position 4

Recall that this technique of inserting each name into a collection of alphabetized names is called
an insertion sort.

If we now remove the entry at position 4—Carol—by writing
alphaList.remove(4);

Drew and Ellen will then be at positions 4 and 5, respectively. Thus, alphaList.getEntry(4)
would return a reference to Drew.

Finally, suppose that we want to replace a name in this list. We cannot replace a name with just any
name and expect that the list will remain in alphabetical order. Replacing Bob with Ben by writing

alphaList.replace(3, "Ben");

would maintain alphabetical order, but replacing Bob with Nancy would not. The list’s alphabetical
order resulted from our original decisions about where to add names to the list. The order did not
come about automatically as a result of list operations. That is, the client, not the list, maintained
the order. We could, however, design an ADT that maintains its data in alphabetical order. You will
see an example of such an ADT in Chapter 16.

12.10 Example. Let’s look at a list of objects that are not strings. Suppose that we have the class Name
from Appendix B that represents a person’s first and last names. The following statements indicate
how we could make a list of the names Amy Smith, Tina Drexel, and Robert Jones:

// make a list of names as you think of them
ListInterface<Name> nameList = new AList<Name>();
Name amy = new Name("Amy", "Smith");
nameList.add(amy);
nameList.add(new Name("Tina", "Drexel"));
nameList.add(new Name("Robert", "Jones"));

Now let’s retrieve the name that is second in the list, Tina Drexel:
Name secondName = nameList.getEntry(2);

The definition of getEntry declares its return type as T, the generic type of the entries in the list.
This type for nameList is Name, so getEntry returns a Name object.

Question 4 Suppose that alphaList contains a list of the four names Amy, Ellen, Bob, and
Drew as strings. Write Java statements that swap Ellen and Bob and that then swap Ellen
and Drew so that the list will be in alphabetical order.

316 CHAPTER 12 Lists

12.11 Example. Let’s talk a bit more about the previous example. The variable secondName is a reference
to the second object in the list. Using this reference, we can modify the object. For example, we
could change its last name by writing

secondName.setLast("Doe");

If the class Name did not have set methods like setLast, we would be unable to modify the
objects in this list. For instance, if we had a list of strings, we would not be able to alter one of the
strings in this way. The class String has no set methods, so once we create a String object, we
cannot alter it. We could, however, replace an entire object in the list—regardless of its type—by
using the ADT list operation replace.

Recall that Chapter 10 mentioned mutable and immutable objects. Since the class Name has set
methods, its objects are mutable. The class String, on the other hand, does not define set methods,
so its objects are immutable.

Java Class Library: The Interface List
12.12 The standard package java.util contains an interface List for an ADT list that is similar to the list that

our interface describes. One difference between a list in the Java Class Library and our ADT list is the num-
bering of a list’s entries. A list in the Java Class Library uses the same numbering scheme as a Java array:
The first entry is at position, or index, 0. In contrast, we begin our list at position 1. The interface List also
declares more methods than our interface does. You’ll see a few of those additional methods in Chapter 15.

The following method headers from the interface List are for a selection of methods that are
similar to the ones you have seen in this chapter. We have highlighted where they differ from our
methods. Once again, T is the generic type of the entries in the list.

public T remove(int index)
public void clear()

public boolean isEmpty()

The first add method, which adds an entry to the end of a list, returns a boolean value, whereas our analo-
gous method is a void method. The second add method is a void method. It throws an exception if index is
out of range, instead of returning the boolean value false, as our add method does. The methods remove
and get also throw an exception if index is out of range. Our analogous methods return null instead. The
method set is like our replace method, but it returns a reference to the entry that was replaced in the list
instead of returning a boolean value. It also throws an exception if index is out of range. The data type of
contains’ parameter is Object instead of a generic type. In practice, this difference has little consequence.
Lastly, the method get is like our getEntry, and size is like our getLength.

You can learn more about the interface List in the online documentation for the Java Class Library.

Java Class Library: The Class ArrayList
12.13 The Java Class Library contains an implementation of the ADT list that uses a resizable array. This

class, called ArrayList, implements the interface java.util.List, that we just discussed. The
class also is in the package java.util.

Question 5 Suppose that the return type of getEntry was Object instead of a generic type.
Would this change affect how you use the method? In particular, would the statement in the
previous example that retrieved the second name in nameList be correct? Why?

public boolean add(T newEntry)
public void add(int index, T newEntry)

public T set(int index, T anEntry) // like replace
public T get(int index) // like getEntry
public boolean contains(Object anEntry)
public int size() // like getLength

Exercises 317

Two of the constructors available for ArrayList are as follows:
public ArrayList()

Creates an empty list with an initial capacity of 10. The list increases its capacity as needed by
an unspecified amount.
public ArrayList(int initialCapacity)

Creates an empty list with the specified initial capacity. The list increases its capacity as
needed by an unspecified amount.

12.14 The class java.util.Vector, which we described in Chapter 6, is similar to ArrayList. Both classes
implement the same interfaces: java.util.List, as well as others. Even so, Vector contains a few
more methods than ArrayList. We will ignore these extra methods, as they mostly are redundant.

You can use either ArrayList or Vector as an implementation of the interface List. For exam-
ple, you could write the following statement to define a list of strings:

List<String> myList = new ArrayList<String>();

Now myList has only the methods declared in the interface List.
Our ListInterface is somewhat simpler than Java’s List. It has fewer methods, and they do

not throw an exception when given an illegal position. We can retain the simplicity of our interface
and still make use of an existing class by using either ArrayList or Vector in an implementation of
ListInterface. We will show you how in the next chapter. Although we will use Vector, you
could use ArrayList just as easily.

CHAPTER SUMMARY

EXERCISES

• A list is an object whose data consists of ordered entries. Each entry is identified by its position within the list.

• The ADT list specifies operations that add an entry either to the end of a list or at a given position within the
list. Among its other operations are those that retrieve, remove, or replace the entry at a given position.

• A client manipulates or accesses a list’s entries by using only the operations defined for the ADT list.

• The entries in a bag are unordered, whereas the entries in a list, a stack, a queue, a deque, or a priority queue
do have an order. A list, unlike these other collections, enables you to add, retrieve, remove, or replace an
entry at any given position.

1. If myList is an empty list of strings, what does it contain after the following statements execute?
myList.add("A");
myList.add("B");
myList.add("C");
myList.add("D");
myList.add(1, "one");
myList.add(1, "two");
myList.add(1, "three");
myList.add(1, "four");

2. If myList is an empty list of strings, what does it contain after the following statements execute?
myList.add("alpha");
myList.add(1, "beta");
myList.add("gamma");
myList.add(2, "delta");
myList.add(4, "alpha");
myList.remove(2);
myList.remove(2);
myList.replace(3, "delta");

318 CHAPTER 12 Lists

3. Revise the method displayList in Listing 12-2 so that it uses the list method toArray instead of methods getLength
and getEntry.

4. Suppose that you want an operation for the ADT list that returns the position of a given object in the list. The
header of the method could be as follows:

public int getPosition(T anObject)

Write comments that specify this method.

5. Suppose that you want an operation for the ADT list that removes the first occurrence of a given object from the
list. The header of the method could be as follows:

public boolean remove(T anObject)

Write comments that specify this method.

6. Suppose that you want an operation for the ADT list that moves the first item in the list to the end of the list. The
header of the method could be as follows:

public void moveToEnd()

Write comments that specify this method.

7. Write Java statements at the client level that return the position of a given object in the list myList. Assume that
the object is in the list.

8. Suppose that the ADT list did not have a method replace. Write Java statements at the client level that replace an
object in the list nameList. The object’s position in the list is givenPosition and the replacement object is newObject.

9. Suppose that the ADT list did not have a method contains. Suppose further that nameList is a list of Name
objects, where Name is as defined in Appendix B. Write Java statements at the client level that see whether the
Name object myName is in the list nameList.

10. Suppose that you have a list that is created by the following statement:
ListInterface<Student> studentList = new AList<Student>();

Imagine that someone has added to the list several instances of the class Student that Appendix C defined in Segment C.2.

a. Write Java statements that display the last names of the students in the list in the same order in which the
students appear in the list. Do not alter the list.

b. Write Java statements that interchange the first and last students in the list.

11. Suppose that you have a list that is created by the following statement:
ListInterface<Double> quizScores = new AList<Double>();

Imagine that someone has added to this list the quiz scores received by a student throughout a course. The profes-
sor would like to know the average of these quiz scores, ignoring the lowest score.

a. Write Java statements at the client level that will find and remove the lowest score in the list.
b. Write Java statements at the client level that will compute the average of the scores remaining in the list.

12. Consider a class Coin that represents a coin. The class has methods such as getValue, toss, and isHeads. The
method getValue returns the value, or denomination, of a coin. The method toss simulates a coin toss in which
the coin lands either heads up or tails up. The method isHeads returns true if a coin is heads up.

Suppose that coinList is an ADT list of coins that have randomly selected denominations. Toss each of these
coins. If the result of a coin toss is heads, move the coin to a second list called headsList; if it is tails, leave the
coin in the original list. When you are finished tossing coins, compute the total value of the coins that came up
heads. Assume that the list headsList has been created for you and is empty initially.

Projects 319

PROJECTS

1. Define a class of bags that implements the interface BagInterface, as defined in Listing 1-1 in Chapter 1. Use an
instance of the class ArrayList to contain a bag’s entries. Then write a program that adequately demonstrates
your new class. Note that you might have to handle exceptions thrown by methods of ArrayList.

2. Repeat Project 1, but instead define a class of stacks that implements the interface StackInterface, as defined in
Listing 5-1 in Chapter 5.

3. Repeat Project 1, but instead define a class of queues that implements the interface QueueInterface, as defined in
Listing 10-1 in Chapter 10.

4. Repeat Project 1, but instead define a class of deques that implements the interface DequeInterface, as defined in
Listing 10-4 in Chapter 10.

5. Repeat Project 1, but instead define a class of sets that implements the interface SetInterface. Recall from
Project 1 in Chapter 1 that a set is a bag whose entries are distinct. Define SetInterface by extending
BagInterface, as defined in Listing 1-1 in Chapter 1.

6. Santa Claus allegedly keeps lists of those who are naughty and those who are nice. On the naughty list are the names of
those who will get coal in their stockings. On the nice list are those who will receive gifts. Each object in this list contains a
name (an instance of Name, as defined in Appendix B) and a list of that person’s gifts (an instance of an ADT list).

Design an ADT for the objects in the nice list. Specify each ADT operation by stating its purpose, by describing
its parameters, and by writing preconditions, postconditions, and a pseudocode version of its header. Then write a
Java interface for the ADT that includes javadoc-style comments.

7. A recipe contains a title, a list of ingredients, and a list of directions. An entry in the list of ingredients contains an
amount, a unit, and a description. For example, an object that represents 2 cups of flour could be an entry in this
list. An entry in the list of directions is a string.

Design an ADT that represents any entry in a list of ingredients, assuming that you have the class MixedNumber,
which was described in the online Project 3 of Appendix D. Then design another ADT to represent any recipe. Specify
each ADT operation by stating its purpose, by describing its parameters, and by writing preconditions, postconditions,
and a pseudocode version of its header. Then write a Java interface for the ADT that includes javadoc-style comments.

8. Define and test a class that implements the interface for the ADT recipe that the previous project describes. Use an
instance of ArrayList for each list that you need. Using a text editor, create a text file of recipes for your demon-
stration program to read.

9. Repeat Project 7 of Chapter 4, but use an instance of ArrayList instead of a bag.

10. As early as the tenth century, mathematicians studied the following triangular pattern of integers, now known as
Pascal’s Triangle:

Despite the early advent of this pattern, it was named after the 17th-century mathematician Blaise Pascal.
Staggering the entries, as we have here, is traditional. Each row begins and ends with 1. Each interior entry is

the sum of the two entries above it. For example, in the last row given here, 4 is the sum of 1 and 3, 6 is the sum of
3 and 3, and 4 is the sum of 3 and 1.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
. . .

320 CHAPTER 12 Lists

ANSWERS TO SELF-TEST QUESTIONS

If we number both the rows and the entries in each row beginning with 0, the entry in position k of row n is
often denoted as C(n, k). For example, the 6 in the last row is C(4, 2). Given n items, C(n, k) turns out to be the
number of ways that you can select k of the n items. Thus, C(4, 2), which is 6, is the number of ways that you can
select two of four given items. So if A, B, C, and D are the four items, here are the six possible choices:

A B, A C, A D, B C, B D, C D

Note that the order of the items in each pair is irrelevant. For instance, the choice A B is the same as the choice B A.
Design and implement the class PascalTriangle. Represent each row in a triangle as a list and the entire tri-

angle as a list of these lists. Use the class ArrayList for these lists. Give your class constructors and at least the
method getChoices(n, k), which returns the integer value of C(n, k).

1. myList.add(c)
myList.add(1, a)
myList.add(2, b)
myList.add(4, d)

2. seven = myList.remove(7)
three = myList.remove(3)
myList.add(3, seven)
myList.add(7, three)

Another solution:
seven = myList.getEntry(7)
three = myList.getEntry(3)
myList.replace(3, seven)
myList.replace(7, three)

3. ListInterface<Integer> rList = new AList<Integer>();
rList.add(16);
rList.add(4);
rList.add(33);
rList.add(27);
rList.displayList();

4. bob = alphaList.remove(3);
ellen = alphaList.remove(2);
alphaList.add(2, bob);
alphaList.add(3, ellen);
drew = alphaList.remove(4);
ellen = alphaList.remove(3);
alphaList.add(3, drew);
alphaList.add(4, ellen);

Another solution uses getEntry and replace, much like the second solution to Question 2.

5. The change to getEntry would affect its use by requiring a cast to the type of entry retrieved. Thus, you would write
Name secondName = (Name)nameList.getEntry(2);

A similar statement without the type cast would be incorrect. A reference to Object cannot be assigned to a Name
variable without a cast.

Chapter

13List ImplementationsThat Use Arrays
Contents
Using an Array to Implement the ADT List

An Analogy
The Java Implementation
The Efficiency of Using an Array to Implement the ADT List

Using a Vector to Implement the ADT List

Prerequisites
Appendix D Designing Classes
Chapter 2 Bag Implementations That Use Arrays
Chapter 4 The Efficiency of Algorithms
Chapter 12 Lists

Objectives
After studying this chapter, you should be able to
• Implement the ADT list by using either an array that you can resize or an instance of Vector
• Discuss the advantages and disadvantages of the two implementations presented

You have seen several examples of how to use the ADT list in a program. This
chapter presents three different ways that you can implement a list in Java. We begin
by using an array to represent the entries in a list. As in earlier implementations of
other ADTs, when you use all of the space in an array, you can move the data to a
larger array. Alternately, you can use an instance of the Java class Vector to represent
the list entries. The result is like using an array that can expand, since the underlying
implementation of Vector uses such an array. But this list implementation is simpler
to write than our first one, because Vector does the work for you. Our final imple-
mentation uses a chain of linked nodes. Because you can insert and remove entries at
any position within a list, the array-based and linked implementations are a bit more
challenging than the previous ADT implementations we have encountered so far.

322 CHAPTER 13 List Implementations That Use Arrays

Using an Array to Implement the ADT List
We begin with the classroom analogy used in Chapter 2 to describe how an array can represent a
bag, but this time we show how to represent a list. In doing so, we show how the add and remove
methods would work. Subsequently, we present a corresponding Java implementation for the list.

An Analogy
13.1 Let’s recall the classroom, room A, that we used in Chapter 2 and picture it again in Figure 13-1.

The desks in the room are numbered sequentially, beginning with zero. An array is like this class-
room, and each desk is like one location within an array. Again, we will treat the desks as a one-
dimensional array and ignore that the desks are arranged in rows, as in a typical classroom.

FIGURE 13-1 A classroom that contains desks in fixed positions

Suppose that the first student who arrives at the classroom sits at desk 0; the second student sits
at desk 1, and so on. Eventually, 30 students occupy the desks numbered 0 through 29. They are
organized by arrival time. The instructor knows immediately who arrived first (that person is at
desk 0) and who arrived last (that person is at desk 29). Additionally, the instructor could ask for
the name of the student seated at any particular desk, just as a programmer can access any array ele-
ment directly. Thus, the instructor could ask for each student’s name in order of arrival by polling
desks 0 through 29, or in reverse order by polling desks 29 through 0.

Instead of arranging the students in room A by arrival time, suppose that we arrange them
alphabetically by name. Doing so requires a sorting algorithm, such as the ones that Chapters 8 and
9 discuss. That is, the ADT list does not choose the order of its entries; the client must do so.

Ro
om

 A

8

16

0

24

32

33

36

37

3831

39

30

28

26

25

17

19

20

21

22

23

12

11

10

9

1

2

3

4

5

6

7

13

15

14

18

27

29

35

34

Using an Array to Implement the ADT List 323

13.2 Adding a new student. Imagine that we have already arranged the students in room A alphabeti-
cally by name. Suppose that a new student wants to join the students already in the room. Recall
that the 30 occupied desks are numbered sequentially from 0 to 29. Since 40 desks are in the room,
the desk numbered 30 is available. When the students were arranged by arrival time, we would sim-
ply have assigned the new student to desk 30. Since the students are now arranged alphabetically by
name, we must do more work.

Suppose that the new student belongs between the two students who occupy desks 10 and
11. That is, the new student’s name is alphabetically between the names of the two students
who occupy desks 10 and 11. Since the desks’ positions are fixed, the new student must
occupy desk 11. Before the new student can be seated, the student currently at desk 11 needs
to move to desk 12, as Figure 13-2 illustrates. This requirement, however, causes a chain
reaction: The student currently at desk 12 needs to move to desk 13, and so on. That is, each
student seated in desks 11 through 29 must move to the next higher-numbered desk. If only
one student moves at a time, the student in desk 29 must move to desk 30 before the student
in desk 28 can move to desk 29, and so on. As you can see, adding a new student requires
moving several other students. However, we do not disturb the students seated in the desks
that are before the new student’s desk—desks 0 through 10 in our example.

FIGURE 13-2 Seating a new student between two existing students: At least
one other student must move

13.3 Removing a student. Now imagine that the student in desk 5 of room A drops the course. The desk
stays in its fixed location within the room. If we still want students to sit in consecutively numbered
desks, several students will need to move. In fact, each student in desks 6 through 30 must move to
the next lower-numbered desk, beginning with the student in desk 6. That is, if only one student
moves at a time, the student in desk 6 must move to desk 5 before the student in desk 7 moves to
desk 6, and so on.

10
Carol

11
Ed

Doug

Ed, please move
back one desk.

12

Question 1 In the previous example, under what circumstance could you add a new stu-
dent alphabetically by name without moving any other student?

324 CHAPTER 13 List Implementations That Use Arrays

The Java Implementation
13.4 The Java array-based implementation for the ADT list incorporates some of the ideas that our classroom

example illustrates. The implementation is a class AList1 that implements the interface ListInterface
that you saw in Chapter 12. Each public method within the class corresponds to an ADT list operation.
The private data fields are

• An array of objects
• An integer that counts the number of entries in the list
• An integer constant that defines the size of the array, which is the maximum length of the list

We can describe the class using the UML notation shown in Figure 13-3.

FIGURE 13-3 UML notation for the class AList

13.5 The class AList has the form shown in Listing 13-1. The generic type T represents the data type of

VideoNote

the entries in the list. Notice the overall organization of the class, the private data, and the construc-
tors. We use the class Object when allocating the array, but must cast it to an array whose entries
have the generic type T. Also, notice the implementations of the first add method and the method
toArray. These two methods are our core methods, as we will describe next. We will provide
implementations for the other methods shortly.

Question 2 What is an advantage of moving students as just described so that the vacated
desk does not remain vacant?

Question 3 What is an advantage of leaving the vacated desk vacant?

1. Ordinarily we would name this class ArrayList. But as you saw in the previous chapter, Java already provides a class with
that name. Although we certainly could have named our class ArrayList as well, we chose a different name to avoid confusion.

 AList

+add(newEntry: T): void
+add(newPosition: integer, newEntry: T): boolean
+remove(givenPosition: integer): T
+clear(): void
+replace(givenPosition: integer, newEntry: T): boolean
+getEntry(givenPosition: integer): T
+contains(anEntry: T): boolean
+getLength(): integer
+isEmpty(): boolean
+toArray(): T[]

-list: T[]
-numberOfEntries: integer
-DEFAULT_INITIAL_CAPACITY: integer

The class AList

Using an Array to Implement the ADT List 325

LISTING 13-1 The class AList
import java.util.Arrays;
/**

A class that implements a list of objects by using an array.
The list is never full.
@author Frank M. Carrano

*/
public class AList<T> implements ListInterface<T>
{

private T[] list; // array of list entries
private int numberOfEntries;
private static final int DEFAULT_INITIAL_CAPACITY = 25;

public AList()
{

this(DEFAULT_INITIAL_CAPACITY); // call next constructor
} // end default constructor

public AList(int initialCapacity)
{

numberOfEntries = 0;
// the cast is safe because the new array contains null entries
@SuppressWarnings("unchecked")
T[] tempList = (T[])new Object[initialCapacity];
list = tempList;

} // end constructor

public void add(T newEntry)
{

ensureCapacity();
list[numberOfEntries] = newEntry;
numberOfEntries++;

} // end add

public boolean add(int newPosition, T newEntry)
{ < Implementation deferred >
} // end add

public T remove(int givenPosition)
{ < Implementation deferred >
} // end remove

public void clear()
{ < Implementation deferred >
} // end clear

public boolean replace(int givenPosition, T newEntry)

326 CHAPTER 13 List Implementations That Use Arrays

13.6 The core methods. As we just mentioned, we have chosen to implement the first add method and
the method toArray before the others, as they are central, or core, to our class. Adding a new
entry to the end of the list is easy; we simply add the entry to the array immediately after its last
occupied location. Of course, adding a new entry is possible only if the array has available space.
We call the private method ensureCapacity to resize the array if necessary. Thus, the first add

{ < Implementation deferred >
} // end replace

public T getEntry(int givenPosition)
{ < Implementation deferred >
} // end getEntry

public boolean contains(T anEntry)
{ < Implementation deferred >
} // end contains

public int getLength()
{

return numberOfEntries;
} // end getLength

public boolean isEmpty()
{

return numberOfEntries == 0; // or getLength() == 0
} // end isEmpty

public T[] toArray()
{

// the cast is safe because the new array contains null entries
@SuppressWarnings("unchecked")
T[] result = (T[])new Object[numberOfEntries];

for (int index = 0; index < numberOfEntries; index++)
{

result[index] = list[index];
} // end for

return result;
} // end toArray

// Doubles the size of the array list if it is full.
private void ensureCapacity()
{

if (numberOfEntries == list.length)
list = Arrays.copyOf(list, 2 * list.length);

} // end ensureCapacity

< This class will define two more private methods that will be discussed later. >
} // end AList

Using an Array to Implement the ADT List 327

method has an implementation much like the one you saw in Segment 2.37 of Chapter 2 for the
class ResizableArrayBag. Moreover, the definition of ensureCapacity, which appears at the end
of Listing 13-1, as well as the definition of the method toArray are analogous to the correspond-
ing methods in ResizableArrayBag.

13.7 Testing the partial implementation. You should now write a main method to test what you have
completed at this point. Testing a class should begin well before its implementation is complete. To
avoid syntax errors in the incomplete class in Listing 13-1, make the incomplete methods stubs by
adding to each one a return statement that returns a dummy value. For example, methods that
return a boolean value could return true. Methods that return an object could return null. You can
provide the actual definitions of methods, such as getLength and isEmpty, as they are just as sim-
ple as their stubs would be.

As you define more methods, test them by adding statements to main. As Appendix B notes,
you can include your method main in the definition of AList for future use and reference.

13.8 The second add method. Adding a new entry at an arbitrary position within the list is like adding a
student to room A in our example in Segment 13.2. Although that example positions students
alphabetically by their names, remember that the list’s client—not the list itself—determines the
desired position of each entry. Thus, if that position is before the end of the list, we need to shift
existing entries to vacate the desired location so that it can accommodate the new entry. If the addi-
tion is to the end of the list, no such shift is necessary. In either case, space must be available in the
array to accommodate a new entry.

The following implementation of add uses a private method makeRoom to handle the details of
moving data within the array. Remember that we can add to the list at positions that range from 1 to
the length of the list plus 1. According to the method’s specifications given in Segment 12.7 of the
previous chapter, we must return false if the given position is invalid.

public boolean add(int newPosition, T newEntry)
{

boolean isSuccessful = true;

if ((newPosition >= 1) && (newPosition <= numberOfEntries + 1))
{

ensureCapacity();
makeRoom(newPosition);
list[newPosition - 1] = newEntry;
numberOfEntries++;

}
else

isSuccessful = false;

return isSuccessful;
} // end add

13.9 The private method makeRoom. Now we must implement the private method makeRoom. Typically,
the method shifts list entries toward the end of the array, beginning with the last entry, as Figure 13-4
illustrates. However, if newPosition is numberOfEntries + 1, the addition is at the end of the list, so
no shift is necessary. In this case, makeRoom does nothing, since its for statement exits immediately.

// Makes room for a new entry at newPosition.
// Precondition: 1 <= newPosition <= numberOfEntries+1;
// numberOfEntries is list’s length before addition.
private void makeRoom(int newPosition)
{

assert (newPosition >= 1) && (newPosition <= numberOfEntries + 1);

328 CHAPTER 13 List Implementations That Use Arrays

int newIndex = newPosition - 1;
int lastIndex = numberOfEntries - 1;

// move each entry to next higher index, starting at end of
// list and continuing until the entry at newIndex is moved
for (int index = lastIndex; index >= newIndex; index--)

list[index + 1] = list[index];
} // end makeRoom

Notice that the add method enforces the precondition of makeRoom. While testing makeRoom,
however, we can enable the assertion to be sure.

FIGURE 13-4 Making room to insert Carla as the third entry in an array

Alice Bob Doug Haley

Alice Bob Doug Haley Haley

Alice Bob Doug Doug Haley

Alice Bob Carla Doug Haley

Question 4 You could implement the first add method, which adds an entry to the end of
the list, by invoking the second add method, as follows:

public void add(T newEntry)
{

add(numberOfEntries + 1, newEntry);
} // end add

Discuss the pros and cons of this revised approach.

Question 5 Suppose that myList is a list that contains the five entries a b c d e.
a. What does myList contain after executing myList.add(5, w)?
b. Starting with the original five entries, what does myList contain after executing

myList.add(6, w)?
c. Which of the operations in Parts a and b of this question require entries in the array to shift?

Question 6 If myList is a list of five entries, each of the following statements adds a new
entry to the end of the list:

myList.add(newEntry);
myList.add(6, newEntry);

Which way requires fewer operations?

Using an Array to Implement the ADT List 329

13.10 The method remove. Removing a list entry at an arbitrary position is like a student leaving room

VideoNote

A in our example in Segment 13.3. We need to shift existing entries to avoid a gap in the array,
except when removing the list’s last entry. The following implementation uses a private method
removeGap to handle the details of moving data within the array. Like the method add, remove is
responsible for checking the validity of the given position. Note how this check also ensures that
the list is not empty.

public T remove(int givenPosition)
{

T result = null; // return value

if ((givenPosition >= 1) && (givenPosition <= numberOfEntries))
{

assert !isEmpty();
result = list[givenPosition - 1]; // get entry to be removed

// move subsequent entries toward entry to be removed,
// unless it is last in list
if (givenPosition < numberOfEntries)

removeGap(givenPosition);

numberOfEntries--;
} // end if

return result; // return reference to removed entry, or
// null if either list is empty or givenPosition
// is invalid

} // end remove

13.11 The private method removeGap. The following private method removeGap shifts list entries within
the array, as Figure 13-5 illustrates. Beginning with the entry after the one to be removed and con-
tinuing until the end of the list, removeGap moves each entry to its next lower position.

// Shifts entries that are beyond the entry to be removed to the
// next lower position.
// Precondition: 1 <= givenPosition < numberOfEntries;
// numberOfEntries is list’s length before removal.
private void removeGap(int givenPosition)
{

assert (givenPosition >= 1) && (givenPosition < numberOfEntries);

int removedIndex = givenPosition - 1;
int lastIndex = numberOfEntries - 1;

for (int index = removedIndex; index < lastIndex; index++)
list[index] = list[index + 1];

} // end removeGap

Completing the class AList

Question 7 Since the method remove does not explicitly check for an empty list, why is
the assertion given in the method true?

Question 8 When a list is empty, how does remove return null?

330 CHAPTER 13 List Implementations That Use Arrays

FIGURE 13-5 Removing Bob by shifting array entries

Note that no shift is necessary if the deletion is at the end of the list. In that case, the last entry
in the list is at position numberOfEntries, since the first entry is at position 1. If givenPosition
equals numberOfEntries, the for statement in removeGap will exit immediately. Even so, remove
will not call removeGap in this case. Notice that removeGap’s precondition requires givenPosition
to be less than numberOfEntries, and the remove method enforces this precondition. You can
enable the assert statement in removeGap to verify this enforcement.

This precondition of removeGap implies that the method should not be called if a list is empty.
In fact, remove ensures that requirement is followed.

13.12 The methods replace and getEntry. Replacing a list entry and retrieving a list entry are two
straightforward operations when an array is used to represent the entries. You simply replace or
retrieve the object that is in the indicated array location. Like earlier methods, replace and
getEntry are responsible for validating the given position. Like remove, these methods do not
need an explicit test for an empty list to behave correctly. The assert statement is available to
verify this claim during testing.

The following methods implement these two operations:

public boolean replace(int givenPosition, T newEntry)
{

boolean isSuccessful = true;

if ((givenPosition >= 1) && (givenPosition <= numberOfEntries))
{

assert !isEmpty();
list[givenPosition - 1] = newEntry;

}

Alice Bob Carla Doug Haley

Haley

Haley

Haley

HaleyHaley

Doug

Doug

Doug

Doug

Doug

Carla

Carla

Carla

Carla

CarlaAlice

Alice

Alice

Alice

Question 9 Figure 13-5 shows Haley shifted toward the beginning of the array. Actually, the
reference to Haley is copied, not moved, to its new location. Should we assign null to Haley’s
original location?

Question 10 The method clear could simply set the data field numberOfEntries to zero.
Although the list methods would correctly behave as though the list was empty, the objects
that were in the list would remain allocated. Suggest at least two ways that clear could
deallocate these objects.

Using an Array to Implement the ADT List 331

else
isSuccessful = false;

return isSuccessful;
} // end replace

public T getEntry(int givenPosition)
{

T result = null; // result to return

if ((givenPosition >= 1) && (givenPosition <= numberOfEntries))
{

assert !isEmpty();
result = list[givenPosition - 1];

} // end if

return result;
} // end getEntry

13.13 The method contains. The method getEntry locates the entry at a given position by going directly to
the appropriate array element. In contrast, the method contains is given an entry, not its position, and so
must search the array for the entry. Beginning at index zero, the method examines each array entry until
it either locates the desired one or reaches the end of the list without success. In the following implemen-
tation, we use a local boolean variable to terminate the loop when we find the desired entry:

public boolean contains(T anEntry)
{

boolean found = false;

for (int index = 0; !found && (index < numberOfEntries); index++)
{

if (anEntry.equals(list[index]))
found = true;

} // end for

return found;
} // end contains

This way of looking for a particular entry in an array is called a sequential search. Chapter 18
discusses this technique further and presents another algorithm that is generally faster.

The Efficiency of Using an Array to Implement the ADT List
Before we look at another implementation of the ADT list, let’s examine the time complexity of
some of the methods in our class AList.

13.14 Adding to the end of a list. Let’s begin with the operation that adds a new entry to the end of a list.
Listing 13-1 provided the following definition for this operation:

public void add(T newEntry)
{

ensureCapacity();
list[numberOfEntries] = newEntry;
numberOfEntries++;

} // end add

If the array of list entries is not full, each step in this method—ensuring the array’s capacity, assigning a
new entry to an array element, and incrementing the length—is an O(1) operation. By applying our
knowledge of the material presented in Segments 4.16 and 4.17 of Chapter 4, we can show that this
method is O(1), if the array is not resized. That is, we can add an entry to the end of a list independently
of any other entries in the list.

332 CHAPTER 13 List Implementations That Use Arrays

As we have seen in previous chapters, resizing an array is an O(n) operation. Thus, the method
ensureCapacity would require O(n) time if it encounters a full array. In this case, adding to the end
of a list would be an O(n) operation. If we continued to add to the end of the list, the operations
would be O(1) again.

13.15 Adding to a list at a given position. The ADT list has another method that adds a new entry to a
list, but this one adds the entry at a position that the client specifies. The time-consuming portion of
the method add, as given in Segment 13.8, is the following sequence of statements:

ensureCapacity();
makeRoom(newPosition);
list[newPosition - 1] = newEntry;

We already know that ensureCapacity is either O(n) or O(1), according to whether or not it resizes
the array. Assigning the new entry to an array element is O(1). The difference between this method
and the previous add method is that here we need to make room in the array for the new entry. This
task is accomplished by the private method makeRoom shown in Segment 13.9.

After removing makeRoom’s assert statement and comments, we are left with the following code:
private void makeRoom(int newPosition)
{

int newIndex = newPosition - 1;
int lastIndex = numberOfEntries - 1;

for (int index = lastIndex; index >= newIndex; index--)
list[index + 1] = list[index];

} // end makeRoom

The method requires the most time when newPosition is 1, because it must shift all of the list
entries. If the list contains n entries, the body of the loop is repeated n times in this case. Therefore,
the method makeRoom is O(n) in the worst case. This observation implies that the method add is also
O(n) in the worst case.

The best case occurs when newPosition is numberOfEntries + 1, that is, when we add to the
end of the list. In this event, makeRoom’s loop exits immediately, so makeRoom is O(1) in the best
case. This result is consistent with our findings in the previous segment for the first add method.

Using a Vector to Implement the ADT List
In Chapter 6, we used a vector—that is, an instance of the class java.util.Vector—instead of an
array to contain the entries in a stack. We can use a vector here to contain the entries in a list.

13.16 Beginning the class. We begin our new class as follows:
import java.util.Vector;
public class VectorList<T> implements ListInterface<T>

Note: Adding to the beginning of an array-based list is an O(n) operation. Adding to the
end is O(1) if the underlying array is not resized; otherwise it is O(n). The time required to
add at other positions depends on the position. As the position number increases, the time
needed for an addition decreases.

Question 11 What is the Big Oh of the list method remove in the best case and the worst case?
Question 12 Repeat Question 11 for the list method replace.
Question 13 Repeat Question 11 for the list method getEntry.
Question 14 Repeat Question 11 for the list method contains.

Using a Vector to Implement the ADT List 333

{
private Vector<T> list; // entries in list
. . .

The data field list is an instance of Vector instead of an array, as it was earlier in this chapter.
Since Vector is defined in terms of a generic type, you provide a data type when declaring a vector.
However, within our class VectorList, the data type of the list’s objects is still unknown, so we use
the generic type T in the declaration of the field list.

Since a vector keeps track of the number of entries it contains, a data field to count them is not
required. Any time we want to know the number of entries in the vector, and hence the list, we can
write list.size().

13.17 The constructors. The constructors for our class create an instance of Vector by invoking Vector’s
constructors. Our default constructor simply invokes Vector’s default constructor with the generic type T:

public VectorList()
{

list = new Vector<T>();
} // end default constructor

Vector’s default constructor creates a vector that can hold 10 entries. This vector will double in
size after it becomes full.

Our second constructor enables the client to specify the initial capacity of the list. It invokes a
corresponding constructor of Vector:

public VectorList(int initialSize)
{

list = new Vector<T>(initialSize);
} // end constructor

Here, Vector’s constructor creates a vector that can hold initialSize entries. This vector also will
double in size after it becomes full.

If we wanted a different initial capacity for our default list, we could define the default constructor,
as follows, instead of as given previously:

public VectorList()
{

this(DEFAULT_INITIAL_CAPACITY);
} // end default constructor

This version of the default constructor calls VectorList’s second constructor, passing it a constant
DEFAULT_INITIAL_CAPACITY, which the class must define.

13.18 The add methods. To add to the end of a list, you use Vector’s add method. This method adds a
given object to the end of a vector. If necessary, the vector increases its capacity to accommodate
the new entry. Thus, our add method does not test whether the vector is full:

public void add(T newEntry)
{

list.add(newEntry);
} // end add

To add an entry at a given position in the list, we use another of Vector’s add methods. This
method throws an exception if newPosition is illegal, but we simply want to return false in this
case. By checking the validity of newPosition, we can avoid the exception. Remember that Vector
numbers its entries beginning with 0 instead of 1.

public boolean add(int newPosition, T newEntry)
{

boolean isSuccessful = true;

334 CHAPTER 13 List Implementations That Use Arrays

if ((newPosition >= 1) && (newPosition <= list.size() + 1))
list.add(newPosition - 1, newEntry);

else
isSuccessful = false;

return isSuccessful;
} // end add

13.19 The method replace. The method replace has an implementation similar to the one you just saw.
It uses the statement

list.set(givenPosition - 1, newEntry);

to replace a designated entry in the list.
public boolean replace(int givenPosition, T newEntry)
{

boolean isSuccessful = true;

if ((givenPosition >= 1) && (givenPosition <= list.size()))
{

assert !isEmpty();
list.set(givenPosition - 1, newEntry);

}
else

isSuccessful = false;

return isSuccessful;
} // end replace

13.20 The method toArray. We call Vector’s method toArray within the definition of toArray for a list.
The only worry is to take care of the unchecked cast of an array of type Object[] to an array of
type T[]. Thus, the method has the following definition:

public T[] toArray()
{

@SuppressWarnings(“unchecked”);
T[] result = (T[])list.toArray();

return result;
} // end toArray

13.21 The method remove. Our method remove uses Vector’s method remove, which returns the object
it removes from the vector. Like add, Vector’s remove throws an exception when given an illegal
position. Our method, however, will return null in this case. Thus, our remove method has the
following implementation:

public T remove(int givenPosition)
{

T result = null; // return value

if ((givenPosition >= 1) && (givenPosition <= list.size()))
{

assert !isEmpty();
result = list.remove(givenPosition - 1);

} // end if

return result;
} // end remove

13.22 The method getEntry. The method getEntry has an implementation similar to that of remove. It
uses the expression

list.get(givenPosition - 1);

to retrieve a particular entry from the list.

Chapter Summary 335

public T getEntry(int givenPosition)
{

T result = null; // return value

if ((givenPosition >= 1) && (givenPosition <= list.size()))
{

assert !isEmpty();
result = list.get(givenPosition - 1);

} // end if

return result;
} // end getEntry

13.23 Remaining methods. The method clear uses the statement
list.clear();

to remove all entries from the vector and hence from the list. Likewise, the implementations of the
methods contains, getLength, and isEmpty are simple and left as exercises.

CHAPTER SUMMARY

Note: The methods in our class VectorList function similarly to methods in Java’s class
Vector, but their specifications differ. In implementing ListInterface, VectorList simply
invokes methods of the class Vector. VectorList is an example of an adapter class, which
we described in Segment C.3 of Appendix C.

Note: Since Java’s class Vector uses an array in its implementation, the two implementa-
tions of the ADT list that we have covered so far are array based. Both implementations use a
resizable array to contain the list’s entries, and so a list can grow in size as needed.

Note: Writing VectorList is certainly easier than writing the array-based implementa-
tion that this chapter describes. Since the methods of VectorList invoke the methods of
Vector, they can require more execution time than those of AList. However, this time
increase typically is insignificant.

Note: When you use an array or a vector to implement the ADT list,

• Retrieving the entry at a given position is fast
• Adding an entry at the end of a list is fast
• Adding or removing an entry that is between other entries requires shifting them within

the array
• Increasing the size of the array or vector requires copying entries

• The two implementations of the ADT list in this chapter use an array to store the items in a list.

• Using an array results in a straightforward implementation of the list, but it is somewhat more involved than
the implementations of either the ADT bag or the ADT stack.

• An array provides direct access to any of its elements, so a method such as getEntry has a simple,
efficient implementation.

336 CHAPTER 13 List Implementations That Use Arrays

EXERCISES

• Adding an entry to or removing an entry from an array-based list typically requires that other entries shift by
one position within the array. This data movement degrades the time efficiency of these operations, particu-
larly when the list is long and the position of the addition or removal is near the beginning of the list.

• Expanding the size of an array adds to the time required by the affected add method, since doing so requires
copying the contents of the array to a larger array.

• Using an instance of java.util.Vector has the same advantages and disadvantages as using a resizable array
but results in an implementation that is much easier to write.

1. Add a constructor to each of the classes AList and VectorList that creates a list from a given array of objects.

2. Suppose that you want an operation for the ADT list that returns the position of a given object in the list. The
header of the method could be as follows:

public int getPosition(T anObject)

where T is the generic type of the objects in the list. Write an implemention of this method for each of the two
classes described in this chapter.

3. Suppose that you want an operation for the ADT list that removes the first occurrence of a given object from the
list. The header of the method could be as follows:

public boolean remove(T anObject)

where T is the generic type of the objects in the list. The method returns true if the list contained anObject and that
object was removed. Write an implementation of this method for each of the two classes described in this chapter.

4. Suppose that you want an operation for the ADT list that moves the first item in the list to the end of the list. The
header of the method could be as follows:

public void moveToEnd()

Write an implemention of this method for each of the two classes described in this chapter.

5. Exercise 8 in the previous chapter asked you to write statements at the client level that replace an object in a given
list. Write a method at the client level that performs such a replacement. How does your method compare with the
method replace of the ADT list?

6. The method replace for the ADT list returns a boolean value. Implement a method replace that returns the
replaced object. Do this for each of the two classes described in this chapter.

7. Suppose that a list contains Comparable objects. Implement the following methods for each of the two classes
described in this chapter:

/** Returns the smallest object in the list. */
public T getMin()

/** Removes and returns the smallest object in the list. */
public T removeMin()

8. Implement an equals method for the ADT list that returns true when the entries in one list equal the entries in a
second list. In particular, add this method to the classes AList and VectorList.

9. Repeat the previous exercise, but have the equals method call a private recursive method that detects equality.

10. Consider the method contains in the class AList. Revise the method’s definition so that it calls a private recur-
sive method that detects whether the list contains the given object.

11. Implement the methods contains, getLength, and isEmpty in the class VectorList.

Projects 337

PROJECTS

12. The class AList has an array that can grow in size as objects are added to the list. Consider a similar class whose
array also can shrink in size as objects are removed from the list. Accomplishing this task will require two new
private methods.

The first new method checks whether we should reduce the size of the array:
private boolean isTooBig()

This method returns true if the number of entries in the list is less than half the size of the array and the size of the
array is greater than 20.

The second new method creates a new array that is three quarters the size of the current array and then copies
the objects in the list to the new array:

private void reduceArray()

Implement each of these two methods for our new class. Then use these methods in the definition of the method remove.

13. Consider the two private methods described in the previous question.
a. The method isTooBig requires the size of array to be greater than 20. What problem could occur if this

requirement is dropped?
b. The method reduceArray is not analogous to the method ensureCapacity in that it does not reduce the size of

the array by one half. What problem could occur if the size of the array is reduced by half instead of three quarters?

1. Write a program that thoroughly tests the class AList. Next, revise your program to perform the same tests on the
class VectorList.

2. Define a class of bags by using an instance of the class AList to contain its entries. Then write a program that ade-
quately demonstrates your new class.

3. Repeat Project 2, but define a class of stacks instead.

4. Repeat Project 2, but define a class of queues instead.

5. Repeat Project 2, but define a class of deques instead.

6. Repeat Project 2, but define a class of sets instead. Recall from Project 1 in Chapter 1 that a set is a bag whose
entries are distinct.

7. Implement the interface ListInterface by using an array in which you ignore the first array location. Thus, you
store the list’s ith entry in the array location at index i.

8. Using a fixed-size array to implement the ADT list limits the size of the list. Some applications can use a list that
has a limited length. For example, the length of a list of airline passengers or a list of ticket holders to a movie
should not exceed a known maximum.

Define an interface FixedSizeListInterface that is similar to ListInterface, but adds the method isFull and
revises the specifications of other methods as necessary to accommodate a fixed-size list. Consider whether your new inter-
face should extend ListInterface. Then define and demonstrate a class that implements FixedSizeListInterface.

9. Implement as the class Shoe the ADT shoe that Project 4 of Chapter 1 describes. Hint: To shuffle the shoe, use two
private lists of cards, a source list and a shuffled list. Put all the available cards into the source list. Initially, this will
be every card. Later, only those cards not held by a player will be available. Use the class java.util.Random to
repeatedly generate a random position in the source list, remove the card at that position, and put it at the end of the
shuffled list.

Write a program that adequately demonstrates the operation of the class Shoe.

10. Implement the ADT bid that Project 5 of Chapter 1 describes.

11. Implement the ADT for the objects in Santa’s nice list that Project 6 of Chapter 12 describes. Then create some
instances of your class and place them on the nice list.

338 CHAPTER 13 List Implementations That Use Arrays

ANSWERS TO SELF-TEST QUESTIONS

12. Implement the ADT recipe that Project 7 of Chapter 12 describes.

13. Repeat Project 5 of Chapter 4, but use an instance of AList instead of a bag.

14. Revise ListInterface, as given in Listing 12-1 of the previous chapter, so that each of the methods add, remove,
replace, and getEntry throws an exception if the position passed to it is out of range. Then revise the class AList
so that it implements your revised interface.

15. The popular social network Facebook™ was founded by Mark Zuckerberg and his classmates at Harvard University
in 2004. At the time, he was a sophomore studying computer science.

Design and implement an application that maintains the data for a simple social network. Each person in the
network should have a profile that contains the person’s name, optional image, current status, and a list of friends.
Your application should allow a user to join the network, leave the network, create a profile, modify the profile,
search for other profiles, and add friends.

1. When the name comes after the name of the student in the last occupied desk; the new student then sits at the desk
after the last one that is currently occupied.

2. The students remain in consecutively numbered positions. You do not have to keep track of the locations of the
empty desks.

3. Time is saved by not moving the students.

4. Advantage: It is easier to implement this add method. Your code will more likely be correct if the other add
method is correct.
Disadvantage: Invoking another method uses more execution time. Additionally, the second add method invokes
makeRoom needlessly.

5. a. a b c d w e
b. a b c d e w
c. The operation in Part a

6. myList.add(newEntry). The other add method validates the position 6 and then needlessly invokes makeRoom.

7. If the list is empty, numberOfEntries is zero, so (givenPosition >= 1) && (givenPosition <= 0) is always
false. Thus, the only way that the previous expression can be true is if the list is not empty.

8. By the reasoning given in the previous answer, if the list is empty, the initial value of result is returned.

9. We could, but it is not necessary. After remove decrements numberOfEntries, list[numberOfEntries] is the
array location that Haley originally occupied. So list[numberOfEntries] and list[numberOfEntries - 1]
both reference Haley. Since we are not deallocating Haley, we do not have to set list[numberOfEntries] to
null. We can simply ignore its contents.

10. The method clear could take one of the following actions to deallocate the objects currently in a list: (1) Set elements
of the array list to null; (2) repeatedly remove the last entry by repeatedly calling remove(numberOfEntries);
(3) reallocate the array list.

11. O(1); O(n)

12. O(1); O(1)

13. O(1); O(1)

14. O(1) when the entry is found immediately in position 1. O(n) when the entry is found in the last position or is not
found at all.

Chapter

14
A List

Implementation
That Links Data

Contents
Operations on a Chain of Linked Nodes

Adding a Node at Various Positions
Removing a Node from Various Positions
The Private Method getNodeAt

Beginning the Implementation
The Data Fields and Constructor
Adding to the End of the List
Adding at a Given Position Within the List
The Methods isEmpty and toArray
Testing the Core Methods

Continuing the Implementation
A Refined Implementation

The Tail Reference
The Efficiency of Using a Chain to Implement the ADT List
Java Class Library: The Class LinkedList

Prerequisites
Chapter 3 A Bag Implementation That Links Data
Chapter 11 Queue, Deque, and Priority Queue Implementations (partial)
Chapter 12 Lists
Chapter 13 List Implementations That Use Arrays

Objectives
After studying this chapter, you should be able to
• Describe a linked organization of data
• Implement the add methods of the ADT list by using a linked chain of nodes
• Test a partially complete implementation of a class

340 CHAPTER 14 A List Implementation That Links Data

Using an array to implement the ADT list has both advantages and disadvantages, as you saw in
the previous chapter. An array can either have a fixed size or be moved to a larger array when it
becomes full. Since a fixed-size array can lead to a full list, our class AList uses a resizable array to
provide as much space as the list needs. This strategy, however, requires data to move each time the
array expands. In addition, any array requires you to move data either to make room for a new entry
or to close up a gap after a deletion.

This chapter describes a linked implementation of the list. Like our previous linked implemen-
tations, this one uses memory only as needed for a new entry and returns any unneeded memory to
the system after an entry is removed. Moreover, it avoids moving data when adding or removing
list entries. These features make this way of implementing a list an important alternative to array-
based approaches.

Operations on a Chain of Linked Nodes
We used a chain of linked nodes in Chapter 2 to implement the ADT bag and in Chapter 6 to imple-
ment the ADT stack. In both of those cases, we added a node to and removed a node from the
beginning of the chain. We added a node to the end of a chain in Chapter 11 for one implementation
of the ADT queue. While those operations are still needed for a list, we also must be able to add
a node between existing nodes and to delete a node from positions other than the beginning or
end. Let’s talk about these operations. We use the same class, Node, that appears in Listing 3-4 of
Chapter 3.

Adding a Node at Various Positions
To add a node to a chain at a specified position, we must consider the following cases:

• Case 1: The chain is empty
• Case 2: Adding a node at the chain’s beginning
• Case 3: Adding a node between adjacent nodes
• Case 4: Adding a node to the chain’s end

As you will see, we will be able to combine these four cases into two. To that end, we examine each
case, even though some of the detail will be familiar to you.

14.1 Case 1: Adding a node to an empty chain. Although we have added nodes to an empty chain
before, let’s recall the necessary steps. If firstNode is the head reference to the chain, it will con-
tain null when the chain is empty. Figure 14-1a illustrates this state, along with a node that we
want to add to the chain.

FIGURE 14-1 (a) An empty chain and a new node; (b) after adding the new
node to a chain that was empty

newEntry

newNode

firstNode

(b)(a)

firstNode

newNode

newEntry

Operations on a Chain of Linked Nodes 341

The following pseudocode establishes a new node for the given data—referenced by
newEntry—and inserts it into the empty chain:

newNode references a new instance of Node
Place newEntry in newNode
firstNode = address of newNode

Figure 14-1b shows the result of this operation. In Java, these steps appear as follows, where newEntry
references the entry to be added to the list:

Node newNode = new Node(newEntry);
firstNode = newNode;

Notice that in Figure 14-1b, firstNode and newNode reference the same node. After the insertion of
the new node is complete, only firstNode should reference it. We could set newNode to null, but
as you will see, newNode will be a local variable of the method add. As such, newNode will not exist
after add ends its execution.

14.2 Case 2: Adding a node to the beginning of a chain. This case should be familiar to you, as well.
The following pseudocode describes the steps needed to add a node to the beginning of a chain:

newNode references a new instance of Node
Place newEntry in newNode
Set newNode’s link to firstNode
Set firstNode to newNode

The new node is now the first node. Figure 14-2 illustrates these steps, and the following Java state-
ments implement them:

Node newNode = new Node(newEntry);
newNode.setNextNode(firstNode);
firstNode = newNode;

To simplify the figure, we have omitted the actual entries in the list. These entries are objects that
the nodes reference.

FIGURE 14-2 A chain of nodes (a) just prior to adding a node at the beginning;
(b) just after adding a node at the beginning

14.3 Case 3: Adding a node between adjacent nodes of a chain. Because the ADT list allows addi-
tions between two existing entries, we must be able to add a node to a chain between two existing,
consecutive nodes. The necessary steps for this task are described by the following pseudocode:

newNode references the new node
Place newEntry in newNode

newNode

firstNode

(a) (b)

firstNode

newNode

Note: Recall that adding a node to an empty chain, as Figure 14-1 depicts, is actually the
same as adding a node to the beginning of a chain.

342 CHAPTER 14 A List Implementation That Links Data

Let nodeBefore reference the node that will be before the new node
Set nodeAfter to nodeBefore’s link
Set newNode’s link to nodeAfter
Set nodeBefore’s link to newNode

To indicate where in the chain the new node should be inserted, let’s number the nodes, begin-
ning with 1. We need to locate the node at a given position within the chain and get a reference to it.
Suppose that the method getNodeAt performs this task for us. Since the method returns a reference
to a node, and the class Node will be an inner class of a class of lists, getNodeAt is an implementa-
tion detail that we would not want a client to use. Thus, getNodeAt should be a private method.
Let’s specify getNodeAt as follows:

// Returns a reference to the node at a given position.
// Precondition: The chain is not empty;
// 1 <= givenPosition <= numberOfNodes
private Node getNodeAt(int givenPosition)

We can define the method later.
In the meantime, knowing only what getNodeAt does, and not how it does it, we can use it in

the implementation of the previous pseudocode. If newPosition is the number of the new node
after its insertion, the following Java statements add the new node to the chain:

Node newNode = new Node(newEntry);
Node nodeBefore = getNodeAt(newPosition - 1);
Node nodeAfter = nodeBefore.getNextNode();
newNode.setNextNode(nodeAfter);
nodeBefore.setNextNode(newNode);

Figure 14-3a shows the chain after the first three statements execute, and Figure 14-3b shows
it after the node has been added. In this figure, newPosition is 3.

FIGURE 14-3 A chain of nodes (a) just prior to adding a node between two adjacent nodes;
(b) just after adding a node between two adjacent nodes

newNode

nodeBefore nodeAfter

firstNode

(b)

newNode

nodeBefore nodeAfter

firstNode

(a)

Operations on a Chain of Linked Nodes 343

14.4 Case 4: Adding a node to the end of a chain. To add a node to the end of an existing chain, we
can take the following steps:

newNode references a new instance of Node
Place newEntry in newNode
Locate the last node in the chain
Place the address of newNode in this last node

That is, we make the last node in the chain reference the new node. Using the same
method, getNodeAt, that the previous segment described, we can implement these steps in
Java as follows:

Node newNode = new Node(newEntry);
Node lastNode = getNodeAt(numberOfNodes);
lastNode.setNextNode(newNode);

Figure 14-4 illustrates this addition to the end of a chain of nodes.

FIGURE 14-4 A chain of nodes (a) prior to adding a node at the end;
(b) after locating its last node;
(c) after adding a node at the end

Question 1 Describe the steps that the method getNodeAt must take to locate the node at
a given position.

(a)

(b)

(c)

firstNode

lastNode newNode

newNodelastNode

firstNode

newNode

firstNode

Note: Adding a new node to the end of a chain of n nodes can be thought of as adding the
node at position n + 1.

344 CHAPTER 14 A List Implementation That Links Data

Removing a Node from Various Positions
To remove a node at a specified position within a nonempty chain, we must consider two cases:

• Case 1: Removing the first node
• Case 2: Removing a node other than the first one

14.5 Case 1: Removing the first node. This case should be familiar to you, as we removed the first
node in the linked implementations of the ADTs bag, stack, queue, deque, and priority queue. The
steps to take are

Set firstNode to the link in the first node.
Since references to the first node no longer exist, the system automatically recycles its
memory.

Figure 14-5 illustrates these steps, and the following Java statement implements them:
firstNode = firstNode.getNextNode();

FIGURE 14-5 A chain of nodes (a) just prior to removing the first node;
(b) just after removing the first node

Question 2 The code that we developed in Segment 14.3 to add a node between two adja-
cent nodes of a chain is

Node newNode = new Node(newEntry);
Node nodeBefore = getNodeAt(newPosition - 1);
Node nodeAfter = nodeBefore.getNextNode();
newNode.setNextNode(nodeAfter);
nodeBefore.setNextNode(newNode);

Is it possible to use this code instead of the following code, which we just developed, to add a
node to the end of a chain? Explain your answer.

Node newNode = new Node(newEntry);
Node lastNode = getNodeAt(numberOfNodes);
lastNode.setNextNode(newNode);

Question 3 Adding a node to an empty chain could be thought of as adding a node to the
end of a chain that is empty. Can you use the statements in Segment 14.4 instead of

Node newNode = new Node(newEntry);
firstNode = newNode;

which we developed in Segment 14.1 to add a node to an empty chain? Why or why not?

firstNode

firstNode

(b)

(a)

Operations on a Chain of Linked Nodes 345

14.6 Case 2: Removing a node other than the first one. In the second case, we remove a node at a
position other than the beginning of the chain. Here are the steps to take:

Let nodeBefore reference the node before the one to be removed.
Set nodeToRemove to nodeBefore’s link; nodeToRemove now references the node to be
removed.
Set nodeAfter to nodeToRemove’s link; nodeAfter now references the node after the one to be
removed.
Set nodeBefore’s link to nodeAfter. (nodeToRemove is now disconnected from the chain.)
Set nodeToRemove to null.
Since references to the disconnected node no longer exist, the system automatically recycles
its memory.

The following Java statements implement these steps, assuming that the node to remove is at posi-
tion givenPosition:

Node nodeBefore = getNodeAt(givenPosition - 1);
Node nodeToRemove = nodeBefore.getNextNode();
Node nodeAfter = nodeToRemove.getNextNode();
nodeBefore.setNextNode(nodeAfter);
nodeToRemove = null;

Figure 14-6a illustrates the chain after the first three statements execute, and Figure 14-6b
shows it after the node is removed.

FIGURE 14-6 A chain of nodes (a) just prior to removing an interior node;
(b) just after removing an interior node

The Private Method getNodeAt
14.7 The previous operations on a chain depended on the method getNodeAt, which returns a reference

to the node at a given position within the chain. Recall the specifications for this method:

// Returns a reference to the node at a given position.
// Precondition: The chain is not empty;
// 1 <= givenPosition <= numberOfNodes
private Node getNodeAt(int givenPosition)

nodeBefore nodeToRemove nodeAfter

nodeAfternodeToRemovenodeBefore

(b)

(a)

346 CHAPTER 14 A List Implementation That Links Data

To locate a particular node within a chain, we begin at the chain’s first node and traverse the
chain from one node to another. We know that firstNode contains a reference to the first node in
the chain. That first node contains a reference to the second node in the chain, the second node con-
tains a reference to the third node, and so on.

We can use a temporary variable, currentNode, to reference the nodes one at a time as we tra-
verse the chain from the first node to the desired node. Initially, we set currentNode to firstNode
so that it references the first node in the chain. If we are seeking the first node, we are done. Other-
wise, we move to the next node by executing

currentNode = currentNode.getNextNode();

If we are seeking the second node, we are done. Otherwise, we move to the next node by
executing

currentNode = currentNode.getNextNode();

once again. We continue in this manner until we locate the node at the desired position within
the list.

The implementation for getNodeAt follows:

private Node getNodeAt(int givenPosition)
{

assert (firstNode != null) &&
(1 <= givenPosition) && (givenPosition <= numberOfNodes);

Node currentNode = firstNode;

// traverse the chain to locate the desired node
for (int counter = 1; counter < givenPosition; counter++)

currentNode = currentNode.getNextNode();

assert currentNode != null;

return currentNode;
} // end getNodeAt

Within the for loop, currentNode should never become null if the method’s precondition is
met. Thus, currentNode.getNextNode() never executes if currentNode is null. You can enable
the assert statements during the testing of getNodeAt to verify these claims.

Beginning the Implementation

Design Decision: The structure of the chain of linked nodes
Imagine that we have a collection of data from which we will create a list. That is, our data will be
the list’s entries. If the data is in the order in which the entries will appear in the list, we create the
list by repeatedly adding the next entry to the end of the list.

Question 4 The statements in Segment 14.4 that add an entry to the end of a chain invoke
the method getNodeAt. Suppose that you use these statements repeatedly to create a chain
by adding entries to its end.

a. How efficient of time is this approach?
b. Is there a faster way to repeatedly add entries to the end of a chain? Explain.

Question 5 How does getNodeAt’s precondition prevent currentNode from
becoming null?

Beginning the Implementation 347

We could do this by using the list’s first add method. However, if add contains the statements
in Segment 14.4 that add an entry to the end of a list, the method getNodeAt will be invoked to
locate the last node in the chain. To accomplish this task, getNodeAt must begin at the first node
and traverse the chain until it locates the last node. Given a reference to the last node, add can insert
the new entry at the end of the chain. If this reference is not retained when the method completes its
task, adding another entry to the end of the list forces add to invoke getNodeAt again. The result is
another traversal of the chain from its beginning. Since we plan to add entries repeatedly to the end
of the list, many repetitious traversals will occur.

In such cases, maintaining a reference to the end of the chain—as well as a reference to the
beginning of the chain—is advantageous. Such a reference to the end of a chain is called a tail
reference, and was introduced in Chapter 11 for the linked implementation of a queue.
Figure 14-7 illustrates two linked chains: one with a head reference and the other with both
head and tail references.

Maintaining both head and tail references is somewhat more involved for a list than it was for
a queue. Thus, our first class of lists using a linked implementation will not define a tail reference.
After we successfully complete this simpler definition, we will modify it by adding a tail reference
and thereby improve its time efficiency. Recall that solving a simpler problem first is often a rea-
sonable strategy.

FIGURE 14-7 A linked chain with (a) a head reference; (b) both a head refer-
ence and a tail reference

The Data Fields and Constructor
14.8 Listing 14-1 contains an outline of the class LList1 that implements the ADT list. Recall that Chapter 12

defined the interface ListInterface. It and the classes that implement it define a generic type T for the
objects in the list. We plan to define a chain of linked nodes to contain the list’s entries. Thus, we need the class
Node, which we have used in our previous discussion, and so we define it as an inner class of LList. The
generic type T that appears in LList’s header is the same one that we use in the class Node.

lastNode

firstNode

(a)

firstNode

(b)

1. We named this class LList instead of LinkedList to avoid confusion with Java’s class LinkedList in the package
java.util. You will see Java’s LinkedList at the end of this chapter.

LISTING 14-1 An outline of the class LList

/**
A linked implementation of the ADT list.
@author Frank M. Carrano

*/
public class LList<T> implements ListInterface<T>

348 CHAPTER 14 A List Implementation That Links Data

VideoNote

As we discussed earlier, this version of the class will maintain only a head reference to the chain of
nodes. The data field firstNode is this head reference. Another data field, numberOfEntries, records
the number of entries in the current list. This number is also the number of nodes in the chain. The
default constructor simply 5initializes these data fields by calling clear. So initially, the list is empty,
firstNode is null, and numberOfEntries is 0.

As was noted in Appendix C, when a constructor cnalls another public method such as clear,
that method should be final so that no subclass can override it, thereby changing the effect of the
constructor. Adding final to clear’s header is an implementation detail that is not reflected in
ListInterface. Recall from Appendix D that an interface cannot declare a method to be final.

 Adding to the End of the List
14.9 Let’s choose the methods add and toArray as the core methods that we will implement first. We

have already defined the method clear, because the constructor calls it.

{
private Node firstNode; // reference to first node
private int numberOfEntries;

public LList()
{

clear();
} // end default constructor

public final void clear() // note the final method
{

firstNode = null;
numberOfEntries = 0;

} // end clear
< Implementations of the public methods add, remove, replace, getEntry, contains,

getLength, isEmpty, and toArray go here. >
. . .

// Returns a reference to the node at a given position.
// Precondition: List is not empty;
// 1 <= givenPosition <= numberOfEntries.
private Node getNodeAt(int givenPosition)
{

< See Segment 14.7. >
} // end getNodeAt

private class Node // private inner class
{

< See Listing 3-4 in Chapter 3. >
} // end Node

} // end LList

The class LList

Beginning the Implementation 349

We begin with the first add method. This method adds a new entry to the end of the list. Like
the statements in Segment 14.4, the following statements make this addition:

Node newNode = new Node(newEntry);
Node lastNode = getNodeAt(numberOfEntries);
lastNode.setNextNode(newNode);

Assuming that we have the private method getNodeAt, we can complete the method add as follows:

public void add(T newEntry)
{

Node newNode = new Node(newEntry);

if (isEmpty())
firstNode = newNode;

else // add to end of nonempty list
{

Node lastNode = getNodeAt(numberOfEntries);
lastNode.setNextNode(newNode); // make last node reference new node

} // end if

numberOfEntries++;
} // end add

This method first creates a new node for the new entry. If the list is empty, it adds the new node
by making firstNode reference it. If the list is not empty, however, we must locate the end of the
list. Because we have a reference only to the first node, we must traverse the list until we locate the
last node and obtain a reference to it. We will call the private method getNodeAt, which we defined
in Segment 14.7, to accomplish this task. Since the data field numberOfEntries contains the size of
the list, and since we identify list entries by their positions within the list beginning with 1, the last
node is at position numberOfEntries. We need to pass this value to getNodeAt. Once getNodeAt
gives us a reference to the last node, we can set the last node’s link to reference the new node.

Note that we must define isEmpty, since add calls it, and so we add it to our core group of
methods that we define first.

Adding at a Given Position Within the List
14.10 The second add method adds a new entry at a specified position within the list. After creating a new

node that newNode references, we see whether the existing list is empty. If it is, we add the new
node to the list by writing firstNode = newNode, as we did in the first add method. If the list is not
empty, we must consider two cases:

• Case 1: Adding the entry to the beginning of the list
• Case 2: Adding the entry at a position other than the beginning of the list

Segment 14.2 lists the following statements for an addition to the beginning of a list:

Node newNode = new Node(newEntry);
newNode.setNextNode(firstNode);
firstNode = newNode;

Recall that these statements apply whether the list is empty or not. Additions anywhere else are per-
formed by the statements shown in Segment 14.3:

Node newNode = new Node(newEntry);
Node nodeBefore = getNodeAt(newPosition - 1);
Node nodeAfter = nodeBefore.getNextNode();
newNode.setNextNode(nodeAfter);
nodeBefore.setNextNode(newNode);

350 CHAPTER 14 A List Implementation That Links Data

14.11 The Java method. The following implementation of the add method is based on the previous
code fragments. We begin by checking the validity of the insertion position, newPosition. If it is
within range, we create the new node. We then insert the new node into the chain according to its
intended position, newPosition: The insertion is either at the beginning of the list or somewhere
else in the list.

public boolean add(int newPosition, T newEntry)
{

boolean isSuccessful = true;

if ((newPosition >= 1) && (newPosition <= numberOfEntries + 1))
{

Node newNode = new Node(newEntry);

if (newPosition == 1) // case 1
{

newNode.setNextNode(firstNode);
firstNode = newNode;

}
else // case 2: list is not empty
{ // and newPosition > 1

Node nodeBefore = getNodeAt(newPosition - 1);
Node nodeAfter = nodeBefore.getNextNode();
newNode.setNextNode(nodeAfter);
nodeBefore.setNextNode(newNode);

} // end if

numberOfEntries++;
}
else

isSuccessful = false;

return isSuccessful;
} // end add

The Methods isEmpty and toArray
14.12 The method isEmpty and assertions. The implementation of the method isEmpty could simply

test that the length of the list is zero, as it did in the array-based implementations that you saw in the
previous chapter. However, we have another criterion that we could use here. When a list is empty,
the reference firstNode is null. If our implementation is correct, either criterion is fine, but what
happens during development when some part of our class might contain an error in logic? We can

Question 6 Consider the first else clause of the previous method add.
a. What assert statement could you add to this clause?
b. What call to getNodeAt could replace the value assigned to nodeAfter?
c. Should we make the change suggested in Part b?

Question 7 In the previous method add, the second if statement tests the value of new
Position. Should the boolean expression it tests be isEmpty() || (newPosition == 1)?
Explain.

Question 8 How do the add methods given in Segments 14.9 and 14.11 enforce the pre-
condition of getNodeAt?

Beginning the Implementation 351

use assert statements involving the second criterion to help us catch an error, as in the following
version of isEmpty:

public boolean isEmpty()
{

boolean result;
if (numberOfEntries == 0) // or getLength() == 0
{

assert firstNode == null;
result = true;

}
else
{

assert firstNode != null;
result = false;

} // end if

return result;
} // end isEmpty

14.13 Example. Let’s look at an example of how the previous implementation of isEmpty can help us
find an error in logic. Consider the definition of the first add method given in Segment 14.9. If
we had been concerned that we might forget to increment the data field numberOfEntries, we
might have written numberOfEntries++ as the method’s first action instead of as one of its last.
This change would have caused an error. If the list was empty when the method was called,
numberOfEntries would have been given the value 1, and isEmpty would have been invoked.
Since firstNode would have been null, the second assertion within isEmpty would have pro-
duced an error message like the following one, assuming that we had enabled assertions:

Exception in thread “main” java.lang.AssertionError
at LList.isEmpty(LList.java:167)
at LList.add(LList.java:36)
at Driver.testList(driver.java:16)
at Driver.main(driver.java:5);

This message indicates that the method add called isEmpty, which produced the assertion
error. We could clarify this message by adding to the assert statements in isEmpty. For example, if
the second assert statement is

assert firstNode != null : "numberOfEntries is not 0 but firstNode is null";

the previous error message would begin as follows:
Exception in thread “main” java.lang.AssertionError:
numberOfEntries is not 0 but firstNode is null

If we ran our program without enabling assertions, isEmpty would simply test numberOfEntries.
Since numberOfEntries would not be zero, isEmpty would return false, so add’s else clause would
execute. When add invoked getNodeAt(1), null would be returned—since firstNode would be
null—and assigned to lastNode. As a result, lastNode.setNextNode(newNode) would cause an
exception and would produce an error message such as

Exception in thread “main” java.lang.NullPointerException
at LList$Node.access$102(LList.java:212)
at LList.add(LList.java:41)
at Driver.testList(driver.java:16)
at Driver.main(driver.java:5);

This message is not as clear as the previous one, so more effort would be needed to discover
the problem.

352 CHAPTER 14 A List Implementation That Links Data

14.14 The method toArray. By implementing the method toArray, we will be able to test the previous
methods that we have written before we complete the rest of LList. The method must traverse the
chain and copy the data in each node to an element within an array. Thus, it needs a local variable to
reference each node in the chain. For example, currentNode could reference the node whose data
we want to copy. That data is currentNode.getData().

Initially, we want currentNode to reference the first node in the chain, so we set it to firstNode.
To make currentNode reference the next node, we would execute the statement

currentNode = currentNode.getNextNode();

Thus, we can write a loop that iterates until currentNode becomes null.
The following method toArray uses these ideas:

public T[] toArray()
{

// the cast is safe because the new array contains null entries
@SuppressWarnings("unchecked")
T[] result = (T[])new Object[numberOfEntries];

int index = 0;
Node currentNode = firstNode;
while ((index < numberOfEntries) && (currentNode != null))
{

result[index] = currentNode.getData();
currentNode = currentNode.getNextNode();
index++;

} // end while

return result;
} // end toArray

Question 9 Suppose that the implementation of the method isEmpty contains the follow-
ing single statement:

return (numberOfEntries == 0) && (firstNode == null);

If we make the error in the method add that is described in the previous segment, what happens
when add is called and the list is empty? Assume that assertions are enabled.

Question 10 In the previous implementation of toArray, the while statement tests the val-
ues of both index and currentNode. Can you replace the while statement with

a. while (index < numberOfEntries)
b. while (currentNode != null)

Explain your responses.

Question 11 Compare the work required by the loop in the previous method toArray with
that required by the following version of the loop:

int index = 0;
Node currentNode = firstNode;
while ((index < numberOfEntries) && (currentNode != null))
{

currentNode = getNodeAt(index + 1);
result[index] = currentNode.getData();
index++;

} // end while

Beginning the Implementation 353

Testing the Core Methods
14.15 Earlier, we realized that the add methods are fundamental to our class, so they are part of the core

group of methods that we implement and test first. The method toArray lets us see whether add
works correctly, so it too is in our core group. The constructor is also fundamental, and so is the
method clear, since the constructor calls it. Similarly, since add calls isEmpty and getNodeAt,
they are among the core methods that we implement and test first. Lastly, we define the method
getLength as a check that the add methods correctly maintain the field numberOfEntries.
Although it is not really an essential method right now, its definition is simple and is the same as
for the array-based implementation that you saw in the previous chapter.

Now that we have implemented these core methods, we can test them. Since LList implements
ListInterface, however, we first must write stubs for the remaining methods in the interface. We
assume that we have completed that simple task.

Let’s choose the add method that adds to the end of the list for our first tests. Listing 14-2
contains an example of a main method that we could use for this purpose. Notice how the
descriptive output makes it easier to see whether our implementation is correct. The method
displayList is the same as the one in Listing 12-2 of Chapter 12. Recall that this method calls
the methods getLength and getEntry.

LISTING 14-2 A main method that tests part of the implementation of the ADT
list

public static void main(String[] args)
{

System.out.println("Create an empty list.");
ListInterface<String> myList = new LList<String>();
System.out.println("List should be empty; isEmpty returns" +

myList.isEmpty() + ".");
System.out.println("\nTesting add to end:");
myList.add("15");
myList.add("25");
myList.add("35");
myList.add("45");
System.out.println("List should contain 15 25 35 45.");
displayList(myList);
System.out.println("List should not be empty; isEmpty() returns" +

myList.isEmpty() + ".");
System.out.println("\nTesting clear():");
myList.clear();
System.out.println("List should be empty; isEmpty returns" +

myList.isEmpty() + ".");
} // end main

Output
Create an empty list.

List should be empty; isEmpty returns true.

Testing add to end:

List should contain 15 25 35 45.

354 CHAPTER 14 A List Implementation That Links Data

Continuing the Implementation
To complete the class LList, we now define the methods remove, replace, getEntry, and
contains.

14.16 The method remove. To remove the first entry from our list, we execute the statement
firstNode = firstNode.getNextNode();

To remove an entry after the first one, we execute the following statements:

Node nodeBefore = getNodeAt(givenPosition - 1);
Node nodeToRemove = nodeBefore.getNextNode();
Node nodeAfter = nodeToRemove.getNextNode();
nodeBefore.setNextNode(nodeAfter);
nodeToRemove = null;

VideoNote

Recall that the remove method returns the entry that it deletes from the list. Although the
node that contains this entry is recycled, the entry itself is not as long as the client saves the
reference to it.

public T remove(int givenPosition)
{

T result = null; // return value

if ((givenPosition >= 1) && (givenPosition <= numberOfEntries))
{

assert !isEmpty();
if (givenPosition == 1) // case 1: remove first entry
{

result = firstNode.getData(); // save entry to be removed
firstNode = firstNode.getNextNode();

}
else // case 2: not first entry
{

Node nodeBefore = getNodeAt(givenPosition - 1);
Node nodeToRemove = nodeBefore.getNextNode();
Node nodeAfter = nodeToRemove.getNextNode();
nodeBefore.setNextNode(nodeAfter);

List contains 4 entries, as follows:

15 is entry 1

25 is entry 2

35 is entry 3

45 is entry 4

List should not be empty; isEmpty() returns false.

Testing clear():

List should be empty; isEmpty returns true.

Question 12 Consider the method displayList, as given in Listing 12-2 of Chapter 12.
a. Why is the method less efficient of time in the context of Listing 14-2 than it was in

Listing 12-2?
b. Revise displayList so that it is time efficient when it is used with either LList or AList.

Completing the class LList

Continuing the Implementation 355

result = nodeToRemove.getData(); // save entry to be removed
} // end if

numberOfEntries--;
} // end if

return result; // return removed entry, or
// null if operation fails

} // end remove

Notice that we use the private method getNodeAt, which we wrote originally for the add meth-
ods, to locate the node before the one to be removed. This method is called only when we remove
an entry other than the first one. Thus, its argument givenPosition - 1 will always be greater than
zero, as its precondition requires.

Also notice that we do not explicitly set nodeToRemove to null after disconnecting the node.
This variable is local to the remove method and so does not exist after the method completes execu-
tion. Although we could set nodeToRemove to null, doing so is not necessary.

14.17 The method replace. Replacing a list entry requires us to replace the data portion of a node with
other data. We can use the private method getNodeAt to locate the node and then simply replace its
data portion. Before calling getNodeAt, we check that the list is not empty and the given position is
valid. The implementation appears as follows:

public boolean replace(int givenPosition, T newEntry)
{

boolean isSuccessful = true;
if ((givenPosition >= 1) && (givenPosition <= numberOfEntries))
{

assert !isEmpty();
Node desiredNode = getNodeAt(givenPosition);
desiredNode.setData(newEntry);

}
else

isSuccessful = false;

return isSuccessful;
} // end replace

14.18 The method getEntry. Retrieving a list entry is straightforward:
public T getEntry(int givenPosition)
{

T result = null; // result to return

Question 13 Why is the assertion in the previous method true?

Note: The method replace replaces the data in a node, but not the node itself.

Question 14 Compare the time required to replace an entry in a list using the previous
method replace with the time required for the array-based version given in Segment 13.12.

356 CHAPTER 14 A List Implementation That Links Data

if ((givenPosition >= 1) && (givenPosition <= numberOfEntries))
{

assert !isEmpty();
result = getNodeAt(givenPosition).getData();

} // end if

return result;
} // end getEntry

The method getNodeAt returns a reference to the desired node, so
getNodeAt(givenPosition).getData()

is the data portion of that node.
Although our implementations of getEntry and replace are easy to write, each does more

work than if we had used an array to represent the list. Here, getNodeAt starts at the first node in the
chain and moves from node to node until it reaches the desired one. In Segment 13.12, you saw that
replace and getEntry can reference the desired array entry directly, without involving any other
entry in the array.

14.19 The method contains. The method contains for a list could have the same definition as the one
given in Segment 3.17 of Chapter 3 for a bag. However, the inner class Node now has set and get
methods, so contains can appear as follows:

public boolean contains(T anEntry)
{

boolean found = false;
Node currentNode = firstNode;

while (!found && (currentNode != null))
{

if (anEntry.equals(currentNode.getData()))
found = true;

else
currentNode = currentNode.getNextNode();

} // end while

return found;
} // end contains

Because the ADT bag has a remove method that removes a given entry, it must do the same
search as contains. For that reason, we revised the definition of contains in Chapter 3 so that the
search is performed by a private method that both contains and remove can call. Our version of the
ADT list, however, removes entries by position, not by the value of the entry. Thus, the search that
contains does is performed only by contains.

A Refined Implementation
Currently, the chain of linked nodes that contains a list’s entries has only a head reference. When
we began writing the class LList, we noted that the first add method, which adds a new entry at the
end of the chain, must invoke the private method getNodeAt to locate the chain’s last node. To do

Note: Test the class LList
The class LList is now complete and should be thoroughly tested before we continue. We
leave this test to you as an exercise. You will be able to use your program later when you test
the improved version of LList that we are about to write.

A Refined Implementation 357

so, getNodeAt must traverse the chain from its beginning. We can improve the time efficiency of
this add method by maintaining a reference to the end of the chain, as well as a reference to the
beginning of the chain, as was pictured earlier in Figure 14-7b and repeated here in Figure 14-8. In
this way, we avoid a traversal of the entire chain each time that add is called.

FIGURE 14-8 A linked chain with both a head reference and a tail reference

The Tail Reference
14.20 The tail reference, like the head reference, is a private data field of the class. Thus, the private data

fields of the revised class are now

private Node firstNode; // head reference to first node
private Node lastNode; // tail reference to last node
private int numberOfEntries; // number of entries in list

By examining the class LList, as described earlier in this chapter, you should find that the two add
methods and the methods remove and clear are the ones that will involve the head and tail refer-
ences and, thus, need to be revised. We should also revise the assertions in the method isEmpty.
The rest of the original implementation, including the constructor, remains the same. Let’s examine
these revisions. We will name the revised class LList2 to distinguish it from the original one.

14.21 The method clear. We begin with the method clear, because the constructor calls it. It must ini-
tialize both the head and tail references as well as the field numberOfEntries:

Here, and in the rest of the revision, changes to the original implementation are highlighted.

14.22 Adding to the end of the list. The steps required to add an entry to the end of a list depend upon
whether the list is empty or not. After an item is added to the end of an empty list, both the head and
tail references must reference the new solitary node. Thus, after creating a new node that newNode
references, the add method would execute

firstNode = newNode;
lastNode = newNode;

Adding to the end of a nonempty list no longer requires a traversal to locate the last entry:
The tail reference lastNode provides this information. After the addition has been made, the tail

firstNode lastNode

Question 15 Examine the implementation of the class LList given in this chapter. Which
methods would require a new definition if you use both a head reference and a tail reference?

public final void clear()
{

firstNode = null;
lastNode = null;
numberOfEntries = 0;

} // end clear

358 CHAPTER 14 A List Implementation That Links Data

reference must change to refer to the new last entry. The following statements perform these
steps, as Figure 14-9 illustrates:

lastNode.setNextNode(newNode);
lastNode = newNode;

FIGURE 14-9 Adding a node to the end of a nonempty chain that has a tail
reference

The following revision of the first add method reflects the previous comments:

public void add(T newEntry)
{

Node newNode = new Node(newEntry);

if (isEmpty())
firstNode = newNode;

else
lastNode.setNextNode(newNode);

lastNode = newNode;

numberOfEntries++;
} // end add

Note that the method no longer calls getNodeAt to establish lastNode, as it did in Segment 14.9.

14.23 Adding to the list at a given position. Adding to a list by position affects the tail reference only
when we are adding to an empty list or adding to the end of a nonempty list. Other cases do not
affect the tail reference, so we treat them as we did in Segment 14.11 when we did not have a
tail reference.

Thus, the implementation of the method that adds by position is

public boolean add(int newPosition, T newEntry)
{

boolean isSuccessful = true;

if ((newPosition >= 1) && (newPosition <= numberOfEntries + 1))
{

Node newNode = new Node(newEntry);

if (isEmpty())
{

newNodelastNode

After executing
lastNode = newNode;

After executing
lastNode.setNextNode(newNode);

newNodelastNode

(b)

(a)

A Refined Implementation 359

firstNode = newNode;
lastNode = newNode;

}

else if (newPosition == 1)
{

newNode.setNextNode(firstNode);
firstNode = newNode;

}
else if (newPosition == numberOfEntries + 1)
{

lastNode.setNextNode(newNode);
lastNode = newNode;

}
else
{

Node nodeBefore = getNodeAt(newPosition - 1);
Node nodeAfter = nodeBefore.getNextNode();
newNode.setNextNode(nodeAfter);
nodeBefore.setNextNode(newNode);

} // end if

numberOfEntries++;
}
else

isSuccessful = false;

return isSuccessful;
} // end add

14.24 Removing an entry from a list. Removing an entry can affect the tail reference in two cases:

• Case 1: If the list contains one entry and we remove it, an empty list results, and we must set
both the head and tail references to null.

• Case 2: If the list contains several entries and we remove the last one, we must change the tail
reference so that it references the new last entry.

Figure 14-10 illustrates these two cases.

FIGURE 14-10 Removing the last node from a chain that has both head and tail references when the
chain contains (a) one node; (b) more than one node

lastNodefirstNode

Before

(b)

lastNodefirstNode

Before

lastNodefirstNode

After

(a)

firstNode lastNode

After

360 CHAPTER 14 A List Implementation That Links Data

The following method treats the previous two cases in its implementation of the remove
operation:
public T remove(int givenPosition)
{

T result = null; // return value

if ((givenPosition >= 1) && (givenPosition <= numberOfEntries))
{

assert !isEmpty();
if (givenPosition == 1) // case 1: remove first entry
{

result = firstNode.getData(); // save entry to be removed
firstNode = firstNode.getNextNode();
if (numberOfEntries == 1)

lastNode = null; // solitary entry was removed
}
else // case 2: not first entry
{

Node nodeBefore = getNodeAt(givenPosition - 1);
Node nodeToRemove = nodeBefore.getNextNode();
Node nodeAfter = nodeToRemove.getNextNode();
nodeBefore.setNextNode(nodeAfter);
result = nodeToRemove.getData(); // save entry to be removed

if (givenPosition == numberOfEntries)
lastNode = nodeBefore; // last node was removed

} // end if

numberOfEntries--;
} // end if

return result; // return removed entry, or
// null if operation fails

} // end remove

The Efficiency of Using a Chain to Implement the ADT List
Let’s consider the time complexity of some of the methods in our classes LList and LList2. Sev-
eral of these methods call the private method getNodeAt, as given in Segment 14.7. The loop in
getNodeAt cycles i times in its search for the ith node in the chain. Thus, getNodeAt is O(n). We
will use this fact in our analysis of the public methods.

14.25 Adding to the end of the list. Because the chain in the class LList does not have a tail reference,
LList’s add method, as described in Segment 14.9, must traverse the entire chain of linked nodes to
locate the last one before it can add an entry at the end of the list. The method calls getNodeAt to
locate this node. Since getNodeAt is O(n), this add method is also O(n).

 The class LList2, on the other hand, does maintain a tail reference for its chain of linked
nodes. Thus, its add method, as given in Segment 14.22, does not call getNodeAt, and so is O(1).

Note: Adding to the end of a chain of linked nodes requires less work when you maintain a
tail reference because you avoid a traversal of the chain. Removing the last node from a chain
requires a traversal to locate the next-to-last node whether or not you have a tail reference.

Question 16 In light of the tail reference, what changes should you make to the assertions
in the method isEmpty, as given in Segment 14.12?

The Efficiency of Using a Chain to Implement the ADT List 361

14.26 Adding to a list at a given position. The add method, as given in Segment 14.11, for the class
LList can add an entry to the beginning of a list in O(1) time. Adding to a list at other positions
depends on the position. As the position number increases, the time needed for an addition
increases. In other words, since add calls getNodeAt, and getNodeAt is O(n), add is O(n) when the
addition is beyond the beginning of the list.

The add method, as given in Segment 14.23, for the class LList2 can add an entry to either the
beginning or the end of a list in O(1) time. It requires O(n) time for other additions.

14.27 Using Big Oh notation, Figure 14-11 summarizes the time complexities of the operations of the ADT
list for the implementations that use an array and a chain of linked nodes. For some operations, two or
three complexities are given: The first one indicates the time requirement for an operation at the
beginning of the list, the second is for operations at other positions within the list, and the third one, if
it exists, is for operations at the end of the list.

FIGURE 14-11 The time efficiencies of the ADT list operations for three imple-
mentations, expressed in Big Oh notation

For example, the first add method in an array-based implementation is O(1), and the second
add method is O(n), unless it adds at the end of the list, in which case it is O(1). The method
toArray is always O(n), and getEntry is always O(1).

For the linked implementation LList, which maintains only a head reference to the chain of
nodes, the first add method and toArray are each O(n). The second add method is O(n) unless it
adds to the beginning of the list, in which case it is O(1).

Question 17 What is the Big Oh of the method toArray, as given in Segment 14.14?

Question 18 What is the Big Oh of the method remove, as given in Segment 14.16?

Question 19 What is the Big Oh of the method replace, as given in Segment 14.17?

Question 20 What is the Big Oh of the method getEntry, as given in Segment 14.18?

Question 21 What is the Big Oh of the method contains, as given in Segment 14.19?

Question 22 In light of the tail reference, what changes can you make to the method
getNodeAt, as given in Segment 14.7, to improve the time complexity of the methods
replace, getEntry, and contains?

Operation AList LList LList2

add(newEntry)

add(newPosition, newEntry)

toArray()

remove(givenPosition)

replace(givenPosition, newEntry)

getEntry(givenPosition)

contains(anEntry)

clear(), getLength(), isEmpty()

O(1)
O(n); O(1)
O(n)
O(n); O(1)
O(1)
O(1)
O(n)
O(1)

O(n)
O(1); O(n)
O(n)
O(1); O(n)
O(1); O(n)
O(1); O(n)
O(n)
O(1)

O(1)
O(1); O(n); O(1)
O(n)
O(1); O(n)
O(1); O(n); O(1)
O(1); O(n); O(1)
O(n)
O(1)

362 CHAPTER 14 A List Implementation That Links Data

For the linked implementation LList2, which maintains both a head reference and a tail refer-
ence to the chain of nodes, the first add method is O(1), and toArray is O(n). The second add
method is O(n), unless it adds to either the beginning or the end of the list, in which case it is O(1).

As you can see, some of the operations have the same time complexity for each implementation.
However, operations that add to the end of a list, replace an entry, or retrieve an entry take less time
when you use an array to represent a list than when you use a chain of linked nodes. If your applica-
tion uses these particular operations frequently, an array-based implementation could be attractive.

The operations that add or remove an entry at a given position have time requirements that
depend on this position regardless of their implementation. If your application primarily adds and
removes entries at or near the beginning of a list, use a linked implementation. If these operations
are mostly at or near the end of the list, use an array-based implementation. The operations that you
use the most in an application should influence your choice of implementation for an ADT.

Design Decision: Which implementation of an ADT should you use?
Even small changes to an ADT’s underlying data structure can increase or decrease the time
efficiency of the ADT’s operations. When choosing an implementation for an ADT, you should
consider the operations that your application requires. If you use a particular operation fre-
quently, you want its implementation to be efficient. Conversely, if you rarely use an opera-
tion, you can afford to use a class that has an inefficient implementation of that operation.

Like the linked implementations you have seen in previous chapters, the classes LList and
LList2 enable their instances to grow as large as necessary. You can add as many nodes to a
chain—and, therefore, entries to a list—as computer memory allows. Although resizing the array in
an array-based implementation gives you the same advantage, it comes with the cost of copying
data from one array to another. No such copying occurs in a linked implementation.

In addition, a chain enables you to add and remove nodes without moving any existing entries
that are already in the list. With an array, adding and removing entries usually requires that other
entries be moved within the array. However, you must traverse a chain from its beginning to deter-
mine where to make the addition or deletion.

Retrieving an existing entry from a chain requires a similar traversal to locate the desired entry.
When you use an array instead of a chain, you can access any element directly by position, without
searching the array. However, a method such as contains that does not have the position of an
entry must perform a search regardless of whether an array or a chain represents the list.

Finally, as you have seen before, a chain stores additional references compared to an array. For
each entry in a list, a chain stores two references, compared to an array’s one. This additional mem-
ory requirement is somewhat offset by the fact that a chain uses memory only as needed for each
list entry, whereas an array often is larger than necessary, thereby wasting memory.

Any implementation of an ADT has its advantages and disadvantages. You should choose the
implementation that best suits your particular application.

Java Class Library: The Class LinkedList

14.28 Recall from Chapter 12 that the Java Class Library contains the interface java.util.List.
This interface is like our ListInterface, but it declares more methods. Also, some methods
have different names or specifications, and the list entries begin at position 0 instead of 1. Seg-
ment 12.12 of Chapter 12 summarized these differences.

The same package java.util contains the class LinkedList. This class implements the inter-
face List, as well as the interfaces Queue and Deque that are described in Chapter 10. Thus,
LinkedList defines more methods than are in the interface List. Furthermore, you can use the
class LinkedList as an implementation of the ADT queue, deque, or list.

Exercises 363

CHAPTER SUMMARY

EXERCISES

• When a chain has only a head reference or has both head and tail references, the following are true:
• Adding a node to the chain’s beginning is a special case.
• Removing the first node from the chain is a special case.
• Adding or removing a node that is last in the chain requires a traversal of the entire chain.
• Adding a node anywhere within a chain requires a change of at most two references.
• Removing any node from a chain requires a change of at most two references.

• When a chain has both head and tail references, the following are true:
• Adding a node to an empty chain is a special case.
• Adding a node to the chain’s end is a special case.
• Removing the last node from a chain is a special case.

• Maintaining a reference to a chain’s last node as well as to its first node eliminates the need for a traversal
when adding a node at the end of the chain. Thus, adding to the end of a list is faster when the chain has both
head and tail references than when it has only a head reference. For this reason, we have used a chain that
has both head and tail references to implement the ADT list.

1. Add a constructor to the class LList that creates a list from a given array of objects. Consider at least two different
ways to implement such a constructor. Which way requires the least amount of work?

2. Write a program that tests the first version of LList.

3. Consider the definition of the add method that adds an entry to a list at a given position and appears in
Segment 14.11. Replace the statements that execute in case 1 with the following ones:

if (isEmpty() || (newPosition == 1)) // case 1
{

firstNode = newNode;
newNode.next = firstNode;

}

a. What is displayed by the following statements in a client of the modified LList?

ListInterface<String> myList = new LList<String>();
myList.add(1, "30");

myList.add(2, "40");
myList.add(3, "50");
myList.add(1, "10");
myList.add(5, "60");
myList.add(2, "20");
int numberOfEntries = myList.getLength();
for (int position = 1; position <= numberOfEntries; position++)

System.out.print(myList.getEntry(position) + " ");

b. What methods, if any, in LList could be affected by the change to the method add when they execute?
Why?

4. Suppose that you want an operation for the ADT list that adds an array of items to the end of the list. The header
of the method could be as follows:

public void addAll(T[] items)

Write an implementation of this method for the class LList.

364 CHAPTER 14 A List Implementation That Links Data

5. Define the method getPosition, as described in Exercise 2 of the previous chapter, for the class LList. Compare
the execution time required by this method with the version of getPosition defined in the class AList.

6. Implement an equals method for the class LList that returns true when the entries in one list equal the entries in a
second list.

7. Repeat Exercise 10 in the previous chapter, but use the class LList instead of AList.

8. Suppose that a list contains Comparable objects. Implement a method that returns a new list of items that are less
than some given item. The header of the method could be as follows:

public LList<T> getAllLessThan(Comparable<T> anObject)

Write an implementation of this method for the class LList. Make sure that your method does not affect the state
of the original list.

9. Define the method remove, as described in Exercise 3 of the previous chapter, for the class LList.

10. Repeat the previous exercise, but remove all occurrences of anObject from the list.

11. Define the method moveToEnd, as described in Exercise 4 of the previous chapter, for the class LList.

12. Implement a replace method for the class LList that returns the replaced object.

13. Suppose that a list contains Comparable objects. Define the methods getMin and removeMin, as described in
Exercise 7 of the previous chapter, for the class LList.

14. Consider an instance arrayList of AList, as given in the previous chapter. Let the list have an initial size of 10.
Also, consider an instance of LList called chainList.

a. How large is the underlying array after adding 145 items to arrayList?
b. How large is the underlying array after adding 20 more items to arrayList?
c. How many nodes are in the chain after adding 145 items to chainList?
d. How many nodes are in the chain after adding 20 more items to chainList?
e. Each node in a chain has two references, so a chain of n nodes has 2n references. An array of size n, on the

other hand, has n references. Count the number of references in each of the situations described in Parts a
through d.

f. When will arrayList use fewer references than chainList?
g. When will chainList use fewer references than arrayList?

15. A doubly linked chain, like the one described in Exercise 12 and Figure 3-11 of Chapter 3, has nodes that each can
reference a previous node and a next node. In Chapter 3, the doubly linked chain has only a head reference, but it
can have both a head reference and a tail reference, as Figure 14-12 illustrates.

List the steps necessary to add a node to a doubly linked chain when the new node is

a. First in the chain
b. Last in the chain
c. Between existing nodes in the chain

FIGURE 14-12 A doubly linked chain for Exercises 15 and 16 and Project 8

firstNode lastNode

Projects 365

PROJECTS

16. List the steps necessary to remove a node from the doubly linked chain shown in Figure 14-12 when the node is
a. First in the chain
b. Last in the chain
c. Between existing nodes in the chain.

1. Write a program that thoroughly tests the class LList2.

2. Listing 3-5 of Chapter 3 shows the class Node as part of a package. Create another package that contains Node,
LList, and ListInterface. Revise LList to use this version of Node.

3. Create a Java interface that declares the following methods:
/** Adds a new entry to the beginning of this list. */
public void addFirst(T newEntry)

/** Adds a new entry to the end of this list. */
public void addLast(T newEntry)

/** Removes and returns the first entry in this list. */
public T removeFirst()

/** Removes and returns the last entry in this list. */
public T removeLast()

/** Returns the first entry in this list. */
public T getFirst()

/** Returns the last entry in this list. */
public T getLast()

/** Moves the first entry in this list to the end of the list. */
public void moveToEnd()

Then define DoubleEndedListInterface by extending this interface and ListInterface. Write a class that
implements DoubleEndedListInterface. Represent the list’s entries by using a chain of nodes that has both a
head reference and a tail reference. Write a program that thoroughly tests your class.

4. Repeat the previous project, but do not use a tail reference.

5. Adding nodes to or removing nodes from a linked chain requires a special case when the operation is at the begin-
ning of the chain. To eliminate the special case, you can add a dummy node at the beginning of the chain. The
dummy node is always present but does not contain a list entry. The chain, then, is never empty, and so the head
reference is never null, even when the list is empty. Modify the class LList, as presented in this chapter, by add-
ing a dummy node to the chain.

6. In a circularly linked chain, the last node references the first node. Commonly, only one external reference—to the
last node—is maintained, since the first node is found easily from the last one.

Modify the class LList, as presented in this chapter, by using a circular linked chain and a tail reference.

7. Implement as the class Ring the ADT ring that Project 3 of Chapter 1 described. Represent the ring as a chain of
linked nodes. Consider using a circular linked chain, as described in the previous project.

8. Implement and test a class of lists using a doubly linked chain, as shown in Figure 14-12, to represent the entries
in the list. Use an inner class of nodes like the one that Exercise 12 of Chapter 3 asked you to define, but include
set and get methods.

366 CHAPTER 14 A List Implementation That Links Data

ANSWERS TO SELF-TEST QUESTIONS

9. You can add a dummy head node, as Project 5 describes, to the beginning of a doubly linked chain. Modify the
implementation of the ADT list described in the previous project by adding a dummy head node to the chain.

10. Define a class that is a linked implementation of the interface FixedSizeListInterface, as described in Project 8
of the previous chapter.

11. Repeat any of the projects 1 through 5 and 8 through 15 in the previous chapter by either using a linked chain or
involving the class LList instead of the class AList.

1. To locate the nth node in a chain, getNodeAt starts at the first node and counts nodes as it traverses the chain from
node to node, until it reaches the nth one. The following pseudocode describes the steps in more detail:

currentNode = firstNode
for (counter = 1 to n)

currentNode = currentNode.getNextNode()

The desired node is at currentNode

2. Yes. With newPosition equal to numberOfNodes + 1, nodeBefore will reference the last node in the chain. More-
over, nodeAfter will be null, newNode’s link field will be set to null, and the last node’s link will reference the
new node.

3. No. The statements given in Segment 14.4 do not assign a new value to firstNode. Also, when the chain is
empty, numberOfNodes is zero. The precondition of getNodeAt given in Segment 14.3 requires a positive argu-
ment. Even if you redesign getNodeAt, the empty chain will remain a special case.

4. a. This approach is inefficient of time, since each addition causes getNodeAt to traverse the chain from its begin-
ning until it locates the chain’s last node. Thus, each addition depends on the length of the chain.

b. Maintaining a tail reference would allow additions to the end of the chain to occur in O(1) time, that is, inde-
pendently of the length of the chain.

5. Since the chain is not empty, firstNode is not null. Thus, currentNode’s initial value is not null. The loop in
getNodeAt can iterate no more than numberOfNodes - 1 times. After the first iteration, currentNode references the
second node. After the second iteration, it references the third node. If the loop were to iterate numberOfNodes - 1
times, currentNode would reference the last node. It would not be null.

6. a. assert !isEmpty() && (newPosition > 1);
b. getNodeAt(newPosition)
c. No. Calling getNodeAt to get a reference to the node after the one that nodeBefore references results in another

traversal of the chain from its beginning. The expression nodeBefore.getNextNode() provides a much faster
way to get the required reference.

7. It could be, but testing for an empty list is unnecessary. The first if statement ensures that the value of
newPosition ranges from 1 to numberOfEntries + 1. If the list is empty, numberOfEntries is 0, therefore
newPosition must be 1. Since adding to an empty list is the same as adding to the beginning of any list, we
need not be concerned with empty lists.

8. The first method add invokes getNodeAt only if the list is not empty. Thus, the argument numberOfEntries passed to
getNodeAt is ≥ 1 and ≤ itself. The second method add checks the validity of newPosition and then calls getNodeAt
only if the list is not empty and newPosition > 1. It is possible for newPosition to equal numberOfEntries + 1, but
since getNodeAt’s argument is newPosition - 1, the argument’s value is ≤ numberOfEntries as required.

Answers to Self-Test Questions 367

9. When the method add calls the method isEmpty, isEmpty will return false because numberOfEntries incorrectly
is not zero. Thus, the method getNodeAt will be invoked. The second assert statement in getNodeAt will cause
an AssertionError, because currentNode is null.

10. Either version of the while statement would control the loop in toArray correctly, assuming the rest of the class is
correct. Testing both index and currentNode in the while statement guards against a mistake somewhere else in
the class.

11. The version of toArray that calls getNodeAt performs much more work than the original version. Each call to
getNodeAt results in a traversal of the chain of nodes from its first node to the desired node. The original version
of toArray traverses the chain only once.

12. a. The method getEntry in the class AList retrieves any entry from a list in O(1) time, because the list’s entries
are stored in an array. The corresponding method in LList must traverse a chain of linked nodes to retrieve a
list entry. It is an O(n) operation.

b. Instead of calling getEntry, we invoke the method toArray to get all of the list’s entries.

public static void displayList(ListInterface<String> list)
{

int numberOfEntries = list.getLength();
System.out.println("The list contains " + numberOfEntries +

" entries, as follows:");
Object[] listArray = list.toArray();
for (int index = 0; index < listArray.length; index++)
{

System.out.print(listArray[index] + " is entry " + (index + 1));
} // end for
System.out.println();

} // end displayList

13. If the list is empty, numberOfEntries is zero. Thus, (givenPosition >= 1) && (givenPosition <= 0) is always
false, and the method would then return null. The only way the body of the first if statement can execute is if the
list is not empty.

14. The method replace given in this chapter performs more work than an array-based replace because it must tra-
verse the chain to locate the entry to replace. An array-based replace can locate the desired entry directly, given
its array index.

15. The methods clear, both add methods, and the method remove would need to be revised to accommodate the
addition of a tail reference.

16. The first assertion should be
assert (firstNode == null) && (lastNode == null);

The second assertion should be
assert (firstNode != null) && (lastNode != null);

17. O(n).

18. O(1) when removing the first entry, or O(n) otherwise.

19. O(1) when replacing the first entry, or O(n) otherwise.

20. O(1) when retrieving the first entry, or O(n) otherwise.

368 CHAPTER 14 A List Implementation That Links Data

21. O(n).

22. private Node getNodeAt(int givenPosition)
{

assert (firstNode != null) && (1 <= givenPosition) && (givenPosition <= numberOfEntries);
Node currentNode = firstNode;

if (givenPosition == numberOfEntries)
currentNode = lastNode;

else if (givenPosition > 1) // traverse the chain to locate the desired node
{

for (int counter = 1; counter < givenPosition; counter++)
currentNode = currentNode.getNextNode();

} // end if

assert currentNode != null;
return currentNode;

} // end getNodeAt

Chapter

15Iterators
Contents
What Is an Iterator?
The Interface Iterator

Using the Interface Iterator
A Separate Class Iterator
An Inner Class Iterator

A Linked Implementation
An Array-Based Implementation

Why Are Iterator Methods in Their Own Class?
The Interface ListIterator

Using the Interface ListIterator
An Array-Based Implementation of the Interface ListIterator

The Inner Class
Java Class Library: The Interface Iterable

Iterable and for-each Loops
The Interface List Revisited

Prerequisites
Appendix E Exception Handling
Chapter 13 List Implementations That Use Arrays
Chapter 14 A List Implementation That Links Data

Objectives
After studying this chapter, you should be able to
• Describe the concept of an iterator
• Use an iterator to traverse or manipulate a list
• Implement in Java a separate class iterator and an inner class iterator for a list
• Describe the pros and cons of separate class iterators and inner class iterators

370 CHAPTER 15 Iterators

An iterator is an object that traverses a collection of data. During the traversal, you can look at
the data entries, modify them, add entries, and remove entries. The Java Class Library contains two
interfaces, Iterator and ListIterator, that specify methods for an iterator. While you could add
these iterator methods to the operations of the ADT list, you should instead implement them as a
distinct class that interacts with the ADT list. This iterator class can be outside of the ADT list or
hidden within its implementation. We will explore both of these approaches in this chapter.

What Is an Iterator?

15.1 How would you count the number of lines on this page? You could use your finger to point to each
line as you counted it. Your finger would keep your place on the page. If you paused at a particular
line, your finger would be on the current line, and there would be a previous line and a next line. If
you think of this page as a list of lines, you would be traversing the list as you counted the lines.

VideoNote

An iterator is a program component that enables you to step through, or traverse, a collection of
data such as a list, beginning with the first entry. During one complete traversal, or iteration, each
data item is considered once. You control the progress of the iteration by repeatedly asking the iterator
to give you a reference to the next entry in the collection. You also can modify the collection as you
traverse it by adding, removing, or simply changing entries.

You are familiar with iteration because you have written loops. For example, if nameList is a
list of strings, you can write the following for loop to display the entire list:

int listSize = nameList.getLength();
for (int position = 1; position <= listSize; position++)

System.out.println(nameList.getEntry(position));

Here the loop traverses, or iterates, through the entries in the list. Instead of simply displaying each
entry, we could do other things to or with it.

15.2 Notice that the previous loop is at the client level, since it uses the ADT operation getEntry to access
the list. For an array-based implementation of the list, getEntry can retrieve the desired array entry
directly and quickly. But if a chain of linked nodes represents the list’s entries, getEntry must move
from node to node until it locates the desired one. For example, to retrieve the nth entry in the list,
getEntry would begin at the first node in the chain and then move to the second node, the third node,
and so on until it reached the nth node. At the next repetition of the loop, getEntry would retrieve the
n + 1st entry in the list by beginning again at the first node in the chain and stepping from node to node
until it reached the n + 1st node. This wastes time.

Iteration is such a common operation that we could include it as part of the ADT list. Doing so
would enable a more efficient implementation than we were just able to achieve at the client level.
Notice that the operation toArray of the ADT list performs a traversal. It is an example of a traversal
controlled by the ADT. A client can invoke toArray but cannot control its traversal once it begins.

But toArray only returns the list’s entries. What if we want to do something else with them as we
traverse them? We do not want to add another operation to the ADT each time we think of another
way to use an iteration. We need a way for a client to step through a collection of data and retrieve or
modify the entries. The traversal should keep track of its progress; that is, it should know where it is in
the collection and whether it has accessed each entry. An iterator provides such a traversal.

Iterators and their use

Note: Iterators
An iterator is a program component that steps through, or traverses, a collection of data. The
iterator keeps track of its progress during the traversal, or iteration. It can tell you whether a
next entry exists and, if so, return a reference to it. During one cycle of the iteration, each data
item is considered once.

The Interface Iterator 371

 The Interface Iterator

15.3 The package java.util in the Java Class Library contains two interfaces—Iterator and
ListIterator—that specify methods appropriate for an iterator. Let’s begin by examining
the interface Iterator, given in Listing 15-1. Like many of the interfaces we have consid-
ered, Iterator specifies a generic type to represent the data type of the entries involved in
the iteration. It specifies only three methods—hasNext, next, and remove—that an iterator
can have. These methods enable you to traverse a collection of data from its beginning.

15.4 An iterator marks its current position within a collection much as your finger can point to an entry in a
list or to a line on this page. However, in Java, the position of an iterator is not at an entry. Instead, it
is positioned either before the first entry in the collection, between two entries, or after the last entry.
The next entry in an iteration is the one right after the position of the iterator’s cursor. The method
hasNext sees whether a next entry exists and returns true or false accordingly.

As long as hasNext returns true, the method next moves the iterator’s cursor over the next
entry and returns a reference to it, as Figure 15-1 illustrates. Repeated calls to next traverse through

LISTING 15-1 Java’s interface java.util.Iterator

package java.util;
public interface Iterator<T>
{

/** Detects whether this iterator has completed its traversal
and gone beyond the last entry in the collection of data.
@return true if the iterator has another entry to return */

public boolean hasNext();

/** Retrieves the next entry in the collection and
advances this iterator by one position.
@return a reference to the next entry in the iteration,

if one exists
@throws NoSuchElementException if the iterator had reached the

end already, that is, if hasNext() is false */
public T next();

/** Removes from the collection of data the last entry that
next() returned. A subsequent call to next() will behave
as it would have before the removal.
Precondition: next() has been called, and remove() has not been

called since then. The collection has not been altered
during the iteration except by calls to this method.

@throws IllegalStateException if next() has not been called, or
 if remove() was called already after the last call to
 next().

@throws UnsupportedOperationException if the iterator does
not permit a remove operation. */

public void remove(); // Optional method
} // end Iterator

372 CHAPTER 15 Iterators

the list. As the iteration progresses, the iterator returns entry after entry. Once next has returned the
last entry in the collection, a subsequent call to it causes a NoSuchElementException.

FIGURE 15-1 The effect of a call to next on a list iterator

The method remove removes the entry that next just returned. Contrast this with the ADT list
operation remove, which removes the entry at a given position within the list. When you imple-
ment the Iterator interface, you do not have to provide a remove operation—it is optional—but
you do need to define a method remove, because it appears in the interface. Such a method should
throw the exception UnsupportedOperationException if the client invoked it.

Using the Interface Iterator
15.5 Some details of using an iterator depend on the approach used to implement the iterator methods.

A possible, but not optimal, way to provide an ADT with traversal operations is to define them as
ADT operations. For example, if ListInterface extends Iterator, a list object would have iter-
ator methods as well as list methods. Although such an approach provides efficient traversals, it
has disadvantages, as you will see.

A better way is to implement the iterator methods within their own class. In one approach, this
class is public and separate from the class that implements the ADT in question. The two classes
must, of course, interact in some way. We will call an instance of such an iterator class a separate
class iterator. Alternatively, the iterator class can be a private inner class of the class that imple-
ments the ADT. We’ll call an instance of this inner class an inner class iterator. As you will see, an
inner class iterator is usually preferable. This chapter will discuss both approaches.

 But first, let’s focus on how the methods in the interface Iterator behave. A separate class iter-
ator of a list and an inner class iterator of a list are objects distinct from the list. Both of these iterators
invoke their methods in the same way. The following examples arbitrarily use a separate class iterator.

15.6 Example. Let’s look at an example of how the methods hasNext and next of the interface Iterator
work with the ADT list. Suppose we create a list of names. We will use strings for the names, but we
could instead use instances of the class Name that Appendix B presented. The following Java state-
ments create such a list:

ListInterface<String> nameList = new LList<String>();
nameList.add("Jamie");

(b) After returns Jen

Iterator cursor

Iterator cursor

(a) Before

Joe Jen Jess

Jen JessJoe

Programming Tip: All of the exceptions mentioned in the interface Iterator are run-
time exceptions, so no throws clause is necessary in any of the methods’ headers. In addition,
you do not have to write try and catch blocks when you invoke these methods. However,
you will need to import NoSuchElementException from the package java.util. The other
exceptions are in java.lang, so no import statement is necessary for them.

The Interface Iterator 373

nameList.add("Joey");
nameList.add("Rachel");

At this point, nameList contains the strings
Jamie
Joey
Rachel

Suppose that the public class SeparateIterator implements the interface Iterator. To create
a separate class iterator for nameList, we create an instance of SeparateIterator, as follows:

Iterator<String> nameIterator = new SeparateIterator<String>(nameList);

This invocation of SeparateIterator’s constructor connects the iterator nameIterator to the list
nameList and positions the iterator just before the first entry in the list. The following sequence of
events demonstrates the iterator methods:

● nameIterator.hasNext() returns true because a next entry exists.
● nameIterator.next() returns the string Jamie and advances the iterator.
● nameIterator.next() returns the string Joey and advances the iterator.
● nameIterator.next() returns the string Rachel and advances the iterator.
● nameIterator.hasNext() returns false because the iterator is beyond the end of the list.
● nameIterator.next() causes a NoSuchElementException.

Figure 15-2 illustrates these events.

FIGURE 15-2 The effect of the iterator methods hasNext and next on a list

Iterator cursor
Jamie
Joey
Rachel

Jamie
Joey
Rachel

hasNext() returns true

next() returns Jamie and
advances the iterator

Jamie
Joey
Rachel

next() returns Joey and
advances the iterator

Jamie
Joey
Rachel

next() returns Rachel and
advances the iterator

Jamie
Joey
Rachel

hasNext() returns false;
next() causes a NoSuchElementException

374 CHAPTER 15 Iterators

15.7 Example. We can use an iterator to display all the entries in a list. The following statements display
the strings in the list nameList, one per line:

Iterator<String> nameIterator = new SeparateIterator<String>(nameList);
while (nameIterator.hasNext())

System.out.println(nameIterator.next());

The iterator nameIterator begins just before the first entry in the list. As long as hasNext returns
true, next returns the next entry in the list and advances the iterator. Thus, every entry in the list is
retrieved and displayed.

15.8 Example. The interface Iterator provides an operation to remove an entry from a data collection.
This entry is the one returned by the last call to the method next. Thus, you must invoke next
before you can call remove.

If nameList contains the strings Andy, Brittany, and Chris, and nameIterator is defined as in
the previous example,

● nameIterator.next() returns the string Andy and advances the iterator.
● nameIterator.next() returns the string Brittany and advances the iterator.
● nameIterator.remove() removes Brittany from the list.
● nameIterator.next() returns the string Chris and advances the iterator.

Figure 15-3 shows the list during the previous iteration.

FIGURE 15-3 The effect of the iterator methods next and remove on a list

Iterator cursor
Andy
Brittany
Chris

Andy
Brittany
Chris

next() returns Andy and
advances the iterator

Andy
Brittany
Chris

next() returns Brittany and
advances the iterator

remove() removes Brittany from the list
Andy
Chris

Andy
Chris next() returns Chris and

advances the iterator

The Interface Iterator 375

15.9 Example. The requirement that you invoke next before you call remove results in two situations that
cause the exception IllegalStateException. If nameList is defined as in the previous example, and
we write

nameIterator = new SeparateIterator<String>(nameList);
nameIterator.hasNext();
nameIterator.remove();

an IllegalStateException occurs because we did not call next before we called remove.
Similarly, if we write

nameIterator.next();
nameIterator.remove();
nameIterator.remove();

the second remove causes an IllegalStateException because remove had been called already
since the most recent call to next.

15.10 Multiple iterators. Although the previous examples show one iterator traversing a list, we can
have several iterations of the same list in progress simultaneously. For example, imagine a printed
list of names that are not distinct and are in no particular order. Running one finger down that list to
count the names is like having one iteration of a list. Now suppose that you want to count the num-
ber of times each name occurs in the printed list. You can use two fingers, as follows. With your left

Question 1 Assume that nameList contains the names Jamie, Joey, and Rachel, as it does in
Segment 15.6. What output is produced by the following Java statements?

Iterator<String> nameIterator = new SeparateIterator<String>(nameList);
nameIterator.next();
nameIterator.next();
nameIterator.remove();
System.out.println(nameIterator.hasNext());
System.out.println(nameIterator.next());

Question 2 Assume that nameList is an instance of a class that implements ListInterface,
and nameIterator is defined as in the previous question. If nameList contains at least three
strings, write Java statements that display the list’s third entry.

Question 3 Given nameList and nameIterator as described in the previous question, write
statements that display the even-numbered entries in the list. That is, display the second
entry, the fourth entry, and so on.

Question 4 Given nameList and nameIterator as described in Question 2, write state-
ments that remove all entries from the list.

Note: Java’s interface java.util.Iterator specifies three methods: hasNext, next, and
remove. The method hasNext sees whether the iterator has a next entry to return. If so, next
returns a reference to it. The method remove can remove the entry last returned by a call to
next, or it can simply throw an UnsupportedOperationException if you choose to disallow
removals by the iterator.

376 CHAPTER 15 Iterators

hand, use one finger to point to the first name in the list. With your right hand, use one finger to
point to each of the names in the list, starting with the first one. As you traverse the list with your
right hand, compare each name to the name that your left hand marks. In this way, you can count
the number of times the first name occurs in the list. Now move your left-hand finger to the next
name in the list and use your right hand to point to the beginning of the list. Repeat the previous
process to count the number of times that the second name appears in the list. Try it with the names
in Figure 15-4. (Since your left hand will encounter Jane three times, you will repeat the computa-
tion needlessly unless you are careful. We consider this detail a bit later.)

Each of your two fingers can traverse the list independently of the other. They are like two
independent iterators that traverse the same list, as you will see in the next example.

FIGURE 15-4 Counting the number of times that Jane appears in a list of names

15.11 Example. Let’s write some code that counts the occurrences of each name in the list in Figure 15-4.
Let nameIterator correspond to your left hand in the figure. Now we’ll define a second iterator,
countingIterator, that corresponds to your right hand. For each name that your left hand marks,
your right hand traverses the entire list to count the occurrences of that name. Thus, we have the
following nested loops, assuming that nameList is the list:

Iterator<String> nameIterator = new SeparateIterator<String>(nameList);
while (nameIterator.hasNext())
{

String currentName = nameIterator.next();

int nameCount = 0;

Iterator<String> countingIterator = new SeparateIterator<String>(nameList);
while (countingIterator.hasNext())
{

Left hand

Brad

Jane

Bob

Jane

Bette

Brad

Jane

Brenda

Right hand
as it

advances
through
the list

Number of times
Jane appears in list

Jane occurs
3 times

3

3

2

2

2

1

1

0

A Separate Class Iterator 377

String nextName = countingIterator.next();
if (currentName.equals(nextName))

nameCount++;
} // end while

System.out.println(currentName + " occurs " + nameCount + " times.");
} // end while

To reset countingIterator to the list’s beginning, we call the constructor again, since Iterator
does not have a method for this purpose.

With the names given in Figure 15-4, these statements produce the following output:

Brad occurs 2 times.
Jane occurs 3 times.
Bob occurs 1 times.
Jane occurs 3 times.
Bette occurs 1 times.
Brad occurs 2 times.
Jane occurs 3 times.
Brenda occurs 1 times.

As you can see, since nameIterator (your left hand) encounters Brad twice and Jane three times,
the computation in the inner loop is repeated needlessly. For example, we compute that Brad occurs
twice each time nameIterator encounters Brad.

If SeparateIterator supports a remove operation, and if we are allowed to destroy the list, we
can remove the duplicate entries—and thereby prevent the repeated computations—by modifying
the if statement as follows:

if (currentName.equals(nextName))
{

nameCount++;
if (nameCount > 1)

countingIterator.remove();
} // end if

When nameCount exceeds 1, nextName must be a name that the iterator countingIterator has
retrieved from the list more than once. Thus, we remove that entry so that nameIterator will not
encounter it. We do so by invoking countingIterator.remove(). The iterator countingIterator
then continues with the next entry. Exercise 8 at the end of this chapter considers the case when we
cannot destroy the list.

A Separate Class Iterator
We will now examine an implementation of the public class SeparateIterator used in the previ-
ous examples. This class implements the interface java.util.Iterator.

15.12 An outline of the class SeparateIterator. In the previous examples, we connect an iterator—
which is an instance of the class SeparateIterator—with a list by invoking the class’s construc-
tor. To accomplish this connection, the class needs a data field that references the list. As you can
see in Listing 15-2, the constructor assigns this reference to the field. Also, notice that we make the
definition of SeparateIterator independent of a particular implementation of the list, such as
AList or LList, by defining the field list as an instance of ListInterface.

In addition to connecting the iterator to the list in question, the constructor initializes it so the itera-
tion will begin at the first entry in the list. To enable this, the class has another data field nextPosition

378 CHAPTER 15 Iterators

that tracks where we are in the iteration. This field is simply the integer position of the entry in the list
that the method next last returned. It is convenient to initialize this field to zero.

Providing an iterator with a remove operation is optional; however, we shall do so here
because the previous examples used one. This desire complicates our class somewhat, because the
client must call the method next before each call to remove. This requirement isn’t simply a pre-
condition. The remove method must throw an exception if it isn’t met. Therefore, we need an addi-
tional data field—a boolean flag—that enables remove to check whether next was called. We name
this data field wasNextCalled. The constructor initializes this field to false.

15.13 The method hasNext. The class SeparateIterator has no special access to the private data fields
of the class that implements the list. It is a client of the list and so can process the list only by using
the list’s ADT operations. Figure 15-5 shows a separate class iterator with a reference to a list but
with no knowledge of the list’s implementation. The implementations of the iterator methods will
use methods specified in ListInterface. The resulting implementations are rather straightforward
but take longer to execute, in general, than the implementation of an inner class iterator. For exam-
ple, the method hasNext calls the list’s getLength method:

public boolean hasNext()
{

return nextPosition < list.getLength();
} // end hasNext

LISTING 15-2 An outline of the class SeparateIterator

import java.util.Iterator;
import java.util.NoSuchElementException;
public class SeparateIterator<T> implements Iterator<T>
{

private ListInterface<T> list;
private int nextPosition; // position of entry last returned by next()
private boolean wasNextCalled; // needed by remove

public SeparateIterator(ListInterface<T> aList)
{

list = aList;
nextPosition = 0;
wasNextCalled = false;

} // end constructor

< Implementations of the methods hasNext, next, and remove go here >
. . .

} // end SeparateIterator

Question 5 What does the method hasNext return when the list is empty? Why?

A Separate Class Iterator 379

FIGURE 15-5 A separate class iterator with a reference to an ADT, an indicator
of its position within the iteration, and no knowledge of the
ADT’s implementation

15.14 The method next. As long as the iteration has not ended—that is, as long as hasNext returns
true—the method next retrieves the iteration’s next entry by calling the list’s getEntry method. If,
however, the iteration has ended, next throws an exception.

public T next()
{

if (hasNext())
{

wasNextCalled = true;
nextPosition++;
return list.getEntry(nextPosition);

}
else

throw new NoSuchElementException("Illegal call to next(); " +
"iterator is after end of list.");

} // end next

Since nextPosition begins at zero, we must increment it before passing it to getEntry. Doing
so advances the iterator as required. Notice that we also set the field wasNextCalled to true so that
the method remove can tell that next was called.

15.15 The method remove. The iterator’s method remove removes from the list the entry that the most
recent call to next returned. If next was not called, or if remove has been called since the last call
to next, remove throws an IllegalStateException. The class’s data field wasNextCalled helps
us to implement this aspect of the method. If the field is true, we know that next has been called.
Then, by setting the field to false, we enable a subsequent invocation of remove to require another
call to next.

The field nextPosition is the position of the entry just returned by next, so it is the position of
the entry to be removed. Thus, we pass it to the list’s remove method. Then, since a subsequent call
to next must behave as it would have before the removal, we must decrement nextPosition.

Iterator cursor

list 3 nextPosition

Ken
Sue
Tom
Jen
Bob

A separate
class iterator

An ADT list

Question 6 The work performed by the method next depends upon the implementation of the
ADT list that is ultimately used. For which implementation of the list, array-based or linked, will
next use the most execution time? Why?

380 CHAPTER 15 Iterators

Figure 15-6 shows a list and the field nextPosition just before the call to next, just after the
call to next but before the call to remove, and just after the call to remove. Notice in Part b that next
increments nextPosition and then returns a reference to Chris, the entry at that position and the
next entry in the iteration. A call to remove in Part c removes the entry—Chris—at nextPosition.
Afterwards, the next entry—Dan in the figure—moves to the next lower-numbered position in the
list. Thus, remove must decrement nextPosition so that a subsequent call to next will return Dan.

FIGURE 15-6 A list and nextPosition (a) just before the call to next; (b) just
after the call to next but before the call to remove; (c) after the
call to remove

The following implementation of remove reflects this discussion.

public void remove()
{

if (wasNextCalled)
{

// nextPosition was incremented by the call to next(), so
// it is the position number of the entry to be removed
list.remove(nextPosition);
nextPosition--; // a subsequent call to next() must be

// unaffected by this removal
wasNextCalled = false; // reset flag

}
else

throw new IllegalStateException("Illegal call to remove(); " +
"next() was not called.");

} // end remove

2 3 2

Iterator cursor
Iterator cursor

Iterator cursor

(a) Before next() (b) After next() returns Chris (c) After remove() removes Chris

Ashley
Brett
Chris
Dan
Emily

Ashley
Brett
Chris
Dan
Emily

Ashley
Brett
Dan
Emily

nextPosition nextPosition nextPosition

Note: Separate class iterators
A separate class iterator must access an ADT’s data by using the public methods of the ADT.
However, certain ADTs, such as a stack, do not provide sufficient public access to their data to
make such an iterator possible. In addition, the typical separate class iterator takes longer to per-
form its operations than do other kinds of iterators because of the indirect access to the ADT’s
data. On the other hand, the implementation of a separate class iterator is usually straightfor-
ward. You can also have several independent separate class iterators in existence at the same
time for a given ADT.

To provide an iterator for an ADT’s implementation that exists and cannot be altered, you
might need to define a separate class iterator.

An Inner Class Iterator 381

An Inner Class Iterator

15.16 By using separate class iterators, you can have multiple and distinct iterations of a list exist simulta-
neously. However, separate class iterators belong to a public class, so they can access the list’s data
fields only indirectly via ADT operations. As a result, the iterations take more time than those per-
formed by other kinds of iterators. For ADTs other than a list, a separate class iterator might have
insufficient access to the data fields to perform an iteration.

VideoNote

A desirable alternative is to define the iterator class as an inner class of the ADT. Because the
resulting iterator objects are distinct from the ADT, you can have multiple iterations in progress at
the same time. Moreover, since the iterator belongs to an inner class, it has direct access to the
ADT’s data fields. For these reasons, an inner class iterator is usually preferable to a separate class
iterator.

In this section, we will implement the interface Iterator by adding an inner class to each of
two implementations of the ADT list. First, we will use a linked implementation of the list but will
provide only the iterator operations hasNext and next. Then we will use an array-based list and
support all three operations of Iterator.

A Linked Implementation
15.17 To achieve our goal, we must define the methods specified in Iterator within a new inner class of

the class that implements the ADT list. We’ll name this inner class IteratorForLinkedList and
name the outer class LinkedListWithIterator. The outer class will be much like the class LList
of Chapter 14. However, it needs another method that the client can use to create an iterator. This
method, getIterator, has the following simple implementation:

public Iterator<T> getIterator()
{

return new IteratorForLinkedList();
} // end getIterator

We will show you how to use this method shortly.
To accommodate this new method, we create a new interface—shown in Listing 15-3—that extends

ListInterface instead of changing it. This interface has all the list methods of ListInterface and the
new method getIterator.

Because a class can implement more than one interface, we could define the class
LinkedListWithIterator without using our new interface. But having this interface enables us to
declare an object of type ListWithIteratorInterface and know that the object will have the list
methods as well as the method getIterator.

Alternative iterator
implementations

LISTING 15-3 The interface ListWithIteratorInterface

import java.util.Iterator;
public interface ListWithIteratorInterface<T> extends ListInterface<T>
{

public Iterator<T> getIterator();
} // end ListWithIteratorInterface

382 CHAPTER 15 Iterators

15.18 Example: Using the iterator to display a list. Once again, let’s create a list of strings. Since we’ve
defined the interface ListWithIteratorInterface that includes the method getIterator and the
methods of ListInterface, we can use it to create the new list:

ListWithIteratorInterface<String> myList =
new LinkedListWithIterator<String>();

We add entries to this list using the list’s add methods, as we have done before.
 We now can display the list by using an iterator. We first create an iterator object by invoking

the new list method getIterator:
Iterator<String> myIterator = myList.getIterator();

The resulting iterator is ready to access the first entry in the list.
We then write a loop like the one you saw in Segment 15.7:

while (myIterator.hasNext())
System.out.println(myIterator.next());

15.19 An outline of the class. Listing 15-4 outlines the class LinkedListWithIterator with its inner
classes IteratorForLinkedList and Node. We will define the methods declared in the interface
Iterator within the inner class IteratorForLinkedList. However, we will not give iterators the
ability to remove entries from the data collection.

LISTING 15-4 An outline of the class LinkedListWithIterator

import java.util.Iterator;
import java.util.NoSuchElementException;
public class LinkedListWithIterator<T> implements

ListWithIteratorInterface<T>
{

private Node firstNode;
private int numberOfEntries;

public LinkedListWithIterator()
{

clear();
} // end default constructor

< Implementations of the methods of the ADT list go here;
you can see them in Chapter 14, beginning at Segment 14.7 >

. . .
public Iterator<T> getIterator()
{

return new IteratorForLinkedList();
} // end getIterator

< Segment 15.20 begins a description of the following inner class.>
private class IteratorForLinkedList implements Iterator<T>
{

private Node nextNode;

An Inner Class Iterator 383

15.20 The inner class IteratorForLinkedList. As you can see in Listing 15-4, the private inner class
IteratorForLinkedList has a data field nextNode to track an iteration. The constructor initializes
this field to firstNode, which is a data field of the outer class and references the first node in the
chain that contains the list’s entries. We cannot position the iterator between nodes, even though we
imagine its position to be between entries. Nor can nextNode reference the node before the one that
next will access, because the first node has no node before it. Thus, nextNode references the next
node in the iteration, that is, the node that the method next must access to get the next entry.

Figure 15-7 illustrates an inner class iterator. The iterator has direct access to the ADT’s under-
lying data structure—a linked chain, in this example. Since the data field nextNode maintains the
current position of the iteration, the iterator can quickly retrieve the next entry in the iteration with-
out first returning to the beginning of the chain.

We now implement the methods of the interface Iterator within the inner class. These
methods will be public, even though they appear within a private class, because they are public
in Iterator and will be used by clients of LinkedListWithIterator.

FIGURE 15-7 An inner class iterator with direct access to the linked chain that
implements the ADT

private IteratorForLinkedList()
{

nextNode = firstNode;
} // end default constructor

< Implementations of the methods in the interface Iterator go here;
you can see them in Segments 15.21 through 15.23.>

. . .
} // end IteratorForLinkedList

< Implementation of the private class Node (Listing 3-4 of Chapter 3) goes here. >
. . .

} // end LinkedListWithIterator

Note: An inner class can refer to its outer class’s data fields by name alone, if it does not also use
the same names for its own definitions. For example, the constructor of the inner class Iterator-
ForLinkedList references the field firstNode directly by name since no other firstNode exists.
But we could have written LinkedListWithIterator.this.firstNode instead.

Iterator cursor

An inner class
iterator

nextNode

An ADT list Ken Sue Tom Jen Bob

384 CHAPTER 15 Iterators

15.21 The method next. If the iteration has not ended, nextNode references the node containing the next
entry in the iteration. Thus, next can easily get a reference to this entry. The method then must
advance nextNode to the next node and return the retrieved list entry. However, next must throw an
exception if the iteration has already ended.

public T next()
{

if (hasNext())
{

Node returnNode = nextNode; // get next node
nextNode = nextNode.getNextNode(); // advance iterator

return returnNode.getData(); // return next entry in iteration
}
else

throw new NoSuchElementException("Illegal call to next(); " +
"iterator is after end of list.");

} // end next

15.22 The method hasNext. After the method next returns the last entry in the iteration, nextNode will
be null, since null is in the link portion of the last node in the chain. The method hasNext can sim-
ply compare nextNode with null to see whether the iteration has ended:

public boolean hasNext()
{

return nextNode != null;
} // end hasNext

15.23 The method remove. Even though we decided not to support a remove operation for this iterator, we
must implement the method because it is declared in the interface Iterator. If the client invokes
remove, the method simply throws the run-time exception UnsupportedOperationException. Here
is an example of how you can define remove:

public void remove()
{

throw new UnsupportedOperationException("remove() is not " +
"supported by this iterator");

} // end remove

This exception is in the package java.lang and so is included automatically in every Java program.
Thus, an import statement is unnecessary.

Question 7 What does the method hasNext return when the list is empty? Why?

Note: The remove method
An iterator that does not allow the removal of items during a traversal is not unusual. In such
cases, the remove method is defined, but it throws an exception if invoked.

Note: Inner class iterators
An inner class iterator has direct access to an ADT’s data, so it typically can execute faster
than a separate class iterator. Its implementation is usually more involved, however. Both of
these iterators have another advantage: Several iterator objects can be in existence at the
same time and traverse a list independently of one another.

An Inner Class Iterator 385

An Array-Based Implementation
15.24 For the array-based implementation, our iterator will support the remove method. Let’s begin with

the array-based implementation of the ADT list, AList, as given in Chapter 13. Our new class,
whose form is shown in Listing 15-5, has the same data fields and methods as the class AList. But
since our new class implements the interface ListWithIteratorInterface, it also includes the
method getIterator. Our class also contains the inner class IteratorForArrayList, which imple-
ments the interface Iterator.

Question 8 Given the class LinkedListWithIterator, what Java statements create the
iterators nameIterator and countingIterator mentioned in Segment 15.11?

Question 9 Revise the method displayList, as shown in Listing 12-2 of Chapter 12, for use
in a client of the class LinkedListWithIterator by using iterator methods to display the list.

LISTING 15-5 An outline of the class ArrayListWithIterator

import java.util.Iterator;
import java.util.NoSuchElementException;
public class ArrayListWithIterator<T> implements

ListWithIteratorInterface<T>
{

private T[] list; // array of list entries
private int numberOfEntries;
private static final int DEFAULT_INITIAL_CAPACITY = 25;

public ArrayListWithIterator()
{

this(DEFAULT_INITIAL_CAPACITY);
} // end default constructor

public ArrayListWithIterator(int initialCapacity)
{

numberOfEntries = 0;
// the cast is safe because the new array contains null entries
@SuppressWarnings("unchecked")
T[] tempList = (T[])new Object[initialCapacity];
list = tempList;

} // end constructor

< Implementations of the methods of the ADT list go here;
you can see them in Chapter 13, beginning at Segment 13.5.>

. . .
public Iterator<T> getIterator()
{

return new IteratorForArrayList();
} // end getIterator

386 CHAPTER 15 Iterators

15.25 The inner class IteratorForArrayList. Just as you can use your finger to keep track of your
place on this page, our iterator implementation uses an index to keep track of the iterator’s position
within the array of list entries. This index, which we call nextIndex, is a data field of the private
inner class IteratorForArrayList. It will be the index of the next entry in the iteration. The con-
structor initializes nextIndex to zero, as Listing 15.5 shows.

Just as you saw earlier in Segments 15.12 and 15.15, providing an iterator with a remove oper-
ation requires an additional data field that the remove method can use to see whether next was
called. Again, we name this data field wasNextCalled, but here it is defined within the inner class.
The constructor initializes this field to false.

15.26 The method hasNext. The iterator has a next entry to retrieve if nextIndex is less than the length
of the list. Thus, hasNext has the following straightforward implementation:

public boolean hasNext()
{

return nextIndex < numberOfEntries;
} // end hasNext

Notice that hasNext returns false when the list is empty, that is, when numberOfEntries is zero.

15.27 The method next. The implementation of the method next has the same general form as the ver-
sion given in Segment 15.14 for the separate class iterator. If hasNext returns true, next returns the
next entry in the iteration. Here, the next entry is list[nextIndex]. The method also advances the
iteration by incrementing nextIndex and sets the flag wasNextCalled to true. On the other hand, if
hasNext returns false, next throws an exception.

public T next()
{

if (hasNext())
{

wasNextCalled = true;
T nextEntry = list[nextIndex];

< Segment 15.25 begins a description of the following inner class. >
private class IteratorForArrayList implements Iterator<T>
{

private int nextIndex;
private boolean wasNextCalled; // needed by remove

private IteratorForArrayList()
{

nextIndex = 0;
wasNextCalled = false;

} // end default constructor

< Implementations of the methods in the interface Iterator go here;
you can see them in Segments 15.26 through 15.28. >

. . .
} // end IteratorForArrayList

} // end ArrayListWithIterator

An Inner Class Iterator 387

nextIndex++; // advance iterator

return nextEntry;
}
else

throw new NoSuchElementException("Illegal call to next(); " +
"iterator is after end of list.");

} // end next

15.28 The remove method. Removing an entry from the list involves shifting entries within the array
list. Since we have already developed that code for the list’s remove method, we will call it
instead of accessing the array list directly. To do that, we need the position number of the list
entry to be removed, rather than its array index. Recall from Segment 12.1 that the position number
of an entry in a list begins at 1, so it is 1 larger than the corresponding array index.

Figure 15-8 illustrates how to use nextIndex in this implementation. The figure shows the
array of list entries and the index nextIndex just before the call to next, just after the call to next
but before the call to remove, and just after the call to remove. Part b shows that next returns a ref-
erence to the next entry, Chris, in the iteration and then increments nextIndex. The method
remove must remove this entry from the list. Since nextIndex is now 1 larger than the index of
Chris, it is the position number of the list entry that must be removed. After Chris is removed in
Part c, the next entry—Deb—moves to the next lower-numbered position in the array. Thus,
remove decrements nextIndex so that it remains the index of the next entry in the iteration.

FIGURE 15-8 The array of list entries and nextIndex (a) just before the call to
next; (b) just after the call to next but before the call to remove;
(c) after the call to remove

The method remove has the following implementation within the inner class IteratorForArrayList:

(a) Before next() (b) After next() returns Chris (c) After remove() removes Chris

Art

Bart

Chris

Deb

Elly

nextIndex = 2
Iterator cursor

Art

Bart

Chris

Deb

Elly

Iterator cursor
nextIndex = 3

Art

Bart

Deb

Elly

Iterator cursor
nextIndex = 2

public void remove()

{

if (wasNextCalled)

{

// nextIndex was incremented by the call to next, so it

// is the position number of the entry to be removed

ArrayListWithIterator.this.remove(nextIndex);

nextIndex--; // index of next entry in iteration

388 CHAPTER 15 Iterators

To call the list’s method remove, which is defined in the outer class, from within the iterator’s
remove, we must precede the name of the list’s method with ArrayListWithIterator.this.

Why Are Iterator Methods in Their Own Class?

15.29 Both separate class iterators and inner class iterators enable us to have several distinct iterations of
a data collection in progress at the same time. Because inner class iterators have direct access to the
structure containing the ADT’s data, they can execute faster than separate class iterators, and so are
usually preferable.

Why didn’t we simply consider the iterator operations as additional ADT operations? To answer
this question, let’s modify the linked implementation of the list given in the previous chapter by includ-
ing the methods specified in Java’s interface Iterator. To keep this implementation simple, we will not
provide the remove operation specified in Iterator. The resulting class, outlined in Listing 15-6, is
actually quite similar to the class LinkedListWithIterator, described in Segment 15.19, which imple-
ments an inner class iterator. The differences between these classes are highlighted.

The inner class IteratorForLinkedList shown in Segment 15.19 does not appear in our new
class, but its data field nextNode and its iterator methods hasNext, next, and remove do appear
unchanged. Instead of the inner class’s constructor, we have the public method resetTraversal,
which sets nextNode to firstNode. We’ll call this method before we begin a traversal.

wasNextCalled = false; // reset flag

}

else

throw new IllegalStateException("Illegal call to remove(); " +

"next() was not called.");

} // end remove

Question 10 Consider the list and the calls to next and remove in Figure 15-8.
a. What would a call to next return if it occurred after the call to remove in Figure 15-8c?
b. What would a call to next return if it occurred after the call to next in Figure 15-8b?

Question 11 What changes would be necessary to the methods in the inner class Iterator-
ForArrayList if its constructor set nextIndex to -1 instead of 0?

LISTING 15-6 An outline of the class ListWithTraversal

import java.util.Iterator;
import java.util.NoSuchElementException;
public class ListWithTraversal<T> implements ListInterface<T>,

Iterator<T>
{

private Node firstNode;
private int numberOfEntries;
private Node nextNode; // node containing next entry in iteration

public ListWithTraversal()
{

clear();
} // end default constructor

Why Are Iterator Methods in Their Own Class? 389

15.30 Example: Traversing a list. If myList is an instance of the previous class ListWithTraversal, it
has methods of the ADT list as well as the methods in Iterator. Thus, if we add strings to myList
using invocations such as myList.add("Chris"), we can display the list as follows:

myList.resetTraversal();
while (myList.hasNext())

System.out.println(myList.next());

Invoking resetTraversal is essential to set the traversal to the beginning of the list. Notice that
you use the list myList, not a separate iterator object, to invoke the Iterator methods. The reverse
was true in Segments 15.7 and 15.18.

15.31 What’s wrong with this approach? Although these traversal methods can execute quickly
because they have direct access to the underlying data structure of the list, including them as list
operations has disadvantages. Only one traversal can be in progress at a time. Moreover, an opera-
tion like resetTraversal, which is not in the interface Iterator, is necessary to initialize the tra-
versal. The resulting ADT has too many operations; it suffers from interface bloat.

With a little additional programming effort, you can organize the iterator methods as an inner
class. In doing so, you retain the speed of execution and suffer none of the disadvantages.

public final void clear()
{

firstNode = null;
numberOfEntries = 0;
nextNode = null;

} // end clear

< Implementations of the remaining methods of the ADT list go here;
you can see them in Chapter 14, beginning at Segment 14.7.>

. . .

< Implementations of the methods in the interface Iterator go here;
you can see them in Segments 15.21 through 15.23.>
. . .
public void resetTraversal()
{

nextNode = firstNode;
} // end resetTraversal

< Implementation of the private class Node (Listing 3-4 of Chapter 3) goes here.>
} // end ListWithTraversal

Question 12 Revise the method displayList, as shown in Listing 12-2 of Chapter 12, for use
in a client of the class ListWithTraversal by using the approach of the previous example to
display the list. Is there any disadvantage to this implementation? Explain.

Question 13 Suppose that you want to omit the method resetTraversal.
a. Could the default constructor initialize nextNode to firstNode? Explain.
b. Could the add methods initialize nextNode to firstNode? Explain.

390 CHAPTER 15 Iterators

The Interface ListIterator

15.32 The Java Class Library provides a second interface for iterators—ListIterator—in the package
java.util. This type of iterator enables you to traverse a list in either direction and to modify the list
during the iteration. In addition to the three methods hasNext, next, and remove that the interface
Iterator specifies, ListIterator contains methods such as hasPrevious, previous, add, and set.

We begin by looking at the interface ListIterator, which is shown in Listing 15-7.

LISTING 15-7 Java’s interface java.util.ListIterator

package java.util;
public interface ListIterator<T> extends Iterator<T>
{

/** Detects whether this iterator has gone beyond the last
entry in the list.
@return true if the iterator has another entry to return when

traversing the list forward; otherwise returns false */
public boolean hasNext();

/** Retrieves the next entry in the list and
advances this iterator by one position.
@return a reference to the next entry in the iteration,

if one exists
@throws NoSuchElementException if the iterator had reached the

end already, that is, if hasNext() is false */
public T next();

/** Removes from the list the last entry that either next()
or previous() has returned.
Precondition: next() or previous() has been called, but the

iterator's remove() or add() method has not been called
since then. That is, you can call remove only once per
call to next() or previous(). The list has not been altered
during the iteration except by calls to the iterator's
remove(), add(), or set() methods.

@throws IllegalStateException if next() or previous() has not
been called, or if remove() or add() has been called
already after the last call to next() or previous()

@throws UnsupportedOperationException if the iterator does not
permit a remove operation */

public void remove(); // Optional method

// The previous three methods are in the interface Iterator; they are
// duplicated here for reference and to show new behavior for remove.

/** Detects whether this iterator has gone before the first
entry in the list.

The Interface ListIterator 391

@return true if the iterator has another entry to visit when
traversing the list backward; otherwise returns false */

public boolean hasPrevious();

/** Retrieves the previous entry in the list and moves this
iterator back by one position.
@return a reference to the previous entry in the iteration, if

one exists
@throws NoSuchElementException if the iterator has no previous

entry, that is, if hasPrevious() is false */
public T previous();

/** Gets the index of the next entry.
@return the index of the list entry that a subsequent call to

next() would return. If next() would not return an entry
because the iterator is at the end of the list, returns
the size of the list. Note that the iterator numbers
the list entries from 0 instead of 1. */

public int nextIndex();

/** Gets the index of the previous entry.
@return the index of the list entry that a subsequent call to

previous() would return. If previous() would not return
an entry because the iterator is at the beginning of the
list, returns -1. Note that the iterator numbers the
list entries from 0 instead of 1. */

public int previousIndex();

/** Adds an entry to the list just before the entry, if any,
that next() would have returned before the addition. This
addition is just after the entry, if any, that previous()
would have returned. After the addition, a call to
previous() will return the new entry, but a call to next()
will behave as it would have before the addition.
Further, the addition increases by 1 the values that
nextIndex() and previousIndex() will return.
@param newEntry an object to be added to the list
@throws ClassCastException if the class of newEntry prevents the

addition to the list
@throws IllegalArgumentException if some other aspect of newEntry

prevents the addition to the list
@throws UnsupportedOperationException if the iterator does not

permit an add operation */
public void add(T newEntry); // Optional method

392 CHAPTER 15 Iterators

15.33 Observations. Notice that ListIterator extends Iterator. Thus, ListIterator would include
the methods hasNext, next, and remove from the interface Iterator, even if we did not write them
explicitly. We have done so for your reference and to indicate remove’s additional behavior.

The methods remove, add, and set are optional in the sense that you can choose not to provide one
or more of these operations. In that case, however, each such operation must have an implementation
that throws the exception UnsupportedOperationException if the client invokes the operation. An
iterator of type ListIterator that does not support remove, add, and set is still useful, since it enables
you to traverse a list in both directions. It is also easier to implement without these operations.

The programming tip given in Segment 15.4 for the interface Iterator applies here as well.
We repeat it here in terms of ListInterface.

15.34 The next entry. Like Iterator, ListIterator positions an iterator either before the first entry in a list,
between two entries, or after the last entry. Recall that the method hasNext sees whether a next entry
exists after the iterator’s position. If one exists, next returns a reference to it and advances the iterator’s
cursor by one position, as Figure 15-1 illustrated. Repeated calls to next step through the list. So far,
nothing is different from what you learned about the interface Iterator earlier in this chapter.

15.35 The previous entry. ListIterator also provides access to the entry just before the iterator’s
position—that is, to the previous entry. The method hasPrevious sees whether a previous
entry exists. If so, the method previous returns a reference to it and moves the iterator’s cur-
sor back by one position. Figure 15-9 shows the effect of previous on a list. Intermixing calls
to previous and next enables you to move back and forth within the list. If you call next and
then call previous, each method returns the same entry. Like next, previous throws an excep-
tion when called after it has completed its traversal of the list.

/** Replaces the last entry in the list that either next()
or previous() has returned.
Precondition: next() or previous() has been called, but the

iterator’s remove() or add() method has not been called
since then.

@param newEntry an object that is the replacement entry
@throws ClassCastException if the class of newEntry prevents the

addition to the list
@throws IllegalArgumentException if some other aspect of newEntry

prevents the addition to the list
@throws IllegalStateException if next() or previous() has not

been called, or if remove() or add() has been called
already after the last call to next() or previous()

@throws UnsupportedOperationException if the iterator does not
permit a set operation */

public void set(T newEntry); // Optional method
} // end ListIterator

Programming Tip: All of the exceptions mentioned in the interface ListIterator are
run-time exceptions, so no throws clause is necessary in any of the methods’ headers. In
addition, you do not have to write try and catch blocks when you invoke these methods.
However, you will need to import NoSuchElementException from the package java.util.
The other exceptions are in java.lang, so no import statement is necessary for them.

The Interface ListIterator 393

FIGURE 15-9 The effect of a call to previous on a list

15.36 The indices of the current and previous entries. As Figure 15-10 shows, the methods nextIndex
and previousIndex each return the index of the entry that a subsequent call to next or previous,
respectively, would return. Note that the iterator numbers the list’s entries beginning with 0, instead
of 1 as the ADT list operations do. If a call to next would throw an exception because the iterator is
at the end of the list, nextIndex returns the size of the list. Similarly, if a call to previous would
throw an exception because the iterator is at the beginning of the list, previousIndex returns -1.

FIGURE 15-10 The indices returned by the methods nextIndex and previousIndex

Using the Interface ListIterator

15.37 Example: Traversals. Let’s look at an example of the methods that work with the current and
previous entries and then use it to describe the remaining methods in the interface. We make the
following assumptions:

● The interface ListIterator is implemented as an inner class of the class that implements
the ADT list.

● The iterator includes the operations add, remove, and set.
● The method getIterator is added to the ADT list.
● The list nameList contains the following names:

Jess
Jim
Josh

● The iterator traverse is defined as follows:

ListIterator<String> traverse = nameList.getIterator();

Iterator cursor
Iterator cursor

(a) Before previous() (b) After previous() returns Joey

Jamie
Joey
Rachel
Monica
Ross

Jamie
Joey
Rachel
Monica
Ross

Iterator cursor

Jamie
Joey
Rachel
Monica
Ross

previousIndex() returns the index of Joey
nextIndex() returns the index of Rachel

Note: The interface ListIterator specifies nine methods, including the three methods
that Iterator specifies. They are hasNext, hasPrevious, next, previous, nextIndex,
previousIndex, add, remove, and set.

394 CHAPTER 15 Iterators

Since traverse is at the beginning of the list, the Java statements
System.out.println("nextIndex " + traverse.nextIndex());
System.out.println("hasNext " + traverse.hasNext());
System.out.println("previousIndex " + traverse.previousIndex());
System.out.println("hasPrevious " + traverse.hasPrevious());

produce the output
nextIndex 0
hasNext true
previousIndex -1
hasPrevious false

If we then execute the statements
System.out.println("next " + traverse.next());
System.out.println("nextIndex " + traverse.nextIndex());
System.out.println("hasNext " + traverse.hasNext());

the output is
next Jess
nextIndex 1
hasNext true

Finally, the statements

System.out.println("previousIndex " + traverse.previousIndex());
System.out.println("hasPrevious " + traverse.hasPrevious());
System.out.println("previous " + traverse.previous());
System.out.println("nextIndex " + traverse.nextIndex());
System.out.println("hasNext " + traverse.hasNext());
System.out.println("next " + traverse.next());

produce the output
previousIndex 0
hasPrevious true
previous Jess
nextIndex 0
hasNext true
next Jess

15.38 Example: The method set. The method set replaces the entry that either next or previous just
returned. At the end of the preceding segment, next had just returned Jess, so

traverse.set("Jen");

replaces Jess with Jen. Since Jess was the first entry in the list, the list now appears as

Jen
Jim
Josh

Note that this replacement operation does not affect the position of the iterator within the list. Thus,
calls to nextIndex and previousIndex, for example, are not affected. In this case, since the iterator
is between Jen and Jim, nextIndex returns 1 and previousIndex returns 0. Also note that we can
call set again; doing so here will replace Jen.

Question 14 Suppose that traverse is an iterator as defined in the previous segment, but the
contents of nameList are unknown. Write Java statements that display the names in nameList in
reverse order, beginning at the end of the list.

An Array-Based Implementation of the Interface ListIterator 395

15.39 Example: The method add. The method add inserts an entry into the list just before the iterator’s
current position. Thus, the insertion is made immediately before the entry, if any, that next would
have returned before add was called and just after the entry, if any, that previous would have
returned. Note that if the list is empty, add inserts a new entry as the only entry in the list.

If the iterator’s position is currently between the first two entries of the previous list, the statement
traverse.add("Ashley");

adds Ashley to the list just before Jim—that is, at index 1 or, equivalently, at list position 2. After
this addition, the list is as follows:

Jen
Ashley
Jim
Josh

A call to next at this point returns Jim, since next would have returned Jim had we not called
add. If, however, we call previous instead of next, the new entry Ashley will be returned. Further-
more, the addition increases by 1 the values that nextIndex and previousIndex will return. Thus,
immediately after the addition, nextIndex will return 2 and previousIndex will return 1.

15.40 Example: The method remove. The behavior of the method remove is similar to that of remove in
the interface Iterator, which you saw earlier in this chapter. But in the interface ListIterator,
remove is affected by the method previous as well as by next. Thus, remove removes the list entry
that the last call to either next or previous returned.

If the list contains

Jen
Ashley
Jim
Josh

and the iterator traverse is positioned between Ashley and Jim, the statements

traverse.previous();
traverse.remove();

remove Ashley from the list, since previous returns Ashley. The iterator’s position remains just
before Jim.

Notice that both set and remove will throw the exception IllegalStateException if neither next
nor previous has been called, or if either remove or add has been called already since the last call to next
or previous. As you will see in the next section, this behavior complicates the implementation somewhat.

An Array-Based Implementation of the Interface ListIterator

15.41 As we did for the interface Iterator earlier in this chapter, we will implement the interface List-
Iterator as an inner class of a class that uses an array to represent the ADT list. First, we define an

Question 15 If the iterator’s position is between the first two entries of the previous list, write
Java statements that replace Josh with Jon.

Question 16 If the iterator’s position is between Ashley and Jim, write Java statements that
add Miguel right after Jim.

396 CHAPTER 15 Iterators

interface in Listing 15-8 that declares the operations of the ADT list and the method getIterator.
In this case, the method’s return type is ListIterator<T> instead of Iterator<T>.

15.42 The class that implements the ADT list. Our class has the same data fields and methods as the
class AList given in Chapter 13, and includes the method getIterator. The class also contains the
inner class IteratorForArrayList, which implements the interface ListIterator. Listing 15-9
shows the form of our new class of lists.

LISTING 15-8 The interface ListWithListIteratorInterface

import java.util.ListIterator;
public interface ListWithListIteratorInterface<T> extends

ListInterface<T>
{

public ListIterator<T> getIterator();
} // end ListWithListIteratorInterface

LISTING 15-9 An outline of the class ArrayListWithListIterator

import java.util.ListIterator;
import java.util.NoSuchElementException;
public class ArrayListWithListIterator<T>

implements ListWithListIteratorInterface<T>
{

private T[] list; // array of list entries
private int numberOfEntries;
private static final int DEFAULT_INITIAL_CAPACITY = 25;

public ArrayListWithListIterator()
{

this(DEFAULT_INITIAL_CAPACITY);
} // end default constructor

public ArrayListWithListIterator(int initialCapacity)
{

numberOfEntries = 0;
// the cast is safe because the new array contains null entries
@SuppressWarnings("unchecked")
T[] tempList = (T[])new Object[initialCapacity];
list = tempList;

} // end constructor

< Implementations of the methods of the ADT list go here;
you can see them in Chapter 13, beginning at Segment 13.5.>

. . .

An Array-Based Implementation of the Interface ListIterator 397

The Inner Class
15.43 The data fields and constructor. We begin implementing the inner class IteratorForArrayList by

thinking about how the methods remove and set will throw the exception IllegalStateException.
Both of these methods throw this exception for the same reasons, that is, if either

• next or previous was not called or
• remove or add has been called since the last call to next or previous

Figure 15-11 shows calls to remove in various contexts that cause an IllegalStateException.
This aspect of the implementation might be intimidating at first, but it need not be difficult.

When we implemented Iterator’s remove method in Segment 15.28, we tested the boolean data
field wasNextCalled to see whether next had been called. We could do that here and define analogous

FIGURE 15-11 Possible contexts in which the method remove of the iterator
traverse throws an exception when called

public ListIterator<T> getIterator()
{

return new IteratorForArrayList();
} // end getIterator

private class IteratorForArrayList implements ListIterator<T>
{

< The description of this implementation begins with Segment 15.43. >
. . .

} // end IteratorForArrayList
} // end ArrayListWithListIterator

Legal

Legal

(a)

traverse.remove();

traverse.next();

traverse.remove();

traverse.remove();

traverse.previous();

traverse.remove();

traverse.remove();

traverse.next();

traverse.add(...);

traverse.remove();

traverse.previous();

traverse.add(...);

traverse.remove();

Neither next nor previous has been called

Causes an exception

Causes an exception

Causes an exception

Causes an exception

Causes an exception

(b)

(c)

(d)

(e)

398 CHAPTER 15 Iterators

fields for the methods previous and add, but the logic would be more involved than necessary.
Instead, let’s define a boolean field to indicate whether a call to either remove or set is legal:

private boolean isRemoveOrSetLegal;

If either remove or set finds this field to be false, it should throw an IllegalStateException. This
field should be initialized to false by the constructor. The methods next and previous should set it
to true, and the methods add and remove should set it to false.

Both remove and set must know which of next or previous was called so that they can access
the correct list entry. Thus, we define a data field to track the last call to these methods and an enu-
meration to provide values for the field. The following enumeration will suffice:

private enum Move {NEXT, PREVIOUS}

Since an enumeration is really a class, we define it outside of the inner class IteratorForArrayList,
but within ArrayListWithListIterator. The data field then is simply

private Move lastMove;

In addition to these two data fields, we need a field nextIndex to track the index of the next
entry in the iteration. This field is just like the one we described earlier in Segment 15.25. Thus, the
inner class begins as follows:

private class IteratorForArrayList implements ListIterator<T>
{

private int nextIndex;
private boolean isRemoveOrSetLegal;
private Move lastMove;

private IteratorForArrayList()
{

nextIndex = 0;
isRemoveOrSetLegal = false;
lastMove = null;

} // end default constructor
. . .

15.44 The method hasNext. The method hasNext has the same implementation that it had earlier in
Segment 15.26. Recall that it returns true if the iterator has not reached the end of the list.

public boolean hasNext()
{

return nextIndex < numberOfEntries;
} // end hasNext

15.45 The method next. The implementation of next is similar to the one given in Segment 15.27. Here,
however, it has different fields to set. We set lastMove to Move.NEXT and isRemoveOrSetLegal to true.

public T next()
{

if (hasNext())
{

lastMove = Move.NEXT;
isRemoveOrSetLegal = true;

T nextEntry = list[nextIndex];
nextIndex++;

return nextEntry;
}
else

throw new NoSuchElementException("Illegal call to next(); " +
 "iterator is after end of list.");

} // end next

An Array-Based Implementation of the Interface ListIterator 399

15.46 The methods hasPrevious and previous. The methods hasPrevious and previous have imple-
mentations that are analogous to those of hasNext and next, respectively.

public boolean hasPrevious()
{

return (nextIndex > 0) && (nextIndex <= numberOfEntries);
} // end hasPrevious

public T previous()
{

if (hasPrevious())
{

lastMove = Move.PREVIOUS;
isRemoveOrSetLegal = true;

nextIndex--;
return list[nextIndex];

}
else

throw new NoSuchElementException("Illegal call to previous(); " +
"iterator is before beginning of list.");

} // end previous

15.47 The methods nextIndex and previousIndex. The method nextIndex returns either the index of
the entry that the method next would return if called or the size of the list if the iterator is after the
end of the list.

public int nextIndex()
{

int result;

if (hasNext())
result = nextIndex;

else
result = numberOfEntries;

return result;
} // end nextIndex

The method previousIndex returns either the index of the entry that the method previous would
return if called or -1 if the iterator is before the beginning of the list.

public int previousIndex()
{

int result;

if (hasPrevious())
result = nextIndex - 1;

else
result = -1;

return result;
} // end previousIndex

15.48 The method add. The method add inserts an entry into the list just before the iterator’s current
position, that is, immediately before the entry in list[nextIndex], as Figure 15-12 illustrates. To
avoid duplicate code and effort, we call the list’s add method to add an entry at position nextIndex
+ 1 within the list. Recall that entries after the new entry will be shifted and renumbered. Therefore,
we need to increment nextIndex so that it will continue to mark the entry that a subsequent call to
next would return. If we increment nextIndex before calling add, we can pass nextIndex to add as
the position of the insertion. Thus, add has the following implementation:

public void add(T newEntry)
{

400 CHAPTER 15 Iterators

isRemoveOrSetLegal = false;
nextIndex++;
ArrayListWithListIterator.this.add(nextIndex, newEntry);

} // end add

FIGURE 15-12 The array of list entries and nextIndex (a) just before the call to
add; (b) just after the call to add

15.49 The method remove. The logic for the remove method when a call to next precedes its call is
somewhat like the logic for the remove method in the interface Iterator, which you saw in
Segment 15.28. Recall that Figure 15-8 illustrated the array of list entries and the index nextIndex
before and after the calls to next and remove. Figure 15-13 provides a similar illustration, showing
what happens when a call to previous precedes the call to remove. In Part b, previous returns a
reference to the previous entry—Bart—in the iteration and decrements nextIndex. The method
remove must remove this entry from the list. Notice that nextIndex is now 1 smaller than the posi-
tion number of the list entry that must be removed. After the entry Bart has been removed in
Figure 15-13c, the next entry—Chris—moves to the next lower-numbered position in the array.
Thus, nextIndex remains the index of the next entry in the iteration and so is unchanged.

FIGURE 15-13 The array of list entries and nextIndex (a) just before the call to
previous; (b) just after the call to previous but before the call
to remove; (c) after the call to remove

Iterator cursor

Iterator cursor

(a) Before add is called (b) After add("Ben") is called

Art

Bart

Chris

Deb

Elly

nextIndex = 2

nextIndex = 3

Added entry

Art

Bart

Ben

Chris

Deb

Elly

Iterator cursor

Iterator cursor Iterator cursor

(a) Before previous() (b) previous() returns Bart (c) remove() removes Bart

nextIndex = 2

nextIndex = 1 nextIndex = 1

Art

Bart

Chris

Deb

Elly

Art

Bart

Chris

Deb

Elly

Art

Chris

Deb

Elly

An Array-Based Implementation of the Interface ListIterator 401

Remember, remove must throw an exception if the field isRemoveOrSetLegal is false. If the
field is true, the method must set it to false. An implementation of remove follows:

public void remove()
{

if (isRemoveOrSetLegal)
{

isRemoveOrSetLegal = false;

if (lastMove.equals(Move.NEXT))
{

// next() called, but neither add() nor remove() has been
// called since

// nextIndex is 1 more than the index of the entry returned
// by next(), so it is the position number of the entry
// to be removed
ArrayListWithListIterator.this.remove(nextIndex);
nextIndex--;

}
else
{

// previous() called, but neither add() nor remove() has been
// called since
assert lastMove.equals(Move.PREVIOUS);

// nextIndex is the index of the entry returned by previous(),
// so it is 1 less than the position number of the entry
// to be removed
ArrayListWithListIterator.this.remove(nextIndex + 1);

} // end if
}
else

throw new IllegalStateException("Illegal call to remove(); " +
"next() or previous() was not called, OR "
"add() or remove() called since then.");

} // end remove

15.50 The method set. The method set replaces the last entry in the list that either next or previous has
returned. It uses nextIndex, as updated by either of the methods next or previous. Since the method
next returns list[nextIndex] and then increments nextIndex, the method set would replace the
object in list[nextIndex - 1] after a call to next. Likewise, since previous decrements nextIndex
and then returns list[nextIndex], the method set would replace list[nextIndex] after a call to
previous.

The following implementation of set reflects these observations and uses the same logic that
we used in remove to see whether to throw IllegalStateException:

public void set(T newEntry)
{

if (isRemoveOrSetLegal)
{

if (lastMove.equals(Move.NEXT))
list[nextIndex - 1] = newEntry;

else
{

assert lastMove.equals(Move.PREVIOUS);
list[nextIndex] = newEntry;

} // end if
}
else

402 CHAPTER 15 Iterators

throw new IllegalStateException("Illegal call to set(); " +
"next() or previous() was not called, OR "
"add() or remove() called since then.");

} // end set

Java Class Library: The Interface Iterable
In a sense, this entire chapter has been about the Java Class Library, since the interfaces Iterator
and ListIterator are components of it. This last section introduces the interface Iterable and
shows its relation to for-each loops and the interface java.util.List.

15.51 The package java.lang of the Java Class Library contains the interface Iterable. This interface
declares only one method, as Listing 15-10 shows.

 The method iterator returns an iterator that adheres to the interface Iterator. This method
has the same purpose as our method getIterator, as declared in the interface ListWithIterator-
Interface in Segment 15.17. Recall that our classes LinkedListWithIterator (Segment 15.19)
and ArrayListWithIterator (Segment 15.24) implement ListWithIteratorInterface. These
classes could certainly implement the method iterator in addition to getIterator. To do so, we
could modify the definition of ListWithIteratorInterface, as shown in Listing 15.11.

Note: Implementing the entire interface ListIterator as an inner class is easier when the
associated ADT has an array-based implementation rather than a linked implementation. (See
Exercise 17.)

Note: An iterator of type ListIterator is simpler to implement when it does not support
the operations add, remove, and set. Such an iterator is useful, as it enables you to traverse a
list in both directions. We leave this implementation as an exercise.

LISTING 15-10 The interface java.lang.Iterable

package java.lang;
public interface Iterable<T>
{

/** @return an iterator for a collection of objects of type T */
Iterator<T> iterator()

} // end Iterable

LISTING 15-11 The interface ListWithIteratorInterface modified to extend
Iterable

import java.util.Iterator;
public interface ListWithIteratorInterface<T> extends ListInterface<T>,

Iterable<T>
{

public Iterator<T> getIterator();
} // end ListWithIteratorInterface

Java Class Library: The Interface Iterable 403

Declaring the method iterator explicitly within the interface is permissible but not necessary,
because the interface extends Iterable. Since Iterable is in java.lang, no import statement is
needed for it.

As both iterator and getIterator have the same purpose, and since we have already imple-
mented getIterator, the implementation of iterator should call getIterator.

Iterable and for-each loops
15.52 A class that implements the interface Iterable has a distinct advantage over classes that do not:

You can use a for-each loop to traverse the objects in an instance of such a class. For example, sup-
pose that we have ListWithIteratorInterface and LinkedListWithIterator, as described in the
previous segment. That is, the class LinkedListWithIterator implements Iterable. You can use
a for-each loop to display the items in an instance of this class.

Let’s form a list, as follows:

ListWithIteratorInterface<String> nameList =
new LinkedListWithIterator<String>();

nameList.add("Joe");
nameList.add("Jess");
nameList.add("Josh");
nameList.add("Jen");

The statements

for (String name : nameList)
System.out.print(name + " ");

System.out.println();

then produce the following output:
Joe Jess Josh Jen

The Interface List Revisited
15.53 The interface java.util.List that we described in Segment 12.12 of Chapter 12 extends the inter-

face Iterable, so it has the method iterator. Additionally, List declares the following methods
related to iterators:

public ListIterator<T> listIterator(int index);
public ListIterator<T> listIterator();

Each of the listIterator methods returns an iterator whose methods are specified in the interface
ListIterator. The iterator returned by the first version of listIterator begins at the list entry
indicated by index, where zero indicates the first entry in the list. The second version of this
method has the same effect as listIterator(0).

Since the classes ArrayList, LinkedList, and Vector of the package java.util implement
the interface List, they have these two listIterator methods as well as the method iterator.

Programming Tip: A class that defines an inner class iterator should implement the
interface Iterable. A client of the class then can use a for-each loop to traverse the objects in
an instance of the class.

404 CHAPTER 15 Iterators

CHAPTER SUMMARY

PROGRAMMING TIPS

EXERCISES

● The interface Iterator specifies three methods: hasNext, next, and remove. An iterator that implements
this interface need not provide a remove operation. Instead, the method remove would throw the exception
UnsupportedOperationException.

● The interface ListIterator specifies nine methods, including the three methods that Iterator specifies. They are
hasNext, next, hasPrevious, previous, nextIndex, previousIndex, add, remove, and set. The methods add,
remove, and set are optional in the sense that they can throw the exception UnsupportedOperationException
instead of affecting the list.

● You can implement each of the interfaces Iterator and ListIterator as its own class. This class could be an
inner class of the class that implements the ADT in question, or it could be public and separate from the ADT’s class.

● An inner class iterator enables you to have several independent iterators that traverse a collection. It also
allows the iterator direct access to the underlying data structure, so its implementation can be efficient.

● A separate class iterator also allows multiple and distinct iterations to exist simultaneously. However, since the
iterator can access the list’s data fields only indirectly via ADT operations, the iteration takes more time than
one performed by an inner class iterator. On the other hand, the implementation is usually straightforward.

● Certain ADTs do not provide sufficient public access to their data to make a separate class iterator possible.
However, to provide an iterator for an ADT’s implementation that exists and cannot be altered, you might
need to define a separate class iterator.

● All of the exceptions mentioned in the interfaces Iterator and ListIterator are run-time exceptions, so no
throws clause is necessary in any of the methods’ headers. In addition, you do not have to write try and catch
blocks when you invoke these methods. However, you will need to import NoSuchElementException from the
package java.util. The other exceptions are in java.lang, so no import statement is necessary for them.

● A class that defines an inner class iterator should implement the interface Iterable. A client of the class can
then use a for-each loop to traverse the objects in an instance of the class.

1. Suppose that nameList is a list that contains the following strings: Kyle, Cathy, Sam, Austin, Sara. What output is
produced by the following sequence of statements?

Iterator<String> nameIterator = nameList.getIterator();
System.out.println(nameIterator.next());
nameIterator.next();
System.out.println(nameIterator.next());
nameIterator.remove();
System.out.println(nameIterator.next());
displayList(nameList);

2. Repeat Exercise 1, but instead use the following statements:
Iterator<String> nameIterator = nameList.getIterator();
nameIterator.next();
nameIterator.remove();
nameIterator.next();

Exercises 405

nameIterator.next();
nameIterator.remove();
System.out.println(nameIterator.next());
displayList(nameList);
System.out.println(nameIterator.next());
System.out.println(nameIterator.next());

3. Suppose that nameList is a list of at least one string and that nameIterator is defined as follows:
Iterator<String> nameIterator = nameList.getIterator();

Write Java statements that use nameIterator to display only the last string in the list.

4. Given nameList and nameIterator as described in Exercise 3, write statements that display all strings in the list
from last to first.

5. Given nameList and nameIterator as described in Exercise 3, write statements that use nameIterator to remove
all the entries from the list.

6. Given nameList and nameIterator as described in Exercise 3, write statements that remove all occurrences of the
string CANCEL from the list.

7. Given nameList and nameIterator as described in Exercise 3, write statements that remove any duplicates in the list.

8. Given nameList and nameIterator as described in Exercise 3, write statements that count the number of times
each string occurs in the list, without altering the list and without repeating the computations.

9. Suppose that aList and bList are instances of java.util.ArrayList. Use two iterators to find and display all the
objects that are common to both lists. Do not alter the contents of either list.

10. Assume that aList and bList are instances of java.util.ArrayList that contain Comparable objects in order
from smallest to largest. Use two iterators to move the objects from bList to the appropriate locations in aList.
When you are done, the objects in aList should be in order, and bList should be empty.

11. Revise the class SeparateIterator outlined in Segment 15.12 so that it does not support a remove operation.
Simplify the class as much as possible.

12. Imagine a class that implements the interface ListWithIteratorInterface, as given in Listing 15-11 of
Segment 15.51. Suppose that aList is an instance of this class and contains Comparable objects in no
particular order. Using an iterator, implement the following two methods within the class:

a. getMin returns the smallest object in the list
b. removeMin removes and returns the smallest object in the list

13. Repeat the previous exercise, but use a for-each loop instead of an iterator.

14. Suppose that nameList is a list that contains the following strings: Kyle, Cathy, Sam, Austin, Sara. What output is
produced by the following sequence of statements?

ListIterator<String> nameIterator = nameList.getIterator();
System.out.println(nameIterator.next());
nameIterator.next();
nameIterator.next();
System.out.println(nameIterator.next());
nameIterator.set("Brittany");
nameIterator.previous();
nameIterator.remove();
System.out.println(nameIterator.next());
displayList(nameList);

406 CHAPTER 15 Iterators

PROJECTS

15. Repeat the previous exercise, but instead use the following statements:
ListIterator<String> nameIterator = nameList.getIterator();
nameIterator.next();
nameIterator.remove();
nameIterator.next();
nameIterator.next();
nameIterator.previous();
nameIterator.remove();
System.out.println(nameIterator.next());
nameIterator.next();
nameIterator.set("Brittany");
System.out.println("Revised list:");
displayList(nameList);
System.out.println(nameIterator.previous());
System.out.println(nameIterator.next());

16. Given a list of strings and an iterator nameIterator whose data type is ListIterator, write statements that add
the string Bob after the first occurrence of the string Sam.

17. If you wanted to implement the interface ListIterator as an inner class iterator by using a linked
implementation, what difficulties would you face?

18. Implement an iterator for the array-based implementation of a bag, using an inner class. Include a remove operation.

19. Repeat the previous exercise for the linked implementation of a bag.

20. If you were to add an iterator to the ADT stack, should the iterator support the remove operation?

21. Implement an iterator for the linked implementation of a stack, using an inner class.

22. Implement an iterator for the array-based implementation of a stack, using an inner class.

1. Revise the class LinkedListWithIterator described in Segment 15.19 so that the inner class IteratorForLinkedList
provides a remove operation. You will need another data field priorNode to reference the node before the next one.

2. Implement all of the methods in the interface ListIterator as a separate class iterator.

3. Implement the interface ListIterator as an inner class, but do not support the operations add, remove, and set.

4. Consider a solitaire matching game in which you have a list of random integer values between 10 and 99. You
remove from the list any pair of consecutive integers whose first or second digits match. If all values are removed,
then you win.

For example, consider the following sequence of 10 integers:

10 82 43 23 89 12 43 84 23 32

The integers in the pair 10 and 82 do not match in either digit and so cannot be removed. However, the integers in
the pair 43 and 23 match in the second digit and are removed, leaving the following sequence:

10 82 89 12 43 84 23 32

Continue checking for pairs from 89, the value after the removed pair. No other pairs have matching integers.
Now return to the beginning of the list and check the pairs. The integers in the pair 82 and 89 match in the first
digit and can be removed:

10 12 43 84 23 32

Answers to Self-Test Questions 407

ANSWERS TO SELF-TEST QUESTIONS

No other pairs can be removed, so we lose.
Write a program that simulates this game. It should generate 40 random two-digit integers and place them in an

instance of java.util.ArrayList, using an instance of ListIterator. Then, using this iterator, scan the list and
remove matching pairs of values. After each pair is removed, use an iterator to display the values remaining in the list.

5. One statistical operation that is sometimes performed on a set of data values is to remove values that are far from
the average. Write a program that reads real values from a text file, one per line. Store the data values as Double
objects in an instance of the class java.util.ArrayList. Then

• Use an iterator to compute the average and standard deviation of the values. Display these results.
• Use a second iterator to remove any value that is more than two standard deviations away from the

average.
• Use a for-each loop to display the remaining values and compute the new average. Display the new

average.
If the data values are x1, x2, ..., xn, their average μ is their sum divided by n, and their standard deviation is

6. Consider the following situation. You create a list, and then you add 10 items to it. You get an iterator to the list
and call next twice to advance it. You remove the first five items from the list, using the list’s remove method. You
then call the iterator’s remove method, expecting to remove the item last returned by the method next. However,
this entry has already been removed from the list. Changing the state of the list while using the iterator, as you
have done here, may result in unpredictable behavior of the iterator.

Modify the interface Iterator so that the methods will throw the exception StateChangedException if the
state of the list is changed after the iterator was created but before the method is called. Modify the implementation
of LinkedListWithIterator that Project 1 describes to accommodate the changes to Iterator.

7. Revise the class ArrayListWithIterator outlined in Segment 15.24 so that it extends the class AList, as
discussed in Chapter 13.

8. Repeat Projects 7 and 8 of Chapter 12, adding an iterator to the ADT recipe.

1. The output is
true
Rachel

2. nameIterator.next();
nameIterator.next();
System.out.println(nameIterator.next());

3. nameIterator.next(); // skip first entry; list has > 1 entry
while (nameIterator.hasNext())
{

System.out.println(nameIterator.next()); // display even-numbered entry
if (nameIterator.hasNext())

nameIterator.next(); // skip odd-numbered entry
} // end while

4. while (nameIterator.hasNext())
{
nameIterator.next();
nameIterator.remove();

} // end while

σ 1n
--- xi μ–()

2

i 1=

n

=

408 CHAPTER 15 Iterators

5. False. When the list is empty, both nextPosition and list.getLength() are zero.

6. Linked. The particular implementation of the list affects the amount of work that the method getEntry must per-
form. For an array-based implementation, getEntry accesses the required entry directly and immediately. For a
linked implementation, getEntry must traverse a chain of nodes to find the desired entry. This takes more time to
accomplish than accessing an array entry.

7. False. When the list is empty, firstNode, and therefore nextNode, is null.

8. Create the iterators by writing
Iterator<String> nameIterator = nameList.getIterator();
Iterator<String> countingIterator = nameList.getIterator();

9. public static void displayListQ9(ListWithIteratorInterface<String> list)
{

int numberOfEntries = list.getLength();
System.out.println("The list contains " + numberOfEntries +

" entries, as follows:");
Iterator<String> traverser = list.getIterator();
int position = 0;
while (traverser.hasNext())
{

position++;
System.out.println(traverser.next() + " is entry " + position);

} // end while

System.out.println();
} // end displayListQ9

10. a. Deb.
b. Deb.

11. Originally, nextIndex is the index of the next entry that next will return. The change makes nextIndex the index
of the last entry that next returned. Thus, the following changes are needed:

● hasNext should compare nextIndex to numberOfEntries - 1 instead of numberOfEntries
● next should increment nextIndex before accessing list[nextIndex]
● remove should remove the entry at nextIndex + 1

12. public static void displayListQ12(ListWithTraversal<String> list)
{

int numberOfEntries = list.getLength();
System.out.println("The list contains " + numberOfEntries +

" entries, as follows:");
list.resetTraversal();
int position = 0;
while (list.hasNext())
{

position++;
System.out.println(list.next() + " is entry " + position);

} // end while

System.out.println();
} // end displayListQ12

A disadvantage is that if you have an iteration in progress, and you pause it to call displayListQ12, you will not
be able to resume your iteration.

Answers to Self-Test Questions 409

13. a. No. The default constructor creates an empty list. If it set nextNode to firstNode, nextNode would be set
to null.

b. Yes, but with a disadvantage. Each addition to the list would set nextNode to firstNode. After creating a list,
you could traverse it. However, the only way you could reset the traversal to the list’s beginning would be to
add another entry to the list.

14. while (traverse.hasNext())
traverse.next();

while (traverse.hasPrevious())
System.out.println(traverse.previous());

15. traverse.next(); // return Jim
traverse.next(); // return Josh
traverse.set("Jon"); // replace Josh

16. traverse.next(); // return Jim
traverse.add("Miguel"); // add Miguel after Jim

This page intentionally left blank

Chapter

16Sorted Lists
Contents
Specifications for the ADT Sorted List

Using the ADT Sorted List
A Linked Implementation

The Method add
The Efficiency of the Linked Implementation

An Implementation That Uses the ADT List
Efficiency Issues

Prerequisites
Chapter 4 The Efficiency of Algorithms
Chapter 7 Recursion
Chapter 12 Lists
Chapter 14 A List Implementation That Links Data

Objectives
After studying this chapter, you should be able to
• Use a sorted list in a program
• Describe the differences between the ADT list and the ADT sorted list
• Implement the ADT sorted list by using a chain of linked nodes
• Implement the ADT sorted list by using the operations of the ADT list

Chapter 12 introduced you to the ADT list. The entries in a list are ordered simply
by their positions within the list. Thus, a list has a first entry, a second entry, and so
on. This ADT enables you to order entries according to any criterion you want—
alphabetical or chronological, for instance. In fact, Chapter 12 showed you an
example that used a list to organize names in alphabetical order. To do so, the client
had to determine where in the list a particular entry belonged.

412 CHAPTER 16 Sorted Lists

If your application creates a list and then at some point needs to sort the list’s entries into
numerical or alphabetical order, for example, you can add a sort operation to the ADT list. You can
use one of the algorithms given in Chapters 8 and 9 to implement this operation. But when your
application requires only sorted data, having an ADT that orders the data for you would be more
convenient than the ADT list. The sorted list is such an ADT.

When you either add an entry to or remove an entry from a sorted list, you provide only
the entry. You do not specify where in the list the entry belongs or exists. The ADT determines
this for you.

This chapter describes the operations of the ADT sorted list, provides examples of using a
sorted list, and presents two possible Java implementations. One of these implementations uses the
ADT list, but it is not especially efficient. The next chapter addresses the reuse of a class and pro-
vides a more efficient implementation of the sorted list as it discusses the use of inheritance.

Specifications for the ADT Sorted List

16.1 The ADT list leaves it up to the client to arrange the objects in a given collection. The client can
maintain the objects in any order that meets its needs. Suppose that you want a list of names or
other strings that are in alphabetical order. You could certainly use the ADT list for this task, but
you would have to determine the position that each string should have within the list. Wouldn’t it be
more convenient if the list itself alphabetized the entries as you added them? What you need is a
different ADT, namely the sorted list.

Recall that to use the add operation of the ADT list, you must specify both the new entry and
its desired position within the list. Such an operation is not desirable for the ADT sorted list, since
the sorted list is responsible for organizing its entries. If you were allowed to specify a new entry’s
position, you might destroy the order of the sorted list’s entries. Instead, the add operation of the
ADT sorted list requires only the new entry. The operation compares the new entry to other entries
in the sorted list to determine the new entry’s position. Thus, the entries in a sorted list must be
objects that can be compared with one another.

What, then, can you place in a sorted list? One possibility is strings, since the class String pro-
vides a compareTo method for comparing two strings. In general, you can have a sorted list of any
objects of a class that has a compareTo method. As you saw in Segment D.20 of Appendix D and
again at the beginning of Chapter 8, such classes implement the interface Comparable. Since Java’s
wrapper classes, such as Integer and Double, implement the Comparable interface, you can place
instances of them into a sorted list.

16.2 Let’s examine the possible operations for this ADT. For simplicity, we will allow the sorted list to
contain duplicate items. Insisting that the sorted list contain only unique items is somewhat more
complicated, and we will leave this variation as an exercise.

We’ve already mentioned that you can add an entry to the sorted list. Since the sorted list deter-
mines the position of a new entry, you could ask the ADT for this position. That is, you could ask
for the position of an existing entry or for the position in which a proposed entry would occur if you
added it to the list. You could also ask the ADT whether it contained a particular entry. And clearly
you should be able to remove an entry.

Let’s specify these operations more carefully.

Specifications for the ADT Sorted List 413

ABSTRACT DATA TYPE: SORTED LIST

DATA

• A collection of objects in sorted order and having the same data type
• The number of objects in the collection

OPERATIONS

PSEUDOCODE UML DESCRIPTION

add(newEntry) +add(newEntry: T): void Task: Adds newEntry to the sorted list so
that the list remains sorted.

Input: newEntry is the object to be added.
Output: None.

remove(anEntry) +remove(anEntry: T): boolean Task: Removes the first or only occurrence
of anEntry from the sorted list.

Input: anEntry is the object to be
removed.

Output: Returns true if anEntry was
located and removed, or false if not.
In the latter case, the list remains
unchanged.

getPosition(anEntry) +getPosition(anEntry: T): integer Task: Gets the position of the first or only
occurrence of anEntry.

Input: anEntry is the object to be found.
Output: Returns the position of anEntry if

it occurs in the list. Otherwise,
returns the position where anEntry
would occur in the list, but as a
negative integer.

The following operations behave as they do for the ADT list and are described in Chapter 12:

getEntry(givenPosition)
contains(anEntry)
remove(givenPosition)
clear()
getLength()
isEmpty()
toArray()

414 CHAPTER 16 Sorted Lists

16.3 The first two methods are straightforward, but getPosition deserves some comment. Given an
entry in the sorted list, the method getPosition returns the entry’s position number within the list,
as you would expect. We number the entries beginning with 1, just as we do for the ADT list. But
what if the given entry is not in the sorted list? In this case, getPosition returns the position num-
ber where the entry belongs in the list. The returned number is negative, however, to signal that the
entry is not in the list. For example, if missingObject is not in the sorted list sList but belongs at
position 3, sList.getPosition(missingObject) would return -3.

The sorted list also has some, but not all, of the operations of an ADT list. We have already
mentioned that adding an entry at a given position is not possible, because otherwise the client
could destroy the order of the sorted list. For the same reason, the list’s replace method is not
available to a sorted list. The other operations of the ADT list, however, are useful for a sorted list
as well, including the ones that retrieve or remove the entry at a given position. The methods
getEntry and remove each have a position number as a parameter, but they will not alter the rela-
tive order of the entries in the sorted list.

Although the list’s remove method returns the object removed from the list, it is not necessary
for the sorted list’s remove method to do so. The client already has at least a copy of this entry to
enable it to invoke sorted list’s remove.

16.4 The Java interface in Listing 16-1 specifies these operations in more detail. The notation ? super T,
which Segment 8.2 introduced, means any superclass of the generic type T.

LISTING 16-1 The interface SortedListInterface

/** An interface for the ADT sorted list.
Entries in the list have positions that begin with 1.

*/
public interface SortedListInterface<T extends Comparable<? super T>>
{

/** Adds a new entry to this sorted list in its proper order.
@param newEntry the object to be added as a new entry */

public void add(T newEntry);

/** Removes a specified entry from this sorted list.
@param anEntry the object to be removed
@return true if anEntry was located and removed */

public boolean remove(T anEntry);

/** Gets the position of an entry in this sorted list.
@param anEntry the object to be found
@return the position of the first or only occurrence of anEntry

if it occurs in the list; otherwise returns the position
where anEntry would occur in the list, but as a negative
integer */

public int getPosition(T anEntry);

// The following methods are described in Segment 12.7 of Chapter 12
// as part of the ADT list:

public T getEntry(int givenPosition);

Specifications for the ADT Sorted List 415

Using the ADT Sorted List

16.5 Example. To demonstrate the operations of the ADT sorted list that the previous section specifies,
we first create a sorted list of strings. We begin by declaring and allocating the list nameList, where
we assume that SortedList is an implementation of the ADT operations specified by the interface
SortedListInterface:

SortedListInterface<String> nameList = new SortedList<String>();

Next, we add names in an arbitrary order, realizing that the ADT will organize them alphabetically:

nameList.add("Jamie");
nameList.add("Brenda");
nameList.add("Sarah");
nameList.add("Tom");
nameList.add("Carlos");

The sorted list now contains the following entries:

Brenda
Carlos
Jamie
Sarah
Tom

16.6 Assuming the list just given, here are some examples of the ADT operations on the sorted list:

nameList.getPosition("Jamie") returns 3, the position of Jamie in the list
nameList.contains("Jill") returns false, because Jill is not in the list
nameList.getPosition("Jill") returns –4, because Jill belongs at position 4 in the list
nameList.getEntry(2) returns Carlos, because he is at position 2 in the list

Now remove Tom and the first name in the list by writing

nameList.remove("Tom");
nameList.remove(1);

public boolean contains(T anEntry);
public T remove(int givenPosition);
public void clear();
public int getLength();
public boolean isEmpty();
public T[] toArray();

} // end SortedListInterface

Note: The ADT sorted list can add, remove, or locate an entry, given the entry as an
argument. The sorted list has several operations that are the same as ADT list opera-
tions, namely getEntry, contains, remove (by position), clear, getLength, isEmpty, and
toArray. However, a sorted list will not let you add or replace an entry by position.

416 CHAPTER 16 Sorted Lists

The list now contains

Carlos
Jamie
Sarah

Removing the last entry, Tom, did not change the positions of the other entries in the list, but remov-
ing the first entry did. Carlos is now at position 1, instead of 2.

A Linked Implementation

VideoNote

As with all ADTs, you have a choice of several ways in which to implement the sorted list. You
could store a sorted list’s entries in, for example, an array, a chain of linked nodes, an instance of a
vector, or an instance of an ADT list. In this chapter, we will consider a chain of linked nodes and
an instance of an ADT list. In the next chapter, we will use inheritance to develop a completely dif-
ferent implementation.

16.7 An outline of the class. An implementation that uses a chain of linked nodes to store the entries in
a sorted list has several details in common with the linked implementation of the ADT list that you
studied in Chapter 14. In particular, it has the same data fields, similar constructors, the same
implementations for several of its methods, and the same definition of the inner class Node. Thus,
we outline in Listing 16-2 a class definition that implements the ADT sorted list.

Question 1 Suppose that wordList is an unsorted list of words. Using the operations of the
ADT list and the ADT sorted list, create a sorted list of these words.

Question 2 Assuming that the sorted list you created in the previous question is not empty,
write Java statements that

a. Display the last entry in the sorted list.
b. Add the sorted list’s first entry to the sorted list again.

The class SortedLinkedList

LISTING 16-2 An outline of a linked implementation of the ADT sorted list

public class SortedLinkedList<T extends Comparable<? super T>>
implements SortedListInterface<T>

{
private Node firstNode; // reference to first node of chain
private int numberOfEntries;

public SortedLinkedList()
{

firstNode = null;
numberOfEntries = 0;

} // end default constructor

< Implementations of the sorted list operations go here.>
. . .

private class Node
{

A Linked Implementation 417

The Method add
16.8 Locating the insertion point. Adding an entry to a sorted list requires that you find where in the

list the new entry belongs. Since the entries are sorted, you compare the new entry with the entries
in the sorted list until you reach an entry that is not smaller than the new entry. Figure 16-1 depicts
a chain of linked nodes, each containing a name, sorted alphabetically. The figure shows where the
additional names Ally, Cathy, Luke, Sue, and Tom would be inserted into the chain and the compar-
isons that would have to occur to arrive at those locations.

FIGURE 16-1 Places to insert names into a sorted chain of linked nodes

You can see from the figure that, in a string comparison, Ally is less than Bob, and so it would
be inserted at the beginning of the chain. To see where to insert Luke, you would find that Luke is
greater than both Bob and Jill but less than Mike. Thus, Luke belongs before Mike in the chain. Sue,
on the other hand, is already in one of the nodes. You would discover that Sue is greater than Bob,
Jill, and Mike but not greater than Sue. So you would insert the new entry Sue just before the exist-
ing entry Sue. Finally, Tom is greater than all the current names in the list, so you would add it to the
end of the chain.

16.9 The algorithm. Recall from Segment 14.10 of Chapter 14 that you handle the addition of a new
node to the beginning of a chain differently from an addition at other points in the chain. Adding to
the beginning is easy, since firstNode references the first node in the chain. To add anywhere else,
you need a reference to the node that will ultimately occur before the new node. Thus, while you
traverse the chain of linked nodes to discover where the new entry belongs, you must retain a refer-
ence to the node prior to the one under consideration.

private T data;
private Node next;

< Constructors >
. . .
< Accessor and mutator methods: getData, setData, getNextNode, setNextNode >
. . .

} // end Node
} // end SortedLinkedList

Ally � Bob Cathy � Jill Luke � Mike Sue �� Sue Tom � Sue

firstNode

Bob Jill Mike Sue

Note: Given a sorted list with entries in ascending order, you insert a new entry just before
the first entry that is not smaller than the new entry.

418 CHAPTER 16 Sorted Lists

A high-level algorithm that describes our strategy follows:

Algorithm add(newEntry)
// Adds a new entry to the sorted list.
Allocate a new node containing newEntry
Search the chain until either you find a node containing newEntry or you pass the point

where it should be
Let nodeBefore reference the node before the insertion point
if (the chain is empty or the new node belongs at the beginning of the chain)

Add the new node to the beginning of the chain
else

Insert the new node after the node referenced by nodeBefore

Increment the length of the sorted list

16.10 An iterative implementation of add. A Java implementation of the previous algorithm follows. We
use a private method, getNodeBefore, to search the chain for the node before the insertion point.

public void add(T newEntry)
{

Node newNode = new Node(newEntry);
Node nodeBefore = getNodeBefore(newEntry);

if (isEmpty() || (nodeBefore == null)) // add at beginning
{

newNode.setNextNode(firstNode);
firstNode = newNode;

}
else // add after nodeBefore
{

Node nodeAfter = nodeBefore.getNextNode();
newNode.setNextNode(nodeAfter);
nodeBefore.setNextNode(newNode);

} // end if

numberOfEntries++;
} // end add

16.11 The private method getNodeBefore. We still need to implement the private method getNodeBefore.
We will need two references as we traverse the list. Clearly we need a reference to the current node so
we can compare its entry to the desired entry. But we also must retain a reference to the previous node,
because it is this reference that the method returns. In the following implementation, these references are
currentNode and nodeBefore:

/** Finds the node that is before the node that should or does
contain a given entry.
@param anEntry the object to be located
@return either a reference to the node that is before the node

that contains or should contain anEntry, or null if
no prior node exists (that is, if anEntry belongs at
the beginning of the list) */

private Node getNodeBefore(T anEntry)
{

Node currentNode = firstNode;
Node nodeBefore = null;

while ((currentNode != null) &&
(anEntry.compareTo(currentNode.getData()) > 0))

A Linked Implementation 419

{
nodeBefore = currentNode;
currentNode = currentNode.getNextNode();

} // end while

return nodeBefore;
} // end getNodeBefore

Recall that the method compareTo returns a negative, zero, or positive integer according to
whether the comparison is, respectively, less than, equal to, or greater than.

16.12 Thinking recursively. Using recursion to process a chain of linked nodes can be an attractive alter-
native to an iterative approach. The basic concept is easy, but, as you will see, the implementation
is more involved, since Java passes objects to methods as references.

Recall from Segment 7.20 of Chapter 7 that you can process the chain’s first node and then
process the rest of the chain recursively. Thus, to add a new node to a sorted chain of linked nodes,
you use the following logic:

if (the chain is empty or the new node belongs at the beginning of the chain)
Add the new node to the beginning of the chain

else
Ignore the first node and add the new node to the rest of the chain

Figure 16-2 illustrates the logic needed to recursively add the name Luke to a sorted chain of
names. Since Luke is greater than Bob, you recursively consider the subchain that begins at Jill.
Luke is also greater than Jill, so you now consider the subchain beginning at Mike. Finally, Luke is
less than Mike, so you make the actual addition at the beginning of this subchain—that is, before
Mike. Adding to the beginning of a chain—or subchain—is the base case of this recursion. Happily,
the beginning of a chain is the easiest place to make an addition.

If currentNode initially references the chain and later references the rest of the chain, we can
add some detail to the previous logic, as follows:

if ((currentNode == null) or (newEntry <= currentNode.getData()))
currentNode = new Node(newEntry, currentNode)

else
Recursively add newEntry to the chain beginning at currentNode.getNextNode()

Question 3 In the while statement of the method getNodeBefore, how important is the order
of the two boolean expressions that the operator && joins? Explain.

Question 4 What does getNodeBefore return if the sorted list is empty? How can you use
this fact to simplify the implementation of the method add given in Segment 16.10?

Question 5 Suppose that you use the previous method add to add an entry to a sorted list.
If the entry is already in the list, where in the list will add insert it? Before the first occur-
rence of the entry, after the first occurrence of the entry, after the last occurrence of the
entry, or somewhere else?

Question 6 What would be the answer to the previous question if you changed > to >= in
the while statement of the method getNodeBefore?

420 CHAPTER 16 Sorted Lists

FIGURE 16-2 Recursively adding Luke to a sorted chain of names

16.13 A recursive implementation of add. The example in Segment 7.20 displayed the contents of a
chain. Since that operation does not alter the chain, its recursive formulation was straightforward.
Obviously, in our present situation, the method add does alter the chain. Getting the recursive
method to make these changes is the challenge in Java.

Let’s look at the recursive implementation of the method add before we describe why it works.
You learned in Segment 7.19 that you write a private method to perform the recursion and you
write a public method—typically the one that implements the ADT operation—to invoke this pri-
vate method. Thus, we have the following method definitions:

public void add(T newEntry)
{

firstNode = add(newEntry, firstNode);
numberOfEntries++;

} // end add

private Node add(T newEntry, Node currentNode)
{

if ((currentNode == null) ||
(newEntry.compareTo(currentNode.getData()) <= 0))

{
currentNode = new Node(newEntry, currentNode);

}
else
{

Node nodeAfter = add(newEntry, currentNode.getNextNode());
currentNode.setNextNode(nodeAfter);

} // end if

Luke � Bob, so add Luke
to the rest of the chain

Bob Jill Mike Sue

firstNode

Luke � Jill, so add Luke
to the rest of the chain

Jill Mike Sue

Luke � Mike, so add Luke here, at
the beginning of the rest of the chain

Mike Sue

A Linked Implementation 421

return currentNode;
} // end add

The private method add adds newEntry to the subchain that begins at currentNode. We will trace
and explain its logic in a moment.

16.14 Tracing an addition to the list’s beginning. Suppose that nameList is the sorted list that the chain
in Figure 16-3a represents. Let’s invoke nameList.add("Ally") to add Ally to this list. This addi-
tion will occur at the beginning of the chain. The public method add will call the private method
add with the invocation add("Ally", firstNode). The reference in the argument firstNode is
copied to the parameter currentNode, and so it also references the first node in the chain, as
Figure 16-3b illustrates.

FIGURE 16-3 Recursively adding a node at the beginning of a chain

Question 7 Repeat Question 5, using the method add that was just given.

(a) The list before any additions

firstNode Bob Jill Mike Sue

(b) As add("Ally", firstNode) begins execution

firstNode

currentNode

Bob Jill Mike Sue

(c) After a new node is created (the base case)

firstNode

currentNode

Bob Jill Mike Sue

Ally

The private method returns the
reference that is in currentNode

(d) After the public add assigns the returned reference to firstNode

firstNode

currentNode

Bob Jill Mike Sue

Ally

422 CHAPTER 16 Sorted Lists

Since Ally will be added to the beginning of the chain, the statement

currentNode = new Node("Ally", currentNode);

executes and creates a new node for Ally. This node is linked to the original chain, as Figure 16-3c
shows. Notice that firstNode is unchanged, even though it is the argument that corresponds to the
parameter currentNode.

The private method now returns the value of currentNode, and the public method add assigns
that value to firstNode. Thus, the chain with the completed addition appears as in Figure 16-3d.

16.15 Tracing an addition to the list’s interior: the recursive calls. What happens when the addition
is not at the beginning of the original chain? Let’s trace what happens when we add Luke to
the chain in Figure 16-4a. The public method add calls the private method add with the invo-
cation add("Luke", firstNode). As in the previous segment, the reference in firstNode is
copied to the parameter currentNode, and so it also references the first node in the chain, as
Figure 16-4a illustrates.

Since Luke comes after Bob, another recursive call occurs:

add("Luke", currentNode.getNextNode())

The second argument is a reference to the chain’s second node, the one containing Jill. This refer-
ence is copied to the parameter currentNode, as Figure 16-4b depicts.

Luke comes after Jill, so the recursive process is repeated again, and currentNode references
the chain’s third node—Mike’s node—as shown in Figure 16-4c. Luke is less than Mike, so no
recursive call occurs. We are at the base case. A new node is created that contains Luke and refer-
ences Mike’s node, as Figure 16-4d illustrates.

16.16 Tracing the returns from the recursive method. Having just created a new node, the private
method add returns a reference to it, as Figure 16-4d indicates. The statement that invoked add now
resumes execution:

nodeAfter = add("Luke", currentNode.getNextNode());

Thus, nodeAfter is assigned a reference to the new node containing Luke, as Figure 16-4e
illustrates.

At this point, currentNode references Jill’s node, as it did in Part b of the figure. The next
statement to execute is

currentNode.setNextNode(nodeAfter);

Thus, the data field next in Jill’s node is changed to reference Luke’s node, as shown in Figure 16-4f.
The private method add now returns a reference to Jill’s node. If we continue the trace, we will

make Bob’s node reference Jill’s node and firstNode reference Bob’s node, even though these ref-
erences are already in place.

Note: A recursive addition to a chain of nodes locates and remembers the nodes prior to the
insertion point. After the portion of the chain that follows the insertion point is linked to the
new node, the recursion links the remembered nodes back into the chain.

A Linked Implementation 423

FIGURE 16-4 Recursively adding a node between existing nodes in a chain

(a) As add("Luke", firstNode) begins execution

firstNode

currentNode

Bob Jill Mike Sue

(b) As the recursive call add("Luke", currentNode.getNextNode()) begins execution

firstNode Bob Jill Mike Sue

currentNode

(c) As the recursive call add("Luke", currentNode.getNextNode()) begins execution

firstNode Bob Jill Mike Sue

currentNode

(d) After a new node is created (the base case)

firstNode Bob Jill Mike Sue

currentNode Luke

The private method returns the
reference that is in currentNode

(e) After the returned reference is assigned to nodeAfter

firstNode Bob Mike Sue

currentNode

nodeAfter Luke

(f) After currentNode.setNextNode(nodeAfter) executes

firstNode Bob Jill

Jill

Mike Sue

currentNode

Luke

424 CHAPTER 16 Sorted Lists

16.17 Projects 1 and 2 at the end of this chapter ask you to complete the iterative and recursive implemen-
tations of the sorted list. Notice that many of the sorted list operations are the same as operations of
the ADT list and so would have implementations like those you saw in Chapter 14.

The Efficiency of the Linked Implementation
16.18 If you consider the analysis of the linked implementation of the ADT list given in Chapter 14, you

will see that the performance of the add method depends on the efficiency of the method getNodeAt.
The latter method locates the insertion point by traversing the chain of nodes. It is an O(n) operation.
The add method for the sorted list does its own traversal of the list to locate where to make the addi-
tion. This traversal is also O(n), making the addition to a sorted list an O(n) operation.

VideoNote

Figure 16-5 summarizes the performance of the sorted list operations. Deriving these results is
left as an exercise. When comparing implementations, you should realize that the worst cases can
occur under different circumstances. For example, a worst-case addition to an array-based sorted
list occurs at the list’s beginning, whereas for a linked implementation, it occurs at the list’s end.

FIGURE 16-5 The worst-case efficiencies of the operations on the ADT sorted
list for two implementations

An Implementation That Uses the ADT List

16.19 As we noted in Segment 16.17, the linked implementation of the ADT sorted list repeats much of
the corresponding implementation of the ADT list. Can we avoid this duplication of effort and
reuse portions of the list’s implementation? The answer to this question is yes, as you will soon see.

You can certainly use the ADT list to create and maintain an alphabetical list of strings. It is
natural, then, to consider using the ADT list when implementing the ADT sorted list. Basically, you
can do this in one of two ways. Here we will use a list as a data field within the class that imple-
ments the sorted list. Figure 16-6 shows an instance of such a sorted list. Recall from Segment C.1
of Appendix C that this approach is called composition and illustrates the has-a relationship
between two classes. The next chapter considers the second approach, using inheritance to derive
the sorted list from the list.

Note: Since the ADTs sorted list and list share many of the same operations, portions of their
implementations are identical.

Question 8 The linked implementation of the ADT sorted list, as given in this chapter,
does not maintain a tail reference. Why is a tail reference more significant for a linked
implementation of the ADT list than it is for a sorted list?

An array-based sorted list

ADT Sorted List Operation Array Linked

add(newEntry)
remove(anEntry)
getPosition(anEntry)
getEntry(givenPosition)
contains(anEntry)
remove(givenPosition)
toArray()
clear(), getLength(), isEmpty()

 O(n)
 O(n)
 O(n)
 O(1)
 O(n)
 O(n)
 O(n)
 O(1)

 O(n)
 O(n)
 O(n)
 O(n)
 O(n)
 O(n)
 O(n)
 O(1)

An Implementation That Uses the ADT List 425

FIGURE 16-6 An instance of a sorted list that contains a list of its entries

16.20 Our class SortedList will implement the interface SortedListInterface. We begin this class by
declaring a list as a data field and defining a default constructor. We assume that the class LList, as
discussed in Chapter 14, is an implementation of the interface ListInterface for the ADT list.
Thus, our class begins as follows:

public class SortedList<T extends Comparable<? super T>>
implements SortedListInterface<T>

{
private ListInterface<T> list;

public SortedList()
{

list = new LList<T>();
} // end default constructor

. . .
} // end SortedList

Note our use of the generic type T when we declare the data field list and create an instance of LList.

16.21 The method add. The implementations of the operations of the ADT sorted list are brief, as the list
does most of the work. To add a new entry to the sorted list, we first use the method getPosition,
which is an operation of the sorted list. We assume that it is already implemented, even though we
have not written it yet. Recall that getPosition finds the position of an existing entry within a
sorted list, or the position at which we should insert a new entry that does not occur in the sorted
list. The method sets the sign of the integer it returns to indicate whether the entry exists in the list
already. When adding an entry to a sorted list that can contain duplicate entries, it does not matter
whether the entry exists in the sorted list already. Thus, we can ignore the sign of the integer that
getPosition returns. Notice that the following implementation uses the method abs of the class
Math to discard this sign. It also uses the add operation of the ADT list. (In this section, calls to
ADT list operations are highlighted.)

public void add(T newEntry)
{

int newPosition = Math.abs(getPosition(newEntry));

} // end add

An instance of a list

An instance of a sorted list

Ann
Ben
Meg
Rob

list.add(newPosition, newEntry);

Question 9 Repeat Question 5, using the method add that was just given.

Question 10 Can a client of SortedList invoke the operation add(position, entry) of
the ADT list? Explain.

426 CHAPTER 16 Sorted Lists

16.22 The method remove. We also use getPosition when removing an object from a sorted list. This time,
however, we do need to know whether the given entry exists in the sorted list. If it does not exist, we can-
not remove it. In such cases, remove returns false. Also notice that the method uses the operation remove
of the ADT list to make the deletion. Thus, the method has the following implementation:

public boolean remove(T anEntry)
{

boolean result = false;
int position = getPosition(anEntry);

if (position > 0)
{

result = true;
} // end if

return result;
} // end remove

16.23 The logic for getPosition. Implementing getPosition is somewhat harder than implementing
the previous two methods. To decide where in the list anEntry is or belongs, we need to compare
anEntry to the entries already in the list, beginning with the first one. If anEntry is in the list, we
obviously compare entries until we find a match. However, if anEntry is not in the list, we want to
stop the search at the point where it belongs in the sorted list. We take advantage of the sorted order
of the objects by using logic similar to that described in Segment 16.8.

For example, suppose that the sorted list contains the four names Brenda, Carlos, Sarah, and
Tom. If we want to see where Jamie belongs in the sorted list, we discover that, as strings,

Jamie > Brenda
Jamie > Carlos
Jamie < Sarah

Thus, Jamie belongs after Carlos but before Sarah—that is, at position 3 in the sorted list, as
Figure 16-7 illustrates.

To compare anEntry to an entry in the sorted list, we first use the list operation getEntry to
return the entry at a given position within the sorted list. Then the expression

anEntry.compareTo(list.getEntry(position))

makes the comparison.

FIGURE 16-7 A sorted list in which Jamie belongs after Carlos but before Sarah

list.remove(position);

Question 11 If a sorted list contains five duplicate objects and you use the previous
method remove to remove one of them, what will be removed from the list: the first occur-
rence of the object, the last occurrence of the object, or all occurrences of the object?

Jamie

Brenda
Carlos
Sarah
Tom

An Implementation That Uses the ADT List 427

16.24 The implementation of getPosition. In the following implementation of getPosition, the while
loop finds anEntry’s position in the sorted list, and the if statement sees whether anEntry is in the list.

public int getPosition(T anEntry)
{

int position = 1;
int length = list.getLength();

// find position of anEntry
while ((position <= length) &&

(anEntry.compareTo(list.getEntry(position)) > 0))
{

position++;
} // end while

// see whether anEntry is in list
if ((position > length) ||

(anEntry.compareTo(list.getEntry(position)) != 0))
{

position = -position; // anEntry is not in list
} // end if

return position;
} // end getPosition

16.25 Each of the remaining methods—contains, remove, getEntry, clear, getLength, isEmpty, and
toArray—has the same specifications as in the ADT list. Each can simply invoke the corre-
sponding list method. For example, the method getEntry has the following implementation in
SortedList:

public T getEntry(int givenPosition)
{

return list.getEntry(givenPosition);
} // end getEntry

Efficiency Issues
Except perhaps for some subtle logic in getPosition, you can write the previous implementation
quickly and with few, if any, errors. Saving human time is an attractive feature of using an exist-
ing class to build another. But does the implementation use computer time efficiently? In this
particular implementation, several methods invoke getPosition, so their efficiency depends on
getPosition’s efficiency.

Question 12 Assume that the sorted list nameList contains the four names Brenda, Carlos,
Sarah, and Tom as strings. By tracing the code for getPosition, see what getPosition
returns when anEntry represents

a. Carlos b. Alan c. Wendy d. Tom e. Jamie

Question 13 Since you can decide whether a given entry is in a particular sorted list by
testing the sign of the integer that getPosition returns, you can use getPosition to imple-
ment the method contains. Write such an implementation.

Question 14 You can implement the method contains by invoking either getPosition, as
Question 13 suggests, or the ADT list’s contains method. Which of these implementations
will execute faster when the entry sought is not present in the sorted list? Why?

428 CHAPTER 16 Sorted Lists

16.26 The efficiency of getPosition. As we examine getPosition, as given in Segment 16.24, we note
that the list method getLength is an O(1) operation. Therefore, we need not be concerned with it.
On the other hand, a loop examines the entries in the list one at a time by invoking getEntry until
the desired entry is located. Thus, the efficiency of getPosition depends in part on the efficiency
of getEntry. However, the efficiency of getEntry depends upon which implementation of the
ADT list you use. We will examine two list implementations that lead to rather different efficien-
cies for getPosition.

Chapter 14 discussed the efficiencies of the ADT list operations. Figure 16-8 recalls the worst-
case performance of the list operations that we need to complete our analysis of the sorted list. If
you use an array to represent the entries in a list, getEntry is always an O(1) operation. The loop in
getPosition is therefore O(n) in the worst case, and so getPosition is O(n) when the list has an
array-based implementation.

If you use a chain of linked nodes to contain the entries in a list, the method getEntry is O(n).
Since getPosition’s loop invokes getEntry, we see that getPosition is O(n2) in the worst case.
Each time getEntry retrieves the next entry in the list, it starts its search at the beginning of the
chain. This fact is the cause of getPosition’s inefficiency.

FIGURE 16-8 The worst-case efficiencies of selected ADT list operations for
array-based and linked implementations

16.27 The efficiency of add. The implementation of the sorted list method add given in Segment 16.21
contains the following statements:

int newPosition = Math.abs(getPosition(newEntry));
list.add(newPosition, newEntry);

For an array-based implementation of the ADT list, both getPosition and the list operation add
are O(n) operations. Thus, the sorted list operation add is O(n) in the worst case. For a linked
implementation of the list, getPosition’s worst-case behavior is O(n2) and dominates the list
operation add, which is only O(n). Thus, the sorted list operation add is O(n2) in the worst case.

16.28 Figure 16-9 summarizes the efficiencies of the sorted list operations for array-based and linked
implementations of the ADT list. Confirmation of these results is left as an exercise. As you can
see, the implementation of the sorted list given in this section is easy to write but is not very effi-
cient if the underlying list uses a chain of linked nodes. The next chapter will show you how you
can reuse the ADT list in the implementation of the sorted list without sacrificing efficiency.

ADT List Operation Array Linked

getEntry(givenPosition)
add(newPosition, newEntry)
remove(givenPosition)
contains(anEntry)
toArray()
clear(), getLength(), isEmpty()

 O(1)
 O(n)
 O(n)
 O(n)
 O(n)
 O(1)

 O(n)
 O(n)
 O(n)
 O(n)
 O(n)
 O(1)

Question 15 Give an advantage and a disadvantage of using composition in the imple-
mentation of the class SortedList.

Exercises 429

FIGURE 16-9 The worst-case efficiencies of the ADT sorted list operations
when implemented using an instance of the ADT list

CHAPTER SUMMARY

EXERCISES

 ADT Sorted List Operation List Implementation
Array Linked

add(new Entry)
remove(anEntry)
getPosition(anEntry)
getEntry(givenPosition)
contains(anEntry)
remove(givenPosition)
toArray()
clear(), getLength(), isEmpty()

 O(n)
 O(n)
 O(n)
 O(1)
 O(n)
 O(n)
 O(n)
 O(1)

 O(n2)
 O(n2)
 O(n2)
 O(n)
 O(n)
 O(n)
 O(n)
 O(1)

Note: Using composition to implement the ADT sorted list
When you use an instance of an ADT list to represent the entries in the ADT sorted list, you
must use the list’s operations to access the sorted list’s entries, instead of accessing them
directly. Such an implementation of the sorted list is easy to write but is inefficient when the
underlying list uses a chain of linked nodes to store its entries.

• The ADT sorted list maintains its entries in sorted order. It, not the client, determines where to place an entry.

• The ADT sorted list can add, remove, or locate an entry, given the entry as an argument.

• The sorted list has several operations that are the same as the corresponding operations of the ADT list.
However, a sorted list will not let you add or replace an entry by position.

• A chain of linked nodes provides a reasonably efficient implementation of the sorted list.

• An implementation of the sorted list that uses an ADT list as a data field is easy to write. However, depend-
ing upon how the ADT list is implemented, its efficiency can suffer.

1. Suppose that nameList is a sorted list of names. Using the operations of the ADT list and the ADT sorted list,
create a list of these names without changing their order.

2. As specified in this chapter, the sorted list can contain duplicate entries. Specify a sorted list of unique items. For
example, add could return true if it added an entry to the list but return false if the entry is in the list already.

3. The mode of a list of values is the value having the greatest frequency.
a. Write an algorithm to find the mode of a sorted list using only methods of the ADT sorted list.
b. What is the Big Oh of the algorithm if the sorted list has an array-based implementation?
c. What is the Big Oh of the algorithm if the sorted list has a linked implementation?

430 CHAPTER 16 Sorted Lists

PROJECTS

4. The schedule of activities for a room consists of an activity list. Each activity has a description, a start time, and an
end time. You can add activities to the list, but they must be compatible with the other activities. Two activities are
incompatible if their time intervals overlap. Specify the ADT activity list.

5. Imagine you are working for a geologist who has records for earthquakes that occurred during the past 50 years.
Each record includes a date, location, strength, and duration. Design and specify an ADT for this collection of data.

6. Explain how you can use the ADT sorted list in the implementations of the ADTs described in Exercises 4 and 5.

7. Consider an array-based implementation of the sorted list. To implement the method add, you must add an entry to
a sorted array so that the array remains sorted.

a. Describe the steps in this implementation.
b. On which sort have you based your logic?
c. Analyze the worst-case efficiency of this implementation of add.

8. Figure 16-5 tabulates the worst-case efficiencies of the sorted list operations for both array-based and linked
implementations. Derive these Big Oh expressions.

9. Figure 16-9 tabulates the worst-case efficiencies of the sorted list operations when implemented using an instance
of the ADT list. Derive these Big Oh expressions.

10. Consider an array-based implementation of the sorted list. Let the array list be the data field that represents the
list’s entries. If a constructor is given an array of unsorted list entries, the constructor must place them into list in
sorted order. To do so, it could repeatedly use the sorted list’s add method to add the entries to the sorted list (and
hence to the array list) in their proper order. Or it could copy the entries to list and sort them by using a sort
algorithm from Chapters 8 and 9.

a. If you use the first approach, what sort are you actually using?
b. Would you ever want to use the second approach? Explain.

11. Consider the implementation of the sorted list that uses an instance of the ADT list. In particular, consider the
method contains. One implementation of contains could invoke getPosition (see Question 13 at the end of
Segment 16.24). Another implementation could simply invoke list.contains. Compare the efficiencies of these
two implementations.

12. Write a linked implementation of the sorted list method contains. Your search of the chain should end when it
either locates the desired entry or passes the point at which the entry should have occurred.

13. Compare the efficiency of the method contains that Exercise 12 describes with that of the list’s version
of contains.

14. Segment 9.2 of Chapter 9 described how to merge two sorted arrays into one sorted array. Add an operation to the
ADT sorted list that merges two sorted lists. Implement the merge in three ways, as follows:

a. Use only sorted list operations.
b. Assume an array-based implementation.
c. Assume a linked implementation.

1. Complete the linked implementation of the ADT sorted list that was begun in this chapter. Use iteration instead of
recursion.

2. Repeat Project 1, but use recursion wherever possible.

3. Implement the ADT sorted list by using an array to represent the ADT’s entries. Use array resizing so that the
sorted list can grow as large as necessary.

Projects 431

4. Implement the ADT sorted list by using an instance of Vector to represent the ADT’s entries. Recall that Chapter 13
presented a similar implementation for the ADT list.

5. Exercise 2 asked you to specify an ADT sorted list of unique items. Implement such an ADT using one of the
approaches described in this chapter or in the previous projects.

6. Add an iterator to the ADT sorted list by defining an inner class within the class that implements the ADT.

7. A polynomial in x is an algebraic expression that involves integer powers of x, as follows:
P(x) = an xn + an-1 xn-1 + . . . + a1 x + a0

The a’s are called coefficients. The degree of the polynomial is n, the highest exponent of x that appears in P(x).
Although an cannot be zero in a degree n polynomial, any other coefficient can be zero.

Specify an ADT polynomial that includes operations such as getDegree, getCoefficient, setCoefficient, add,
and subtract. Implement this ADT by using a sorted list. The sorted list should not contain any coefficients that are zero.

8. Exercise 3 asked you to create an algorithm to find the mode of a sorted list. Let’s add a method to the
implementation of a sorted list that finds the list’s mode. The header of such a method could be

public T mode()

Implement this method in three ways, as follows:

a. Use only sorted list operations.
b. Assume an array-based implementation.
c. Assume a linked implementation.

9. You can use a substitution code to encode a message. In this scheme, a key maps each letter to another letter. Each
letter in the plain-text message is replaced according to the key to produce the encoded message, or cipher text.

Suppose you are given some cipher text, but not the key. One method of breaking such a code is to count the fre-
quency of letters in the cipher text and then make guesses about the mapping based on the frequencies of letters in typical
English text. Write a program that reads characters from a file and uses a sorted list to find the frequency of each letter.

10. Implement the ADT priority queue by using a sorted list to contain the priority queue’s entries.

11. Project 1 of Chapter 1 defines a set as a bag that does not allow duplicate entries. Implement the ADT set by using
a sorted list to contain its entries. Include the operations union, intersection, and difference, as described
respectively in Exercises 5, 6, and 7 of Chapter 1.

12. In certain computer networks, a message is not sent as a continuous stream of data. Instead, it is divided into
pieces, called packets, and sent a packet at a time. The packets might not arrive at their destination in the same
order as the one in which they were sent. To enable the receiver to assemble the packets in their correct order, each
packet contains a sequence number.

For example, to send the message “Meet me at 6 o’clock” three characters at a time, the packets would appear
as follows:

1 Mee
2 t m
3 e a
4 t 6
5 o'
6 clo
7 ck

Regardless of when the packets arrive, the receiver can order the packets by their sequence numbers to determine
the message.

Given a text file containing the packets of data in the order they were received, write an application that reads the
file and extracts the message by using a sorted list. Design and create auxiliary classes such as Packet and Message.

432 CHAPTER 16 Sorted Lists

ANSWERS TO SELF-TEST QUESTIONS

1. SortedListInterface<String> sortedWordList = new SortedList<String>();
int numberOfWords = wordList.getLength();
for (int position = 1; position <= numberOfWords; position++)

sortedWordList.add(wordList.getEntry(position));

2. a. int length = sortedWordList.getLength();
String lastEntry = sortedWordList.getEntry(length);
System.out.println(lastEntry);

b. sortedList.add(sortedList.getEntry(1));

3. The order is critical. When currentNode is null, currentNode != null is false. Thus, the entire expression in the
while statement is false without executing the call currentNode.getData(). If the latter call were to execute first
when currentNode was null, an exception would occur. Thus, the while statement should remain as written.

4. When the sorted list is empty, getNodeBefore returns null. Thus, in the definition of add, you can omit the call to
isEmpty in the if statement.

5. Before the first occurrence of the entry.

6. After the last occurrence of the entry.

7. Before the first occurrence of the entry.

8. The method add(newEntry) for a list adds a new entry at the end of the list. A tail reference makes this method
O(1) instead of O(n). For a sorted list, add(newEntry) must traverse the chain to locate the point of insertion. If
the insertion is at the end of the chain, the traversal will give you a reference to the last node. A separate tail refer-
ence is not needed.

9. Before the first occurrence of the entry. Note that getPosition returns the position of the first occurrence of the
entry within the list.

10. No. The field list is private so its methods are unavailable to a client of SortedList.

11. The first occurrence of the object. Note that getPosition returns the position of the first occurrence of the entry
within the list.

12. a. 2; b. -1; c. -5; d. 4; e. -3.

13. public boolean contains(T anEntry)
{

return getPosition(anEntry) > 0;
} // end contains

14. The implementation that invokes getPosition will execute faster. Because the list is sorted, the method getPosition
does not always search the entire list when the entry is not present. However, the list’s method contains always
searches the entire list in this case.

15. Advantage: The implementation is easy to write.
Disadvantage: The implementation is not efficient when the implementation of the underlying list is linked.

Chapter

17Inheritanceand Lists
Contents
Using Inheritance to Implement a Sorted List
Designing a Base Class

Creating an Abstract Base Class
An Efficient Implementation of a Sorted List

The Method add

Prerequisites
Appendix C Creating Classes from Other Classes
Chapter 12 Lists
Chapter 13 List Implementations That Use Arrays
Chapter 14 A List Implementation That Links Data
Chapter 16 Sorted Lists

Objectives
After studying this chapter, you should be able to
• Describe how a class implementation that uses inheritance differs from one that uses composition
• Design a class that contains protected methods to make it suitable for use as a base class
• Write an efficient implementation of a sorted list by using inheritance

Chapter 16 introduced you to the ADT sorted list, which maintains its entries in a
sorted order. As with many other ADTs, you can implement the sorted list by using
either an array or a chain of linked nodes. The advantage of such implementations is
their time efficiency. However, they require you to repeat a portion of the
implementation of the ADT list, since the ADTs sorted list and list have several
operations in common.

434 CHAPTER 17 Inheritance and Lists

In an attempt to avoid this duplication of effort, Chapter 16 used an instance of the ADT list
to contain the entries of the sorted list. This list was a data field of the class implementing the
sorted list. The result was an implementation that you could write quickly, because the imple-
mentation of the list had done most of the work. But since the sorted list operations used the list
in the same way that a client would, these operations were inefficient of time when the ADT list
had a linked implementation.

But what if, instead of using composition, as we did in Chapter 16, we use inheritance? This
chapter looks at the implications of deriving a sorted list from a list. In doing so we’ll find that a
subclass (derived class) can be more efficient if it can access the underlying data structures of its
superclass (base class). This is possible if the superclass includes methods that enable future sub-
classes to examine or modify its data fields. A class designer should plan for the future use of a
class as well as the present need.

Using Inheritance to Implement a Sorted List

17.1 Recall the implementation of the class SortedList that we developed in Chapter 16 beginning at
Segment 16.20. SortedList has an instance of another class, LList in this case, as a data field.

VideoNote

SortedList and LList have a has-a relationship. Several of SortedList’s methods—namely
remove (by position), getEntry, contains, clear, getLength, isEmpty, and toArray—behave like
LList’s methods. If SortedList inherited these methods from LList, we would not have to imple-
ment them again, as we did in the previous chapter. Thus, we could revise SortedList as follows:

public class SortedList<T extends Comparable<? super T>>
extends LList<T> implements SortedListInterface<T>

{
public void add(T newEntry)
{

int newPosition = Math.abs(getPosition(newEntry));
super.add(newPosition, newEntry);

} // end add

< Implementations of remove(anEntry) and getPosition(anEntry) go here. >
. . .

} // end SortedList

The notation T extends Comparable<? super T>, introduced in Segments 8.1 and 8.2,
defines the generic type T. The class that T represents must implement the interface Comparable.
Writing ? super T, which means any superclass of T, allows some flexibility when using the method
compareTo.

You can see that SortedList is derived from LList. Also notice that we have omitted the data
field list and the default constructor that appeared in Segment 16.20. To revise the add method
given in Segment 16.21, we simply replaced list with super. That is, we wrote

super.add(newPosition, newEntry);

to invoke the add operation of the ADT list, instead of
list.add(newPosition, newEntry);

Inheritance and ADT
implementations

Using Inheritance to Implement a Sorted List 435

Coincidentally, SortedList’s add method overrides the other add method in LList that adds to the
end of a list.

We would make similar changes to the methods remove and getPosition. The remaining
methods of the sorted list are inherited from LList, and so they do not appear explicitly in
SortedList.

17.2 A pitfall. This implementation contains a pitfall that is the direct result of using inheritance.
Although SortedList conveniently inherits methods such as isEmpty from LList, it also inherits
two methods that a client can use to destroy the order of a sorted list. These two methods appear in
ListInterface as follows:

/** Adds newEntry to the list at position newPosition. */
public boolean add(int newPosition, T newEntry);

/** Replaces the entry at givenPosition with newEntry. */
public boolean replace(int givenPosition, T newEntry);

If a client writes
SortedList<String> sList = new SortedList<String>();

for example, sList can invoke any method declared in either SortedListInterface or
ListInterface, including the previous methods add and replace. Thus, a client could
destroy the order of the entries in a sorted list either by adding an entry out of order or
by replacing an entry.

17.3 Possible ways to avoid the pitfall. What can we do to avoid this pitfall? Here are three possibilities:

• Use SortedListInterface in the declaration of the sorted list. For example, if the
client contains
SortedListInterface<String> sList = new SortedList<String>();

sList can invoke only methods declared within SortedListInterface. Notice that the list
operations add and replace do not appear in SortedListInterface. Although this can be a
good programming practice, that is all it is. A client need only ignore this practice and define
the data type of sList as SortedList to have all operations of the ADT list available to it.
You have already seen how a client can sabotage the sorted list in this case.

• Implement the list’s add and replace methods within the class SortedList, but have them
return false. For example, add could appear as follows:

public boolean add(int newPosition, T newEntry)
{

return false;
} // end add

This version of add overrides the version that LList implements. If the client invokes this
method, the sorted list will remain unchanged. The client can detect that the method was
unsuccessful, but not why.

Question 1 Although SortedList inherits the method contains from LList, the method is
not as efficient as it could be. Why? Show how you could override contains with a more
efficient version.

436 CHAPTER 17 Inheritance and Lists

If the list’s method were a void method, we could give the overriding version an empty
body, but then the client would be unaware that the method did not do anything.

• Implement the list’s add and replace methods within the class SortedList and have them
throw an exception when invoked. For example, add could appear as follows:

public boolean add(int newPosition, T newEntry)
{

throw new UnsupportedOperationException("Illegal attempt to add " +
"at a specified position within a sorted list.");

} // end add

This version of add also overrides the version that LList implements. If the client invokes
this method, an exception occurs. This approach is a common practice, and it is the one we
prefer.

17.4 Efficiency. The implementation of SortedList given here has the same efficiency—or inefficiency
in this case—as the version that uses composition given in the previous chapter. If LList had been
designed with inheritance in mind, SortedList could access LList’s underlying data structure and
provide faster operations. To this end, we revise the class LList in the next section.

Designing a Base Class

17.5 Let’s examine the class LList that we developed in Chapter 14 as a linked implementation of the
ADT list. Recall that the class places each of the list’s entries into its own node. These nodes are
linked so that the first entry’s node references the node of the second entry, and so on. A data field
firstNode of the class references the first node, and another data field numberOfEntries counts the
number of entries in the list.

Note: If SortedList overrides the list’s method add, the class’s implementation still can
invoke the method, as happens in Segment 17.1. The use of super in the call indicates that we
are invoking the list’s version of the method, not the overriding version in SortedList.

Question 2 As a variation of the second possibility just given, you could implement the ADT
list’s two add methods within SortedList so that each one calls the add method specified in
SortedListInterface. In this way, the new entry is added in its correct position within the
sorted list. Why is this not a good idea?

Programming Tip: If your class inherits methods that are inappropriate, you can over-
ride them with methods that throw an exception when invoked. In such a case, examine your
design and consider whether inheritance was the right choice. Do the benefits of inheritance
outweigh the inconvenience of overriding the inappropriate methods, or would composition
provide a cleaner design?

Note: The implementation of the sorted list that extends the class LList is as inefficient as
the implementation that uses composition given in the previous chapter.

Question 3 Give at least one advantage and one disadvantage of using inheritance in the
way shown in this section to implement the class SortedList.

Designing a Base Class 437

Like most classes, LList has data fields that are private. The client cannot access these fields
directly by name. The class designer must decide whether to provide public methods that give the
client indirect access to the data fields. In the case of LList, the public method getLength enables
the client to get the length of the list. The client, however, cannot directly change the list’s length.
Only other member methods, such as add and remove, can alter the length. In addition, LList
denies the client access to the field firstNode by not providing public accessor or mutator methods
for this field. This design is appropriate, as firstNode is an implementation detail that should be
hidden from the client.

17.6 The excerpt of the class LList given in Listing 17-1 shows aspects of the class that are relevant to
this discussion. Each node is represented by the private class Node, which is defined within LList
and hidden from the client. The method getNodeAt facilitates the implementation of other mem-
ber methods by returning a reference to the node at a given position. We do not want the client to
have access to this node, since it is part of the underlying representation of the list, so we make
the method private.

LISTING 17-1 Relevant aspects of the class LList
public class LList<T> implements ListInterface<T>
{

private Node firstNode; // reference to first node
private int numberOfEntries;

public LList()
{

clear();
} // end default constructor

public final void clear()
{

firstNode = null;
numberOfEntries = 0;

} // end clear

public int getLength()
{

return numberOfEntries;
} // end getLength

< Implementations of the public methods add, remove, replace, getEntry, contains,
 isEmpty, and toArray go here. >
. . .

// Returns a reference to the node at a given position.
private Node getNodeAt(int givenPosition)
{

. . .
} // end getNodeAt

438 CHAPTER 17 Inheritance and Lists

17.7 So far, nothing should be new to you. Now imagine that we want LList to serve as a base class for
another class that you are developing. You saw in the previous section of this chapter that a sub-
class of LList—just like a client of LList—cannot access by name anything declared as private
within LList. That is, a subclass cannot access the data field firstNode, the method getNodeAt, or
the class Node, as Figure 17-1 illustrates. If we want to extend the capability of LList and do so
efficiently, the subclass will need access to these aspects of the class—in other words, to the under-
lying data structure.

FIGURE 17-1 A derived class of the class LList cannot access or change
anything that is private within LList

We can revise LList to make it more suitable as a base class by providing its subclasses con-
trolled access to items that are hidden from a client. First, let’s recall protected access, which we
discussed in Segment C.13 of Appendix C:

private class Node
{

private T data;
private Node next;
. . .

} // end Node
} // end LList

LList

Private data fields:
firstNode
numberOfEntries
Private method:
getNodeAt
Private inner class:
Node

Any subclass (derived class)

• Cannot access or change firstNode
• Cannot change numberOfEntries
• Cannot invoke getNodeAt
• Cannot create an instance of Node
• Cannot access or change fields of an existing node

Note: Protected access
You can access a protected method or data field by name only within its own class definition C,
within any subclass of C, or within any class in the same package as C.

Designing a Base Class 439

Our goal, then, is to provide a subclass protected—but limited—access to the underlying chain
of nodes. The subclass should be able to traverse or modify the chain efficiently. However, modifi-
cations to the chain must be done in a way that helps to maintain its integrity.

17.8 To enable a subclass to access the data fields by name without giving this access to the client, we
could declare firstNode and numberOfEntries to be protected. It is more typical, however, to keep
them private and to provide protected methods for only the access we desire. The subclass will need
to access the head reference firstNode, so we provide a protected get method to do this. Since
getLength is public, the subclass can get the value of numberOfEntries.

A subclass likely will need to change firstNode and numberOfEntries, so we could provide
protected methods that do so. But while we want an efficient subclass, we also want to keep our
data structure intact. So we will not allow a subclass to change these fields directly. Instead, we can
provide protected methods that modify our chain of nodes in a way that can satisfy both of our
desires. For example, protected methods can add or delete nodes, updating the chain’s length in the
process. No mutators will be available to directly change either the field numberOfEntries or a
node’s link. Thus, the subclass can alter the chain efficiently, but we are assured that the nodes will
be linked correctly and the chain’s length will be accurate.

17.9 As a result of this discussion, we make the following changes to LList:

1. We define a protected method getFirstNode, enabling the subclass to access the head refer-
ence firstNode:
protected Node getFirstNode()
{

return firstNode;
} // end getFirstNode

2. We define protected methods to add and remove nodes, changing firstNode and numberOf-
Entries as necessary:

/** Adds a node to the beginning of a chain. */
protected void addFirstNode(Node newNode)

/** Adds a node to a chain after a given node. */3
protected void addAfterNode(Node nodeBefore, Node newNode)

/** Removes a chain's first node. */
protected T removeFirstNode()

/** Removes the node after a given one. */
protected T removeAfterNode(Node nodeBefore)

The implementations of these methods use the techniques presented in Chapter 14. For
example, addFirstNode has the following definition, assuming that newNode is not null and
the inner class Node has set and get methods:

protected void addFirstNode(Node newNode)
{

assert newNode != null : "null argument in addFirstNode";
newNode.setNextNode(firstNode);
firstNode = newNode;
numberOfEntries++;

} // end addFirstNode

To prevent a subclass from overriding these protected methods, you can declare them
as final.

440 CHAPTER 17 Inheritance and Lists

3. The public methods of LList and its subclasses can call the previous methods, and thereby
reduce the chance of error. For example, we can revise LList’s method remove as follows:

public T remove(int givenPosition)
{

T result = null;

if ((givenPosition >= 1) && (givenPosition <= getLength()))
{

assert !isEmpty();

if (givenPosition == 1) // case 1: remove first entry
result = removeFirstNode();

else // case 2: givenPosition > 1
{

Node nodeBefore = getNodeAt(givenPosition - 1);
result = removeAfterNode(nodeBefore);

} // end if
} // end if

return result;
} // end remove

4. Next, we make getNodeAt protected instead of private. The client still cannot use this
method, but the implementations of the class and any subclass can.

5. We also make the class Node protected instead of private. Node will remain hidden from the
client but will be available to any subclass of LList. We could make Node’s data fields data
and next protected instead of private, but just as we did for LList, we instead make them pri-
vate and provide protected accessor methods. We also provide a protected set method for a
node’s data. To ensure the integrity of our chain, we do not allow a subclass to alter the link
portion of a node, and so we make that set method private. Thus, Node has the following four
methods:

protected T getData()
protected void setData(T newData)
protected Node getNextNode()
private void setNextNode(Node nextNode)

Finally, we make Node’s first constructor protected but leave its second constructor private,
since it sets a node’s link portion.

Making these changes to the class LList results in a new class, which we will name LListRevised.
Figure 17-2 illustrates this class and the access that a derived class has to it. Later in this chapter, we will
use LListRevised as the base class for a sorted list.

Programming Tip: Planning for the future
When designing a class, you should plan for its future use as well as the present need. If pub-
lic accessor methods are not already in your design, provide protected accessor methods.
Decide whether you want any future subclass to manipulate your class’s data fields. If you
do, provide protected methods that enable a subclass to make changes to the data fields both
efficiently and safely.

Designing a Base Class 441

FIGURE 17-2 Access available to a class derived from the class LListRevised

Creating an Abstract Base Class
17.10 We can simplify the previous class LListRevised by organizing the portion of it that deals with the

chain of linked nodes into an abstract base class. Listing 17-2 outlines such a class, LinkedChainBase.

VideoNote

Note that this class is abstract by virtue of the keyword abstract. All of its methods are implemented,
but we do not allow instances of this class.

LListRevised

Private data fields:
firstNode
numberOfEntries

Protected methods:
getFirstNode
addFirstNode
addAfterNode
removeFirstNode
removeAfterNode
getNodeAt

Protected inner class:
Node
(Has protected methods
getData, setData, and
getNextNode and private
method setNextNode)

Any subclass

• Can access firstNode and numberOfEntries
• Can invoke the protected methods
• Can create an instance of Node
• Can access the fields of an existing node
• Can change the data in an existing node

Question 4 Imagine a subclass of the class LListRevised.
a. Implement a method within the subclass that adds an entry to the beginning of the list.
b. Implement a method within the subclass that adds an entry right after the entry at the mid-

point of the list. If the list contains n entries, the entry at the midpoint is at position n / 2,
where the division is truncated to an integer.

Creating a base class LISTING 17-2 The abstract base class LinkedChainBase
public abstract class LinkedChainBase<T>
{

private Node firstNode; // reference to first node
private int numberOfEntries

442 CHAPTER 17 Inheritance and Lists

17.11 We can now revise the class LListRevised, as shown in Listing 17-3.

public LinkedChainBase()
{

clear();
} // end default constructor

< Implementations of the public methods clear, getLength, isEmpty, and toArray
go here. >

. . .

< Implementations of the protected methods getNodeAt, getFirstNode, addFirstNode,
addAfterNode, removeFirstNode, and removeAfterNode go here. >

. . .

protected class Node
{

private T data; // data portion
private Node next; // next to next node

protected Node(T dataPortion)
{

data = dataPortion;
next = null;

} // end constructor

private Node(T dataPortion, Node nextNode)
{

data = dataPortion;
next = nextNode;

} // end constructor

< Implementations of the protected methods getData, setData, and getNextNode go here. >
. . .

< Implementation of the private method setNextNode goes here. >
. . .

} // end Node
} // end LinkedChainBase

LISTING 17-3 A revision of LListRevised that extends LinkedChainBase
public class LListRevised<T> extends LinkedChainBase<T>

implements ListInterface<T>
{

An Efficient Implementation of a Sorted List 443

 The base class LinkedChainBase can be useful in other contexts as well. You can use it or
LListRevised to define an efficient implementation of the ADT sorted list, as you will see next.

An Efficient Implementation of a Sorted List

17.12 Instead of calling ADT list operations to perform operations on an ADT sorted list, our implementa-
tion will execute faster if it can be similar to the linked implementation that we wrote in the previous
chapter, beginning at Segment 16.7. The protected methods defined in the class LinkedChainBase
will enable us to manipulate the list’s underlying data structure faster than if we had to rely solely on
the operations of the ADT list to do so. Thus, we want our class to extend LinkedChainBase. We
begin it by writing

public class SortedLinkedList<T extends Comparable<? super T>>
extends LinkedChainBase<T>
implements SortedListInterface<T>

As before, we will implement a sorted list of Comparable objects.

The Method add
17.13 The add operation in our new class is quite similar to the one given in Segment 16.10 for the class

SortedLinkedList. However, the details of that previous addition now are hidden within the pro-
tected methods addFirstNode and addAfterNode of LinkedChainBase. Thus, our revised method
appears as follows (changes to the add method of Segment 16.10 are highlighted):

public void add(T newEntry)
{

Node newNode = new Node(newEntry);
Node nodeBefore = getNodeBefore(newEntry);

if (nodeBefore == null) // no need to call isEmpty
addFirstNode(newNode);

else
addAfterNode(nodeBefore, newNode);

} // end add

Preceding each of the protected methods with super is optional, since no other methods have
their names.

Question 4 in Segment 16.11 of Chapter 16 suggested the simplification for empty lists that we
made here. When a list is empty, getNodeBefore returns null. Thus, we can omit a call to isEmpty
in the if statement.

public LListRevised()
{

super();
} // end default constructor

< Implementations of the public methods add, remove, replace, getEntry, and contains
go here. >
. . .

} // end LListRevised

444 CHAPTER 17 Inheritance and Lists

17.14 The private method getNodeBefore. We still need to implement the private method getNodeBefore.
The implementation is like the one given in Segment 16.11, but it uses getFirstNode() instead of
firstNode:

private Node getNodeBefore(T anEntry)
{

Node currentNode = getFirstNode();
Node nodeBefore = null;

while ((currentNode != null) &&
(anEntry.compareTo(currentNode.getData()) > 0))

{
nodeBefore = currentNode;
currentNode = currentNode.getNextNode();

} // end while

return nodeBefore;
} // end getNodeBefore

17.15 Efficiency. This version of the method add executes faster than the versions given in Segments 17.1 and
16.21. Those earlier versions can use only the operations of the ADT list—that is, the public methods of
the class LList. Recall that those add methods first invoke getPosition to find where in the list the
new entry belongs, and then they invoke the list’s add method. The implementation of getPosition
given in Segment 16.24 traverses the sorted list to determine the position for the new entry. Within the
O(n) loop that performs this traversal is an invocation of the method getEntry. When getEntry has a
linked implementation, it also traverses the sorted list, and so it is O(n). Thus, getPosition is O(n2). It
follows that the add methods in Segment 17.1 and Segment 16.21 are each O(n2).

Our improved add method in Segment 17.13 adds a new node in its proper location by travers-
ing the chain of nodes at most once. Even though the method must use the protected methods to
alter the chain of linked nodes, it can add the new node as soon as it finds its proper location, with-
out traversing the chain repeatedly. Thus, it is an O(n) operation.

17.16 The rest of the class. To implement remove and getPosition, we would make similar changes to
their linked implementations. Recall that Chapter 16 left these implementations as an exercise.
Finally, we need to implement the remaining operations of the ADT list that are common to the
ADT sorted list but not inherited from LinkedChainBase. They are getEntry, contains, and
remove (by position).

Note: You can use inheritance and maintain efficiency if your base class provides protected
access to its underlying data structure.

Note: More than one implementation of an ADT is often possible. When choosing a partic-
ular implementation for a given application, you should consider all of the factors relevant to
your situation. Execution time, memory use, and extensibility are just some of the issues that
you should weigh. These same considerations should also be examined when you implement
an ADT.

Exercises 445

CHAPTER SUMMARY

PROGRAMMING TIPS

EXERCISES

• This chapter demonstrated the difference between implementations that use composition and those that use
inheritance. The basic ideas are the same as those described in Appendix C. With composition, a class has an
object as a data field. The class’s methods must act as clients of the object, so they use only the object’s pub-
lic methods. With inheritance, a class inherits all the public methods of its base class. Its implementation, as
well as its client, can use these public methods.

• A base class can provide protected methods that enable its subclasses to manipulate its data fields in ways
that its client cannot. In this way, a subclass’s methods can be more efficient than if they had to use only pub-
lic methods, as the client must.

• You can derive the sorted list from a base class that has appropriate protected methods and still have an effi-
cient implementation.

• If your class inherits methods that are inappropriate, you can override them with methods that throw an
exception when invoked. In such a case, examine your design and consider whether inheritance was the right
choice. Do the benefits of inheritance outweigh the inconvenience of overriding the inappropriate methods,
or would composition provide a cleaner design?

• When designing a class, you should plan for its future use as well as the present need. If public accessor
methods are not already in your design, provide protected accessor methods. Decide whether you want any
future subclass to manipulate your class’s data fields. If you do, provide protected methods that enable a sub-
class to make changes to the data fields both efficiently and safely.

1. Implement the method contains for the class SortedLinkedList, as described in Segment 17.12. Take advantage
of the list’s sorted nature.

2. Write a constructor for the class SortedLinkedList, as described in Segment 17.12, that has as a parameter an
instance of a class that implements ListInterface. The new sorted list should contain all the elements of the list,
but in sorted order.

3. Write an equals method for the class SortedLinkedList, as described in Segment 17.12, that overrides the method
equals inherited from the class Object. Assuming that objects in the list have an appropriate implementation of
equals, your new method should return true if each entry in one list equals the corresponding entry in a second list.

4. Repeat Exercise 3 for the class LListRevised, as described in Segment 17.11, instead of the class SortedLinkedList.

5. If the class LinkedChainBase had the method getIterator, as described in Segment 15.17 of Chapter 15, what
would you need to do to define an iterator for the class SortedLinkedList?

6. Compare the time efficiency of the sorted list method
public void add(T newEntry)

as given in Segment 17.13, with that of the list method
public boolean add(int newPosition, T newEntry)

7. Exercise 5 in Chapter 16 asked you to design an ADT for a list of earthquake records. Can you implement this
ADT by using inheritance, with LinkedChainBase as the base class? Which methods would you need to override?
Is containment more appropriate?

446 CHAPTER 17 Inheritance and Lists

PROJECTS

ANSWERS TO SELF-TEST QUESTIONS

8. Repeat Exercise 7, but consider the class SortedLinkedList, as described in Segment 17.12, instead of Linked-
ChainBase.

9. Suppose that the class LinkedChainBase, as given in Segment 17.10, implements the interface java.util.List-
Iterator, as described in Segment 15.32. If LinkedChainBase is a base class of SortedLinkedList, which of the
iterator methods are appropriate for a sorted list?

1. Complete the implementation of the class SortedLinkedList that Segment 17.12 began.

2. Derive the class SortedLinkedList from the class LListRevised, as described in Segment 17.11. What is the
disadvantage of this approach?

3. Exercise 4 in Chapter 16 asked you to design the ADT activity list. Show how you would implement such a class
by using inheritance, with LListRevised as the base class.

4. Project 8 in Chapter 16 asked you to implement the method mode. Show how you would implement this method
for the class SortedLinkedList, as described in Segment 17.12.

5. Using inheritance, derive the class LinkedListWithIterator, as described in Chapter 15 in Segment 15.19, from
the class LListRevised.

6. Define a class of bags that implements the interface BagInterface, as given in Listing 1-1 of Chapter 1, and is a
subclass of LinkedChainBase, as given in Listing 17-2.

1. The list’s method contains searches the entire list when the desired entry is not present. By calling getPosition,
contains can take advantage of the sorted order of the entries. The answer to Question 13 of Chapter 16 gives
such a method. By adding this method to SortedList, you can override LList’s contains.

2. The client will be unaware of what has happened and will not know where in the sorted list the addition was made.

3. Advantages: The implementation is easy to write. You inherit methods such as isEmpty that you do not have to
implement.
Disadvantages: The implementation is not efficient, especially when the implementation of the underlying list is
linked. Using inheritance in this way is as inefficient as using composition. You inherit methods (add and replace
by position) that you do not want. Moreover, since inheritance implies an is a relationship between the sorted list
and the list, type compatibility dictates that the sorted list be able to behave like a list. This clearly is not the case,
since you cannot insert or replace entries at any given position. Thus, a sorted list is not really a list.

4. a. public void addToBeginning(T newEntry)
{

addFirstNode(new Node(newEntry));
} // end addToBeginning

b. public void addAfterMidpoint(T newEntry)
{

Node nodeBefore = getNodeAt(getLength() / 2);
addNodeAfter(nodeBefore, new Node(newEntry));

} // end addAfterMidpoint

Chapter

18Searching
Contents
The Problem
Searching an Unsorted Array

An Iterative Sequential Search of an Unsorted Array
A Recursive Sequential Search of an Unsorted Array
The Efficiency of a Sequential Search of an Array

Searching a Sorted Array
A Sequential Search of a Sorted Array
A Binary Search of a Sorted Array
Java Class Library: The Method binarySearch
The Efficiency of a Binary Search of an Array

Searching an Unsorted Chain
An Iterative Sequential Search of an Unsorted Chain
A Recursive Sequential Search of an Unsorted Chain
The Efficiency of a Sequential Search of a Chain

Searching a Sorted Chain
A Sequential Search of a Sorted Chain
A Binary Search of a Sorted Chain

Choosing a Search Method

Prerequisites
Chapter 4 The Efficiency of Algorithms Chapter 13 List Implementations That Use Arrays
Chapter 7 Recursion Chapter 14 A List Implementation That Links Data
Chapter 12 Lists Chapter 16 Sorted Lists

Objectives
After studying this chapter, you should be able to
● Search an array by using a sequential search
● Search an array by using a binary search
● Search a chain of linked nodes sequentially
● Describe the time efficiency of a search

448 CHAPTER 18 Searching

People are always looking for something, be it a date, a mate, or a lost sock. In fact, searching is one of
the most common tasks done for us by computers. Just think of how many times you search the Internet.
This chapter looks at two simple search strategies, the sequential search and the binary search. You can
use these strategies when implementing the method contains for either the ADT list or the ADT sorted
list. A binary search is usually much faster than a sequential search when the data is in an array rather
than a chain of linked nodes and when the data is sorted. Sorting data, however, usually takes much more
time than searching it. This fact should influence your choice of search method in a given situation.

The Problem

18.1 Like the people in Figure 18-1, you can search your desk for a pen, your closet for your favorite
sweater, or a list of names to see whether you are on it. Searching for a particular item—called the
target—among a collection of many items is a common task.

FIGURE 18-1 Searching is an everyday occurrence

Let’s find your name on that list. If nameList is an instance of an ADT list whose entries are
names, we can search it by using the list operation contains. Recall that this method is boolean-
valued and returns true if a given item is in the list.

The implementation of contains depends upon how we store the list entries. Among the
implementations of the ADT list given in Chapters 13 and 14 is one that stores the list’s entries in
an array and another that uses a chain of linked nodes. Let’s look at the array first.

Searching an Unsorted Array

18.2 As Segment 13.13 of Chapter 13 mentioned, a sequential search of a list compares the desired item—
the target—with the first entry in the list, the second entry in the list, and so on until it either locates the
desired entry or looks at all the entries without success. In an array-based implementation of the list, we
search the array that contains the list’s entries. We can implement this search either iteratively or recur-
sively. This section looks at both approaches and examines their efficiencies.

Searching an Unsorted Array 449

VideoNote

Recall that two data fields of our list implementation in Chapter 13 are the array list, which
contains the list’s entries, and the integer numberOfEntries, which is the number of entries.

An Iterative Sequential Search of an Unsorted Array
18.3 The following implementation of contains was given in Segment 13.13. It uses a loop to search

the array list containing numberOfEntries objects having the generic type T for a particular object
anEntry:

public boolean contains(T anEntry)
{

boolean found = false;

for (int index = 0; !found && (index < numberOfEntries); index++)
{

if (anEntry.equals(list[index]))
found = true;

} // end for

return found;
} // end contains

The loop exits as soon as it locates the first entry in the array that matches the desired item. In this
case, found is true. On the other hand, if the loop examines all the entries in the list without finding
one that matches anEntry, found remains false. Figure 18-2 provides an example of these two out-
comes. For simplicity, our illustrations use integers.

FIGURE 18-2 An iterative sequential search of an array that (a) finds its target; (b)
does not find its target

Searching an array

(a) A search for 8

Look at 9:

9 5 8 4 7

8 � 9, so continue searching.

Look at 5:

9 5 8 4 7

8 � 5, so continue searching.

Look at 8:

9 5 8 4 7

8 � 8, so the search has found 8.

(b) A search for 6

Look at 9:

9 5 8 4 7

6 � 9, so continue searching.

Look at 5:

9 5 8 4 7

6 � 5, so continue searching.

Look at 8:

9 5 8 4 7

6 � 8, so continue searching.

Look at 4:

9 5 8 4 7

6 � 4, so continue searching.

Look at 7:

9 5 8 4 7

6 � 7, so continue searching.

No entries are left to consider, so the
search ends. 6 is not in the array.

450 CHAPTER 18 Searching

A Recursive Sequential Search of an Unsorted Array
18.4 We begin a sequential search of an array by looking at the first entry in the array. If that entry is the

desired one, we end the search. Otherwise we search the rest of the array. Since this new search is
also sequential and since the rest of the array is smaller than the original array, we have a recursive
description of a solution to our problem. Well, almost. We need a base case. An empty array could
be the base case because it never contains the desired item.

For the array a, we search the n elements a[0] through a[n - 1] by beginning with the first ele-
ment, a[0]. If it is not the one we seek, we need to search the rest of the array—that is, we search
array elements a[1] through a[n - 1]. In general, we search the array elements a[first] through
a[n - 1]. To be even more general, we can search array elements a[first] through a[last], where
first ≤ last.

18.5 The following pseudocode describes the logic of our recursive algorithm:
Algorithm to search a[first] through a[last] for desiredItem
if (there are no elements to search)

return false
else if (desiredItem equals a[first])

return true
else

return the result of searching a[first + 1] through a[last]

Figure 18-3 illustrates a recursive search of an array.

18.6 The method that implements this algorithm will need parameters first and last. To spare the client
the detail of providing values for these parameters, and to allow the method contains to have the
same header as it did in Segment 18.3, we implement the algorithm as a private method search that
contains invokes. Since we again assume the array-based list implementation from Chapter 13, the
array list takes the place of the array a in the previous algorithm, and numberOfEntries is the num-
ber of elements to search. Because list and numberOfEntries are data fields of the class that imple-
ments the list, they are not parameters of the methods that follow.

/** Searches the list for anEntry. */
public boolean contains(T anEntry)
{

return search(0, numberOfEntries - 1, anEntry);
} // end contains

/** Searches list[first] through list[last] for desiredItem.
@param first an integer index >= 0 and < numberOfEntries
@param last an integer index >= 0 and < numberOfEntries
@param desiredItem the object to be found
@return true if desiredItem is found */

Question 1 Write a method contains that returns the index of the first array entry that
equals anEntry. If the array does not contain such an entry, return -1.

Question 2 Write a method contains that performs an iterative sequential search of a list
by using only operations of the ADT list. The method should return true if a given item is in
a given list.

Searching an Unsorted Array 451

private boolean search(int first, int last, T desiredItem)
{

boolean found;

if (first > last)
found = false; // no elements to search

else if (desiredItem.equals(list[first]))
found = true;

else
found = search(first + 1, last, desiredItem);

return found;
} // end search

FIGURE 18-3 A recursive sequential search of an array that (a) finds its target;
(b) does not find its target

(a) A search for 8

Look at the first entry, 9:

9 5 8 4 7

8 � 9, so search the next subarray.

Look at the first entry, 5:

5 8 4 7

8 � 5, so search the next subarray.

Look at the first entry, 8:

8 4 7

8 � 8, so the search has found 8.

(b) A search for 6

Look at the first entry, 9:

9 5 8 4 7

6 � 9, so search the next subarray.

Look at the first entry, 5:

5 8 4 7

6 � 5, so search the next subarray.

Look at the first entry, 8:

8 4 7

6 � 8, so search the next subarray.

Look at the first entry, 4:

4 7

6 � 4, so search the next subarray.

Look at the first entry, 7:

7

6 � 7, so search an empty array.

No entries are left to consider, so the
search ends. 6 is not in the array.

452 CHAPTER 18 Searching

The Efficiency of a Sequential Search of an Array
18.7 Whether you implement a sequential search iteratively or recursively, the number of comparisons

will be the same. In the best case, you will locate the desired item first in the array. You will have
made only one comparison, and so the search will be O(1). In the worst case, you will search the
entire array. Either you will find the desired item at the end of the array or you will not find it at all.
In either event, you will have made n comparisons for an array of n entries. The sequential search in
the worst case is therefore O(n). Typically, you will look at about one-half of the entries in the
array. Thus, the average case is O(n/2), which is just O(n).

Searching a Sorted Array
A sequential search of an unsorted array is rather easy to understand and to implement. When the
array contains relatively few entries, the search is efficient enough to be practical. However, when
the array contains many entries, a sequential search can be time-consuming. For example, imagine
that you are looking through a jar of coins for one minted during the year of your birth. A sequen-
tial search of 10 coins is not a problem. With 1000 coins, the search could be lengthy; with 1 mil-
lion coins, it is overwhelming. A faster search method would be welcome. Fortunately, faster
searches are possible.

A Sequential Search of a Sorted Array
18.8 Suppose that before you begin searching your coins, someone arranges them in sorted order by

their dates. If you search the sorted coins in Figure 18-4 sequentially for the date 1998, you would
look at the coins dated 1992, 1995, and 1997 before arriving at 1998. If, instead, you look for the
date 2000, you would look at the first five coins without finding it. Should you keep looking? If the
coins are sorted into ascending order and you have reached the one dated 2005, you will not find
2000 beyond it. If the coins were not sorted, you would have to examine all of them to see that 2000
was not present.

Question 3 List the comparisons that the previous method search makes while searching
for the object o in the array of objects

o1 o2 o3 o4 o5

Question 4 Implement at the client level a recursive method search by using only opera-
tions of the ADT list. The method should return true if a given item is in a given list.

Note: The time efficiency of a sequential search of an array
Best case O(1)
Worst case: O(n)
Average case: O(n)

Note: A sequential search can be more efficient if the data is sorted.

Searching a Sorted Array 453

FIGURE 18-4 Coins sorted by their mint dates

If our array is sorted into either ascending or descending order, we can use the previous ideas
to revise the sequential search. This modified search can tell whether an item does not occur in an
array faster than a sequential search of an unsorted array. The latter search always examines the
entire array in this case. With a sorted array, however, the modified sequential search often makes
far fewer comparisons to make the same determination. Exercise 2 at the end of this chapter asks
you to implement a sequential search of a sorted array.

After expending the effort to sort an array, you often can search it even faster by using the
method that we discuss next.

A Binary Search of a Sorted Array
18.9 Think of a number between 1 and 1 million. When I guess at your number, tell me whether my

guess is correct, too high, or too low. At most, how many attempts will I need before I guess cor-
rectly? You should be able to answer this question by the time you reach the end of this section!

If you had to find a new friend’s telephone number in a printed directory, what would you do?
Typically you would open the book to a page near its middle, glance at the entries, and quickly see
whether you were on the correct page. If you were not, you would decide whether you had to look
at earlier pages—those in the left “half ” of the book—or later pages—those in the right “half.”
What aspect of a telephone directory enables you to make this decision? The alphabetical order of
the names does.

If you decided to look in the left half, you could ignore the entire right half. In fact, you could
tear off the right half and discard it, as Figure 18-5 illustrates. You have reduced the size of the
search problem dramatically, as you have only half of the book left to search. You then would
repeat the process on this half. Eventually you would either find the telephone number or discover
that it is not there. This approach—called a binary search—sounds suspiciously recursive.

18.10 Let’s adapt these ideas to searching an array a of n integers that are sorted into ascending order.
(Descending order would also work with a simple change in our algorithm.) We know that

a[0] ≤ a[1] ≤ a[2] ≤ . . . ≤ a[n-1]

Because the array is sorted, we can rule out whole sections of the array that could not possibly con-
tain the number we are looking for—just as you ruled out an entire half of the telephone directory.

For example, if we are looking for the number 7 and we know that a[5] is equal to 9, then, of
course, we know that 7 is less than a[5]. But we also know that 7 cannot appear after a[5] in the
array, because the array is sorted. That is,

7 < a[5] ≤ a[6] ≤ . . . ≤ a[n-1]

1992 1995 1997 1998 2005 2009 2010 2012

454 CHAPTER 18 Searching

FIGURE 18-5 Ignoring one half of the data when the data is sorted

We know this without looking at the elements beyond a[5]. We therefore can ignore these elements
as well as a[5]. Similarly, if the sought-after number were greater than a[5] (for example, if we
were looking for 10), we could ignore a[5] and all the elements before it.

Replacing the index 5 in the preceding example with whatever index is in the middle of the
array leads to a first draft of an algorithm for a binary search of an array:

Algorithm to search a[0] through a[n - 1] for desiredItem
mid = approximate midpoint between 0 and n - 1
if (desiredItem equals a[mid])

return true
else if (desiredItem < a[mid])

return the result of searching a[0] through a[mid - 1]
else if (desiredItem > a[mid])

return the result of searching a[mid + 1] through a[n - 1]

Notice that to

Search a[0] through a[n - 1]

you have to either

Search a[0] through a[mid - 1]

or

Search a[mid + 1] through a[n - 1]

These two searches of a portion of the array are smaller versions of the very task we are solving,
and so can be accomplished by calling the algorithm itself recursively.

I don’t need this half
of the book. I’ll just

throw it away.

Searching a Sorted Array 455

18.11 One complication arises, however, when we write the recursive calls in the previous pseudocode.
Each call searches a subrange of the array. In the first case, it is the elements indexed by 0 through
mid - 1. In the second case, it is the elements indexed by mid + 1 through n - 1. Thus, we need two
extra parameters—first and last—to specify the first and last indices of the subrange of the array
that is to be searched. That is, we search a[first] through a[last] for desiredItem.

Using these parameters and making the recursive calls look more like Java, we can express the
pseudocode as follows:

Algorithm binarySearch(a, first, last, desiredItem)
mid = approximate midpoint between first and last
if (desiredItem equals a[mid])

return true
else if (desiredItem < a[mid])

return binarySearch(a, first, mid - 1, desiredItem)
else if (desiredItem > a[mid])

return binarySearch(a, mid + 1, last, desiredItem)

To search the entire array, we initially set first to 0 and last to n - 1. Each recursive call will
then use some other values for first and last. For example, the recursive call that appears first
would set first to 0 and last to mid - 1.

When you write any recursive algorithm, you should always check that the recursion is not
infinite. Let’s check whether every possible invocation of the algorithm will lead to a base case.
Consider the three cases in the nested if statement in the previous pseudocode. In the first case, the
sought-after item is found in the array, so there is no recursive call, and the process terminates. In
each of the other two cases, a smaller portion of the array is searched by a recursive call. If the
sought-after item is in the array, the algorithm uses smaller and smaller portions of the array until it
finds the item. But what if the item is not anywhere in the array? Will the resulting series of recur-
sive calls eventually lead to a base case? Unfortunately not, but that is not hard to fix.

18.12 Note that in each recursive call, either the value of first is increased or the value of last is
decreased. If they ever pass each other and first actually becomes larger than last, we will have
run out of array elements to check. In that case, desiredItem is not in the array. If we add this test
to our pseudocode and refine the logic a bit, we get the following more complete algorithm:

Algorithm binarySearch(a, first, last, desiredItem)
mid = (first + last) / 2 // approximate midpoint
if (first > last)

return false
else if (desiredItem equals a[mid])

return true
else if (desiredItem < a[mid])

return binarySearch(a, first, mid - 1, desiredItem)
else // desiredItem > a[mid]

return binarySearch(a, mid + 1, last, desiredItem)

Figure 18-6 provides an example of a binary search.

Question 5 When the previous binary search algorithm searches the array in Figure 18-6
for 8 and for 16, how many comparisons to an array entry are necessary in each case?

456 CHAPTER 18 Searching

FIGURE 18-6 A recursive binary search of a sorted array that (a) finds its
target; (b) does not find its target

(a) A search for 8

Look at the middle entry, 10:

2 4 5 7 8 10 12 15 18 21 24 26
0 1 2 3 4 5 6 7 8 9 10 11

The next subarray is empty, so the search ends. 16 is not in the array.

16 � 15, so search the right half of the array.

Look at the middle entry, 15:

16 � 12, so search the right half of the array.

Look at the middle entry, 12:

16 � 18, so search the left half of the array.

Look at the middle entry, 18:

16 � 10, so search the right half of the array.

Look at the middle entry, 10:

(b) A search for 16

8 � 8, so the search ends. 8 is in the array.

Look at the middle entry, 8:

8 � 7, so search the right half of the array.

Look at the middle entry, 7:

8 � 5, so search the right half of the array.

Look at the middle entry, 5:

8 � 10, so search the left half of the array.

15
7

6 7

12 15

12

6

15 18
8

21

9

24

10

26

117

2

0

4

1

5

2

7

3

8

4

10

5

12

6

15

7

18

8

21

9

24

10

26

11

8
4

7
3

8

2

0

4

1

5
2

7

3

8

4

4

Searching a Sorted Array 457

18.13 Imagine an array-based implementation of the ADT sorted list. An array list—which is a private
data field—holds the list’s entries in sorted order. Another field numberOfEntries records the num-
ber of entries. When implementing the ADT’s method contains, the algorithm binarySearch
becomes a private method that contains invokes. The array list takes the place of the array a in
the algorithm, and numberOfEntries takes the place of n. As before in Segment 18.6, since list
and numberOfEntries are data fields, they are not parameters of contains and binarySearch.

Although the implementations of the sequential search that were given in Segments 18.3
and 18.6 use the method equals to make the necessary comparisons, the binary search requires
more than a test for equality. To make the necessary comparisons, we need the method compareTo.
Since all classes inherit equals from the class Object and can override it, all objects can invoke
equals. But for an object to invoke compareTo, it must belong to a class that implements the inter-
face Comparable. Such is the case for objects in a sorted list, as Segment 16.1 indicated.

Like the class SortedLinkedList in Segment 16.7, our implementation of a sorted list could
begin as follows:

public class SortedArrayList<T extends Comparable<? super T>>
implements SortedListInterface<T>

Thus, the method binarySearch can have the following implementation:
private boolean binarySearch(int first, int last, T desiredItem)
{

boolean found;
int mid = first + (last - first) / 2;

if (first > last)
found = false;

else if (desiredItem.equals(list[mid]))
found = true;

else if (desiredItem.compareTo(list[mid]) < 0)
found = binarySearch(first, mid - 1, desiredItem);

else
found = binarySearch(mid + 1, last, desiredItem);

return found;
} // end binarySearch

Now contains appears as follows:

public boolean contains(T anEntry)
{

return binarySearch(0, numberOfEntries - 1, anEntry);
} // end contains

Note: Notice that the Java computation of the midpoint mid is
int mid = first + (last - first) / 2;

instead of
int mid = (first + last) / 2;

as the pseudocode would suggest. If you were to search an array of at least 230, or about one
billion, elements, the sum of first and last could exceed the largest possible int value of
230 - 1. Thus, the computation first + last would overflow to a negative integer and result in
a negative value for mid. If this negative value of mid was used as an array index, an Array-
IndexOutOfBoundsException would occur. The computation first + (last - first) / 2,
which is algebraically equivalent to (first + last) / 2, avoids this error.

458 CHAPTER 18 Searching

Java Class Library: The Method binarySearch
18.14 The class Arrays in the package java.util defines several versions of a static method binarySearch

with the following specification:

/** Searches an entire array for a given item.
@param array an array sorted in ascending order
@param desiredItem the item to be found in the array
@return index of the array entry that equals desiredItem;

otherwise returns -belongsAt - 1, where belongsAt is
the index of the array element that should contain
desiredItem */

public static int binarySearch(type[] array, type desiredItem);

Here, both occurrences of type must be the same; type can be Object or any of the primitive types
byte, char, double, float, int, long, or short.

The Efficiency of a Binary Search of an Array
18.15 The binary search algorithm eliminates about half of the array from consideration after examining

only one element. It then eliminates another quarter of the array, and then another eighth, and so on.
Thus, most of the array is not searched at all, saving much time. Intuitively, the binary search algo-
rithm is very fast.

But just how fast is it? Counting the comparisons that occur will provide a measure of the
algorithm’s efficiency. To see the algorithm’s worst-case behavior, you count the maximum num-
ber of comparisons that can occur when searching an array of n items. Comparisons are made each
time the algorithm divides the array in half. After each division, half of the items are left to search.

Programming Tip: Classes that implement the Comparable interface must define a
compareTo method. Such classes should also define an equals method that overrides the
equals method inherited from Object. Both compareTo and equals should use the same test
for equality. The previous method binarySearch calls both the method equals and the
method compareTo. If the objects in the array did not have an appropriate equals method,
binarySearch would not execute correctly. Note, however, that you could use compareTo
instead of equals to test for equality.

Question 6 During a binary search, which elements in the array
4 8 12 14 20 24

are compared to the target when the target is a. 2; b. 8; c. 15.

Question 7 Modify the previous method contains so that it returns the index of the first
array entry that equals anEntry. If the array does not contain such an entry, return –1. You
will have to modify binarySearch also.

Question 8 What changes to the binary search algorithm are necessary when the array is
sorted in descending order (from largest down to smallest) instead of ascending order, as we
have assumed during our discussion?

Searching a Sorted Array 459

That is, beginning with n items, we would be left with n/2 items, then n/4 items, and so on. In the
worst case, the search would continue until only one item was left. That is, n/2k would equal 1 for
some integer value of k. This value of k gives us the number of times the array is divided in half, or
the number of recursive calls to binarySearch.

 If n is a power of 2, n is 2k for some positive k. By the definition of a logarithm, k is log2 n.
If n is not a power of 2, you can find a positive integer k so that n lies between 2k - 1 and 2k. For
example, if n is 14, 23 < 14 < 24. Thus, we have for some k ≥ 1,

2k - 1 < n < 2k
k - 1 < log2 n < k
k = 1 + log2 n rounded down
 = log2 n rounded up

To summarize,

k = log2 n when n is a power of 2
k = when n is not a power of 2

In general, k—the number of recursive calls to binarySearch—is .

Each call to binarySearch, with the possible exception of the last one, makes two comparisons
between the target and the middle element in the array: One tests for equality and one for less than
or greater than. Thus, the binary search performs at most 2 comparisons, and so in the
worst case is O(log n).

To search an array of 1000 elements, the binary search will compare the target to about 10 array
entries in the worst case. In contrast, a simple sequential search could compare the target to as
many as all 1000 array entries, and on average will compare it to about 500 array elements.

 n2log

 n2log

Note: Ceiling and floors
The ceiling of a number x, denoted as , is the smallest integer greater than or equal to x.
For example, is 5. The floor of a number x, denoted as , is the largest integer less
than or equal to x. For example, is 4. When you truncate a positive real number to an
integer, you actually are computing the number’s floor by discarding any fractional portion.

x
4.1 x

4.9

 n2log

Note: The time efficiency of a binary search of an array
Best case: O(1)
Worst case: O(log n)
Average case: O(log n)

Question 9 Think of a number between 1 and 1 million. When I guess at your number, tell
me whether my guess is correct, too high, or too low. At most, how many attempts will I
need before I guess correctly? Hint: You are counting guesses, not comparisons.

460 CHAPTER 18 Searching

18.16 Another approach. The binary search makes comparisons each time it locates the midpoint of the
array. Thus, to search n items, the binary search looks at the middle item and then searches n/2
items. If we let t(n) represent the time requirement for searching n items, we find that at worst

t(n) = 1 + t(n/2) for n > 1
t(1) = 1

We encountered this recurrence relation in Segment 7.25 of Chapter 7. There, we showed that

t(n) = 1 + log2 n

Thus, the binary search is O(log n) in the worst case.

Searching an Unsorted Chain

18.17 Within a linked implementation of either the ADT list or the ADT sorted list, the method contains
would search a chain of linked nodes for the target. As you will see, a sequential search is really the
only practical choice. We begin with a chain whose data is unsorted, as typically would be the case
for the ADT list.

VideoNote

Regardless of a list’s implementation, a sequential search of the list looks at consecutive
entries in the list, beginning with the first one, until either it finds the desired entry or it looks at all
entries without success. When the implementation is linked, however, moving from node to node is
not as simple as moving from one array location to another. Despite this fact, you can implement a
sequential search of a chain of linked nodes either iteratively or recursively and with the same effi-
ciency as that of a sequential search of an array.

An Iterative Sequential Search of an Unsorted Chain
18.18 Figure 18-7 illustrates a chain of linked nodes that contain the list’s entries. Recall from Segment 14.8

of Chapter 14 that firstNode is a data field of the class that implements the list. While it is clear that
a method can access the first node in this chain by using the reference firstNode, how can it access
the subsequent nodes? Since firstNode is a data field that always references the first node in the
chain, we would not want our search to alter it or any other aspect of the list. Thus, an iterative method
contains should use a local reference variable currentNode that initially contains the same reference
as firstNode. To make currentNode reference the next node, we would execute the statement

currentNode = currentNode.getNextNode();

FIGURE 18-7 A chain of linked nodes that contain the entries in a list

The iterative sequential search has the following straightforward implementation:

public boolean contains(T anEntry)
{

boolean found = false;
Node currentNode = firstNode;

while (!found && (currentNode != null))
{

Searching a linked chain

firstNode

Searching an Unsorted Chain 461

if (anEntry.equals(currentNode.getData()))
found = true;

else
currentNode = currentNode.getNextNode();

} // end while

return found;
} // end contains

This implementation is like the one given in Segment 14.19 of Chapter 14.

A Recursive Sequential Search of an Unsorted Chain
18.19 When done recursively, a sequential search looks at the first entry in the list and, if it is not the

desired entry, searches the rest of the list. This recursive approach is the same regardless of
whether you implement the search at the client level by using only the list’s ADT operations—as
you did in Question 4—or as a public method of an array-based implementation of the list—as we
did in Segment 18.6. We use the same approach for a linked implementation of the list, as follows.

How would you implement the step search the rest of the list when the list’s entries are in a chain
of linked nodes? The iterative method contains that you saw in the previous segment uses a local
variable currentNode to move from node to node. A recursive method could not have currentNode
as a local variable, since currentNode would get reset to an initial value at each recursive call.
Instead, such a method needs currentNode as a formal parameter. But then we would have a method
whose parameter depends on the list’s implementation, making it unsuitable as a public method. Just
as we did earlier in Segments 18.6 and 18.13, we would make this search method private and call it
from the public method contains.

18.20 The private recursive method search examines the list entry in the node that its parameter
currentNode references. If the entry is not the desired one, the method recursively calls itself
with an argument that references the next node in the chain. Thus, the method search has the
following implementation:

// Recursively searches a chain of nodes for desiredItem,
// beginning with the node that currentNode references.
private boolean search(Node currentNode, T desiredItem)
{

boolean found;

if (currentNode == null)
found = false;

else if (desiredItem.equals(currentNode.getData()))
found = true;

else
found = search(currentNode.getNextNode(), desiredItem);

return found;
} // end search

Now we write the public method contains as follows:

public boolean contains(T anEntry)
{

return search(firstNode, anEntry);
} // end contains

Notice that the call to the method search initializes the parameter currentNode to firstNode,
much as an iterative method initializes its local variable currentNode to firstNode.

462 CHAPTER 18 Searching

The Efficiency of a Sequential Search of a Chain
18.21 The efficiency of a sequential search of a chain is really the same as that of a sequential search of an

array. In the best case, the desired item will be first in the chain. Thus, at best the search will be
O(1), since you will have made only one comparison. In the worst case, you will search the entire
chain, making n comparisons for a chain of n nodes. Therefore, the sequential search in the worst
case is O(n). Typically, you will look at about half of the nodes in the chain. Thus, the average-case
search is O(n/2), which is just O(n).

Searching a Sorted Chain
We now search a chain whose data is sorted. Such a chain would occur in a linked implementation
of the ADT sorted list.

A Sequential Search of a Sorted Chain
18.22 Searching a chain of linked nodes whose data is sorted is similar to sequentially searching a sorted

array, as described in Segment 18.8. Here, we incorporate that logic into the following implementa-
tion of contains:

public boolean contains(T anEntry)
{

Node currentNode = firstNode;

while ((currentNode != null) &&
(anEntry.compareTo(currentNode.getData()) > 0))

{
currentNode = currentNode.getNextNode();

} // end while

return (currentNode != null) &&
anEntry.equals(currentNode.getData());

} // end contains

The method traverses the chain until it either reaches a node that could contain the desired
object or examines all nodes without success. Following the traversal, a final test is necessary to
draw a conclusion.

A Binary Search of a Sorted Chain
18.23 A binary search of an array looks first at the element that is at or near the middle of the array. It is easy

to determine the index mid of this element by computing first + (last - first) / 2, where first
and last are the indices of the first and last elements, respectively, in the array. Accessing this middle
element is also easy: For an array a, it is simply a[mid].

Now consider searching a chain of linked nodes, such as the one you saw earlier in
Figure 18-7, whose nodes are sorted. How would you access the entry in the middle node?
Since this chain has only three nodes, you can get to the middle node quickly, but what if the

Note: The time efficiency of a sequential search of a chain of linked nodes
Best case: O(1)
Worst case: O(n)
Average case: O(n)

Choosing a Search Method 463

chain contained 1000 nodes? In general, you need to traverse the chain, beginning at the first
node, until you reach the middle node. How will you know when you get there? If you know the
length of the chain, you can divide the length in half and count nodes as you traverse. The
details are not as important as a realization that it takes a bit of work to access the middle node.

After looking at the entry in the middle node, you probably need to ignore half of the chain and
search the other half. Do not change the chain when ignoring part of it. Remember that you want to
search the chain, not destroy it. Once you know which half to search, you must find its middle
node, again by traversing the chain. It should be clear to you that a binary search of a linked chain
of nodes would be challenging to implement and less efficient than a sequential search.

Choosing a Search Method

18.24 Choosing between a sequential search and a binary search. You just saw that you should use a
sequential search to search a chain of linked nodes. But if you want to search an array of objects,
you need to know which algorithms are applicable. To use a sequential search, the objects must
have a method equals that ascertains whether two distinct objects are equal in some sense. Since
all objects inherit equals from the class Object, you must ensure that the objects you search have
overridden equals with an appropriate version. To perform a binary search on an array of objects,
on the other hand, the objects must have a compareTo method and the array must be sorted. If these
conditions are not met, you must use a sequential search.

If both search algorithms are applicable to your array, what search should you use? If the array
is small, you can simply use a sequential search. If the array is large and already sorted, a binary
search is typically much faster than a sequential search. But if the array is not sorted, should you
sort it and then use a binary search? The answer depends on how often you plan to search the array.
Sorting takes time, typically more time than a sequential search would. If you plan to search an
unsorted array only a few times, sorting the array so that you can use a binary search likely will not
save you time; use a sequential search instead.

Figure 18-8 summarizes the time efficiencies of the sequential search and the binary search.
Only the sequential search is applicable to unsorted data. The efficiencies given for the binary
search are for an array-based sorted list. For a large, sorted list, the binary search is typically much
faster than a sequential search.

FIGURE 18-8 The time efficiency of searching, expressed in Big Oh notation

Note: A binary search of a chain of linked nodes is impractical.

Best Case Average Case Worst Case

Sequential search
(unsorted data)
Sequential search
(sorted data)
Binary search
(sorted array)

 O(1)

 O(1)

 O(1)

 O(n)

 O(n)

 O(log n)

 O(n)

 O(n)

 O(log n)

464 CHAPTER 18 Searching

18.25 Choosing between an iterative search and a recursive search. Since the recursive sequential
search is tail recursive, you can save some time and space by using the iterative version of the search.
The binary search is fast, so using recursion will not require much additional space for the recursive
calls. Also, coding the binary search recursively is somewhat easier than coding it iteratively. To con-
vince yourself of this, try to code an iterative version of the binary search. (See Exercise 6 at the end
of this chapter.)

CHAPTER SUMMARY

PROGRAMMING TIP

EXERCISES

● A sequential search of either a list, an array, or a chain looks at the first item, the second item, and so on until
it either finds a particular item or discovers that the item does not occur in the group.

● The average-case performance of a sequential search is O(n).

● Typically, you perform a sequential search iteratively, although a simple recursive approach is also possible.

● A binary search of an array requires that the array be sorted. It looks first to see whether the desired item is at
the middle of the array. If it is not, the search decides in which half of the array the item can occur and
repeats this strategy on only this half.

● A binary search is O(log n) in the worst case.

● Typically, you perform a binary search recursively, although an iterative approach is also possible.

● A binary search of a linked chain of nodes is impractical.

● Classes that implement the Comparable interface must define a compareTo method. Such classes should also
define an equals method that overrides the equals method inherited from Object. Both compareTo and
equals should use the same test for equality. The method binarySearch in Segment 18.13 calls both the
method equals and the method compareTo. If the objects in the array did not have an appropriate equals
method, binarySearch would not execute correctly. Note, however, that you could use compareTo instead of
equals to test for equality.

1. Revise the recursive method search, as given in Segment 18.6, so that it looks at the last entry in the array instead
of the first one.

2. When searching a sorted array sequentially, you can ascertain that a given item does not appear in the array
without searching the entire array. For example, if you search the array

2 5 7 9

for 6, you can use the approach described in Segment 18.8. That is, you compare 6 to 2, then to 5, and finally to 7.
Since you did not find 6 after comparing it to 7, you do not have to look further, because the other entries in the array
are greater than 7 and therefore cannot equal 6. Thus, you do not simply ask whether 6 equals an array entry, you
also ask whether it is greater than the entry. Since 6 is greater than 2, you continue the search. Likewise for 5. Since
6 is less than 7, you have passed the point in the array where 6 would have had to occur, so 6 is not in the array.

a. Write an iterative method contains to take advantage of these observations when searching a sorted array
sequentially.

b. Write a recursive method search that a method contains can call to take advantage of these observations
when searching a sorted array sequentially.

Exercises 465

3. How many comparisons are made by the recursive method search described in Part b of the previous exercise
when searching the array in Figure 18-6 for 8 and for 16?

4. Trace the method binarySearch, as given in Segment 18.13, when searching for 4 in the following array
of values:

5 8 10 13 15 20 22 26 30 31 34 40

Repeat the trace when searching for 34.

5. Modify the method binarySearch in Segment 18.13 so that it returns the index of the first array entry that equals
desiredItem. If the array does not contain such an entry, return -(belongsAt + 1), where belongsAt is the index of
the array location that should contain desiredItem. At the end of Segment 18.13, Question 7 asked you to return -1
in this case. Notice that both versions of the method return a negative integer if and only if desiredItem is not found.

6. Implement a binary search of an array iteratively. Model your methods after the ones given in Segment 18.13.

7. Write a recursive method to find the largest object in an array-based list of Comparable objects. Like the binary
search, your method should divide the array into halves. Unlike the binary search, your method should search both
halves for the largest object. The largest object in the array will then be the larger of these two largest objects.

8. Suppose that you are searching an unsorted array of objects that might contain duplicates. Devise an algorithm
that returns a list of the indices of all objects in the array that match a given object. If the desired object is not in
the list, return an empty list.

9. Repeat the previous exercise for a sorted array. Your algorithm should be recursive and efficient.

10. In Segment 18.13, the method contains calls a private method that performs a binary search of an array.
Assuming a linked implementation of the ADT sorted list, revise this private method to perform a binary search
of a chain of nodes. Do not alter the chain.

11. Consider the number f(n) of comparisons that a sequential search makes in the worst case.
a. Write a recurrence relation for f(n).
b. Prove by induction on n that f(n) = n.

12. At the end of Segment 18.3, Question 2 asked you to write a method that performs an iterative sequential search
of a list by using only operations of the ADT list. Compare the time efficiency of this method with the ADT
operation contains.

13. In Segment 18.7, we said that a sequential search of an array will examine on average about half of the n entries. Let’s
look a little more carefully at this computation. A sequential search is either successful or not. Let α be the probability
that we will find the desired value in the array and 1 - α be the probability that we will not. We further assume that the
value, if found, is equally likely to be in each of the locations of the array. We need to consider each possibility.

For each case, we count the comparisons and determine its probability of occurrence. To find the average
number of comparisons made by the search, we first multiply each probability by the number of comparisons in
each case. The following table summarizes these results:

Probability Number of Comparisons Product

Found at index 0
Found at index 1
Found at index 2
...
Found at index n - 2
Found at index n - 1
Not found

 α / n
 α / n
 α / n
 ...
 α / n
 α / n
 1 − α

 1
 2
 3
 ...
 n − 1
 n
 n

 α / n
 2 α / n
 3 α / n
 ...
 (n − 1) α / n
 α
 (1 − α) n

466 CHAPTER 18 Searching

PROJECTS

a. Compute the average number of comparisons by adding all the products in the last column of the table.
b. What is the average number of comparisons if the search is guaranteed to be successful (α = 1)?
c. What is the average number of comparisons if the search is guaranteed to be unsuccessful (α = 0)?
d. What is the average number of comparisons if the search is successful half of the time (α = 0.5)?

14. Repeat Part a of the previous exercise, but now assume that we are not equally likely to search for each value in
the array. We could arrange the n items in the array such that the ones we are more likely to search for occur first.
Suppose that we search for the first item one half of the time, the second item one quarter of the time, the third
item one eighth of the time, and so on. We will search for the last two items 1/ 2n - 1 of the time. Revise the table in
the previous exercise accordingly.

1. When an object does not occur in an array, a sequential search for it must examine the entire array. If the array is
sorted, you can improve the search by using the approach described in Exercise 2. A jump search is an attempt to
reduce the number of comparisons even further.

Instead of examining the n objects in the array a sequentially, you look at the elements a[j], a[2j], a[3j], and so
on, for some positive j < n. If the target t is less than one of these objects, you need to search only the portion of the
array between the current object and the previous object. For example, if t is less than a[3j] but is greater than
a[2j], you search the elements a[2j + 1], a[2j + 2], . . ., a[3j - 1] by using the method in Exercise 2. What should
you do when t > a[k * j], but (k + 1) * j > n?

Devise an algorithm for performing a jump search. Then, using as the value of j, implement the jump search.

2. An interpolation search assumes that the data in an array is sorted and uniformly distributed. Whereas a binary search
always looks at the middle item in an array, an interpolation search looks where the sought-for item is more likely to
occur. For example, if you searched your telephone book for Victoria Appleseed, you probably would look near its
beginning rather than its middle. And if you discovered many Appleseeds, you would look near the last Appleseed.

Instead of looking at the element a[mid] of an array a, as the binary search would, an interpolation search
examines a[index], where

p = (desiredElement - a[first])/(a[last] - a[first])

Implement an interpolation search of an array. For particular arrays, compare the outcomes of an interpolation
search and of a binary search. Consider arrays that have uniformly distributed entries and arrays that do not.

3. Suppose that you have numerical data stored in a two-dimensional array, such as the one in Figure 18-9. The data
in each row and in each column is sorted in increasing order.

a. Devise an efficient search algorithm for an array of this type.
b. If the array has m rows and n columns, what is the Big Oh performance of your algorithm?
c. Implement and test your algorithm.

FIGURE 18-9 A two-dimensional array for Project 3

n

index first last first–() p×+=

1 4 55 88

7

14

15

89

61

90

91

99

Answers to Self-Test Questions 467

ANSWERS TO SELF-TEST QUESTIONS

4. Consider an array data of n numerical values in sorted order and a list of numerical target values. Your goal is to
compute the smallest range of array indices that contains all of the target values. If a target value is smaller than
data[0], the range should start with -1. If a target value is larger than data[n - 1], the range should end with n.

For example, given the array in Figure 18-10 and the target values (8, 2, 9, 17), the range is -1 to 5.

a. Devise an efficient algorithm that solves this problem.
b. If you have n data values in the array and m target values in the list, what is the Big Oh performance of

your algorithm?
c. Implement and test your algorithm.

FIGURE 18-10 An array for Project 4

5. One way to organize a collection of words is to use an array of sorted lists. The array contains one sorted list for
each letter of the alphabet. To add a word to this data structure, you add it to the sorted list that corresponds to the
word’s first letter. Design an ADT for such a collection, including the operations add and contains. Define a Java
interface for your ADT. Then implement your interface as a class and test it. Use a text file of words to populate
your data structure.

0 1 2 3 4 5 6 7

5 8 10 13 15 20 22 26

1. public int contains(T anEntry)
{

boolean found = false;
int result = -1;
for (int index = 0; !found && (index < numberOfEntries); index++)
{

if (anEntry.equals(list[index]))
{

found = true;
result = index;

} // end if
} // end for

return result;
} // end contains

2. public static <T> boolean contains(AList<T> theList, T anEntry)
{

boolean found = false;
int length = theList.getLength();
for (int position = 1; !found && (position <= length); position++)
{

if (anEntry.equals(theList.getEntry(position)))
found = true;

} // end for
return found;

} // end contains

3. The object o is compared with o1, then o2, o3, o4, and o5.

468 CHAPTER 18 Searching

4. public static <T> boolean contains(AList<T> theList, T anEntry)
{

return search(theList, 1, theList.getLength(), anEntry);
} // end contains

private static <T> boolean search(AList<T> theList, int first, int last,
T desiredItem)

{
boolean found;

if (first > last)
found = false;

else if (desiredItem.equals(theList.getEntry(first)))
found = true;

else
found = search(theList, first + 1, last, desiredItem);

return found;
} // end search

5. Searching for 8 requires seven comparisons, as follows:
8 == 10?
8 < 10?
8 == 5?
8 < 5?
8 == 7?
8 < 7?
8 == 8?

Searching for 16 requires eight comparisons, as follows:
16 == 10?
16 < 10?
16 == 18?
16 < 18?
16 == 12?
16 < 12?
16 == 15?
16 < 15?

6. a. 12 and 4.
b. 12, 4, and 8.
c. 12, 20, and 14.

7. public int contains(T anEntry)
{

return binarySearch(0, numberOfEntries - 1, anEntry);
} // end contains

private int binarySearch(int first, int last, T desiredItem)
{

int result;
int mid = first + (last - first) / 2;

if (first > last)
result = -1;

else if (desiredItem.equals(list[mid]))
result = mid;

else if (desiredItem.compareTo(list[mid]) < 0)

Answers to Self-Test Questions 469

result = binarySearch(first, mid - 1, desiredItem);
else

result = binarySearch(mid + 1, last, desiredItem);
return result;

} // end binarySearch

8. In the second else if, change < to >.

9. 20 (log 1,000,000 rounded up).

This page intentionally left blank

Chapter

19Dictionaries
Contents
Specifications for the ADT Dictionary

A Java Interface
Iterators

Using the ADT Dictionary
A Problem Solved: A Directory of Telephone Numbers
A Problem Solved: The Frequency of Words
A Problem Solved: A Concordance of Words

Java Class Library: The Interface Map

Prerequisites
Chapter 12 Lists
Chapter 15 Iterators
Chapter 18 Searching

Objectives
After studying this chapter, you should be able to
• Describe the operations of the ADT dictionary
• Distinguish between a dictionary and a list
• Use a dictionary in a program

If you need to check the meaning of a word, you look it up in a dictionary. If you
need a friend’s address, you consult your address book. If you need someone’s
telephone number, you check your list of contacts on your cell phone, use a telephone
directory, or search for it online.

472 CHAPTER 19 Dictionaries

Each of these examples involves a kind of dictionary. This chapter describes and uses an
abstract data type that generalizes our everyday notion of a dictionary. Subsequent chapters will
examine implementations of this ADT.

The previous examples—finding a word’s definition, a friend’s address, or someone’s tele-
phone number—are all examples of searching a dictionary. The previous chapter examined how to
search a list. You will see that a dictionary provides a more powerful way to organize data that will
be searched.

Specifications for the ADT Dictionary

19.1 The ADT dictionary—also called a map, table, or associative array—contains entries that each
have two parts:

● A keyword—usually called a search key—such as an English word or a person’s name
● A value—such as a definition, an address, or a telephone number—associated with that key

The search key enables you to locate the desired entry.

VideoNote

Figure 19-1 illustrates an everyday English dictionary. Each entry has a word as the search key
and the word’s definition as the value associated with the key. In general, the search keys and val-
ues in an ADT dictionary are objects, as shown in Figure 19-2. Each search key is paired with a
corresponding value.

The ADT dictionary organizes and identifies its entries by their search keys, rather than by
another criterion such as position. Thus, you can retrieve or remove an entry from a dictionary
given only the entry’s search key. The fact that every entry in a dictionary has a search key distin-
guishes the dictionary from other ADTs such as a list. Although you certainly could put an entry
that has a search key in a list, a list’s data is organized by position, not by search key.

FIGURE 19-1 An English dictionary

The ADT dictionary

computer A device for the
processing and storage of
information.

Specifications for the ADT Dictionary 473

FIGURE 19-2 An instance of an ADT dictionary has search keys paired with
corresponding values

Some dictionaries have distinct search keys, but others allow two or more entries to have the
same search key. For example, a dictionary of student records organized by student identification
numbers has distinct search keys, since those numbers are unique. On the other hand, an English-
language dictionary has duplicate search keys, since it often has several meanings for a word. For
example, my dictionary has three entries for the word “book”: One is a noun, one is a verb, and one
is an adjective.

Printed versions of a natural-language dictionary, a telephone directory, a library catalog, and a
thesaurus all have entries sorted by their search keys. These databases are dictionaries, but the ADT
dictionary does not require sorted entries. Some dictionaries do sort their entries by search key,
while other dictionaries have unsorted entries. Why do our examples of printed dictionaries sort
their entries? This makes it easier for the reader to find a particular entry. In contrast, if you
searched a computerized thesaurus for a word, you would not be aware of the order of its entries.
Nor would you care, as long as you could retrieve a particular entry. Thus, whether a dictionary has
sorted or unsorted search keys is more of an implementation detail than a necessary characteristic
of the dictionary. But remember that the details of any implementation affect the efficiencies of the
ADT operations in various ways.

19.2 The ADT dictionary has the same major operations—insert, delete, retrieve, search, and traverse—
that are common to most databases, even if a particular implementation sorts its entries or allows
duplicate search keys. In particular, these operations are

● Add a new entry to the dictionary, given a search key and associated value
● Remove an entry, given its associated search key
● Retrieve the value associated with a given search key
● See whether the dictionary contains a given search key
● Traverse all the search keys in the dictionary
● Traverse all the values in the dictionary

In addition, the ADT dictionary has the following basic operations that are often included in an ADT:

● Detect whether a dictionary is empty
● Get the number of entries in the dictionary
● Remove all entries from the dictionary

Search keys Corresponding values

A dictionary object

474 CHAPTER 19 Dictionaries

The following specifications define a set of operations for the ADT dictionary:

Note: The ADT dictionary contains entries that are key-value pairs organized by their
search keys. You can add a new entry, and you can locate, retrieve, or remove an entry, given
its search key. In addition, you can traverse a dictionary’s search keys or values.

ABSTRACT DATA TYPE: DICTIONARY
DATA

● A collection of pairs (k, v) of objects k and v, where k is the search key and v is the corresponding value
● The number of pairs in the collection

OPERATIONS

PSEUDOCODE UML DESCRIPTION

add(key, value) +add(key : K, value : V) : void Task: Adds the pair (key, value) to the dictionary.
Input: key is an object search key, value is an

associated object.
Output: None.

remove(key) +remove(key : K) : V Task: Removes from the dictionary the entry
that corresponds to a given search key.

Input: key is an object search key.
Output: Returns either the value that was

associated with the search key or null if
no such object exists.

getValue(key) +getValue(key : K) : V Task: Retrieves from the dictionary the value
that corresponds to a given search key.

Input: key is an object search key.
Output: Returns either the value associated

with the search key or null if no such
object exists.

contains(key) +contains(key : K) : boolean Task: Sees whether any entry in the dictionary
has a given search key.

Input: key is an object search key.
Output: Returns true if an entry in the dictionary

has key as its search key.

getKeyIterator() +getKeyIterator() : Iterator<K> Task: Creates an iterator that traverses all search
keys in the dictionary.

Input: None.
Output: Returns an iterator that provides

sequential access to the search keys
in the dictionary.

Specifications for the ADT Dictionary 475

19.3 Refining the specifications. Even though all dictionaries can have this common set of operations,
you do need to refine some of the specifications according to whether a dictionary’s search keys are
distinct:

● Distinct search keys. The method add can ensure that the search keys in a dictionary are dis-
tinct. If key is already in the dictionary, the operation add(key, value) could either refuse to
add another key-value entry or change the existing value associated with key to value. In the
latter case, the method could return the old replaced value instead of not having an output, as
indicated earlier.

Regardless of how add guarantees distinct search keys, the remaining methods can have
simpler implementations than if duplicate search keys are allowed. For example, the methods
remove and getValue will either find the one value associated with a given search key or dis-
cover that no such entry exists.

● Duplicate search keys. If the method add adds every given key-value entry to a dictionary,
the methods remove and getValue must deal with multiple entries that have the same search
key. Which entry should be removed or returned? The method remove could either remove
the first value it finds or remove all values associated with the given search key. If getValue
returns an object, it could return the first value it finds. Or you could modify getValue to
return a list of values, for example.

Another possibility is to have a secondary search key that is used only when several
entries have the same primary search key. For example, if you call directory assistance for a
common name like John Smith, you most certainly will be asked for John’s address.

For simplicity, we will assume distinct search keys and consider duplicate search keys in the exer-
cises and projects at the end of this chapter.

getValueIterator() +getValueIterator() : Iterator<V> Task: Creates an iterator that traverses all values
in the dictionary.

Input: None.
Output: Returns an iterator that provides

sequential access to the values in
the dictionary.

isEmpty() +isEmpty() : boolean Task: Sees whether the dictionary is empty.
Input: None.
Output: Returns true if the dictionary is empty.

getSize() +getSize() : integer Task: Gets the size of the dictionary.
Input: None.
Output: Returns the number of entries (key-

value pairs) currently in the dictionary.

clear() +clear() : void Task: Removes all entries from the dictionary.
Input: None.
Output: None.

476 CHAPTER 19 Dictionaries

A Java Interface
19.4 Listing 19-1 contains a Java interface for the ADT dictionary that specifies distinct search keys.

The add method replaces the value associated with any search key that is already in the dictionary.
Like the interfaces for the ADTs list and sorted list, this interface specifies the data type of its

entries generically. Since the search keys can have a data type that differs from the type of the asso-
ciated values, we use two formal type parameters, K and V. K represents the data type of the search
keys, and V is the type of the associated values.

LISTING 19-1 An interface for the ADT dictionary

import java.util.Iterator;
/**

An interface for a dictionary with distinct search keys.
@author Frank M. Carrano

*/
public interface DictionaryInterface<K, V>
{

/** Adds a new entry to this dictionary. If the given search
key already exists in the dictionary, replaces the
corresponding value.
@param key an object search key of the new entry
@param value an object associated with the search key
@return either null if the new entry was added to the dictionary

or the value that was associated with key if that value
was replaced */

public V add(K key, V value);

/** Removes a specific entry from this dictionary.
@param key an object search key of the entry to be removed
@return either the value that was associated with the search key

or null if no such object exists */
public V remove(K key);

/** Retrieves from this dictionary the value associated with a given
search key.
@param key an object search key of the entry to be retrieved
@return either the value that is associated with the search key

or null if no such object exists */
public V getValue(K key);

/** Sees whether a specific entry is in this dictionary.
@param key an object search key of the desired entry
@return true if key is associated with an entry in the

dictionary */
public boolean contains(K key);

/** Creates an iterator that traverses all search keys in this
dictionary.

Specifications for the ADT Dictionary 477

19.5 Let’s see how to create an instance of a class Dictionary that implements DictionaryInterface.
This dictionary will contain data about the students at your school. Assume that student numbers
are the search keys and that we have the class Student to represent the student data. The following
statement creates the instance dataBase:

DictionaryInterface<String, Student> dataBase =
new Dictionary<String, Student>();

String corresponds to the parameter K in DictionaryInterface, so each occurrence of K in
the interface is replaced by String. Similarly, Student replaces every occurrence of V in the inter-
face. The same correspondence occurs between these actual types and the generic types of the class
Dictionary.

We will examine several examples of dictionaries in more detail later in this chapter.

Iterators
19.6 The methods getKeyIterator and getValueIterator each return an iterator that conforms to the

interface java.util.Iterator that we discussed in Chapter 15. You can create iterators for the
dictionary dataBase that we instantiated in the previous segment by writing

Iterator<String> keyIterator = dataBase.getKeyIterator();
Iterator<Student> valueIterator = dataBase.getValueIterator();

Recall that Iterator specifies a generic type in its definition. Here we have defined an iterator for
the String search keys and another for the Student values.

You can use each of these iterators either separately or together. That is, you can traverse

● All of the search keys in a dictionary without traversing the values
● All of the values without traversing the search keys
● All the search keys and all the values in parallel

@return an iterator that provides sequential access to the search
keys in the dictionary */

public Iterator<K> getKeyIterator();

/** Creates an iterator that traverses all values in this dictionary.
@return an iterator that provides sequential access to the values

in this dictionary */
public Iterator<V> getValueIterator();

/** Sees whether this dictionary is empty.
@return true if the dictionary is empty */

public boolean isEmpty();

/** Gets the size of this dictionary.
@return the number of entries (key-value pairs) currently

in the dictionary */
public int getSize();

/** Removes all entries from this dictionary. */
public void clear();

} // end DictionaryInterface

478 CHAPTER 19 Dictionaries

In the last case, the ith search key returned by keyIterator corresponds to the ith dictionary value
returned by valueIterator, as Figure 19-3 illustrates. Clearly, the two iterations have the same
length, since the number of search keys in a dictionary must be the same as the number of values.

FIGURE 19-3 Two iterators that traverse a dictionary’s keys and values in parallel

The following loop displays each entry in the dictionary as a key-value pair:

while (keyIterator.hasNext())
System.out.println(keyIterator.next() + ", " + valueIterator.next());

For a sorted dictionary, keyIterator traverses the search keys in sorted order. For an unsorted
dictionary, this traversal order is not specified. The examples in the next section demonstrate these
iterators in several contexts.

Using the ADT Dictionary

VideoNote

The three examples in this section demonstrate how to use the ADT dictionary in a program. We
begin by creating a telephone directory.

Search keys Corresponding values

keyIterator.next() valueIterator.next()

A dictionary object

Note: An iteration of a dictionary’s values corresponds to an iteration of its search keys.
That is, the ith value in one iteration is associated in the dictionary with the ith search key in
the second iteration.

Question 1 If the class Dictionary implements DictionaryInterface, write a Java state-
ment that creates an empty dictionary myDictionary. This dictionary will contain the names
and telephone numbers of your friends. Assume that the names are the search keys, and you
have the class Name to represent them. Let each telephone number be a string.

Question 2 Write a Java statement that adds your name and telephone number to the dic-
tionary that you created in Question 1.

Question 3 Write Java statements that display either Britney Storm’s telephone number, if
she is in the dictionary described in Question 1, or an error message if she is not.

Using the ADT dictionary

Using the ADT Dictionary 479

A Problem Solved: A Directory of Telephone Numbers

19.7 The most frequent operation performed on a telephone directory is the retrieval of a telephone num-
ber, given a person’s name. Thus, using the ADT dictionary to represent a telephone directory is a
good choice. Clearly, the name should be the search key, and the telephone number should be the
corresponding value. Often, but not always, retrieval is more efficient when the dictionary is sorted.
Additionally, a sorted dictionary would make it easier to create a printed directory with entries
alphabetized by name. To simplify this example, we assume that the directory will contain distinct
names with no duplicates.

A major task, at least initially, is to create the directory from the available names and telephone
numbers. Having this data in a text file will make this task convenient. After the telephone direc-
tory is created, operations on the directory, such as adding an entry, removing an entry, or changing
a telephone number, will be used less often than searching for a given name. Traversing the direc-
tory is important to create either a hard copy or a text file of the data, but this operation too is not
done frequently. As we noted in Chapter 4, you should choose an implementation of an ADT based
on the efficiency of its expected use.

19.8 Design and use of the class TelephoneDirectory. Our next step is to design a class to represent the
telephone directory. A sorted dictionary will represent the data, which consists of name-number pairs.
Each person’s name can be an instance of the class Name that we first encountered in Appendix B, and
the telephone number can be a string without embedded blanks. Figure 19-4 shows a class diagram for
our design. The class TelephoneDirectory contains an instance phoneBook of a dictionary. The class
has the method readFile, which reads the data from the file and adds it to phoneBook. It also has the
method getPhoneNumber to retrieve a telephone number, given a name. For simplicity, we are ignor-
ing any other operations mentioned in the previous segment.

FIGURE 19-4 A class diagram for a telephone directory

Before we implement the class TelephoneDirectory, let’s consider its use. A client would cre-
ate an instance of TelephoneDirectory and read the data file by invoking the method readFile.

A telephone directory contains the names and telephone numbers of the people who live in a
given geographical region. Implement software that defines such a directory.

TelephoneDirectory

phoneBook

readFile(data)
getPhoneNumber(name)

Dictionary

1 1

Name

String

* *

*

*

480 CHAPTER 19 Dictionaries

The first two highlighted lines in the main method of Listing 19-2 perform these steps. Given the
name data.txt of the text file, main creates a scanner for the file and passes it to readFile. Note
the exceptions that might occur in creating the scanner. If you need more information about either
exceptions or files, consult Appendices E and F, respectively.

After the file is read, main interacts with the user via the private method getName. Each name read
from the user is passed to the method getPhoneNumber, where it will be the key in a search of the tele-
phone directory. Notice how getName uses Scanner to both read the user’s input and then process it.

LISTING 19-2 A client of the class TelephoneDirectory
import java.util.Scanner;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.IOException;

public class Driver
{

private static final Name INPUT_ERROR = new Name("error", "error");
private static final Name QUIT = new Name("quit", "quit");

public static void main(String[] args)
{

TelephoneDirectory directory = new TelephoneDirectory();
String fileName = "data.txt"; // or file name could be read

try
{

Scanner data = new Scanner(new File(fileName));
directory.readFile(data);

}
catch (FileNotFoundException e)
{

System.out.println("File not found: " + e.getMessage());
}
catch (IOException e)
{

System.out.println("I/O error " + e.getMessage());
}

Name nextName = getName(); // get name for search from user
while (!nextName.equals(QUIT))
{

if (nextName.equals(INPUT_ERROR))
System.out.println("Error in entering name. Try again.");

else
{

String phoneNumber = directory.getPhoneNumber(nextName);
if (phoneNumber == null)

Using the ADT Dictionary 481

System.out.println(nextName + " is not in the directory.");
else

System.out.println("The phone number for " + nextName +
" is " + phoneNumber);

} // end if

nextName = getName();
} // end while
System.out.println("Bye!");

} // end main

// Returns either the name read from user, INPUT_ERROR, or QUIT.
private static Name getName()
{

Name result = null;
Scanner keyboard = new Scanner(System.in);

System.out.print("Enter first name and last name, " +
"or quit to end: ");

String line = keyboard.nextLine();

if (line.trim().toLowerCase().equals("quit"))
result = QUIT;

else
{

String firstName = null;
String lastName = null;
Scanner scan = new Scanner(line);

if (scan.hasNext())
{

firstName = scan.next();
if (scan.hasNext())

lastName = scan.next();
else

result = INPUT_ERROR;
}
else

result = INPUT_ERROR;

if (result == null)
result = new Name(firstName, lastName);

} // end if

return result;
} // end getName

} // end Driver

482 CHAPTER 19 Dictionaries

19.9 Beginning the implementation. The class TelephoneDirectory begins as shown in Listing 19-3.
We assume that the class SortedDictionary implements a sorted version of the ADT dictionary
having distinct search keys. A sorted dictionary requires its search keys to belong to a class that
implements the interface Comparable. We assume that Name does so.

19.10 To implement the method readFile, you need to know what the data file looks like. Suppose that
each line in the file contains three strings—a first name, a last name, and a telephone number—
separated by blanks. Thus, a typical line might appear as

Suzanne Nouveaux 401-555-1234

Output
Enter first name and last name or quit to end: Maria Lopez

The phone number for Maria Lopez is 401-555-1234

Enter first name and last name or quit to end: Hunter

Error in entering name. Try again.

Enter first name and last name or quit to end: Hunter Smith

Hunter Smith is not in the directory.

Enter first name and last name or quit to end: quit

Bye!

LISTING 19-3 An outline of the class TelephoneDirectory

import java.util.Scanner;

public class TelephoneDirectory
{

private DictionaryInterface<Name, String> phoneBook;

public TelephoneDirectory()
{

phoneBook = new SortedDictionary<Name, String>();
} // end default constructor

/** Reads a text file of names and telephone numbers.
@param data a text scanner for the text file of data */

public void readFile(Scanner data)
{

. . . < See Segment 19.10. >
} // end readFile

/** Gets the phone number of a given person. */
public String getPhoneNumber(Name personName)
{

. . . < See Segment 19.11. >
} // end getPhoneNumber

} // end TelephoneDirectory

Using the ADT Dictionary 483

The method readFile must read each of these strings. Recall that the main method in Listing 19-2
in Segment 19.8 creates a scanner for the file and passes it to readFile. Using Scanner’s method
next, readFile can read each string in a line of data and assign them, respectively, to the variables
firstName, lastName, and phoneNumber. The following Java statements, then, will add the desired
entry to the dictionary phoneBook:

Name fullName = new Name(firstName, lastName);
phoneBook.add(fullName, phoneNumber);

We assume that the text file contains distinct names.
Here is the definition of readFile:

/** Reads a text file of names and telephone numbers.
@param data a text scanner for the text file of data */

public void readFile(Scanner data)
{

while (data.hasNext())
{

String firstName = data.next();
String lastName = data.next();
String phoneNumber = data.next();

Name fullName = new Name(firstName, lastName);
phoneBook.add(fullName, phoneNumber);

} // end while

data.close();
} // end readFile

Using Scanner’s methods hasNext and next, we extract each name and telephone number as
strings from the text file. Then, using the two statements we examined earlier, we create a Name
object and add it and the telephone number to the dictionary.

19.11 A method that searches. The class TelephoneDirectory has a method to find a person’s tele-
phone number. This method needs the person’s name, and the user must supply it. If we assume that

Programming Tip: java.util.Scanner
The class Scanner enables you to break a string into substrings, or tokens, that are separated
by characters called delimiters. By default, white-space characters are the delimiters. You
pass to Scanner’s constructor either the string to be parsed or a text file represented as an
instance of the class java.io.File.

The following methods in the class Scanner enable you to extract the tokens from any
string:

public String next();
public boolean hasNext();

Appendix A discusses Scanner in more detail, beginning at Segment A.81.

Question 4 Although the statement
directory.readFile(data);

is inside a try block near the beginning of the method main in Listing 19-2, it need not be. Explain
its present location, why it can appear outside of a try block, and what you can do to move it.

484 CHAPTER 19 Dictionaries

the client will interact with the user and provide the desired name to the method—as does the client
in Listing 19-2—we could define the method as follows:

public String getPhoneNumber(Name personName)
{

return phoneBook.getValue(personName);
} // end getPhoneNumber

The method either returns a string that contains the desired telephone number or returns null if the
number is not found.

We could define a similar method instead of or in addition to the previous method, as follows:

public String getPhoneNumber(String firstName, String lastName)
{

Name fullName = new Name(firstName, lastName);
return phoneBook.getValue(fullName);

} // end getPhoneNumber

Additional methods to add or remove a person or to change a person’s telephone number are
straightforward and are left as exercises.

A Problem Solved: The Frequency of Words

19.12 This class is somewhat like the one in the previous example, so we will omit some of the design
details. Basically, the class needs to count each occurrence of a word as it reads the document
from a text file. It then needs to display the results. For example, if the text file contains

row, row, row your boat
the desired output would be

boat 1

row 3

your 1

The class will have a constructor and the methods readFile and display. As in the previ-
ous example, readFile will read the input text from a file. Then display will write the output.
Listing 19-4 shows a client of FrequencyCounter. It is similar to the beginning of the client in
the previous example.

Question 5 Implement a method for the class TelephoneDirectory that removes an entry
from the directory. Given the person’s name, the method should return either the person’s
telephone number or null if the person is not in the directory.

Question 6 Implement a method for the class TelephoneDirectory that changes a person’s
telephone number. Given the person’s name, the method should return either the person’s
old telephone number or null if the person was not in the directory but has been added to it.

Some word processors provide a count of the number of times each word occurs in a document.
Create a class FrequencyCounter that provides this capability.

LISTING 19-4 A client of the class FrequencyCounter
import java.util.Scanner;
import java.io.File;
import java.io.FileNotFoundException;

Using the ADT Dictionary 485

19.13 Is the ADT dictionary the right one to use for this problem? A word and its frequency of occurrence
in the document form a pair that is suitable as an entry in a dictionary. If we want to know a given
word’s frequency, the word should be the search key. Also, the words in the dictionary must be dis-
tinct, and if they are sorted, we can display them in alphabetical order. Thus, a sorted dictionary
with distinct search keys is an appropriate choice for this problem. As in the previous example, we
assume SortedDictionary is such an implementation.

The dictionary will be a data field of a new class FrequencyCounter, which will begin much
like the class TelephoneDirectory in the previous example. Let’s call the dictionary for this exam-
ple wordTable. Since the value portion of any dictionary entry is an object, we use the wrapper
class Integer to represent each frequency. Thus, our class can begin as shown in Listing 19-5.

import java.io.IOException;

public class Driver
{

public static void main(String[] args)
{

FrequencyCounter wordCounter = new FrequencyCounter();
String fileName = "Data.txt"; // or file name could be read

try
{

Scanner data = new Scanner(new File(fileName));
wordCounter.readFile(data);

}
catch (FileNotFoundException e)
{

System.out.println("File not found: " + e.getMessage());
}
catch (IOException e)
{

System.out.println("I/O error " + e.getMessage());
}
wordCounter.display();
System.out.println("Bye!");

} // end main
} // end Driver

Output
boat 1

row 3

your 1

LISTING 19-5 An outline of the class FrequencyCounter

import java.util.Iterator;
import java.util.Scanner;

486 CHAPTER 19 Dictionaries

19.14 Creating the dictionary. Now let’s look at the method readFile, which creates the dictionary from
the text file. We invoke this method like we did earlier in Listing 19-4 of Segment 19.12. That is, the
client passes to readFile a Scanner object associated with the text file. The method then can pro-
cess the text file by using the Scanner methods hasNext and next, in the same way that readFile
processed the file in Segment 19.10.

After extracting the next word from the file, readFile checks whether the word is in the dic-
tionary. If it is not, we add it with an associated value of 1. That is, this word has occurred once so
far. However, if the word is in the dictionary already, we retrieve its associated value—its count—
increment it, and store it back into the dictionary. To avoid issues of case, readFile can change all
the words it reads to lowercase.

19.15 Delimiters. The programming tip at the end of Segment 19.10 mentioned that, by default, Scanner
uses white-space characters as delimiters. But as in the example given in Segment 19.12, our data can
contain punctuation, so those characters must also be delimiters. You can use the Scanner method
useDelimiter to specify the delimiters. You represent them by using the notation shown in Figure A-6
of Appendix A. (See Segment A.83.) You then pass a string of the delimiters to useDelimiter.

The simplest way to specify white space and punctuation as delimiters is to use the notation \W,
since it represents any character other than a letter, digit, or underscore. We then write useDelimiter’s
argument as "\\W+". Remember that we must duplicate the backslash to distinguish the notation from
an escape character. The plus sign means one or more occurrences of. Thus, the statement

dataFile.useDelimiter("\\W+");

sets the delimiters to one or more occurrences of punctuation, white-space characters, and some
other characters that will not occur in our data.

public class FrequencyCounter
{

private DictionaryInterface<String, Integer> wordTable;

public FrequencyCounter()
{

wordTable = new SortedDictionary<String, Integer>();
} // end default constructor

/** Reads a text file of words and counts their frequencies
of occurrence.
@param data a text scanner for the text file of data */

public void readFile(Scanner data)
{

. . . < See Segment 19.16. >
} // end readFile

/** Displays words and their frequencies of occurrence. */
public void display()
{

. . . < See Segment 19.17. >
} // end display

} // end FrequencyCounter

Using the ADT Dictionary 487

19.16 The following implementation of the method readFile reflects the previous discussion:
/** Reads a text file of words and counts their frequencies

of occurrence.
@param data a text scanner for the text file of data */

public void readFile(Scanner data)
{

data.useDelimiter("\\W+");
while (data.hasNext())
{

String nextWord = data.next();
nextWord = nextWord.toLowerCase();
Integer frequency = wordTable.getValue(nextWord);

if (frequency == null)
{ // add new word to table

wordTable.add(nextWord, new Integer(1));
}
else
{ // increment count of existing word; replace wordTable entry

frequency++;
wordTable.add(nextWord, frequency);

} // end if
} // end while

data.close();
} // end readFile

19.17 Displaying the dictionary. Now that we have created the dictionary, we need to display the results.
An iteration of the search keys will produce the words in alphabetical order. A parallel iteration of
the values provides the corresponding frequencies. The following method is a possible solution for
this task:

public void display()
{

Iterator<String> keyIterator = wordTable.getKeyIterator();
Iterator<Integer> valueIterator = wordTable.getValueIterator();

while (keyIterator.hasNext())
{

System.out.println(keyIterator.next() + " " +
valueIterator.next());

} // end while
} // end display

Programming Tip: When using a Scanner object to process text, any character can be a
delimiter if it does not occur in any desired token. You create a string of these delimiters using a
special notation and give it to the Scanner method useDelimiter. Consult Segment A.82 of
Appendix A for more details.

Question 7 The previous method readFile does not call contains to see whether a word
is already in the dictionary, but instead calls getValue. Why did we do this?

Question 8 Implement a second method display for the class FrequencyCounter that dis-
plays only words that occur with a frequency given as the method’s sole parameter.

488 CHAPTER 19 Dictionaries

A Problem Solved: A Concordance of Words

19.18 Let’s begin by looking at an example of a concordance. Suppose that a text file contains only
these lines:

Learning without thought is labor lost;
thought without learning is perilous.

The following concordance of all the words in the file indicates the line numbers in which the
words occur:

is 1 2
labor 1
learning 1 2
lost 1
perilous 2
thought 1 2
without 1 2

Although a word can appear in several lines of the file, it appears only once in the concordance.
Like the previous word-frequency example, this feature of the concordance suggests that we use a
dictionary whose search keys are the words in the concordance. But unlike the word-frequency
example, the value associated with each of these words is a list of line numbers. Since the line
numbers are sorted, we could use the ADT sorted list. However, by processing the lines in the file in
order, we can add the line numbers to the end of an ordinary unsorted list and achieve a sorted order.

19.19 A class Concordance to represent the concordance and the class FrequencyCounter from the previous
example are quite similar in their design and implementation. In fact, the use of these classes is virtually
identical. By replacing FrequencyCounter with Concordance in Listing 19-4 of Segment 19.12, you
will have a client for Concordance.

Listing 19-6 contains an outline of the class Concordance. Note the similarities to the outline of
FrequencyCounter given in Listing 19-5 of Segment 19.13. The major difference, other than the
implementations of the methods, is the data type of the value of each dictionary entry. Since the value
is a list of Integer objects, and since we will want to traverse each list to display the line numbers, we
give the value a data type of ListWithIteratorInterface<Integer>. Segment 15.17 of Chapter 15
defined this interface as having the method getIterator as well as the methods of ListInterface.

An index provides a way to locate the occurrence of certain words within a larger document.
For example, the index to this book is an alphabetical listing of words paired with the page
numbers on which the words occur. For this problem, we will create a simpler kind of index—
called a concordance—to all the words in a text file. Instead of page numbers, a concordance
provides the line numbers that contain a particular word.

LISTING 19-6 An outline of the class Concordance

import java.util.Iterator;
import java.util.Scanner;
public class Concordance
{

private DictionaryInterface<String, ListWithIteratorInterface<Integer>>
wordTable;

Using the ADT Dictionary 489

19.20 The method readFile. The method readFile reads the text file and uses the dictionary wordTable
to create the concordance. Since we must record the line number of each word, we read the file a line
at a time. We process all the words in a line before moving on to the next line. Thus, the following
definition of readFile contains two loops that are nested. The outer loop uses the scanner passed to
the method as an argument to read lines from the file. The inner loop uses another scanner to extract
the words from a line as soon as it is read. The class LinkedListWithIterator from Segment 15.19
of Chapter 15 is used to form each list of line numbers.

public void readFile(Scanner data)
{

int lineNumber = 1;

while (data.hasNext())
{

String line = data.nextLine();
line = line.toLowerCase();

Scanner lineProcessor = new Scanner(line);
lineProcessor.useDelimiter("\\W+");
while (lineProcessor.hasNext())
{

String nextWord = lineProcessor.next();
ListWithIteratorInterface<Integer> lineList =

wordTable.getValue(nextWord);

if (lineList == null)
{ // create new list for new word; add list and word to index

lineList = new LinkedListWithIterator<Integer>();
wordTable.add(nextWord, lineList);

} // end if

// add line number to end of list so list is sorted
lineList.add(lineNumber);

} // end while

public Concordance()
{

wordTable =
new SortedDictionary<String, ListWithIteratorInterface<Integer>>();

} // end default constructor

/** Reads a text file of words and creates a concordance.
@param data a text scanner for the text file of data */

public void readFile(Scanner data)
{

. . . < See Segment 19.20. >
} // end readFile

/** Displays words and the lines in which they occur. */
public void display()
{

. . . < See Segment 19.21. >
} // end display

} // end Concordance

490 CHAPTER 19 Dictionaries

lineNumber++;
} // end while

data.close();
} // end readFile

The most interesting part of this method is the list of line numbers as the value associated with
a search key. Since we have chosen a linked implementation of the list, we need to be concerned
with the efficiency of adding to the end of the list. If the underlying chain of nodes has only a refer-
ence to the first node—as is true of LinkedListWithIterator—each such addition requires a tra-
versal to reach the end of the chain. Choosing a list implementation that maintains a reference to
the last node in the chain would make the addition to the end of the list quite efficient. We discussed
such tail references in Chapter 11. We should make this adjustment to our class of lists for this
application.

19.21 The method display. Earlier, we chose a list implementation that included an iterator so that the
following method display could display the line numbers in the concordance efficiently. Notice
that we use the dictionary iterators, just as we did in the analogous method display given in
Segment 19.17 for the previous example. But here each value is a list with its own iterator, which
we use to traverse the list’s line numbers.

public void display()
{

Iterator<String> keyIterator = wordTable.getKeyIterator();
Iterator<ListWithIteratorInterface<Integer>> valueIterator =

wordTable.getValueIterator();

while (keyIterator.hasNext())
{

// display the word
System.out.print(keyIterator.next() + " ");

// get line numbers and iterator
ListWithIteratorInterface<Integer> lineList = valueIterator.next();
Iterator<Integer> listIterator = lineList.getIterator();

// display line numbers
while (listIterator.hasNext())
{

System.out.print(listIterator.next() + " ");
} // end while

System.out.println();
} // end while

} // end display

Java Class Library: The Interface Map

19.22 The standard package java.util contains the interface Map<K, V> that is similar to our interface for the
ADT dictionary. The following method headers are for a selection of methods in Map that are like the
ones you have seen in this chapter. We have highlighted where they differ from our methods.

Question 9 Write a method getLineNumbers for the class Concordance that returns a list of
the numbers of the lines that contain a given word.

Programming Tips 491

public V put(K key, V value);
public V remove (Object key);
public V get(Object key);
public boolean containsKey(Object key);
public boolean containsValue(Object value);
public Set<K> keySet();
public Collection<V> values();
public boolean isEmpty();
public int size();
public void clear();

Notice the differences in the names of the methods. Map uses the method names put, get,
containsKey, and size instead of our names add, getValue, contains, and getSize. Map also has
the additional method containsValue that finds out whether a dictionary contains a given value.

Instead of our methods getKeyIterator and getValueIterator that return iterators to a dic-
tionary’s keys and values, respectively, Map specifies the method keySet, which returns a set of
keys, and the method values, which returns a collection of values. The Java Class Library contains
the interfaces Set and Collection, and each of these interfaces has a method iterator that returns
an iterator to the values in the corresponding ADT.

Duplicate search keys are not permitted in a dictionary that conforms to the Map interface. Each
key must correspond to only one value. Also, some of Map’s methods use Object as the data type of
the search key, whereas we use the more specific generic data type K.

CHAPTER SUMMARY

PROGRAMMING TIPS

● The entries in the ADT dictionary each contain two parts: a search key and a value associated with that key.
The dictionary identifies its entries by their search keys.

● Dictionaries can organize their search keys in either sorted or unsorted order. The search keys can be either
distinct or duplicate.

● You can add an entry to a dictionary given its search key and value. You can retrieve or remove an entry
given only its search key. By using an iterator, you can traverse all the keys or all the values in a dictionary.

● An English dictionary, a directory of telephone numbers, an address book, and a library catalog are common
examples of dictionaries.

● The Java Class Library contains the interface Map, which is similar to our DictionaryInterface.

● The class Scanner enables you to break a string into substrings, or tokens, that are separated by characters
called delimiters. By default, white-space characters are the delimiters. You pass to Scanner’s constructor
either the string to be parsed or a text file represented as an instance of the class java.io.File.

● The following methods in the class Scanner enable you to extract the tokens from any string:

public String next();
public boolean hasNext();

Appendix A discusses Scanner in more detail beginning at Segment A.81.

● When using a Scanner object to process text, any character can be a delimiter, if it does not occur in any
desired token. You create a string of these delimiters using a special notation and give it to the Scanner
method useDelimiter. Consult Segment A.82 of Appendix A for more details.

492 CHAPTER 19 Dictionaries

EXERCISES

1. How does a dictionary differ from a sorted list?

2. Implement a method for the class TelephoneDirectory—described in Segment 19.9—that adds an entry to
the directory, given the person’s name and telephone number. The method should return true if the entry was
added. If the person is already in the directory, the method should replace the person’s telephone number and
return false.

3. Implement a method for the telephone directory problem of Segment 19.9 to display everyone’s name and
telephone number.

4. In the telephone directory problem of Segment 19.9, the case of the letters in a name affects the name’s order in
the dictionary. What steps can you take so that case variations in the input file do not affect this order?

5. In the telephone directory problem of Segment 19.9, suppose that the text file of names and telephone numbers is
sorted by name.

a. What impact would this aspect of the file have on the efficiency of the method readFile for various
implementations of the dictionary?

b. Would it matter whether the file was in reverse alphabetical order?

6. A reverse directory allows one to search for the name corresponding to a given telephone number. Modify the
class TelephoneDirectory of Segment 19.9 to give it this capability. Use a second dictionary as the reverse
directory. Add a query method and modify the method readFile accordingly.

7. Draw a class diagram for the class FrequencyCounter, as outlined in Segment 19.13, that is analogous to the
diagram in Figure 19-4 of Segment 19.8.

8. The word-frequency problem of Segment 19.12 finds the frequency with which each distinct word occurs within
some given text. Describe the changes that you could make to the class FrequencyCounter if you wanted to list
the words that occur for each frequency.

9. Repeat Exercise 7 for the class Concordance, as outlined in Segment 19.19.

10. In the concordance problem of Segment 19.18, if a word occurs more than once in a single line, the number of that
line appears more than once in the concordance. Revise the Java code given in Segment 19.20 so that the line
numbers associated with a given word are distinct.

11. Design an ADT that stores the side effects of various drugs. Each drug should have a list of associated side effects.
Provide a method that returns the side effects of a given drug. Then use a dictionary to implement the class
DrugSideEffects.

12. Consider a look-up service for the television shows on a given date. A file contains information about these
shows. Each show’s data appears on two lines. The first line gives the name of the station, the channel, the start
time, the stop time, the name of the show, and a rating. These entries are separated by tildes (~), and the times are
in 24-hour notation (for example, 1 p. m. is 13:00). The second line briefly describes the show.

Implement a method with the header

public void readFile(Scanner data)

to read the file into a dictionary that will be searched. Decide what data should be the search key and what should
be the associated value. Design any classes needed for the key and the value.

Projects 493

PROJECTS

13. The ADT dictionary that we discussed in this chapter assumes distinct search keys. Revise the specifications of
the dictionary to remove this restriction. Consider each of the following possibilities:

a. The method add adds an entry whose search key is already in the dictionary but whose value is not.
The remove method deletes all entries with a given search key. The method getValue retrieves all values
associated with a given search key.

b. The methods behave as Part a describes, but a secondary search key enables remove and getValue to
delete or retrieve a single entry.

1. To simplify the telephone directory problem of Segment 19.7, we assumed that the text file contained distinct
names. Remove this assumption, with and without a secondary search key. (See Exercise 13.)

2. Discovering the authorship of certain famous pieces of literature is an interesting problem. Comparisons are made
between pieces whose authorship is disputed and those of known authorship. One approach is to compare the frequency
of pairs of letters. There are 26 x 26 different pairs of letters. Not all of them will appear in a piece of writing. For
example, “qz” is unlikely to appear, while “th” is likely to appear often. Design a program, similar to the frequency
counter of Segments 19.12 through 19.17, that counts all the pairs of letters that appear in a given piece of text.

3. A compiler must examine tokens in a program and decide whether or not they are reserved words or identifiers
defined by the user. Design a program that reads a Java program and makes a list of all the identifiers. To do this,
you should make use of two dictionaries. The first dictionary should hold all the Java reserved words. The second
dictionary should hold all the identifiers that you find. Whenever you encounter a token, you first should search
the dictionary of reserved words. If the token is not a reserved word, you then should search the dictionary of
identifiers. If the token is not in either dictionary, you should add it to the dictionary of identifiers.

4. Suppose that we want to implement the ADT set. Recall from Project 1 of Chapter 1 that a set is an unordered
collection of objects where duplicates are not allowed. The operations that a set should support are

• Add a given object to the set
• Remove a given object from the set
• See whether the set contains a given object
• Clear all objects from the set
• Get the number of objects in the set
• Return an iterator to the set
• Return a set that combines the items in two sets (the union)
• Return a set of those items that occur in both of two sets (the intersection)

Define a class Set that uses a dictionary internally to implement these operations.

5. Suppose that we want to help physicians to diagnose illnesses. A physician observes a patient’s symptoms and
considers the illnesses that could be associated with those symptoms. Design and implement a class
PhysiciansHelper that provides a list of those illnesses.

PhysiciansHelper should contain a dictionary of illnesses and symptoms. A method should read a file of
illnesses with their symptoms into the dictionary. Each line in the file will contain the name of an illness followed
by a colon and a comma-separated list of symptoms. For example, one line could be

head cold: nasal stuffiness, sneezing, runny nose
PhysiciansHelper should maintain a list of symptoms for the current patient. A method should add a symptom

to this list and return a list of illnesses that is associated with those symptoms. Another method should remove a
given symptom from the list, and a method should clear the patient symptom list.

494 CHAPTER 19 Dictionaries

ANSWERS TO SELF-TEST QUESTIONS

6. Write a program that plays the game tic-tac-toe. Represent the game board by an array of nine values. Each
location in the array contains either an X, an O, or a blank. The total number of possible board configurations is
39, or approximately 20,000. Associated with every possible configuration is a best move.

Generate all possible board configurations, and let them be search keys in a dictionary. For each search key, let
the next best move be its associated value. Once you have created the dictionary, use it to decide the moves for a
computer-based player in a game of tic-tac-toe.

7. A picture dictionary is a collection of images, each of which is identified by a descriptive word. Form a picture
dictionary from the data in external files, which you can create from royalty-free images found online. Design
and implement a user interface that provides search and display functions.

1. DictionaryInterface<Name, String> myDictionary = new Dictionary<Name, String>();

2. myDictionary.add(new Name("Joe", "Java"), "555-1234");

3. Name britney = new Name("Britney", "Storm");
if (myDictionary.contains(britney))
 System.out.println("Britney's phone number is " + myDictionary.getValue(britney));
else

System.out.println("Britney is not in the dictionary");

or
String phoneNumber = myDictionary.getValue(new Name("Britney", "Storm"));
if (phoneNumber == null)

System.out.println("Britney is not in the dictionary");
else

System.out.println("Britney's phone number is " + phoneNumber);

4. The Scanner methods hasNext and next that readFile calls throw only runtime exceptions, which need not be
caught. So although the call to readFile can be outside of a try block, it is inside the try block because its
argument—the Scanner object data—is local to the try block. By declaring data outside of the try block, you
could move the call to readFile after the last catch block.

5. public String remove(Name personName)
{

return phoneBook.remove(personName);
} // end remove

6. public String changePhoneNumber(Name personName, String newPhoneNumber)
{

return phoneBook.add(personName, newPhoneNumber);
} // end changePhoneNumber

7. We called getValue instead of contains to simplify the logic. If we called contains and found that the current
word was already in the dictionary, we would need to call getValue to get its frequency. But we can use the result
of getValue to see whether the word is in the dictionary.

Answers to Self-Test Questions 495

8. /** Displays only the words that occur with a given frequency.
 @param frequency an integer count of the desired frequency. */

public void display(int frequency)
{

Iterator<String> keyIterator = wordTable.getKeyIterator();
Iterator<Integer> valueIterator = wordTable.getValueIterator();

System.out.println("Words that occur " + frequency + " times:");
boolean atLeastOneWord = false;
while (keyIterator.hasNext())
{

String word = keyIterator.next();
Integer count = valueIterator.next();

if (count.equals(frequency))
{

atLeastOneWord = true;
System.out.println(word);

} // end if
} // end while

if (atLeastOneWord == false)
System.out.println("(There are none.)");

} // end display

9. public ListWithIteratorInterface<Integer> getLineNumbers(String word)
{

return wordTable.getValue(word);
} // end getLineNumbers

This page intentionally left blank

Chapter

20DictionaryImplementations
Contents
Array-Based Implementations

An Unsorted Array-Based Dictionary
A Sorted Array-Based Dictionary

Vector-Based Implementations
Linked Implementations

An Unsorted Linked Dictionary
A Sorted Linked Dictionary

Prerequisites
Chapter 3 A Bag Implementation That Links Data
Chapter 4 The Efficiency of Algorithms
Chapter 12 Lists
Chapter 13 List Implementations That Use Arrays
Chapter 14 A List Implementation That Links Data
Chapter 15 Iterators
Chapter 18 Searching
Chapter 19 Dictionaries

Objectives
After studying this chapter, you should be able to
• Implement the ADT dictionary by using either an array, a vector, or a chain of linked nodes

The implementations of the ADT dictionary that we present in this chapter employ
techniques like the ones we used to implement the ADT list. We will store the
dictionary’s entries in either an array, an instance of Vector, or a chain of linked
nodes. In doing so, we will consider both sorted and unsorted dictionaries with
distinct search keys. Later chapters will present more-sophisticated implementations
of the ADT dictionary.

498 CHAPTER 20 Dictionary Implementations

Array-Based Implementations

20.1 The ability to resize an array, as introduced in Segment 2.32 of Chapter 2, means that an array can

VideoNote

provide as much storage as necessary for the entries in a dictionary. Remember that each entry con-
sists of two parts—a search key and a value. You can encapsulate the two parts into an object, as
Figure 20-1a illustrates. With this approach, you define a class Entry to represent the entries. A
second, less attractive approach uses two arrays, as shown in Figure 20-1b. One array represents
the search keys and a second, parallel array represents the corresponding values. We will discuss
the first approach and leave the exploration of the second as an exercise. At that time, you will see
that parallel arrays can be awkward to manage.

FIGURE 20-1 Two possible ways to use arrays to represent the entries in a dictionary:
(a) an array of objects that encapsulate each search key and corresponding
value; (b) parallel arrays of search keys and values

An Unsorted Array-Based Dictionary
20.2 Beginning the implementation. Our implementation uses one array, as pictured in Figure 20-1a, to rep-

resent the dictionary. Each entry in the dictionary, and therefore the array, is an instance of a class Entry
that we must define. We can make this class either public, part of a package, or private and internal to the
dictionary class. We chose the latter approach in defining the private class Entry shown in Listing 20-1.

The outer class ArrayDictionary begins with its data fields and constructors stated in terms of
type parameters K and V. These parameters represent the data types of the search keys and their
associated values, respectively.

Array-based dictionaries

(a)

Array of entries

Instance of Entry

ValueSearch key

(b)

Array of search keys

Search key

Parallel array of values

Value

Question 1 Figure 20-1 shows two ways to represent an array-based dictionary. How do
the memory requirements for the two representations compare?

LISTING 20-1 The class ArrayDictionary and its private inner class Entry

import java.util.Arrays;
import java.util.Iterator;
import java.util.NoSuchElementException;

Array-Based Implementations 499

/**
A class that implements a dictionary by using an array.
@author Frank M. Carrano

*/
public class ArrayDictionary<K, V> implements DictionaryInterface<K, V>
{

private Entry<K, V>[] dictionary; // array of unsorted entries
private int numberOfEntries;
private final static int DEFAULT_CAPACITY = 25;

public ArrayDictionary()
{

this(DEFAULT_CAPACITY); // call next constructor
} // end default constructor

public ArrayDictionary(int initialCapacity)
{

// the cast is safe because the new array contains null entries
@SuppressWarnings("unchecked")
Entry<K, V>[] tempDictionary =

(Entry<K, V>[])new Entry[initialCapacity];
dictionary = tempDictionary;
numberOfEntries = 0;

} // end constructor

< Implementations of methods in DictionaryInterface >
. . .

private class Entry<S, T>
{

private S key;
private T value;

private Entry(S searchKey, T dataValue)
{

key = searchKey;
value = dataValue;

} // end constructor

private S getKey()
{

return key;
} // end getKey

private T getValue()
{

500 CHAPTER 20 Dictionary Implementations

Notice that the inner class Entry has no method setKey to set or change the search key. Even
though setValue can be useful in the implementation of add, you never need to change the search
key. Without setKey, a default constructor would be useless, so none is defined.

20.3 Some private methods. One problem with array-based implementations of an ADT is the finite
size of the array. To avoid a full dictionary, we double the array’s size as necessary, just as we did in
earlier chapters. We will use a private method as we did then. Its specification is as follows:

// Doubles the size of the array of entries if it is full.
private void ensureCapacity()

Adding, removing, or retrieving an entry requires a sequential search, since the search keys are
not sorted. A sequential search must look at all the search keys in the array to conclude that an entry
is not present in the dictionary. Implementing this search as the following private method will sim-
plify the definitions of these three dictionary operations:

// Returns the index of the entry that contains key or
// returns numberOfEntries if no such entry exists.
private int locateIndex(K key)

20.4 Adding an entry. Another potential problem with array-based implementations is the shifting of
array entries that often occurs. When a dictionary’s search keys are unsorted, however, we can add
or remove an entry without shifting other entries. When adding a new key-value entry, we can
insert it after the last entry in the array and not move any other entry, as Figure 20-2 shows. In this
case, add returns null. However, if the search key was in the dictionary already, we replace its
corresponding value with the new value and return the original value. The following algorithm
performs these steps:

Algorithm add(key, value)
// Adds a new key-value entry to the dictionary and returns null. If key already exists
// in the dictionary, returns the corresponding value and replaces it with value.

return value;
} // end getValue

private void setValue(T newValue)
{

value = newValue;
} // end setValue

} // end Entry
} // end ArrayDictionary

Note: Compiler warning
The constructor for ArrayDictionary, as shown in Listing 20-1, allocates memory for the
array dictionary as follows:

dictionary = new Entry[initialCapacity];

The compiler sees an array whose elements have type Entry assigned to an array whose ele-
ments are of type Entry<K, V>. It therefore warns us of an unchecked conversion. An attempt to
cast the new array to Entry<K, V>[] results in a similar warning. In either event, all should be
well despite the compiler’s concern. Thus, we suppress the warning as we have done in the past.

Array-Based Implementations 501

result = null
Search the array for an entry containing key
if (an entry containing key is found in the array)
{

result = value currently associated with key
Replace key’s associated value with value

}
else // insert new entry
{

if (array is full)
Double size of array

Insert a new entry containing key and value after the last entry in the array
Increment the size of the dictionary

}
return result

FIGURE 20-2 Adding a new entry to an unsorted array-based dictionary

20.5 The method add. The following implementation of the method add invokes the private methods
specified in Segment 20.3:

public V add(K key, V value)
{

V result = null;

int keyIndex = locateIndex(key);

if (keyIndex < numberOfEntries)
{

// key found; return and replace old value
result = dictionary[keyIndex].getValue();
dictionary[keyIndex].setValue(value);

}
else
{

ensureCapacity();
dictionary[numberOfEntries] = new Entry<K, V>(key, value);
numberOfEntries++;

} // end if

return result;
} // end add

To search an unsorted array, locateIndex has the following definition:

private int locateIndex(K key)
{

int index = 0;
while ((index < numberOfEntries) &&

!key.equals(dictionary[index].getKey()))
index++;

return index;
} // end locateIndex

Add a new entry
after all the others

502 CHAPTER 20 Dictionary Implementations

20.6 Removing an entry. To remove an entry from an unsorted array-based dictionary, we first locate
the entry and then replace it with the last entry in the dictionary, as Figure 20-3 illustrates. Thus, we
can fill the “hole” in the array without shifting the other entries. Since the size of the dictionary is
reduced by 1, the extra reference remaining after the current entries will be ignored.

FIGURE 20-3 Removing an entry from an unsorted array-based dictionary

The following algorithm describes the remove operation:

Algorithm remove(key)
// Removes an entry from the dictionary, given its search key, and returns its value.
// If no such entry exists in the dictionary, returns null.
result = null
Search the array for an entry containing key
if (an entry containing key is found in the array)
{

result = value currently associated with key
Replace the entry with the last entry in the array
Decrement the size of the dictionary

}
// else result is null
return result

This logic can be implemented as follows:

public V remove(K key)
{

V result = null;
int keyIndex = locateIndex(key);

if (keyIndex < numberOfEntries)
{

result = dictionary[keyIndex].getValue();
dictionary[keyIndex] = dictionary[numberOfEntries - 1];
numberOfEntries--;

} // end if

Before removal

Search from the beginning
to find the entry to remove

Ignore last reference

After removal

Replace removed entry
with last entry

Removed entry

Array-Based Implementations 503

return result;
} // end remove

20.7 The remaining methods. We leave the rest of the dictionary implementation to you as an exer-
cise, since it is not difficult once you have reached this point. Note that an iteration, or traversal,
of the dictionary entries simply moves from location to location within the array. Since the
search keys are not sorted, the order of the iteration is not specified. Whatever order is easy to
implement is fine. Typically, you start with the first entry in the array and move sequentially
through the remaining entries.

20.8 Efficiency. For this implementation, the worst-case efficiencies of the operations are as follows:
Addition O(n)
Removal O(n)
Retrieval O(n)
Traversal O(n)

Even though additions occur after the last entry in the array dictionary without shifting any data,
the search necessary to prevent duplicate search keys in the dictionary makes the overall operation
O(n). Deletions and retrievals use a similar search of the array, making them O(n) as well. Finally,
traversing an array is an O(n) operation.

Realize that if you fill the array of dictionary entries, you must allocate a new, larger array and
copy entries from the original array to the new array. This requirement adds overhead to any array-
based implementation that the previous analysis does not reflect. In Java, the array entries are refer-
ences to objects, so copying the array is fast. But for languages whose arrays contain objects
instead of references, copying can be quite time-consuming. Ideally, you want to choose a suffi-
ciently large array, but not one that wastes space because it is overly large.

A Sorted Array-Based Dictionary
20.9 Some of the implementation for an unsorted dictionary, as shown in Segment 20.2, is independent

of the order of the dictionary’s entries, and so can be used for a sorted dictionary. However, the
search keys must belong to a class that implements the interface Comparable so that we can order
them. An outline for an implementation of a sorted dictionary appears in Listing 20-2. The notation
K extends Comparable<? super K>, which was first introduced in Segment 8.2 of Chapter 8,
defines the generic type K. It allows us to compare objects of type K with either objects of type K or
objects of any superclass of K.

LISTING 20-2 An outline of the class SortedArrayDictionary

import java.util.Arrays;
import java.util.Iterator;
import java.util.NoSuchElementException;
/**

A class that implements a dictionary by using a sorted array.
@author Frank M. Carrano

*/
public class SortedArrayDictionary<K extends Comparable<? super K>, V>

 implements DictionaryInterface<K, V>

504 CHAPTER 20 Dictionary Implementations

20.10 Adding an entry. When the dictionary’s key-value entries are sorted by their search keys, adding a
new entry requires a search of the array of entries to see where the new entry belongs. After you deter-
mine the correct position for the new entry, you must make room for it in the array. You do this by
shifting subsequent array entries up by one position, beginning at the last entry, as Figure 20-4 shows.
You then insert the new entry into the array so it is in its proper order by search key.

The following algorithm for adding an entry has similarities to the one given in Segment 20.4
for an unsorted dictionary:

Algorithm add(key, value)
// Adds a new key-value entry to the dictionary and returns null. If key already exists
// in the dictionary, returns the corresponding value and replaces it with value.
result = null
Search the array until you either find an entry containing key or locate the point where it

should be
if (an entry containing key is found in the array)
{

result = value currently associated with key
Replace key’s associated value with value

}
else // insert new entry
{

if (array is full)
Double size of array

Make room in the array for a new entry at the index determined by the previous search
Insert a new entry containing key and value into the vacated location of the array
Increment the size of the dictionary

}
return result

< Data fields as shown in Listing 20.1 of Segment 20.2 >
. . .

< Constructors analogous to those in Listing 20.1 >
. . .

public V add(K key, V value)
{

. . . < See Segment 20.11. >
} // end add

< Implementations of other methods in DictionaryInterface >
. . .

< The private class Entry, as shown in Listing 20.1. >
} // end SortedArrayDictionary

Array-Based Implementations 505

FIGURE 20-4 Adding an entry to a sorted array-based dictionary: (a) search;
(b) make room; (c) insert

20.11 The method add. We can implement this algorithm by using the private methods described in
Segment 20.3, but we need to use a different implementation for locateIndex. When the diction-
ary is unsorted, locateIndex simply detects whether the dictionary contains a given search key.
But here, locateIndex must also determine where in the array to make the insertion. Thus, we
revise the method’s specification as follows:

// Returns the index of either the entry that contains key or
// the location that should contain key, if no such entry exists.
private int locateIndex(K key)

The following additional method will also be helpful in the implementation:

// Makes room for a new entry at a given index by shifting
// array entries towards the end of the array.
private void makeRoom(int keyIndex)

Question 2 Describe how the previous algorithm differs from the one given in Segment 20.4
for an unsorted dictionary.

(a)

Search from the beginning to find
the correct position for a new entry

(b)
3 2 1

After locating the correct position for
the insertion, shift the contents of subsequent
array locations toward the end of the array
in the order indicated

(c)

Complete the insertion

506 CHAPTER 20 Dictionary Implementations

Using these methods, we can implement the method add as follows:

public V add(K key, V value)
{

V result = null;

int keyIndex = locateIndex(key);

if ((keyIndex < numberOfEntries) &&
key.equals(dictionary[keyIndex].getKey()))

{
// key found; return and replace old value
result = dictionary[keyIndex].getValue();
dictionary[keyIndex].setValue(value);

}
else
{

ensureCapacity();
makeRoom(keyIndex);
dictionary[keyIndex] = new Entry<K, V>(key, value);
numberOfEntries++;

} // end if

return result;
} // end add

20.12 The method locateIndex. Since the array is sorted, locateIndex can generally search it in less
time than it could search an unsorted array. Recall from Segment 18.8 of Chapter 18 that a sequen-
tial search can detect when an entry is not in a sorted array without searching the entire array. Using
that technique, we define the private method locateIndex as follows:

private int locateIndex(K key)
{

// search until you either find an entry containing key or
// pass the point where it should be
int index = 0;
while ((index < numberOfEntries) &&

key.compareTo(dictionary[index].getKey()) > 0)
index++;

return index;
} // end locateIndex

The difference between this method and the one given in Segment 20.5 for an unsorted dictionary is
highlighted.

20.13 Removing an entry. To remove an entry from a sorted array-based dictionary, we first locate the
entry by calling the method locateIndex that we used in the previous segment for the add
method. Since the entries are sorted, we must maintain their order. Thus, any entries after the
one to be removed must shift to the next lower position in the array. Figure 20-5 illustrates these
two steps.

Question 3 A binary search would be faster, in general, than the modified sequential
search just given—particularly when the dictionary is large. Implement the private method
locateIndex for a sorted dictionary using a binary search.

Array-Based Implementations 507

FIGURE 20-5 Removing an entry from a sorted array-based dictionary:
(a) search; (b) shift entries

The following algorithm describes the remove operation:

Algorithm remove(key)
// Removes an entry from the dictionary, given its search key, and returns its value.
// If no such entry exists in the dictionary, returns null.
result = null
Search the array for an entry containing key
if (an entry containing key is found in the array)
{

result = value currently associated with key
Shift any entries that are after the located one to the next lower position in the array
Decrement the size of the dictionary

}
return result

We leave the implementation of this algorithm as an exercise. Defining the following private method
will be helpful:

// Removes an entry at a given index by shifting array
// entries toward the entry to be removed.
private void removeArrayEntry(int keyIndex)

20.14 The remaining methods. At the heart of the method getValue, which retrieves the value in an
existing entry given its search key, is the method locateIndex, as described earlier. Since the array
of entries is sorted, locateIndex can use a binary search, as Question 3 indicated.

An iteration, or traversal, of the entries in the dictionary starts with the first entry in the array
and moves sequentially through the remaining entries. This part of the implementation can be the

(a)

Before removal

Search from the beginning
to find the entry to remove

(b)

1 2

After removal

To remove this entry, shift the contents of
subsequent array locations toward the
beginning of the array in the order indicated

508 CHAPTER 20 Dictionary Implementations

same as for an unsorted dictionary. But here, since the array is sorted, the iteration will traverse the
dictionary in sorted search-key order.

We leave the completion of this implementation to you as an exercise.

20.15 Efficiency. When locateIndex uses a binary search in the sorted array-based implementation, the
worst-case efficiencies of the dictionary operations are as follows:

Addition O(n)
Removal O(n)
Retrieval O(log n)
Traversal O(n)

This implementation is suitable for an application that creates a dictionary and then makes
many retrievals. This point from Chapter 14 bears repeating here:

Vector-Based Implementations

20.16 An implementation that uses an instance of Java’s class Vector is similar in spirit to an array-
based implementation. You can use one or two vectors, much like the one or two arrays pictured
in Parts a and b of Figure 20-1. Since the underlying implementation of the class Vector is array
based, the algorithms for the dictionary operations and their efficiencies are essentially the same
whether you use an array or a vector.

With a vector, you do not need the private methods ensureCapacity, makeRoom, and
removeArrayEntry that are in the array-based implementations. A vector accommodates the
addition of a new entry—expanding as necessary—without any extra effort by us. A vector
also shifts its entries if necessary when you either add or remove an entry. Lastly, a vector
counts its entries, so you do not have to.

20.17 As an example of how to use a vector to implement a dictionary, consider the sorted implementa-
tion outlined in Listing 20-3. The type parameters K and V of SortedVectorDictionary are like
those for SortedArrayDictionary shown in Listing 20-2 of Segment 20.9. The inner class Entry
uses these type parameters, whereas the definition of Entry within SortedArrayDictionary (see
Listing 20-1 of Segment 20.2) defines its own type parameters. Although we could use either defi-
nition here, this simpler one is fine because we are not allocating an array of Entry objects.

Programming Tip: When choosing an implementation for an ADT, you should consider
the operations that your application requires. If you use a particular ADT operation frequently,
you want its implementation to be efficient. Conversely, if you rarely use an operation, you can
afford to use a class that has an inefficient implementation of that operation.

Programming Tip: Include comments in a class’s implementation that advertise the effi-
ciencies of its methods.

Question 4 When the sorted array-based implementation of a dictionary uses a binary
search, its retrieval operation is O(log n). Since add and remove use a similar search, why
are they not O(log n) as well?

Vector-Based Implementations 509

LISTING 20-3 An outline of the class SortedVectorDictionary

import java.util.Vector;
import java.util.Iterator;
import java.util.NoSuchElementException;
/**

A class that implements a dictionary by using a sorted vector.
@author Frank M. Carrano

*/

public class SortedVectorDictionary<K extends Comparable<? super K>, V>
implements DictionaryInterface<K, V>

{
private Vector<Entry> dictionary;

public SortedVectorDictionary()
{

dictionary = new Vector<Entry>(); // doubles in size, as necessary
} // end default constructor

public SortedVectorDictionary(int initialCapacity)
{

dictionary = new Vector<Entry>(initialCapacity);
} // end constructor

< Implementations of methods in DictionaryInterface >

< Private classes KeyIterator and ValueIterator (See Segment 20.20) >

private class Entry
{

private K key;
private V value;

private Entry(K searchKey, V dataValue)
{

key = searchKey;
value = dataValue;

} // end constructor

private K getKey()
{

return key;
} // end getKey

510 CHAPTER 20 Dictionary Implementations

20.18 The method add. The implementation of the method add is similar to the one given earlier in
Segment 20.11 for the sorted array-based implementation. This version is shorter, since much of
the busy work is handled for us by Vector. You should compare this code with the code given
earlier.

Assuming that we have already revised locateIndex, as given in Segment 20.12, to work with
vectors, we call it with the statement

int keyIndex = locateIndex(key);

where key is the search key of the new entry. To see whether an entry having key as its search key
is already in the dictionary, we check whether key is the same as the search key of the entry at
keyIndex. Using Vector’s method get, we reference this entry by writing

dictionary.get(keyIndex)

To get this entry’s search key, we write
(dictionary.get(keyIndex)).getKey()

The pair of blue parentheses is optional. This expression is now the argument of the method equals
that is invoked by key, the new entry’s search key:

key.equals((dictionary.get(keyIndex)).getKey())

Ordinarily, we could simplify this expression by first assigning the argument of equals to a local
variable, as follows:

Entry currentEntry = dictionary.get(keyIndex);

We then could write the expression as
key.equals(currentEntry.getKey())

But in our case, we also need to check the value of keyIndex. Thus, we are left with the choice of
one long if clause or several awkwardly nested but shorter if statements. We settle for the follow-
ing implementation of add:

public V add(K key, V value)
{

V result = null;
int keyIndex = locateIndex(key);

if ((keyIndex < dictionary.size()) &&
key.equals((dictionary.get(keyIndex)).getKey()))

{
// key found; return and replace old value

private V getValue()
{

return value;
} // end getValue

private void setValue(V newValue)
{

value = newValue;
} // end setValue

} // end Entry
} // end SortedVectorDictionary

Vector-Based Implementations 511

Entry currentEntry = dictionary.get(keyIndex);
result = currentEntry.getValue();
currentEntry.setValue(value);

}
else // add new entry
{

Entry newEntry = new Entry(key, value);
dictionary.add(keyIndex, newEntry);

} // end if

return result;
} // end add

20.19 The private method locateIndex. To revise locateIndex, as given in Segment 20.12, to work
with a vector instead of an array, we modify the boolean expression in the while statement.
The resulting expression is similar to the boolean expression in the previous segment—it uses
Vector's method get—but it invokes compareTo instead of equals. Thus, the revised method
appears as follows:

private int locateIndex(K key)
{

// search until you either find an entry containing key or
// pass the point where it should be
int numberOfEntries = dictionary.size();
int index = 0;
while ((index < numberOfEntries) &&

key.compareTo((dictionary.get(index)).getKey()) > 0)
index++;

return index;
} // end locateIndex

The differences between this method and the array version are highlighted. In SortedArrayDictionary,
numberOfEntries is a data field. Here it is a local variable set to dictionary.size(), the vector’s size.

Implementations for the methods remove and getValue are similar to the implementation for
add, and we leave them as exercises.

20.20 An iterator for search keys. Our goal in providing iterators for the dictionary is to give the client
an easy way to traverse the search keys and their corresponding values. The interface for the dic-
tionary given in Segment 19.4 of the previous chapter specifies two iterators, one for search keys
and one for values. That chapter showed you how to use these iterators, and here we implement an
iterator for the search keys.

Recall that the interface java.util.Iterator specifies the methods hasNext, next, and
remove. We can define a private class KeyIterator that implements this interface and is internal to
the class SortedVectorDictionary. We then implement the public method getKeyIterator within
SortedVectorDictionary as follows:

public Iterator<K> getKeyIterator()
{

return new KeyIterator();
} // end getKeyIterator

The implementation of the class KeyIterator is shown in Listing 20-4. Vector’s iterator
dictionary.iterator traverses the entries in the vector dictionary and is the basis of this
implementation. Each entry in the vector is an instance of Entry, so we use Entry’s method
getKey to get each search key.

Iterator’s method remove is not relevant to the traversal of the search keys, so we do not sup-
port it. Instead we make remove throw an exception if it is invoked.

512 CHAPTER 20 Dictionary Implementations

 The method getValueIterator has an analogous implementation: You define another inner
class similar to KeyIterator. We leave the details as an exercise.

Linked Implementations

20.21 The last implementations of the ADT dictionary that we will consider in this chapter store the dic-
tionary’s entries in a chain of linked nodes. As presented in Chapters 3 and 14, for example, a chain
can provide as much storage as necessary for the entries. You can encapsulate the two parts of an
entry into an object, as Figure 20-6a illustrates, just as you did for an array or a vector. If you
choose this option, your dictionary class can use the classes Node from Segment 3.25 and Entry
from Segment 20.17.

VideoNote

Another option does not use the class Entry. You could use two chains, as in Figure 20-6b, but
a simpler approach is to revise the definition of a node to include both parts of the entry, as
Figure 20-6c illustrates. The private inner class Node, defined within the dictionary class, would
then contain the data fields.

LISTING 20-4 SortedVectorDictionary’s private inner class KeyIterator

private class KeyIterator implements Iterator<K>
{

private Iterator<Entry> traverser;

private KeyIterator()
{

traverser = dictionary.iterator();
} // end default constructor

public boolean hasNext()
{

return traverser.hasNext();
} // end hasNext

public K next()
{

Entry nextEntry = traverser.next();
return nextEntry.getKey();

} // end next

public void remove()
{

throw new UnsupportedOperationException();
} // end remove

} // end KeyIterator

Note: Using ArrayList instead of Vector
Since ArrayList and Vector each implement the interface java.util.List, and since we
were careful to use only methods in this interface, you could replace Vector with ArrayList
in the implementation of SortedVectorDictionary.

Linked-chain dictionaries

Linked Implementations 513

private K key;
private V value;
private Node next;

The generic types K and V are defined by the outer class. In addition to constructors, the class Node
would contain the methods getKey, getValue, setValue, getNextNode, and setNextNode. Since
changing the search key is not necessary and, in fact, could destroy the order of a sorted dictionary,
no setKey method is provided.

FIGURE 20-6 Three possible ways to use linked nodes to represent the entries in a
dictionary: (a) a chain of nodes that each reference an entry object;
(b) parallel chains of search keys and values; (c) a chain of nodes that each
reference a search key and a value

(a)

firstNode

Instance of Node

Instance of Entry

Search key Value

(b)

firstNodeSK

Search key

firstNodeV

Value

(c)

firstNode

Search key Value

Instance of a revised Node

514 CHAPTER 20 Dictionary Implementations

An Unsorted Linked Dictionary
20.22 Since the entries in an unsorted dictionary are in no particular order, you add a new entry in the

most efficient manner. When the entries are in a linked chain, such as the one in Figure 20-6c, the
fastest addition is at the beginning of the chain, as Figure 20-7 shows. (If the class also maintains a
tail reference to the last node of the chain, adding an entry after the last node would be equally fast.)
While this aspect of an addition is O(1), preventing duplicate search keys would require a sequen-
tial search from the beginning of the chain.

FIGURE 20-7 Adding to an unsorted linked dictionary

Just as you would for an array, you would have to look at all the search keys in the chain to learn
that a particular entry was not present. Removing or retrieving an entry uses a similar search. A tra-
versal of either the search keys or the values involves the entire chain. Thus, for this implementa-
tion, the worst-case efficiencies of the operations are as follows:

Addition O(n)
Removal O(n)
Retrieval O(n)
Traversal O(n)

A Sorted Linked Dictionary
20.23 Adding an entry. When the nodes in a chain are sorted by their search keys, adding a new entry to

the dictionary requires a sequential search of the chain from its beginning to determine the correct
location for the new node. Since the search keys are sorted, you can detect that a desired search key
does not exist in the chain as soon as you pass the node that should have contained it. That is, you do
not have to look at the entire chain, as you would if the search keys were unsorted. Segments 18.8 and
18.22 in Chapter 18 describe this variation of a sequential search.

 The following algorithm adds a new entry to a sorted linked dictionary:

Algorithm add(key, value)
// Adds a new key-value entry to the dictionary and returns null. If key already exists
// in the dictionary, returns the corresponding value and replaces it with value.
result = null
Search the chain until either you find a node containing key or you pass the point where

it should be
if (a node containing key is found in the chain)
{

Insert a new node at the beginning of the chain

firstNode

Question 5 To remove an entry from an unsorted array-based dictionary, we replaced the
removed entry with the last entry in the array (see Segment 20.6). Should we use the same
strategy to remove an entry from an unsorted linked dictionary? Explain.

Linked Implementations 515

result = value currently associated with key
Replace key’s associated value with value

}
else
{

Allocate a new node containing key and value
Increment the size of the dictionary
if (the chain is empty or the new entry belongs at the beginning of the chain)

Add the new node to the beginning of the chain
else

Insert the new node before the last node that was examined during the search
}
return result

20.24 Listing 20-5 shows the beginning of the class SortedLinkedDictionary and the implementation of
the method add. Implementations for the methods remove and getValue are similar to the imple-
mentation for add, but are a bit simpler. We leave them as exercises.

LISTING 20-5 The class SortedLinkedDictionary

import java.util.Iterator;
import java.util.NoSuchElementException;
/**

A class that implements a dictionary by using a sorted linked chain.
@author Frank M. Carrano

*/
public class SortedLinkedDictionary<K extends Comparable<? super K>, V>

implements DictionaryInterface<K, V>
{

private Node firstNode; // reference to first node of chain
private int numberOfEntries;

public SortedLinkedDictionary()
{

firstNode = null;
numberOfEntries = 0;

} // end default constructor

public V add(K key, V value)
{

V result = null;

// search chain until you either find a node containing key
// or pass the point where it should be
Node currentNode = firstNode;
Node nodeBefore = null;
while ((currentNode != null) &&

key.compareTo(currentNode.getKey()) > 0)

516 CHAPTER 20 Dictionary Implementations

20.25 Iterators. As we mentioned in Segment 20.20, iterators provide the client with an easy way to traverse
a dictionary’s search keys and their corresponding values. The public methods getKeyIterator and
getValueIterator have the same implementations here as they do in SortedVectorDictionary. The
private inner classes KeyIterator and ValueIterator, however, differ. Each has a data field nextNode
to mark an iteration’s place in the chain as the traversal progresses. Listing 20-6 shows the private class

{
nodeBefore = currentNode;
currentNode = currentNode.getNextNode();

} // end while

if ((currentNode != null) && key.equals(currentNode.getKey()))
{

result = currentNode.getValue();
currentNode.setValue(value); // replace value

}
else
{

Node newNode = new Node(key, value); // create new node
numberOfEntries++; // increase length for both cases
if (nodeBefore == null)
{ // add at beginning (includes empty chain)

newNode.setNextNode(firstNode);
firstNode = newNode;

}
else // add elsewhere in non-empty chain
{

newNode.setNextNode(currentNode); // currentNode is after new
 // node

nodeBefore.setNextNode(newNode); // nodeBefore is before new
// node

} // end if
} // end if

return result;
} // end add

< Implementations of the other methods in DictionaryInterface >
. . .

< Private classes KeyIterator and ValueIterator (See Segment 20.26) >
. . .

< The private class Node >
. . .

} // end SortedLinkedDictionary

Linked Implementations 517

KeyIterator. ValueIterator has a similar definition. Both of these classes are like the inner class
IteratorForLinkedList that appears in Segments 15.19 through 15.23 of Chapter 15.

20.26 Efficiency. Like adding an entry, removing or retrieving an entry requires a sequential search of the
chain. Traversal of a sorted chain proceeds just as it would for an unsorted chain. Thus, the worst-
case efficiencies of the dictionary operations for a sorted linked implementation are as follows:

Addition O(n)
Removal O(n)
Retrieval O(n)
Traversal O(n)

LISTING 20-6 SortedLinkedDictionary’s private inner class KeyIterator

private class KeyIterator implements Iterator<K>
{

private Node nextNode; // node containing next entry in iteration

private KeyIterator()
{

nextNode = firstNode;
} // end default constructor

public boolean hasNext()
{

return nextNode != null;
} // end hasNext

public K next()
{

K result;
if (hasNext())
{

result = nextNode.getKey();
nextNode = nextNode.getNextNode();

}
else

throw new NoSuchElementException();

return result;
} // end next

public void remove()
{

throw new UnsupportedOperationException();
} // end remove

} // end KeyIterator

518 CHAPTER 20 Dictionary Implementations

The addition or removal of an entry is an O(n) operation regardless of whether you use an
array, a vector, or a chain to implement a dictionary. Realize, however, that an array requires you to
shift its elements, whereas a linked chain does not. Also, the preceding linked implementation does
not require a good estimate of the dictionary’s ultimate size. When you use an array that is too
small, you can expand it by copying its entries to a new, larger array, but this takes time. If you use
an array that is larger than necessary, you waste space. The same is true if you use a vector, but nei-
ther of these situations occur with a linked implementation.

CHAPTER SUMMARY

PROGRAMMING TIP

EXERCISES

• You can implement a dictionary by using either an array, a vector, or a chain of linked nodes. A linked
implementation does not require a good estimate of the dictionary’s ultimate size. When you use an array
that is too small, you need to copy its entries to a new, larger array. If you use an array that is larger than nec-
essary, you waste space. The same is true if you use a vector, but neither of these situations occur with a
linked implementation.

• The worst-case efficiencies of the dictionary operations for array-based and linked implementations are as
follows:

• For a sorted or unsorted dictionary, the addition or removal of an entry is an O(n) operation regardless of
whether you use an array, a vector, or a chain to implement it. Realize, however, that an array or vector
requires the shifting of its entries, whereas a linked chain does not.

• Using either an array or a vector to implement a sorted dictionary allows for an efficient retrieval operation
because you can use a binary search.

• To implement the method getKeyIterator or getValueIterator, define a private inner class for the dic-
tionary class. This private class should implement the interface java.util.Iterator.

Array-Based Linked

Unsorted Sorted Unsorted Sorted

Addition
Removal
Retrieval
Traversal

 O(n)
 O(n)
 O(n)
 O(n)

 O(n)
 O(n)
 O(log n)
 O(n)

 O(n)
 O(n)
 O(n)
 O(n)

 O(n)
 O(n)
 O(n)
 O(n)

• When choosing an implementation for an ADT, you should consider the operations that your application
requires. If you use a particular ADT operation frequently, you want its implementation to be efficient. Con-
versely, if you rarely use an operation, you can afford to use a class that has an inefficient implementation of
that operation.

• Include comments in a class’s implementation that advertise the efficiencies of its methods.

1. Begin an array-based implementation of the ADT dictionary according to the data structure illustrated in
Figure 20-1b. Declare the data fields, define the constructors, and define the method add for unsorted data. Use
arrays that you can resize during execution.

Projects 519

PROJECTS

2. Begin two linked implementations of the ADT dictionary according to the two data structures illustrated in Parts a
and b of Figure 20-6. Declare the data fields, define the constructors, and define the method add for unsorted data.

3. In the sorted, vector-based implementation of a dictionary, replace the sequential search performed by the method
locateIndex with a binary search. (See Segment 20.19.)

4. For a sorted linked implementation of a dictionary, write iterative versions of the methods remove and getValue.

5. For a sorted linked implementation of a dictionary, write recursive versions of the methods add, remove, and
getValue.

6. Segment 20.25 defines the class KeyIterator. An instance of this class is an iterator that traverses the search
keys in the dictionary. In a similar fashion, define a class ValueIterator to provide a way to traverse the
dictionary’s values.

7. Define an iterator for the ADT dictionary that returns entries containing both a search key and a value. Describe
the class of these entries. Implement a method getEntryIterator that returns such an iterator.

8. Consider adding operations to the ADT dictionary to form the union and intersection of two given dictionaries.
Each operation returns a new dictionary. The union should combine the entries in both dictionaries into a third
dictionary. The intersection should be a dictionary of the entries common to both of the two dictionaries.

Within each given dictionary, search keys are not repeated. However, an entry in one dictionary could have the
same search key as an entry in the second dictionary. Propose and discuss ways to specify these two operations for
this case.

9. Implement the union and intersection operations that Exercise 8 describes for an unsorted array-based dictionary.

10. Repeat Exercise 9 for a sorted array-based dictionary.

11. Repeat Exercise 9 for a sorted linked dictionary.

1. Implement an unsorted array-based dictionary. Allow the array to expand as necessary during execution.

2. Repeat the previous project, but maintain the search keys in sorted order.

3. Implement an unsorted dictionary by using an instance of Vector or ArrayList.

4. Repeat the previous project, but maintain the search keys in sorted order.

5. Implement an unsorted dictionary by using a chain of linked nodes.

6. Implement a sorted dictionary by using a chain of linked nodes.

7. In this chapter, the ADT dictionary has distinct search keys. Implement a dictionary that removes this restriction.
Choose one of the following possibilities:

• The method add adds an entry whose search key is already in the dictionary but whose value is not.
The method remove deletes all occurrences of the search key. The method getValue retrieves all
values associated with a search key.

• The methods behave as just described, but a secondary search key enables remove and getValue to
delete or retrieve a single entry.

8. Segment 19.7 of the previous chapter began a discussion of a telephone directory. Use your dictionary
implementation from Project 7 in a revision of the telephone directory that allows duplicate names.

520 CHAPTER 20 Dictionary Implementations

ANSWERS TO SELF-TEST QUESTIONS

9. Figure 20-1b illustrates how you can use parallel arrays to represent the entries in a dictionary. Implement the
ADT dictionary by using this approach.

10. Revise the class Entry given in Listing 20-1 of Segment 20.2 as a top-level class that implements the interface
Comparable. You compare two Entry objects by comparing their search keys. Using this class and an
implementation of the ADT sorted list, write an implementation for a sorted dictionary. The classes, including
Entry, should belong to the same package.

11. Revise the class Entry, which is in Listing 20-1, to make it public. Implement a sorted dictionary by using an
array of Entry objects.

12. Repeat the previous project, but instead use a chain of linked nodes that each reference an instance of Entry.

13. Implement the interface DictionaryInterface<String, String> to create a class of glossaries. A glossary is a
dictionary of specialized terms and their corresponding definitions. Represent the glossary as an array of 26 sorted
lists, one list for each letter of the alphabet. Each entry—which consists of a term and its definition—in a glossary
is stored in the sorted list corresponding to the term’s first letter. Thoroughly test your class using a text file of
terms and definitions as data for your glossary.

1. The memory requirements for the search keys and the values are the same for each representation, so let’s ignore
them. The memory requirement for the representation shown in Figure 20-1a uses three references for each entry
in the dictionary: one in the array and two in the Entry object. The parallel arrays in Figure 20-1b require only two
references for each dictionary entry. Thus, for n entries in the dictionary, the representation in Part a requires 3n
references, but the representation in Part b requires only 2n references. However, if each array has a length of m,
where m is greater than n, Part a has m − n unused locations and Part b has twice that number.

2. The initial search determines the insertion point when the dictionary is sorted, whereas the insertion point for an
unsorted dictionary is always right after the last entry in the array. Insertion into a sorted dictionary generally
requires shifting other entries in the array. No shifting is necessary for an unsorted dictionary.

3. private int locateIndex(K key)
{

return binarySearch(0, numberOfEntries - 1, key);
} // end locateIndex

private int binarySearch(int first, int last, K key)
{

int result;

if (first > last)
result = first;

else
{

int mid = first + (last - first) / 2;
K midKey = dictionary[mid].getKey();

if (key.equals(midKey))
result = mid;

else if (key.compareTo(midKey) < 0)
result = binarySearch(first, mid - 1, key);

else
result = binarySearch(mid + 1, last, key);

} // end if

return result;
} // end binarySearch

Answers to Self-Test Questions 521

4. Typically, add must shift array entries to make room for a new entry, and remove must shift array entries to avoid
a vacancy within the array. These shifts of data are O(n) operations in the worst case. The best case occurs when
the addition or removal is at the end of the array. These operations are O(1).

5. No. Replacing the entry to be removed with the last entry in a chain would require a traversal of the chain. We
would need references to both the last node and the next-to-last node so that we could delete the last node.
Although we can ignore the last entry in an array, we should shorten the chain by setting the link portion of the
next-to-last node to null. Note that having a tail reference does not eliminate the need for a traversal, since we
need but do not have a reference to the next-to-last node. The strategy for an unsorted array-based dictionary
avoids shifting any of the other entries. No shifting is needed in a linked implementation. After locating the node
to delete, you simply adjust either the head reference or the reference in the preceding node.

This page intentionally left blank

Chapter

21IntroducingHashing
Contents
What Is Hashing?
Hash Functions

Computing Hash Codes
Compressing a Hash Code into an Index for the Hash Table

Resolving Collisions
Open Addressing with Linear Probing
Open Addressing with Quadratic Probing
Open Addressing with Double Hashing
A Potential Problem with Open Addressing
Separate Chaining

Prerequisites
Chapter 19 Dictionaries
Chapter 20 Dictionary Implementations

Objectives
After studying this chapter, you should be able to
• Describe the basic idea of hashing
• Describe the purpose of a hash table, a hash function, and a perfect hash function
• Explain why you should override the method hashCode for objects used as search keys
• Describe how a hash function compresses a hash code into an index to the hash table
• Describe collisions and explain why they occur
• Describe open addressing as a method to resolve collisions
• Describe linear probing, quadratic probing, and double hashing as particular open addressing schemes
• Describe algorithms for the dictionary operations getValue, add, and remove when open addressing

resolves collisions
• Describe separate chaining as a method to resolve collisions
• Describe algorithms for the dictionary operations getValue, add, and remove when separate chaining

resolves collisions
• Describe clustering and the problems it causes

524 CHAPTER 21 Introducing Hashing

Because searching databases is such a widespread application of computers, the dictionary is an
important abstract data type. The implementations that we discussed in the previous chapter are
fine for certain applications, but for others they are inadequate. For example, if locating data is
critical, even an O(log n) search can be too slow. Such is the case for the emergency telephone
(911) system. If you call 911 from a land line, your telephone number is the key in a search of a
dictionary of street addresses. Obviously, you want this search to find your location immediately!

This chapter introduces a technique called hashing that ideally can result in O(1) search
times. We will complete our exploration of this topic in the next chapter. Hashing can be an
excellent choice for implementing a dictionary when searching is the primary task. But as good
as hashing can be, it is not always appropriate. For example, hashing cannot provide a traversal
of the search keys in sorted order. Later in this book we will consider other implementations of
the ADT dictionary.

What Is Hashing?

21.1 A place for everything; everything in its place. Do you spend time looking for your keys in the
morning? Or do you know exactly where they are? Some of us spend too much time sequentially
searching our unsorted possessions. Others have a special place for things and know just where to
find each one.

VideoNote

An array can provide a place for a dictionary’s entries. Admittedly, arrays have their disad-
vantages, but you can access any entry in an array directly if you know its index. No other array
entry need be involved. Hashing is a technique that determines this index using only an entry’s
search key, without searching. The array itself is called a hash table.

A hash function takes a search key and produces the integer index of an element in the hash
table. This array element is where you would either store or look for the search key’s associated
value. For example, the 911 emergency system can take your telephone number, convert it to a
suitable integer i, and store a reference to your street address in the array element a[i]. We say
that the telephone number—that is, the search key—maps, or hashes, to the index i. This index
is called a hash index. Sometimes we will say that the search key maps, or hashes, into the table
location at the index i.

21.2 Ideal hashing. Consider an emergency system for a small town where everyone’s telephone num-
ber begins with 555. Let the hash function h convert a telephone number to its last four digits. For
example,

h(555-1214) = 1214

If hashTable is the hash table, we would place a reference to the street address associated with this
telephone number in hashTable[1214], as Figure 21-1 illustrates. If the cost of evaluating the hash
function is low, adding an entry to the array hashTable is an O(1) operation.

Hashing

What Is Hashing? 525

FIGURE 21-1 A hash function indexes its hash table

To later find the street address associated with the number 555-1214, we once again com-
pute h(555-1214) and use the result to index hashTable. Thus, from hashTable[1214], we get
the desired street address. This operation also is O(1). Notice that we did not search the array
hashTable.

21.3 Let’s summarize what we know so far by writing simple algorithms for the dictionary operations
that add or retrieve entries:

Algorithm add(key, value)
index = h(key)
hashTable[index] = value

Algorithm getValue(key)
index = h(key)
return hashTable[index]

Will these algorithms always work? We can make them work if we know all the possible
search keys. In this example, the search keys range from 555-0000 to 555-9999, so the hash func-
tion will produce indices from 0 to 9999. If the array hashTable has 10,000 elements, each tele-
phone number will correspond to one unique element in hashTable. That element references the
appropriate street address. This scenario describes the ideal case for hashing, and the hash function
here is a perfect hash function.

h(555–1214)

Hash table

150 Main Street

526 CHAPTER 21 Introducing Hashing

21.4 Typical hashing. Because we need a database of all street addresses in the previous example, we
must have one entry in the hash table for each telephone number. Our perfect hash function needs
a hash table this large because it produces 10,000 different indices between 0 and 9999 from the
10,000 possible search keys. This hash table is always full if every telephone number in the 555
exchange is assigned. Although a full hash table is quite reasonable for this application, most
hash tables are not full and can even be sparse—that is, have only a few of their elements actually
in use.

For example, if our small town required only 700 telephone numbers, most of the 10,000-
location hash table would be unused. We would waste most of the space allocated to the hash
table. If the 700 numbers were not sequential, we would need a different hash function if we
wanted to use a smaller hash table.

We might develop this hash function as follows. Given a nonnegative integer i and a hash
table with n locations, the value of i modulo n ranges from 0 to n – 1. Since i is nonnegative, i
modulo n is the integer remainder after dividing i by n. This value is a valid index for the hash
table. So, a hash function h for a telephone number could have the following algorithm:

Algorithm getHashIndex(phoneNumber)
// Returns an index to an array of tableSize locations.

i = last four digits of phoneNumber
return i % tableSize

This hash function—like typical hash functions—performs two steps:

1. Convert the search key to an integer called the hash code.
2. Compress the hash code into the range of indices for the hash table.

Often the search key is not an integer, and frequently it is a string. So, a hash function first converts
the key to an integer hash code. Next, it transforms that integer into one that is suitable as an index
to the particular hash table.

The hash function that the algorithm getHashIndex describes is not a perfect hash function when
tableSize is less than 10,000. Since 10,000 telephone numbers map into tableSize indices, some
telephone numbers will map into the same index. We call such an occurrence a collision. For exam-
ple, if tableSize is 101, getHashIndex("555-1214") and getHashIndex("555-8132") each map
into 52. If we have already stored the street address for 555-1214 in hashTable[52], as Figure 21-2
shows, what will we do with the address for 555-8132? Handling such collisions is called collision
resolution. Before we look at collision resolution, we explore hash functions a bit further.

Note: A perfect hash function maps each search key into a different integer that is suitable
as an index to the hash table.

Note: Typical hash functions are not perfect, because they can allow more than one search
key to map into a single index, causing a collision in the hash table.

Hash Functions 527

FIGURE 21-2 A collision caused by the hash function h

Hash Functions

21.5 General characteristics. Any function can be a hash function if it produces an integer that is suit-
able as an array index. But not every such function is a good hash function. Our previous discus-
sions suggest that a good hash function should

• Minimize collisions
• Be fast to compute

Recall that a typical hash function first converts a search key to an integer hash code. The hash function
then compresses the hash code into an integer that is suitable as an index to the particular hash table.

First, consider how to convert a search key to an int. Realize that a search key can be either a
primitive type or an instance of a class.

Computing Hash Codes
21.6 The hash code for a class type. Java’s base class Object has a method hashCode that returns an

integer hash code. Since every class is a subclass of Object, all classes inherit this method. But unless
a class overrides hashCode, the method will return an int value based on the invoking object’s mem-
ory address. This default hash code usually is not appropriate for hashing, because equal but distinct

h(555–1214)

h(555–8132)
Collision

Hash table

150 Main Street

Note: To reduce the chance of a collision, choose a hash function that distributes entries
uniformly throughout the hash table.

528 CHAPTER 21 Introducing Hashing

objects will have different hash codes. To be useful as a dictionary implementation, hashing must map
equal objects into the same location in a hash table. Thus, a class should define its own version of
hashCode that adheres to the following guidelines.

A perfect hash function would require that unequal objects have distinct hash codes. In gen-
eral, however, unequal objects might have the same hash codes. Since duplicate hash codes lead to
collisions, you want to avoid this situation when possible.

21.7 A hash code for a string. Search keys are often strings, so generating a good hash code from a
string is important. Typically, you begin by assigning an integer to each character in the string. For
example, you could assign the integers 1 through 26 to the letters “A” through “Z” and the integers
27 through 52 to the letters “a” through “z.” However, using a character’s Unicode integer is more
common and actually easier to do.

Suppose that the search keys for a telephone directory are names such as Brett, Carol, Gail,
and Josh. You can compute hash codes for these names in several ways. For example, you could
take the Unicode value of the first letter in each name and get distinct hash codes. But if several
names begin with the same letter, their hash codes will be the same if you use this scheme. Since
the letters that occur in any one position of a name do not occur with equal probability, a hash
function that uses any particular letter will not distribute the names uniformly throughout the
hash table.

Suppose that you sum the Unicode values for each letter in the search key. In an application
where two different search keys never contain the same letters, this approach can work. But if
your search keys are airport codes, for example, DUB and BUD would have the same hash code.
This approach also can restrict the range of the hash codes, since the Unicode values for letters
lie between 65 and 122. Thus, three-letter words would map into values between 195 and 366
under this plan.

21.8 A better hash code for a string. A better approach to generating a hash code for a string involves
multiplying the Unicode value of each character by a factor based on the character’s position within
the string. The hash code is then the sum of these products. Specifically, if the string s has n charac-
ters, let ui be the Unicode value for the ith character in s (i is zero for the first character). Then the
hash code can have the form

u0 g n
- 1

 + u1 g n
- 2

 + … + un - 2 g + un - 1

Note: Guidelines for the method hashCode

• If a class overrides the method equals, it should override hashCode.
• If the method equals considers two objects equal, hashCode must return the same

value for both objects.
• If you call an object’s hashCode more than once during the execution of a program,

and if the object’s data remains the same during this time, hashCode must return the
same hash code.

• An object’s hash code during one execution of a program can differ from its hash
code during another execution of the same program.

Note: Real-world data is not uniformly distributed.

Hash Functions 529

for some positive constant g. This expression is a polynomial in g. To minimize the number of
arithmetic operations, write the polynomial in the following algebraically equivalent form:

(…((u0 g + u1) g + u2) g +…+ un - 2) g + un - 1

This way of evaluating a polynomial is called Horner’s method.
The following Java statements perform this computation for the string s and the int constant g:

int hash = 0;
int n = s.length();
for (int i = 0; i < n; i++)

hash = g * hash + s.charAt(i);

The ith character of the string is s.charAt(i). Adding this character to the product g * hash actu-
ally adds the character’s Unicode value. An explicit cast of s.charAt(i) to int is not necessary
and would not affect the result.

This computation can cause an overflow, particularly for long strings. Java ignores these
overflows and, for an appropriate choice of g, the result will be a reasonable hash code. Current
implementations of the method hashCode in Java’s class String use this computation with 31 as
the value of g. Realize, however, that the overflows can produce a negative result. You can deal
with that when you compress the hash code into an appropriate index for the hash table.

21.9 The hash code for a primitive type. This segment contains Java operations that might be unfamil-
iar to you. However, they are not essential to the rest of this chapter.

If the search key’s data type is int, you can use the key itself as the hash code. If the search
key is an instance of either byte, short, or char, you can cast it to an int to get a hash code.
Thus, casting to an int is one way to generate a hash code.

For other primitive types, you manipulate their internal binary representations. If the search
key is an integer of type long, it contains 64 bits. An int has 32 bits. Simply casting the 64-bit
search key to an int—or performing a modulo 232—would lose its first 32 bits. As a result, all
keys that differ in only their first 32 bits will have the same hash code and collide. For this rea-
son, ignoring part of a search key can be a problem.

Instead of ignoring a part of a long search key, divide it into several pieces. Then combine
the pieces by using either addition or a bit-wise boolean operation such as exclusive or. This pro-
cess is called folding.

For example, let’s divide a long search key into two 32-bit halves. To get the left half, we
can shift the search key to the right by a certain number of bits, or places. For example, if we
shift the 8-bit binary number 10101100 to the right by 4 bits, we will get 00001010. We have iso-
lated the number’s left half and discarded its right half. If we now combine 00001010 with the
original value and ignore the left half of the result, we will effectively have combined the left and
right halves of the original key.

Question 1 Calculate the hash code for the string Java when g is 31. Compare your result
with the value of the expression "Java".hashCode().

Note: Derive the hash code from the entire search key. Do not ignore part of it.

530 CHAPTER 21 Introducing Hashing

Now let’s see how to do this in Java. The expression key >> 32 shifts the 64-bit key to the
right by 32 bits, in effect eliminating its right half. Java’s exclusive-or operator is ^ and has the
following effect on 1-bit quantities:

0 ^ 0 is 0
1 ^ 1 is 0
0 ^ 1 is 1
1 ^ 0 is 1

For two multibit quantities, the operator combines pairs of corresponding bits. So

1100 ^ 1010 is 0110

Thus, the expression key ^ (key >> 32) uses an exclusive-or operation to combine the halves of a
64-bit key. Although the result has 64 bits, the rightmost 32 bits contain the combined halves of
key. We discard the leftmost 32 bits by casting the result to an int. Thus, the necessary computa-
tion is

(int)(key ^ (key >> 32))

We can perform a similar computation for a search key of type double. Since key is a real
value, we cannot use it in the previous expression. Instead, we must get key’s bit pattern by calling
Double.doubleToLongBits(key). Thus, the following statements produce the desired hash code:

long bits = Double.doubleToLongBits(key);
int hashCode = (int)(bits ^ (bits >> 32));

Why not simply cast the search key from double to int? Since the search key is a real value,
casting it to an int will simply give us the integral portion of the value. For example, if the key’s
value is 32.98, casting it to int results in the integer 32. While we could use 32 as the hash code,
all search keys that have 32 as their integer portion also would have a hash code of 32. Unless
you know that your real values have distinct integral portions, casting them to int values can
cause many collisions.

The hash code of a search key of type float can be simply its 32 bits. You get these by call-
ing Float.floatToIntBits(key).

These computations of hash codes for the primitives types are actually used by the corre-
sponding wrapper classes in their implementations of the method hashCode.

Compressing a Hash Code into an Index for the Hash Table
21.10 The most common way to scale an integer so that it lies within a given range of values is to use

Java’s % operator. For a positive hash code c and a positive integer n, c % n divides c by n and takes
the remainder as the result. This remainder lies between 0 and n - 1. Thus, c % n is ideal for the
index of a hash table that has n locations.

So, n should equal the size of the hash table, but not any n will do. For example, if n is even,
c % n has the same parity as c—that is, if c is even, c % n is even; if c is odd, c % n is odd. If the
hash codes are biased toward either even or odd values (and note that hash codes based on mem-
ory addresses are typically even), the indices to the hash table will have the same bias. Instead of
a uniform distribution of indices, you will leave out the indices of many table locations if n is
even. Thus, n—the size of the hash table—always should be an odd number.

When n is a prime number—one that is divisible only by 1 and itself—c % n provides values
that are distributed throughout the index range 0 through n - 1. Prime numbers—with the excep-
tion of 2—are odd.

Resolving Collisions 531

One final detail remains. You saw earlier that the method hashCode might return a negative
integer, so you need to be a bit careful. If c is negative, c % n lies between 1 − n and 0. A zero
result is fine, but if c % n is negative, add n to it so that it lies between 1 and n − 1.

21.11 We now can implement a hash function for the ADT dictionary. The following method computes
the hash index for a given search key whose data type is the generic object type K. The data field
hashTable is the array that serves as the hash table. Realize that hashTable.length is the size of
the array, not the number of current entries in the hash table. We assume that this size is a prime
number and that the method hashCode returns a hash code consistent with the previous discussion.

private int getHashIndex(K key)
{

int hashIndex = key.hashCode() % hashTable.length;
if (hashIndex < 0)

hashIndex = hashIndex + hashTable.length;

return hashIndex;
} // end getHashIndex

Resolving Collisions

21.12 When adding to a dictionary, if your hash function maps a search key into a location in the hash
table that is already in use, you need to find another spot for the search key’s value. You have two
fundamental choices:

• Use another location in the hash table
• Change the structure of the hash table so that each array location can represent more than

one value

VideoNote

Finding an unused, or open, location in the hash table is called open addressing. This choice
sounds simple, but it can lead to several complications. Changing the structure of the hash table
is not as difficult as it might sound and can be a better choice for resolving collisions than using
an open addressing scheme. We will examine both approaches, beginning with several variations
of open addressing.

Open Addressing with Linear Probing
21.13 When a collision occurs during the addition of an entry to a hash table, an open addressing scheme

locates an alternate location in the hash table that is available, or open. You then use this location to
reference the new entry.

Note: The size of a hash table should be a prime number n greater than 2. Then, if you
compress a positive hash code c into an index for the table by using c % n, the indices will be
distributed uniformly between 0 and n - 1.

Question 2 Question 1 in Segment 21.8 asked you to compute the hash code for the string
Java. Use that value to calculate what getHashIndex("Java") returns when the length of the
hash table is 101.

Question 3 What one-character string, when passed to getHashIndex, will cause the
method to return the same value as in the previous question?

Resolving collisions

532 CHAPTER 21 Introducing Hashing

Locating an open location in the hash table is called probing, and various probing techniques
are possible. With linear probing, if a collision occurs at hashTable[k], we see whether
hashTable[k + 1] is available. If not, we look at hashTable[k + 2], and so on. The table locations
that we consider in this search make up the probe sequence. If a probe sequence reaches the end of
the hash table, it continues at the beginning of the table. Thus, we treat the hash table as if it were
circular: The first location in the table comes immediately after the last location.

21.14 Additions that collide. Recall the example illustrated in Figure 21-2. The search keys 555-1214
and 555-8132 both mapped into the index 52. Suppose that 555-4294 and 555-2072 also map into
that same index, and we make the following additions to an empty dictionary addressBook:

addressBook.add("555-1214", "150 Main Street");
addressBook.add("555-8132", "75 Center Court");
addressBook.add("555-4294", "205 Ocean Road");
addressBook.add("555-2072", "82 Campus Way");

The first addition would use hashTable[52]. The second addition would find hashTable[52] occupied,
and so it would probe ahead and use hashTable[53]. The third addition would find both hashTable[52]
and hashTable[53] occupied, and so it would probe ahead and use hashTable[54]. Finally, the fourth
addition would probe the locations at indices 52, 53, and 54 before using hashTable[55] for the addition.
Figure 21-3 shows the result of these additions to the hash table.

FIGURE 21-3 The effect of linear probing after adding four entries whose
search keys hash to the same index

Note: Linear probing resolves a collision during hashing by examining consecutive loca-
tions in the hash table—beginning at the original hash index—to find the next available one.

h(555–1214)

h(555–8132)

h(555–4294)

h(555–2072)

52

53

54

55

56 null

Hash table

150 Main Street

75 Center Court

205 Ocean Road

82 Campus Way

Note: Linear probing can examine every location in a hash table. As a result, this type of
probing ensures the success of the add operation as long as the hash table is not full.

Resolving Collisions 533

21.15 Retrievals. Now that we’ve used linear probing to resolve collisions while adding our four entries,
how do we retrieve the street address associated with the last search key we added, 555-2072? That
is, if the statement

String streetAddress = addressBook.getValue("555-2072");

is executed, what will getValue do? Since getHashIndex("555-2072") is 52, getValue will
search consecutive locations in the array beginning at hashTable[52] until it finds the street
address associated with the search key 555-2072. But wait! How can we tell which street address is
the right one? We can’t, unless we package a search key with its value. Segment 20.2 of Chapter 20
provided a class Entry that we could use for this purpose. Figure 21-4 shows the hash table given in
Figure 21-3 after we make this revision.

FIGURE 21-4 A revision of the hash table shown in Figure 21-3 when linear
probing resolves collisions; each entry contains a search key
and its associated value

Now the search for 555-2072 can follow the same probe sequence that was used to add this
search key and its value to the hash table. This fact will be useful later when we assess the effi-
ciency of hashing.

What happens if the search key is not in the hash table? The search of the probe sequence
would encounter a null location, indicating an unsuccessful search. But before we can reach this
conclusion, we need to know what the remove method does, because it has the potential to
adversely affect subsequent retrievals.

h(555–1214)

h(555–8132)

h(555–4294)

h(555–2072)

52

53

54

55

56

Hash table

null

555–1214 150 Main Street

555–8132 75 Center Court

555–4294 205 Ocean Road

555–2072 82 Campus Way

Note: A successful search for an entry that corresponds to a given search key follows the
same probe sequence used to add the entry to the hash table.

534 CHAPTER 21 Introducing Hashing

21.16 Removals. Suppose that after the four additions illustrated in Figure 21-4, we removed two entries
by executing the following code:

addressBook.remove("555-8132");
addressBook.remove("555-4294");

The simplest way to remove an entry from an array location is to place null in the location. Figure 21-5
shows the hash table after remove places null into hashTable[53] and hashTable[54]. But now an
attempt to find the search key 555-2072 will terminate unsuccessfully at hashTable[53]. Although a
location in the hash table that was never used should end a search, a location that had been used and is
now available again for use should not.

FIGURE 21-5 A hash table if remove used null to remove entries

Thus, we need to distinguish among three kinds of locations in the hash table:

• Occupied—the location references an entry in the dictionary
• Empty—the location contains null and always has
• Available—the location’s entry was removed from the dictionary

Accordingly, the method remove should not place null into the hash table, but instead should
encode the location as available. The search during a retrieval should then continue if it encounters
an available location and should stop only if it is successful or reaches a null location. A search
during a removal behaves in the same way.

h(555–1214)

h(555–2072)

52

53

54

55

56

null

null

null

Hash table

555–1214 150 Main Street

555–2072 82 Campus Way

Question 4 Suggest ways to implement the three states of a location in a hash table. Should
this state be a responsibility of the location or of the dictionary entry that it references?

Resolving Collisions 535

21.17 Reusing locations in the hash table during an addition. Recall the hash table pictured in
Figure 21-4. The entry whose search key is 555-2072 mapped into hashTable[52] but was added
to the hash table at hashTable[55] due to collisions. Figure 21-6a shows this hash table again, but
in a simpler form. The four occupied locations constitute a probe sequence; the other locations con-
tain null. Since the search key 555-2072 maps into the first location of the probe sequence but
actually occurs in the fourth location, a brief sequential search will find it.

Now let’s try removing the middle two entries of the probe sequence, as Figure 21-6b shows.
A search for 555-2072 starts at the beginning of the probe sequence, must continue beyond the
removed entries, and stops successfully at the last location in the probe sequence. If 555-2072
does not occur in this last location, the search will end unsuccessfully at the next location, since
it contains null. Figure 21-6c illustrates these searches.

Finally, consider what happens when we add an entry that maps into this probe sequence.
For example, the search key 555-1062 maps into hashTable[52]. The add operation first must
see whether this search key is in the hash table already. To do so, it searches the probe
sequence. It has to search the entire probe sequence and reach a null location to discover that
555-1062 is not in the table. Figure 21-6d shows that this search ends at hashTable[56].
Should add place the new entry in this location? It could, but that would fill the hash table
faster than if add reused a location that is presently in the available state. Two such locations
are at the indices 53 and 54. We should place the new entry at hashTable[53]—that is, closest
to the beginning of the probe sequence—so we can find it more quickly later. Figure 21-6e
illustrates the hash table after this addition.

21.18 Clustering. Collisions that are resolved with linear probing cause groups of consecutive locations
in the hash table to be occupied. Each group is called a cluster, and the phenomenon is known as
primary clustering. Each cluster is actually a probe sequence that you must search when adding,
removing, or retrieving a table entry. When few collisions occur, probe sequences remain short and
can be searched rapidly. But during an addition, any collision within a cluster increases the size of
the cluster. Bigger clusters mean longer search times following a collision. As the clusters grow in
size, they can merge into even larger clusters, compounding the problem. This occurrence can place
many entries in one part of the hash table while another part is relatively empty.

Note: Searches that dictionary operations require when open addressing resolves
collisions

• To retrieve an entry, getValue(key) searches the probe sequence for key. It examines
entries that are present and ignores locations that are in the available state. The search
stops when either key is found or null is reached.

• The operation remove(key) searches the probe sequence using the same logic as a
retrieval. If it finds key, it marks the location as available.

• The operation add(key, value) searches the probe sequence using logic like that of
a retrieval, but it also notes the index of the first location encountered that is either
in the available state or contains null. The operation uses this location for a new
entry if key is not found.

536 CHAPTER 21 Introducing Hashing

FIGURE 21-6 A linear probe sequence (a) after adding an entry; (b) after
removing two entries; (c) after a search; (d) during the search
while adding an entry; (e) after an addition to a formerly
occupied location

(a)

52 53 54 55 56

Added entry
Blue � current entry
Light gray � removed entry
Dark gray � null(b)

52

52

53 54 55 56

Removed entries

(c)

53 54 55 56

Unsuccessful search ends here

Successful search ends here

(d)

52 53 54 55 56

2. Search ends here

3. Add new entry here

1. Initial hash location

(e)

52 53 54 55 56

Most recent addition can be found faster in location
53 than if it were placed into location 54 or 56

Note: Linear probing is apt to cause primary clustering. Each cluster is a group of
consecutive and occupied locations in the hash table. During an addition, any collision
with any location within a cluster causes the cluster to get larger.

Resolving Collisions 537

Open Addressing with Quadratic Probing
21.19 You can avoid primary clustering by changing the probe sequence that you use to resolve a colli-

sion. As we discussed in the previous section, if a given search key hashes to index k, linear prob-
ing looks at the consecutive locations beginning at index k. Quadratic probing, on the other hand,
considers the locations at indices k + j2 for j ≥ 0—that is, it uses the indices k, k + 1, k + 4, k + 9, and
so on. As before, if the probe sequence reaches the end of the hash table, it wraps around to the
beginning of the table. This open addressing scheme separates the entries in the probe sequence,
after the first two. In fact, this separation increases as the sequence grows in length. Figure 21-7
highlights the locations in a hash table that form one such probe sequence of five entries.

FIGURE 21-7 A probe sequence of length five using quadratic probing

Except for the change in probe sequence, quadratic probing is like linear probing. It uses the
three states that Segment 21.16 describes: occupied, empty, and available. Additionally, it reuses
table locations in the available state, as described in Segment 21.17.

Although quadratic probing avoids primary clustering, entries that collide with an existing table
entry use the same probe sequence, thereby increasing its length. This phenomenon—called secondary
clustering—is usually not a serious problem, but it increases search times.

An advantage of linear probing is that it can reach every location in the hash table. As we
mentioned earlier, this property is important since it guarantees the success of the add operation
when the hash table is not full. Quadratic probing can also guarantee a successful add opera-
tion, as long as the hash table is at most half full and its size is a prime number. (See Exercise 8
at the end of this chapter.)

Quadratic probing requires more effort to compute the indices for the probe sequence than
does linear probing. Exercise 2 at the end of this chapter shows how to compute these indices
without multiplications or divisions.

Open Addressing with Double Hashing
21.20 Beginning at the original hash index k, both linear probing and quadratic probing add increments

to k to define a probe sequence. These increments—1 for linear probing and j2 for quadratic
probing—are independent of the search key. Double hashing uses a second hash function to
compute these increments in a key-dependent way. In this way, double hashing avoids both pri-
mary and secondary clustering.

k k � 1 k � 22 k � 32 k � 42

Note: Quadratic probing

• Resolves a collision during hashing by examining locations in the hash table at the
original hash index plus j2, for j ≥ 0

• Reaches half of the locations in the hash table if the size of the table is a prime number
• Avoids primary clustering but can lead to secondary clustering

538 CHAPTER 21 Introducing Hashing

Double hashing, like other open addressing schemes, should produce a probe sequence that
reaches the entire table. Such will be the case if the size of the hash table is a prime number. (See
Exercise 9 at the end of this chapter.) The second hash function must be different from the origi-
nal hash function and must never have a zero value, since zero is not an appropriate increment.

21.21 Example. For example, consider the following pair of hash functions for a hash table whose size is 7:

h1(key) = key modulo 7
h2(key) = 5 - key modulo 5

This hash table is unusually small, but it allows us to study the behavior of the probe sequence. For
a search key of 16, we have

h1(16) = 2
h2(16) = 4

The probe sequence begins at 2 and probes locations at increments of 4, as Figure 21-8 illustrates.
Remember that when probing reaches the end of the table, it continues at the table’s beginning. The table
locations in the probe sequence then have the following indices: 2, 6, 3, 0, 4, 1, 5, 2, …. This sequence
reaches all locations in the table and then repeats itself. Notice that the table size, 7, is a prime number.

FIGURE 21-8 The first three locations in a probe sequence generated by double
hashing for the search key 16

What happens if we change the size of the table to 6 and use the hash functions

h1(key) = key modulo 6
h2(key) = 5 - key modulo 5

For a search key of 16, we have

h1(16) = 4
h2(16) = 4

The probe sequence begins at 4 and probes locations at increments of 4. The sequence’s indices are
then 4, 2, 0, 4, 2, 0, …. The probe sequence does not reach all table locations before it begins to
repeat. Notice that the table size, 6, is not prime.

(a)

h1(16)

0

1

2

3

4

5

6 6

5

4

3

2

1

0

6

5

4

3

2

1

0

h1(16) � 2 h2(16)

h1(16) � h2(16)

(b) (c)

Resolving Collisions 539

A Potential Problem with Open Addressing
21.22 The previous three open addressing schemes for collision resolution assume that each table location

is in one of three states: occupied, empty, or available. Recall that only empty locations contain
null. Frequent additions and removals can cause every location in the hash table to reference either
a current entry or a former entry. That is, a hash table might have no location that contains null,
regardless of how many or how few entries are actually in the dictionary. If this happens, our
approach to searching a probe sequence will not work. Instead, every unsuccessful search can end
only after considering every location in the hash table. Also, detecting the end of the search will be
somewhat more involved and costly than simply looking for null.

You should safeguard your implementation against this failure. Increasing the size of the
hash table (see Segment 22.7 in the next chapter) can correct the problem, if you act in time. Sep-
arate chaining—which we consider next—does not have this problem.

Separate Chaining
21.23 A second general approach to collision resolution alters the structure of the hash table so that each

location can represent more than one value. Such a location is called a bucket. Anytime a new
search key maps into a particular location, you simply place the key and its associated value in the

Note: Double hashing

• Resolves a collision during hashing by examining locations in the hash table at the
original hash index plus an increment defined by a second hash function. The second
hash function should
■ Differ from the first hash function
■ Depend on the search key
■ Have a nonzero value

• Reaches every location in the hash table, if the size of the table is a prime number
• Avoids both primary clustering and secondary clustering

Question 5 What size hash table should you use with double hashing when the hash func-
tions are

h1(key) = key modulo 13
h2(key) = 7 - key modulo 7

Why?

Question 6 What probe sequence is defined by the hash functions given in the previous ques-
tion when the search key is 16?

Note: Open addressing can be simplified when an application does not require removals.
Such is the case, for example, when a compiler builds a symbol table. It can use a dictionary
that does not permit removals. Locations in the hash table will either reference a dictionary
entry or contain null. Defining the three states given in Segment 21.16 is not needed.
Project 1 at the end of this chapter asks you to develop this implementation.

540 CHAPTER 21 Introducing Hashing

bucket, much as we did with open addressing. To find a value, you hash the search key, locate the
bucket, and look through the key-value pairs in it. In all likelihood, the bucket contains few values,
so this mini-search will be fast. When you remove an entry, you find it in its bucket and delete it.
Thus, the entry no longer exists in the hash table.

What can you use to represent a bucket? A list, a sorted list, a chain of linked nodes, an
array, or a vector are some possibilities with which you are familiar. Anything that involves an
array or vector will cause a substantial memory overhead, since each location in the hash table
will have a fixed amount of memory allocated to it. Much of this memory will be unused. Either
a linked implementation of a list or a chain of linked nodes is a reasonable choice for a bucket,
since memory is allocated to the bucket only as needed. Figure 21-9 illustrates a hash table with
linked chains as buckets. In this arrangement, each location in the hash table is a head reference
to a chain of linked nodes that make up the bucket. Each node contains references to a search
key, to the key’s associated value, and to the next node in the chain. Notice that a node must ref-
erence the search key so that you can locate it later when you search the chain. Resolving colli-
sions by using buckets that are linked chains is called separate chaining.

FIGURE 21-9 A hash table for use with separate chaining; each bucket is a
chain of linked nodes

21.24 If your dictionary allows duplicate search keys, adding a new entry to the beginning of the appro-
priate chain is fastest, as Figure 21-10a indicates. However, if you want distinct search keys, adding
a new entry requires you to search a chain for the search key. If you do not find it, you will be at the
end of the chain, where you can add the new entry. Figure 21-10b illustrates this case. But since
you have to search the chain anyway, you could maintain the chain in sorted order by search key, as
Figure 21-10c shows. Subsequent searches would then be a little faster. As you will see, however,
typical chains are short, so this refinement might not be worth the effort.

Hash table
Key Value

Node

Question 7 Consider search keys that are distinct integers. If the hash function is

h(key) = key modulo 5

and separate chaining resolves collisions, where in the hash table do the following search keys
appear after being added? 4, 6, 20, 14, 31, 29

Resolving Collisions 541

FIGURE 21-10 Where to insert a new entry into a linked bucket when the
integer search keys are (a) unsorted and possibly duplicate;
(b) unsorted and distinct; (c) sorted and distinct

21.25 With distinct search keys and unsorted chains, the algorithms for the dictionary’s add, remove, and
getValue methods are as follows:

Algorithm add(key, value)
index = getHashIndex(key)
if (hashTable[index] == null)
{

hashTable[index] = new Node(key, value)

(a)

20
When duplicate search keys are allowed,
add an entry to the beginning of an unsorted chain

45 20 31

Hash table

(b)

When search keys are distinct,
add an entry to the end of an unsorted chain

45

Hash table

(c)

When search keys are distinct,
add an entry in sorted order to
a sorted chain

37

453120

Hash table

31

37

20

542 CHAPTER 21 Introducing Hashing

numberOfEntries++
return null

}
else
{

Search the chain that begins at hashTable[index] for a node that contains key
if (key is found)
{ // assume currentNode references the node that contains key

oldValue = currentNode.getValue()
currentNode.setValue(value)
return oldValue

}
else // add new node to end of chain
{ // assume nodeBefore references the last node

newNode = new Node(key, value)
nodeBefore.setNextNode(newNode)
numberOfEntries++
return null

}

}

Algorithm remove(key)
index = getHashIndex(key)
Search the chain that begins at hashTable[index] for a node that contains key
if (key is found)
{

Remove the node that contains key from the chain
numberOfEntries--
return value in removed node

}
else

return null

Algorithm getValue(key)
index = getHashIndex(key)
Search the chain that begins at hashTable[index] for a node that contains key
if (key is found)

return value in found node
else

return null

All three operations search a chain of nodes. Each chain should contain only a few entries, if
the hash table is sufficiently large and the hash function distributes the entries uniformly through-
out the table. Thus, these operations should be time efficient. For a dictionary of n entries, the
operations certainly are faster than O(n). In the worst case, however, all entries are in one chain, so
the efficiency degenerates to O(n). We will discuss the efficiency of hashing in more detail in the
next chapter.

Note: Separate chaining provides an efficient and simple way to resolve collisions.
Because the structure of the hash table is altered, however, separate chaining requires more
memory than open addressing.

Chapter Summary 543

CHAPTER SUMMARY

Question 8 With distinct search keys and separate chaining with sorted chains, write an
algorithm for the dictionary’s add method.

Question 9 Can you define an iteration of a dictionary’s search keys in sorted order when
you use hashing in its implementation? Explain.

• Hashing is a dictionary implementation that stores entries into an array called the hash table. A hash function
transforms an entry’s search key into the index of the array location that will contain the entry.

• All classes have a method hashCode that returns an integer hash code. If a class’s instances are to be search
keys, you should override hashCode to produce suitable hash codes. A hash code should depend on the entire
search key.

• A hash function uses hashCode to compute a hash code from a search key and then compresses that hash
code into an index to the hash table. A typical way to compress the hash code c is to compute c modulo n,
where n is a prime number and the size of the hash table. This computation produces an index whose magni-
tude lies between 0 and n - 1.

• A perfect hash function maps each search key into a distinct location in the hash table. You can find such a
function if you know all possible search keys. Using a perfect hash function makes possible O(1) implemen-
tations of the dictionary operations.

• With a typical hash function, more than one search key can map into the same location in the hash table. This
occurrence is called a collision.

• Various methods are available to deal with collisions. Among them are open addressing and separate
chaining.

• With open addressing, all entries that map into the same location are ultimately stored within the hash table.
These entries are in a sequence of locations called the probe sequence. Several different versions of open
addressing are common. Linear probing uses consecutive locations. Quadratic probing spaces the locations
in a probe sequence at increasing increments. These increments are 1, 4, 9, and so on—that is, the squares of
the integers 1, 2, 3, Double hashing uses a fixed increment that depends on the search key. A second
hash function provides this increment.

• With open addressing, you remove an entry by placing it into a removed state. You do not set its table
location to null, because that would terminate subsequent searches prematurely. You retrieve an entry by
searching its probe sequence, ignoring removed entries, until you either find the desired entry or encoun-
ter null. You perform the same search when you add a new entry, but while searching, you note the first
location—if any—that references a removed entry. You use this location for the added entry. If no such
location exists, the addition extends the probe sequence by using the null location encountered after
searching the entire sequence.

• A disadvantage of linear probing and quadratic probing is clustering. Clustering lengthens a probe sequence
and so increases the time to search it. Double hashing avoids this problem.

• With separate chaining, the hash table is an array of buckets. All entries that map into the same array loca-
tion are stored in the bucket that the location references. Each bucket can be a chain of linked nodes, for
example. That is, each location in the hash table can reference the beginning of a chain.

544 CHAPTER 21 Introducing Hashing

EXERCISES

• You can add new entries to a chain in sorted search-key order. Although sorted chains can improve search
time somewhat, they usually are unnecessary, as typical chains are short. You add new entries to an unsorted
chain either at the beginning, if duplicates are allowed, or at the end if not.

• With separate chaining, you retrieve or remove an entry by mapping its search key into a table location. You
then search the bucket that the location references.

• An iteration of the entire hash table will not be in sorted order even if separate chaining with sorted buckets
is used to resolve collisions.

1. Define a hashCode method for the class Name, as given in Segment B.16 of Appendix B.

2. Quadratic probing uses the following indices to define a probe sequence:

(k + j2) modulo n for j ≥ 0

where k is the hash index and n is the size of the hash table.

a. If the hash table contains 17 locations and the hash index is 3, what are the first six indices of the array
locations in the probe sequence that quadratic probing defines?

b. You can compute the indices for the probe sequence more efficiently by using the recurrence relation

ki + 1 = (ki + 2i + 1) modulo n for i ≥ 0 and k0 = k

Derive this recurrence relation.
c. Demonstrate that you can replace the modulo operation in Part b with one comparison and an occasional

subtraction.

3. Project 11 in Chapter 20 revised the class Entry, which is in Listing 20-1, to make it public, and then used it in an
implementation of a dictionary. Consider a hash table of Entry objects. Without further changes to the definition
of Entry, how could you indicate a removed entry?

4. Suppose that the size of your hash table is 31, that you use the hash code described in Segment 21.8, and that
you use separate chaining to resolve collisions. List five different names that would hash to the same location
in the table.

5. Assume the hash table and hash function described in Exercise 4, but use open addressing with linear probing to
resolve collisions. List five different names that do not all hash to the same location in the table yet would
nonetheless result in collisions and clustering.

6. Repeat Exercise 5, but instead use open addressing with quadratic probing to resolve collisions.

7. Give an example of a probe sequence produced by quadratic probing that does not reach the entire hash table,
even if the size of the table is a prime number.

8. Demonstrate that quadratic probing will guarantee a successful addition, if the hash table is at most half full and
its size is a prime number.

9. Demonstrate that double hashing will produce a probe sequence that reaches the entire table, if the size of the hash
table is a prime number. Hint: Show that this is true if the increment and the table size are relatively prime. Then,
if the table size is prime, all increments will be relatively prime to it.

10. Imagine that you alter the linear probing scheme of Segment 21.13 as follows. When a collision occurs at
hashTable[k], you check hashTable[k + c], hashTable[k + 2 * c], hashTable[k + 3 * c], and so on, where c is
a constant. Does this scheme eliminate primary clustering?

Projects 545

PROJECTS

11. Consider data whose search key consists of three floating-point values (longitude, latitude, and altitude, for
example). Suggest at least two possible hash functions for this data.

12. You have approximately 1000 thumbnail images that you want to store in a dictionary that uses hashing in its
implementation. Each image is 20 pixels wide by 20 pixels high, and each pixel is one of 256 colors. Suggest
some possible hash functions that you could use.

1. The note at the end of Segment 21.22 describes a dictionary that does not support a remove operation. Implement
this dictionary by using open addressing with linear probing to resolve collisions.

2. Consider records for patients at a medical facility. Each record contains an integer identification for a patient and
strings for the date, the reason for the visit, and the treatment prescribed. Design and implement the class
PatientRecord so that it overrides the method hashCode. Write a main program that tests your new class.

3. Design a class PatientDataBase that stores instances of PatientRecord, as described in the previous project. The
class should provide at least three query operations, as follows. Given a patient identification and date, the first
operation should return the reason for the visit, and the second operation should return the treatment. The third
query operation should return a list of dates, given a patient identification.

4. The following experiment compares the performance of linear probing and quadratic probing. You will need a list
of 500 names or user names that can be obtained from your instructor or from a system administrator. Implement
a hash table of size 1000, and use the hash code described in Segment 21.8. Count the number of collisions that
occur for both linear probing and quadratic probing when 500 names are added to the table. Repeat the experiment
for tables of size 950, 900, 850, 800, 750, 700, 650, and 600.

5. Design an experiment similar to the one in Project 4, but instead of comparing linear probing and quadratic
probing, compare two different hash functions.

6. Write a program that uses hashing to guess which of two choices a user has made.1 The following sample output
demonstrates an interaction between computer and user:

Choose either A or B, and I will guess your choice.
Press Return when you are ready.
I guess that you chose A; am I right? no
Score: 0 correct, 1 incorrect

Choose either A or B, and I will guess your choice.
Press Return when you are ready.
I guess that you chose A; am I right? yes
Score: 1 correct, 1 incorrect

Choose either A or B, and I will guess your choice.
Press Return when you are ready.
I guess that you chose B; am I right? yes
Score: 2 correct, 1 incorrect

. . .

Initially, your program will make random guesses. After the user makes five choices, your program should
begin to build a hash table that it can use to predict future choices. The last four user choices form a key to the
hash table. The value stored in the table at the hash address represents how many times the user’s next choice was
A and how many times it was B. The program uses these counts to make its guess.

For example, if AAAB hashes to an object containing the counts 5 and 2, where 5 is the number of times the
user has chosen A after having chosen A, A, A, and B, the program would predict A as the user’s next choice. The
specifics of how your program makes its prediction based on these counts are up to you.

1. Based on an assignment idea by Raja Sooriamurthi, as given in SIGCSE’s Nifty Assignments at nifty.standford.edu.

546 CHAPTER 21 Introducing Hashing

ANSWERS TO SELF-TEST QUESTIONS

1. 2301506. "Java".hashCode() has the same value.

2. 19

3. "x"

4. Since the implementation defines both the hash table and the dictionary entry, you have a choice as to where to
add a field to indicate the state of a location in a hash table. You could add a field having three states to each table
location, but you really need only a boolean field, since a null location is empty. If the field is true, the location is
occupied; if it is false, it is available.

Adding a similar data field to the dictionary entry instead of to the hash table leads to a cleaner implementation.
As before, if the table location is null, it is empty. If the entry’s field is true, the location is occupied; if it is false, it
is available. Note that the implementation that appears in the next chapter uses this scheme.

5. 13. Since 13 is both prime and the modulo base in h1, the probe sequence can reach all locations in the table
before it repeats.

6. 3, 8, 0, 5, 10, 2, 7, 12, 4, 9, 1, 6, 11, 3, ...

7. hashTable[0] → 20
hashTable[1] → 6 → 31
hashTable[2] is null
hashTable[3] is null
hashTable[4] → 4 → 14 → 29

8. The add algorithm is the same as the one given in Segment 21.25, but it uses a different search of a chain.
Regardless of whether the chain is sorted, you stop the search as soon as you find the desired search key.
However, if the key is not in the chain, you have to search an entire unsorted chain to learn this. If the chain is
sorted, you can stop the search when you reach the point where the key should have occurred if it were present.

9. No. Suppose that a, b, c, and d are search keys in sorted order in the hash table. With separate chaining, b and d
might appear in one chain while the other keys appear in another. Traversing the chains in order will not visit the
keys in sorted order. The same is true of open addressing when traversing the occupied array locations.

Chapter

22
Hashing as a

Dictionary
Implementation

Contents
The Efficiency of Hashing

The Load Factor
The Cost of Open Addressing
The Cost of Separate Chaining

Rehashing
Comparing Schemes for Collision Resolution
A Dictionary Implementation That Uses Hashing

Entries in the Hash Table
Data Fields and Constructors
The Methods getValue, remove, and add
Iterators

Java Class Library: The Class HashMap
Jave Class Library: The Class HashSet

Prerequisites
Chapter 4 The Efficiency of Algorithms
Chapter 13 List Implementations That Use Arrays
Chapter 14 A List Implementation That Links Data
Chapter 15 Iterators
Chapter 19 Dictionaries
Chapter 20 Dictionary Implementations
Chapter 21 Introducing Hashing

Objectives
After studying this chapter, you should be able to
● Describe the relative efficiencies of the various collision resolution techniques
● Describe a hash table’s load factor
● Describe rehashing and why it is necessary
● Use hashing to implement the ADT dictionary

548 CHAPTER 22 Hashing as a Dictionary Implementation

The previous chapter described hashing as a technique for implementing a dictionary when
searching is the primary task. We now study hashing’s performance and examine the details of its
implementation in Java.

The Efficiency of Hashing

22.1 As you saw in the previous chapter, implementations of the ADT dictionary depend on whether the
dictionary requires distinct search keys. In this section, we consider only dictionaries with distinct
search keys. Recall that the add method for such a dictionary must ensure that duplicate search keys
do not occur.

VideoNote

Each of the dictionary operations getValue, remove, and add searches the hash table for a
given search key. The success or failure of a search for a given key directly affects the success or
failure of the retrieval and removal operations. The successful addition of a new entry occurs after a
search for a given key fails. An unsuccessful addition replaces the value of an existing entry instead
of adding a new entry. This operation occurs after a successful search for a given key. Thus, we
have the following observations about the time efficiency of these operations:

● A successful retrieval or removal has the same efficiency as a successful search
● An unsuccessful retrieval or removal has the same efficiency as an unsuccessful search
● A successful addition has the same efficiency as an unsuccessful search
● An unsuccessful addition has the same efficiency as a successful search

So it is sufficient to analyze the time efficiency of searching the hash table for a given search key.

The Load Factor
22.2 We began our discussion of hashing in the previous chapter with a perfect hash function that caused

no collisions. If you can find a perfect hash function for your particular set of search keys, using it
to implement the ADT dictionary will provide operations that are each O(1). Such an implementa-
tion is ideal. The good news is that finding a perfect hash function is quite feasible in certain situa-
tions. Unfortunately, using a perfect hash function is not always possible or practical. In those
situations, collisions are likely to occur.

Resolving a collision takes time and thus causes the dictionary operations to be slower than an
O(1) operation. As a hash table fills, collisions occur more often, decreasing performance even fur-
ther. Since collision resolution takes considerably more time than evaluating the hash function, it is
the prime contributor to the cost of hashing.

To help us express this cost, we define a measure of how full a hash table is. This measure—the
load factor λ—is the ratio of the size of the dictionary to the size of the hash table. That is,

Hashing efficiency

Note: The successful retrieval of an entry searches the same chain or probe sequence that
was searched when the entry was first added to the hash table. Thus, the cost of a successful
retrieval of an entry is the same as the cost of inserting that entry.

λ Number of entries in the dictionary
Number of locations in the hash table
--=

The Efficiency of Hashing 549

Notice that λ is zero when the dictionary—and hence the hash table—is empty. The maximum
value of λ depends on the type of collision resolution you use. For open addressing schemes, λ’s
maximum value is 1 when the hash table is full. In that case, each entry in the dictionary uses one
location in the hash table. Notice that the number of locations in the available state does not affect
λ. For separate chaining, the number of entries in the dictionary can exceed the size of the hash
table, so λ has no maximum value.

The Cost of Open Addressing
22.3 Recall that all open addressing schemes use one location in the hash table per entry in the diction-

ary. The dictionary operations getValue, remove, and add each require a search of the probe
sequence indicated by both the search key and the collision resolution scheme in effect. Analyzing
the efficiency of these searches is sufficient.

For each open addressing scheme that we considered earlier, we will state the number of com-
parisons necessary to locate a search key in the hash table. We will express these numbers in terms
of the load factor λ. The derivations of these numbers are messy at best and in some cases difficult,
so we omit them. Interpreting the results, however, is straightforward. Recall that for open address-
ing, λ ranges from 0, when the table is empty, to 1 when it is full.

22.4 Linear probing. When you use linear probing, more collisions will likely occur as the hash table
fills. After a collision, you search a probe sequence that forms a cluster. If you add a new entry, the
cluster grows in size. So you would expect the probe sequences to grow and, therefore, require lon-
ger search times. In fact, the average number of comparisons needed to search the probe sequence
for a given search key is about

 for an unsuccessful search and

 for a successful search

Note: The load factor
The load factor λ is a measure of the cost of collision resolution. It is the ratio of the number
of entries in the dictionary to the size of the hash table. λ is never negative. For open address-
ing, λ does not exceed 1. For separate chaining, λ has no maximum value. As you will see,
restricting the size of λ improves the performance of hashing.

Question 1 When λ is 0.5 with open addressing, how many locations in the hash table
contain dictionary entries?

Question 2 With separate chaining, does λ indicate how many buckets in the hash table
are not empty? Explain.

1
2
--- 1 1

1 λ–()2
-------------------+

1
2
--- 1 1

1 λ–()
-----------------+

550 CHAPTER 22 Hashing as a Dictionary Implementation

After evaluating these expressions for a few values of λ, we get the results in Figure 22-1. As λ
increases—that is, as the hash table fills—the number of comparisons for these searches increases.
This result satisfies our initial intuition. For example, when the hash table is half full—that is, when
λ is 0.5—an average unsuccessful search requires about 2.5 comparisons and an average successful
search requires about 1.5 comparisons. As λ increases beyond 0.5, the number of comparisons for
an unsuccessful search increases much more rapidly than for a successful search. Thus, perfor-
mance degrades rapidly when the hash table is more than half full. Should this happen, you’d need
to define a larger hash table, as we describe a bit later in this chapter in the section “Rehashing.”

FIGURE 22-1 The average number of comparisons required by a search of
the hash table for given values of the load factor λ when using
linear probing

22.5 Quadratic probing and double hashing. Secondary clustering as a result of quadratic probing is
not as serious as the primary clustering that occurs when you use linear probing. Here, the average
number of comparisons needed to search the probe sequence for a given search key is about

 for an unsuccessful search and

 for a successful search

Figure 22-2 evaluates these expressions for the same values of λ that we used for linear prob-
ing. Notice that the number of comparisons for an unsuccessful search grows with λ more rapidly
than for a successful search. Although, the degradation in performance as λ increases is not as
severe as with linear probing, you still want λ < 0.5 to maintain efficiency.

Even though double hashing avoids the clustering of linear probing and quadratic probing, the
estimate of its efficiency is the same as for quadratic probing.

Note: The performance of hashing with linear probing degrades significantly as the load
factor λ increases. To maintain reasonable efficiency, the hash table should be less than half
full. That is, keep λ < 0.5.

λ Unsuccessful Search Successful Search

 0.1
 0.3
 0.5
 0.7
 0.9

 1.1
 1.5
 2.5
 6.1
 50.5

 1.1
 1.2
 1.5
 2.2
 5.5

1
1 λ–()

1
λ

1
1 λ–
------------log

Note: If you use quadratic probing or double hashing, the hash table should be less than
half full. That is, λ should be less than 0.5.

The Efficiency of Hashing 551

FIGURE 22-2 The average number of comparisons required by a search of the
hash table for given values of the load factor λ when using
either quadratic probing or double hashing

The Cost of Separate Chaining
22.6 With separate chaining as the collision resolution strategy, each entry in the hash table can refer-

ence a chain of linked nodes. The number of such chains, including empty ones, is then the size
of the hash table. Thus, the load factor λ is the number of dictionary entries divided by the num-
ber of chains. That is, λ is the average number of dictionary entries per chain. Since this number
is an average, we expect some chains to contain fewer than λ entries—or even none—and some
to have more. We assume that the chains are not sorted and that the search keys in the dictionary
are distinct.

The dictionary operations getValue, remove, and add each require a search of the chain indi-
cated by the search key. As was the case for open addressing, analyzing the efficiency of these
searches is sufficient. Again, we will state the number of comparisons necessary to locate a search
key in the hash table in terms of the load factor λ.

An unsuccessful search of a hash table sometimes will encounter an empty chain, and so that
operation is O(1) and would be the best case. But for the average case when the chains are not
sorted, searching for an entry in the hash table without success examines λ nodes. In contrast, a suc-
cessful search always inspects a chain that is not empty. In addition to seeing that the table location
at the hash index is not null, an average successful search considers a chain of λ nodes and locates
the desired entry after looking at λ/2 of them. Thus, the average number of comparisons during a
search when separate chaining is used is about

λ for an unsuccessful search
1 + λ/2 for a successful search

After evaluating these expressions for a few values of λ, we get the results in Figure 22-3. The
number of comparisons for these searches increases only slightly as λ increases—that is, as the
hash table fills. A typical upper bound for λ is 1, as smaller values do not provide significantly bet-
ter performance. Notice the unusual result: Successful searches take more time than unsuccessful
searches when λ < 2.

Remember that these results are for the average case. In the worst case, all search keys map
into the same table location. Thus, all entries occur in the same chain of nodes. The worst-case
search time, then, is O(n), where n is the number of entries.

λ Unsuccessful Search Successful Search

 0.1
 0.3
 0.5
 0.7
 0.9

 1.1
 1.4
 2.0
 3.3
 10.0

 1.1
 1.2
 1.4
 1.7
 2.6

Note: The average performance of hashing with separate chaining does not degrade signifi-
cantly as the load factor λ increases. To maintain reasonable efficiency, you should keep λ < 1.

552 CHAPTER 22 Hashing as a Dictionary Implementation

FIGURE 22-3 The average number of comparisons required by a search of the
hash table for given values of the load factor λ when using
separate chaining

Rehashing

22.7 The previous section discussed the efficiency of hashing as a dictionary implementation when
using various ways of resolving collisions. As you saw, to ensure an efficient implementation, you
must not let the load factor λ get too large. You can readily compute λ and see whether it exceeds
the upper limit for the particular collision resolution scheme, as given in the previous note.

So what do you do when λ reaches its limit? First, you can resize the array that serves as the
hash table, as described in Chapter 2. Typically, you double the size of an ordinary array, but here
you need to ensure that the array’s size is a prime number. Expanding the array’s size to a prime
number that is at least twice its previous size is not too difficult.

Ordinarily, when you expand an array, the next step is to copy the contents of the original array
into corresponding locations of the new array. This is not the case for a hash table, however. Since
you have changed the size n of the hash table, the compression function c % n will compute different
indices than it did for the original hash table. For example, if the hash table originally contained
101 locations, the function c % 101 compresses the hash code 505 to the index 0. The new hash
table will contain 211 locations, since 211 is the smallest prime number greater than 2 times 101.
But now c % 211 compresses 505 to the index 83. You cannot simply copy the location at index 0

λ Unsuccessful Search Successful Search

 0.1
 0.3
 0.5
 0.7
 0.9
 1.1
 1.3
 1.5
 1.7
 1.9
 2.0

 0.1
 0.3
 0.5
 0.7
 0.9
 1.1
 1.3
 1.5
 1.7
 1.9
 2.0

 1.1
 1.2
 1.3
 1.4
 1.5
 1.6
 1.7
 1.8
 1.9
 2.0
 2.0

Note: Maintaining the performance of hashing
Collisions and their resolution typically cause the load factor λ to increase and the efficiency
of the dictionary operations to decrease. To maintain efficiency, you should restrict the size of
λ as follows:

λ < 0.5 for open addressing
λ < 1.0 for separate chaining

Should the load factor exceed these bounds, you must increase the size of the hash table, as
the next section describes.

Comparing Schemes for Collision Resolution 553

from the original table to the location at index 0 in the new table. And you cannot copy it to the
location at index 83 in the new table, because you also need to consider collisions.

After creating a new, larger hash table of an appropriate size, you use the dictionary method
add to add each item in the original hash table to the new table. The method computes the hash
index using the size of the new table and handles any collisions. This process of enlarging a hash
table and computing new hash indices for its contents is called rehashing. You can see that increas-
ing the size of a hash table requires considerably more work than increasing the size of an ordinary
array. Rehashing is a task that you should not do often.

Comparing Schemes for Collision Resolution

22.8 In previous segments, you saw how the load factor λ affects the average number of comparisons
required by a search of a hash table for various ways to resolve collisions. The graphs in Figure 22-4
illustrate this effect for various collision resolution schemes. When λ is less than 0.5, the average
number of comparisons for a successful search is about the same regardless of the process used to
resolve collisions. For unsuccessful searches, the three open addressing schemes have about the
same efficiency when λ is less than 0.5. However, separate chaining is somewhat more efficient in
this case.

As λ exceeds 0.5, the efficiency of open addressing degrades rapidly, with linear probing the
least efficient. Separate chaining, on the other hand, remains efficient for values of λ up to 1. In
fact, the tabulated data in Figure 22-3 shows that its efficiency degrades only slightly for λ between
1 and 2.

Separate chaining certainly appears to be the fastest approach. But separate chaining can
require more memory than open addressing, since each location in the hash table can reference a
chain of linked nodes. On the other hand, the hash table itself can be smaller than when you use an
open addressing scheme, since λ can be larger. Thus, space need not be a deciding factor in how
you resolve collisions.

If all of these collision resolution schemes used hash tables of equal size, open addressing
would be more likely to lead to rehashing than separate chaining would. To reduce the likelihood of
rehashing, an open addressing strategy could use a large hash table. Remember that in Java, the
table contains references that do not require much memory. So even though at least half of the table
must remain unused, the actual space allocation would not be excessive.

Note: Rehashing
When the load factor λ becomes too large, resize the hash table. To compute the table’s new
size, first double its present size and then increase the result to the next prime number. Use
the method add to add the current entries in the dictionary to the new hash table.

Question 3 Consider a hash table of size 5. The function c % 5 places the hash codes 20, 6,
18, and 14 into locations at indices 0, 1, 3, and 4, respectively. Show the effects of rehash-
ing on this hash table when linear probing resolves collisions.

Note: Dynamic hashing allows a hash table to grow or shrink in size without the expense
of rehashing. This technique, which we will not cover, is particularly useful in database man-
agement environments when the database is stored in external files.

554 CHAPTER 22 Hashing as a Dictionary Implementation

Among open addressing schemes, double hashing is a good choice. It uses fewer comparisons
than linear probing. Additionally, its probe sequence can reach the entire table, whereas quadratic
probing cannot.

FIGURE 22-4 The average number of comparisons required by a search of the
hash table versus the load factor λ for four collision resolution
techniques when the search is (a) successful; (b) unsuccessful

A Dictionary Implementation That Uses Hashing

VideoNote

The efficiency of separate chaining makes it a desirable method for resolving collisions that occur
during hashing. Because its implementation is relatively straightforward, we leave it to you to
implement. Instead, we will implement the linear probing method of open addressing. Most of this
dictionary implementation is independent of the particular open addressing technique that you use.
Adapting it to use quadratic probing or double hashing involves few changes.

Entries in the Hash Table
22.9 Our hash table will be like the array in Figure 20-1a of Chapter 20 that we used to implement the dic-

tionary. Each array location can reference an object that contains a search key and an associated value.
The class TableEntry of these objects is similar to the class Entry that you saw in Segment 20.2.

However, with open addressing, each location in the hash table is in one of three states: occu-
pied, empty, or available. (See Segment 21.16 of the previous chapter.) An empty location contains
null. Rather than altering the structure of the hash table to indicate the other states, we make the
entry objects indicate whether they are currently in the table or have been removed from it. Hence,

(a) Successful search

A
ve

ra
ge

 n
um

be
r

of
 p

ro
be

s
18

16

14

12

10

8

6

4

2

0
0 1.00.80.60.40.2

	

Linear probing

	

1.00.80.60.40.20
0

A
ve

ra
ge

 n
um

be
r

of
 p

ro
be

s

18

16

14

12

10

8

6

4

2

(b) Unsuccessful search

Quadratic probing, double hashing
Separate chaining

Implementing a dictionary

A Dictionary Implementation That Uses Hashing 555

we add another data field to the class of entry objects. This field is a boolean flag; it is true if the
entry is in the dictionary or false if it has been removed. Figure 22-5 illustrates the hash table and
one dictionary entry.

FIGURE 22-5 A hash table and one of its entry objects

Thus, we create the private class TableEntry and make it internal to the dictionary class.
TableEntry begins as follows:

private class TableEntry<S, T>
{

private S key;
private T value;
private boolean inTable; // true if entry is in hash table

private TableEntry(S searchKey, T dataValue)
{

key = searchKey;
value = dataValue;
inTable = true;

} // end constructor
. . .

In addition to the methods getKey, getValue, and setValue, this class has the methods isIn,
isRemoved, setToIn, and setToRemoved to either interrogate or set the value of the boolean
flag inTable.

Data Fields and Constructors
22.10 If you do not use a perfect hash function, you must expect collisions. All open addressing methods

for resolving collisions become less efficient as the hash table fills, so you need to increase the size
of the table. As Segment 21.22 mentioned, increasing the size of the table can also ensure that it
will contain a null entry—a necessity for ending the search of a probe sequence. Since our hash
table is an array, we expand it and rehash the dictionary entries, as described in Segment 22.7.
However, we modify the definition of the load factor λ by replacing the number of dictionary

Hash table

Instance of TableEntry

ValueSearch key

Flag

Note: A location in the hash table in the available state contains an entry in the removed state.

556 CHAPTER 22 Hashing as a Dictionary Implementation

entries with the number of table locations in either the occupied or available state. This change
increases λ so that rehashing occurs before the table loses its last null entry. Thus, the class begins
as shown in Listing 22-1.

The field locationsUsed counts the number of locations in the hash table that are in either
the occupied or available state and is incremented each time an entry is added to the dictionary.

LISTING 22-1 An outline of the class HashedDictionary

import java.util.Iterator;
import java.util.NoSuchElementException;

/**
A class that implements a dictionary by using hashing.
@author Frank M. Carrano

*/
public class HashedDictionary<K, V>

implements DictionaryInterface<K, V>
{

private TableEntry<K, V>[] hashTable; // dictionary entries
private int numberOfEntries;
private int locationsUsed; // number of table locations not null
private static final int DEFAULT_SIZE = 101; // must be prime
private static final double MAX_LOAD_FACTOR = 0.5; // fraction of

// hash table that can be filled

public HashedDictionary()
{

this(DEFAULT_SIZE); // call next constructor
} // end default constructor

public HashedDictionary(int tableSize)
{

int primeSize = getNextPrime(tableSize);

hashTable = new TableEntry[primeSize];
numberOfEntries = 0;
locationsUsed = 0;

} // end constructor

< Implementations of methods in DictionaryInterface >
. . .

< Implementations of private methods >
. . .

private class TableEntry<S, T>
{

< See Segment 22.9 >
} // end TableEntry

} // end HashedDictionary

A Dictionary Implementation That Uses Hashing 557

In contrast, the field numberOfEntries counts the number of entries currently in the dictionary.
Thus, it is incremented when an entry is added to the dictionary but decremented when an
entry is removed.

Each constructor allocates an array for the hash table. The second constructor lets the client
specify a minimum size for the hash table. To ensure that the table’s size is prime and at least as big
as the client wants, this constructor calls the private method getNextPrime to find the first prime
number that is greater than or equal to a given integer. The default constructor invokes the second
constructor, giving it a predetermined size.

The Methods getValue, remove, and add
We now consider next the major operations of the dictionary: getValue, remove, and add. The
note at the end of Segment 21.17 in the previous chapter summarized just what these operations
need to do.

22.11 The method getValue. We begin with an algorithm for the retrieval method getValue:
Algorithm getValue(key)
// Returns the value associated with the given search key, if it is in the dictionary.
// Otherwise, returns null.

index = getHashIndex(key)
Search the probe sequence that begins at hashTable[index] for key
if (key is found)

return value in found entry
else

return null

 In addition to the private method getHashIndex, which you saw in Segment 21.11, this algo-
rithm suggests another private method that searches the probe sequence. We name this method
locate and specify it informally as follows:

locate(index, key)
Follows the probe sequence that begins at index (key’s hash index) and returns either the index
of the entry containing key or -1, if no such entry exists.

We’ll implement locate in Segment 22.13.
The method getValue then has the following implementation:

public V getValue(K key)
{

V result = null;

int index = getHashIndex(key);
index = locate(index, key);

if (index != -1)
result = hashTable[index].getValue(); // key found; get value

Note: To implement getNextPrime(anInteger), first see whether anInteger is even. If it
is, it cannot be prime, so add 1 to make it odd. Then use a private method isPrime to find the
first prime number among the parameter anInteger and subsequent odd integers.

To implement isPrime, note that 2 and 3 are prime but 1 and even integers are not. An odd
integer 5 or greater is prime if it is not divisible by every odd integer up to its square root.

558 CHAPTER 22 Hashing as a Dictionary Implementation

// else key not found; return null

return result;
} // end getValue

22.12 The method remove. Removing an entry from the hash table, like retrieving an entry, involves
locating the search key. If found, the entry is flagged as removed. The following pseudocode
describes the necessary steps for this operation:

Algorithm remove(key)
// Removes a specific entry from the dictionary, given its search key.
// Returns either the value that was associated with the search key or null if no such object
// exists.

index = getHashIndex(key)
Search the probe sequence that begins at hashTable[index] for key
if (key is found)
{

Flag entry as removed
numberOfEntries--
return value in removed entry

}
else

return null

As the following implementation shows, you call the private method locate to locate the
desired entry. If you find it, you change its state to removed and return its value. Otherwise, you
return null.

public V remove(K key)
{

V removedValue = null;

int index = getHashIndex(key);
index = locate(index, key);

if (index != -1)
{ // key found; flag entry as removed and return its value

removedValue = hashTable[index].getValue();
hashTable[index].setToRemoved();
numberOfEntries--;

} // end if

// else key not found; return null

return removedValue;
} // end remove

22.13 The private method locate. Before we look at add, let’s implement the method locate that both
getValue and remove invoke. The method looks for the given search key along the probe sequence
that begins at hashTable[index], where index is the key’s hash index. Recall that the search must
ignore entries that are in the removed state. The search continues until it locates either key or null.

To follow the probe sequence, locate must implement a particular open addressing scheme to
resolve collisions. For simplicity, we will implement linear probing. The following algorithm sum-
marizes our approach:

Algorithm locate(index, key)
// Returns either the index of the entry containing key or -1 if no such entry is found.

while (key is not found and hashTable[index] is not null)
{

A Dictionary Implementation That Uses Hashing 559

if (hashTable[index] references an entry that is in the dictionary and contains key)
Exit loop

else
index = next probe index

}

if (key is found)
return index

else
return -1

The implementation of locate now follows from this pseudocode:
private int locate(int index, K key)
{

boolean found = false;

while (!found && (hashTable[index] != null))
{

if (hashTable[index].isIn() &&
key.equals(hashTable[index].getKey()))

found = true; // key found
else // follow probe sequence

index = (index + 1) % hashTable.length; // linear probing
} // end while
// Assertion: either key or null is found at hashTable[index]

int result = -1;
if (found)

result = index;

return result;
} // end locate

You can change from linear probing to another open addressing scheme for collision resolution
by replacing the highlighted assignment statement in the previous method.

22.14 The method add. We begin with the algorithm for adding a new entry:
Algorithm add(key, value)
// Adds a new key-value entry to the dictionary. If key is already in the dictionary,
// returns its corresponding value and replaces it in the dictionary with value.

if (hash table is too full)
rehash()

index = getHashIndex(key)
Check for collision and resolve it (this step can alter index)
if (key is not found)
{ // add entry to hash table

hashTable[index] = new TableEntry(key, value)
numberOfEntries++
locationsUsed++
return null

}
else // search key is in table; return and replace entry’s value
{

oldValue = hashTable[index].getValue()
hashTable[index].setValue(value)
return oldValue

}

560 CHAPTER 22 Hashing as a Dictionary Implementation

This algorithm suggests that you write several more private methods. We specify them infor-
mally as follows:

isHashTableTooFull()
Returns true if the hash table’s load factor is greater than or equal to MAX_LOAD_FACTOR. Here we define
the load factor as the ratio of locationsUsed to hashTable.length.

rehash()
Expands the hash table to a size that is both prime and at least double its current size, and then adds
the current entries in the dictionary to the new hash table.

probe(index, key)
Detects whether key collides with hashTable[index] and resolves it by following a probe
sequence. Returns the index of either an available location along the probe sequence or the entry
containing key. This index is always legal, since the probe sequence stays within the hash table.

Using these private methods, we implement the method add as follows:
public V add(K key, V value)
{

V oldValue; // value to return

if (isHashTableTooFull())
rehash();

int index = getHashIndex(key);
index = probe(index, key); // check for and resolve collision

// Assertion: index is within legal range for hashTable
assert (index >= 0) && (index < hashTable.length);

if ((hashTable[index] == null) || hashTable[index].isRemoved())
{ // key not found, so insert new entry

hashTable[index] = new TableEntry<K,V>(key, value);
numberOfEntries++;
locationsUsed++;
oldValue = null;

}
else
{ // key found; get old value for return and then replace it

oldValue = hashTable[index].getValue();
hashTable[index].setValue(value);

} // end if

return oldValue;
} // end add

22.15 The private method probe. The method probe(key, index) is similar to the method locate in
that it looks for key along the probe sequence that begins at hashTable[index]. The search ignores
entries that are in the removed state and continues until it locates either key or null. During this
search, the method records the index of the first location, if any, that references an entry that has
been removed from the table. This additional task is what distinguishes probe from locate. Thus,
probe returns the index of a table location that either references an entry containing key or is
available for an addition to the table.

Notice that probe returns the index of the removed entry that it first encounters along the probe
sequence. Since add will insert a new entry into this location, a subsequent search for this entry will
encounter it sooner than if add had inserted it in a location further along the probe sequence.

A Dictionary Implementation That Uses Hashing 561

The following pseudocode summarizes the logic of probe:
Algorithm probe(index, key)
// Searches the probe sequence that begins at index. Returns either the index of the entry
// containing key or the index of an available location in the hash table.

while (key is not found and hashTable[index] is not null)
{

if (hashTable[index] references an entry in the dictionary)
{

if (the entry in hashTable[index] contains key)
Exit loop

else
index = next probe index

}
else // hashTable[index] references a removed entry
{

if (this is the first removed entry encountered)
removedStateIndex = index

index = next probe index
}

}
if (key is found or a removed entry was not encountered)

return index
else

return removedStateIndex // index of first entry removed
The following method implements this algorithm:
private int probe(int index, K key)
{

boolean found = false;
int removedStateIndex = -1; // index of first location in

// removed state
while (!found && (hashTable[index] != null))
{

if (hashTable[index].isIn())
{

if (key.equals(hashTable[index].getKey()))
found = true; // key found

else // follow probe sequence
index = (index + 1) % hashTable.length; // linear probing

}
else // skip entries that were removed
{

// save index of first location in removed state
if (removedStateIndex == -1)

removedStateIndex = index;

index = (index + 1) % hashTable.length; // linear probing
} // end if

} // end while
// Assertion: either key or null is found at hashTable[index]

if (found || (removedStateIndex == -1))
return index; // index of either key or null

else
return removedStateIndex; // index of an available location

} // end probe

562 CHAPTER 22 Hashing as a Dictionary Implementation

The methods probe and locate are so similar that you can omit locate and use probe instead.
To do so, you must change the implementations of remove and getValue slightly. The following
question asks you to make this change.

22.16 The private method rehash. Recall that the method rehash expands the hash table to a size that is
both prime and at least double its current size. Since the hash function depends on the size of the
table, you cannot copy entries from the old array and put them into the same positions in the new
array. You need to apply the revised hash function to each entry to determine its proper position in
the new table. But doing so can lead to collisions that need to be resolved. Thus, you should use the
method add to add the existing entries to the new and larger hash table. Since add increments the
data field numberOfEntries, you must remember to set this field to zero before adding the entries.

The method has the following implementation:

private void rehash()
{

TableEntry<K, V>[] oldTable = hashTable;
int oldSize = hashTable.length;
int newSize = getNextPrime(oldSize + oldSize);
hashTable = new TableEntry[newSize]; // increase size of array

numberOfEntries = 0; // reset number of dictionary entries, since
// it will be incremented by add during rehash

locationsUsed = 0;

// rehash dictionary entries from old array to the new and bigger
// array; skip both null locations and removed entries
for (int index = 0; index < oldSize; index++)
{

if ((oldTable[index] != null) && oldTable[index].isIn())
add(oldTable[index].getKey(), oldTable[index].getValue());

} // end for
} // end rehash

As we traverse the old hash table, notice that we skip both the null locations and the entries that
have been removed from the dictionary but are still in the hash table.

This method does not retain the instances of TableEntry that were in the old hash table.
Instead, it uses an entry’s key and value to create a new entry. You can avoid this reallocation of
entries; Exercise 4 at the end of this chapter asks you to investigate this possibility.

Iterators
22.17 Finally, we provide iterators for the dictionary, much as we did in Chapter 20. For example, we can

implement an internal class KeyIterator to define an iteration of the search keys. The iteration
must traverse the hash table, ignoring cells that either contain null or reference removed entries.
Figure 22-6 shows a sample hash table. Cells in blue reference the dictionary entries, light gray
cells reference removed entries, and dark gray cells contain null. As we traverse this table, we skip

Question 4 What changes to the methods remove and getValue are necessary so they can
call probe instead of locate?

Question 5 When the method add calls rehash, rehash calls add. But when rehash calls
add, does add call rehash? Explain.

A Dictionary Implementation That Uses Hashing 563

cells that are gray. The only real concern in this implementation is detecting when the iteration
ends—that is, when the method hasNext should return false. The occurrence of a gray cell and the
size of the hash table are not the proper criteria for this determination. Instead, you simply count
backward from currentSize each time the method next returns the next search key.

FIGURE 22-6 A hash table containing dictionary entries, removed entries, and
null values

The implementation of KeyIterator follows. A class that defines an iteration of values would
have a similar implementation.

private class KeyIterator implements Iterator<K>
{

private int currentIndex; // current position in hash table
private int numberLeft; // number of entries left in iteration

private KeyIterator()
{

currentIndex = 0;
numberLeft = numberOfEntries;

} // end default constructor

public boolean hasNext()
{

return numberLeft > 0;
} // end hasNext

public K next()
{

K result = null;

if (hasNext())
{

// find index of next entry
while ((hashTable[currentIndex] == null) ||

hashTable[currentIndex].isRemoved())
{

currentIndex++;
} // end while

result = hashTable[currentIndex].getKey();
numberLeft--;
currentIndex++;

}
else

throw new NoSuchElementException();

return result;
} // end next

Blue � current entry
Light gray � removed entry
Dark gray � null

564 CHAPTER 22 Hashing as a Dictionary Implementation

public void remove()
{

throw new UnsupportedOperationException();
} // end remove

} // end KeyIterator

Java Class Library: The Class HashMap

22.18 The standard package java.util contains the class HashMap<K, V>. This class implements the
interface java.util.Map that we mentioned in Segment 19.22. Recall that this interface is similar
to our DictionaryInterface. HashMap assumes that the search-key objects belong to a class that
overrides the methods hashCode and equals.

The hash table is a collection of buckets, where each bucket can contain several entries. As you
know, a hash table’s load factor λ is a measure of how full the table is. The constructors for HashMap
enable you to specify the initial number of buckets and the maximum load factor λmax. These con-
structors are as follows:

public HashMap()
Creates an empty hash table with a default initial size of 16 and a default maximum load factor of 0.75.

public HashMap(int initialSize)
Creates an empty hash table with a given initial size and a default maximum load factor of 0.75.

public HashMap(int initialSize, float maxLoadFactor)
Creates an empty hash table with a given initial size and a given maximum load factor.

public HashMap(Map<? extends K,? extends V> table)
Creates a hash table with the same entries as table.

The authors of HashMap chose a default maximum load factor of 0.75 to provide a balance
between time and memory requirements. Even though higher values of the load factor permit
smaller hash tables, they cause higher search times, which in turn reduce the efficiency of the get,
put, and remove methods.

When the number of entries in the hash table exceeds λmax times the number of buckets, the
size of the hash table is increased by using rehashing. But rehashing takes time. You can avoid
rehashing if you choose

Of course, too large a hash table wastes space.

Java Class Library: The Class HashSet

22.19 The package java.util of the Java Class Library also contains the class HashSet<T>. This class
implements the interface java.util.Set that we presented in Segment 1.21 of Chapter 1. Recall
that a set is a collection that does not contain duplicate entries, but otherwise is similar to a bag.
HashSet uses an instance of the class HashMap, as introduced in the previous segment, to contain the
entries in a set.

Note: Hashing as an implementation of the ADT dictionary does not provide the ability to
sort its entries. Such an implementation is not suitable for any application that requires a
sorted iteration of the entries.

Number of buckets Maximum number of entries in the dictionary
λmax

--->

Exercises 565

Among the constructors defined in HashSet are the following:

public HashSet()
Creates an empty set having a default initial capacity of 16. The underlying instance of HashMap uses
a load factor of 0.75.

public HashSet(int initialCapacity)
Creates an empty set having the given initial capacity. The underlying instance of HashMap uses a
load factor of 0.75.

public HashSet(int initialCapacity, float loadFactor)
Creates an empty set having the given initial capacity. The underlying instance of HashMap uses the
specified load factor.

CHAPTER SUMMARY

EXERCISES

● Hashing is efficient as long as the ratio of dictionary size to hash-table size remains small. This ratio is called
the load factor. The load factor should be less than 1 for separate chaining and less than 0.5 for open address-
ing. If the load factor exceeds these bounds, you must rehash the table.

● Rehashing is the process that increases the size of a hash table to a prime number that is greater than twice
the table’s current size. Since the hash function depends on the table size, you cannot simply copy entries
from the old table to the new one. Instead, you use the method add to add all current entries to the new table.

● Separate chaining, as compared to open addressing, provides faster dictionary operations on average, can
use a smaller hash table, and needs rehashing less frequently. If both approaches have the same size array for
a hash table, separate chaining uses more memory due to its linked chains.

● Hashing as a dictionary implementation does not support operations that involve sorted search keys. For
example, you cannot easily traverse the keys in sorted order, find keys that lie within a given range, or iden-
tify the largest or smallest search key.

● The package java.util contains both the class HashMap<K, V>, which implements the interface Map<K, V>,
and the class HashSet<T>, which implements the interface Set<T>.

1. Suppose that you use open addressing to resolve collisions. Now imagine that your hash table is getting full. To
avoid the bad performance that results from a nearly full hash table, you should create a new, larger hash table.

a. What steps should you take to move all of your entries to this new table?
b. What happens to the hash function?

2. To guarantee that the average number of probes is less than or equal to 4, what is the maximum load factor that a
hash table can have if it uses

a. Linear probing
b. Double hashing
c. Separate chaining

3. Revise the method add given in Segment 22.14 when duplicate search keys are allowed in the dictionary.

4. The method rehash does not retain the instances of TableEntry that were in the old hash table. It could if the
method add had an entry as its parameter instead of the search key and value. Write such a method as an additional
but private add method, and then revise rehash so it retains the instances of TableEntry that were in the old
hash table.

566 CHAPTER 22 Hashing as a Dictionary Implementation

PROJECTS

5. Imagine a collection of names that are instances of the class Name, as modified in Exercise 1 of Chapter 21. For
each name, imagine a string that represents a nickname. Suppose that each nickname is a search key, and you plan
to add nickname-name pairs to a dictionary that is an instance of the class HashMap, as described in Segment 22.18.

a. Suppose that you plan to add 1000 entries to this dictionary. Create an instance of the class HashMap that
can accommodate the 1000 entries without rehashing.

b. Write statements that add four nickname-name pairs to your dictionary. Then write statements that retrieve
and display the name that corresponds to a nickname of your choice.

6. Can you use a hash table to implement a priority queue? Explain.

1. Implement the ADT dictionary by using hashing and separate chaining. Use a chain of linked nodes as each
bucket. The dictionary’s entries should have distinct search keys.

2. Repeat Project 1, but use the ADT list for each bucket instead of a chain of linked nodes. What implementation of
the list would be reasonable?

3. Implement the class PatientDataBase, that you designed in Project 3 of the previous chapter. Use a hash table to
store the patient records. Write a main program that demonstrates and tests this class.

4. Even though two implementations of a hash table may require the same average number of comparisons, their
distributions may be different. The following experiment will examine this possibility for linear probing and
double hashing. You will need two disjoint lists of names: one with at least 1000 names and the other with at least
10,000 names.

a. For both of the collision resolution schemes linear probing and double hashing, determine the load
factor that results in an average of 1.5 comparisons for an unsuccessful search of a hash table holding
100 objects. From the load factor, determine the size of the table required.

b. Create two hash tables of the appropriate size and two corresponding empty lists, which will hold counts.
Use linear probing for one table and double hashing for the other. Inside a loop that iterates 1000 times, do
the following:
● Clear the hash tables.
● Randomly choose 100 names from the list of 1000 and insert them into the tables.
● Randomly choose 100 names from the list of 10,000 and search the tables for each name. (Each

search will be unsuccessful because the two lists have no names in common.)
● Count the number of comparisons made in each table for the 100 searches and record the count in

the list corresponding to the table.
After the iteration is complete, each list should contain 1000 values. Each of these values is the total number of
comparisons required to search for 100 names. Compute and display the average and standard deviation of each
list. We expect the average number of comparisons for both hash tables to be equal to 150 (1.5 times 100).

5. Modify the previous project as follows:
● Let the user enter the desired average number of comparisons.
● Display a histogram of the results. A histogram shows the frequency of data values in given intervals

of the same length. Use the floor of the average number of comparisons as the interval length.

6. Chapter 1 defined a set as a bag that does not permit duplicate entries. Define a class of sets that uses a hash table
to store a set’s entries.

Answers to Self-Test Questions 567

ANSWERS TO SELF-TEST QUESTIONS

1. Half of them.

2. No. Even when λ is large, all entries could be in one bucket.

3. After expanding the table to 11 locations (11 is the prime number larger than twice the current table size of 5), the
function c % 11 places 20 at index 9, 6 at index 6, and 14 at index 3. 18 causes a collision at index 9, so we probe
ahead and place it at index 10.

4. In each method, replace the statements
index = locate(index, key);
if (index != -1)

with

index = probe(index, key);
if ((hashTable[index] != null) && (hashTable[index].isIn()))

5. No. The table size has increased, so rehashing is not necessary.

This page intentionally left blank

Chapter

23Trees
Contents
Tree Concepts

Hierarchical Organizations
Tree Terminology

Traversals of a Tree
Traversals of a Binary Tree
Traversals of a General Tree

Java Interfaces for Trees
Interfaces for All Trees
An Interface for Binary Trees

Examples of Binary Trees
Expression Trees
Decision Trees
Binary Search Trees
Heaps

Examples of General Trees
Parse Trees
Game Trees

Prerequisites
Chapter 5 Stacks
Chapter 7 Recursion
Chapter 14 A List Implementation That Links Data
Chapter 15 Iterators
Chapter 18 Searching

Objectives
After studying this chapter, you should be able to
• Describe binary trees and general trees, using standard terminology
• Traverse a tree in one of four ways: preorder, postorder, inorder, or level order
• Give examples of binary trees, including expression trees, decision trees, binary search trees, and heaps
• Give examples of general trees, including parse trees and game trees

570 CHAPTER 23 Trees

As a plant, a tree is well known. As a way to organize data, the tree is more familiar than you
might think. A family tree or a chart of players in a tournament are two common examples of a tree.
A tree provides a hierarchical organization in which data items have ancestors and descendants.
The organization is richer and more varied than any you have seen previously.

This chapter explores the ADT tree in its two forms—binary and general—and provides several
examples of how such trees are used.

Tree Concepts

23.1 The data organizations that you have seen so far have placed data in a linear order. Objects in a stack,
queue, list, or dictionary appear one after the other. As useful as these organizations are, you often must
categorize data into groups and subgroups. Such a classification is hierarchical, or nonlinear, since
the data items appear at various levels within the organization.

We begin by looking at several familiar examples of hierarchical data. Each example will be
illustrated by a diagram that represents a tree.

Hierarchical Organizations
23.2 Example: Family trees. Your relatives can be arranged hierarchically in more than one way.

Figure 23-1 shows Carole’s children and grandchildren. Her son Brett has one daughter, Susan.
Carole’s daughter, Jennifer, has two children—Jared and Jamie.

Using a different arrangement, Figure 23-2 shows Jared’s parents and grandparents. Jared’s
father is John and his mother is Jennifer. John’s father and mother are James and Mary; Jennifer’s
parents are Robert and Carole.

FIGURE 23-1 Carole’s children and grandchildren

FIGURE 23-2 Jared’s parents and grandparents

Carole

Jennifer

Jared

BrianBrett

Susan Jamie

Jared

CaroleMary

JenniferJohn

James Robert

Tree Concepts 571

23.3 Example: A university’s organization. Corporations, schools, churches, and governments all orga-
nize their staff hierarchically. For example, Figure 23-3 shows a portion of the administrative structure
of a typical university. All offices ultimately report to the president. Immediately beneath the president
are three vice presidents. The Vice President for Academic Affairs, for example, oversees the deans of
the colleges. The deans in turn supervise the chairs of the various academic departments, such as com-
puter science and accounting.

FIGURE 23-3 A portion of a university’s administrative structure

23.4 Example: File directories. Typically, you organize the files on your computer into folders, or direc-
tories. Each folder contains several other folders and/or files. Figure 23-4 shows the organization of
the folders and files on Paul’s computer. This organization is hierarchical. That is, all of Paul’s files
are organized within folders that are ultimately within the folder myStuff. For example, to look at
his budget, Paul would start with the folder myStuff, find the folder home, and finally locate the file
budget.txt.

FIGURE 23-4 Computer files organized into folders

Chair of
Computer Engineering

Chair of
Accounting

Chair of
Computer Science

Dean of
Engineering

Dean of
Business

Dean of
Arts and Sciences

Vice President for
Academic Affairs

Vice President for
Business Affairs

Vice President for
Student Affairs

President

home work

myStuff

play school

budget.txt

572 CHAPTER 23 Trees

Tree Terminology
23.5 Each of the previous figures is an example of a tree. A tree is a set of nodes connected by edges

that indicate the relationships among the nodes. The nodes are arranged in levels that indicate the
nodes’ hierarchy. At the top level is a single node called the root. Figure 23-5 shows a tree that,
except for the names of the nodes, is identical to the tree in Figure 23-4. In Figure 23-4, the root of
the tree is the folder myStuff; in Figure 23-5, the root is node A.

FIGURE 23-5 A tree equivalent to the tree in Figure 23-4

The nodes at each successive level of a tree are the children of the nodes at the previous level.
A node that has children is the parent of those children. In Figure 23-5, node A is the parent of
nodes B, C, D, and E. Since these children have the same parent, they are called siblings. They also
are the descendants of node A, and node A is their ancestor. Furthermore, node P is a descendant of
A, and A is an ancestor of P. Notice that node P has no children. Such a node is called a leaf. A node
that is not a leaf—that is, one that has children—is called either an interior node or a nonleaf. Such
a node is also a parent.

23.6 In general, each node in a tree can have an arbitrary number of children. We sometimes call such a tree a
general tree. If each node has no more than n children, the tree is called an n-ary tree. Realize that not
every general tree is an n-ary tree. If each node has at most two children, the tree is called a binary tree.
The tree in Figure 23-2 is a binary tree, but the trees in the other previous figures are general trees.

A

C DB

HGF J

S

KI

RQ TO PN

E

ML

Level 1

Level 2

Level 3

Level 4

Root

Siblings:
children of node A

Edge

Leaves

Subtree of
node B

Note: Trees
While the roots of most plants are firmly in the ground, the root of an ADT tree is at the tree’s
top; it is the origin of a hierarchical organization. Each node can have children. A node with
children is a parent; a node without children is a leaf. The root is the only node that has no
parent; all other nodes have one parent each.

Question 1 Consider the tree in Figure 23-5.
a. Which nodes are the leaves?
b. Which nodes are the siblings of node K?
c. Which nodes are the children of node B?
d. Which nodes are the descendants of node B?
e. Which nodes are the ancestors of node N?
f. Which nodes are parents?

Tree Concepts 573

Any node and its descendants form a subtree of the original tree. A subtree of a node is a tree
rooted at a child of that node. For example, one subtree of node B in Figure 23-5 is the tree rooted
at F. A subtree of a tree is a subtree of the tree’s root.

23.7 The height of a tree is the number of levels in the tree. We number the levels in a tree beginning
with the root at level 1. The tree in Figure 23-5 has four levels, and so its height is 4. The height of
a one-node tree is 1, and the height of an empty tree is 0.

We can express the height of a nonempty tree recursively by considering its subtrees:

Height of tree T = 1 + height of the tallest subtree of T

The root of the tree in Figure 23-5 has four subtrees of heights 3, 2, 3, and 2. Since the tallest of
these subtrees has height 3, the tree has height 4.

We can reach any node in a tree by following a path that begins at the root and goes from node
to node along the edges that join them. The path between the root and any other node is unique. The
length of a path is the number of edges that compose it. For example, in Figure 23-5, the path that
passes through the nodes A, B, F, and N has length 3. No other path from the root to a leaf is longer
than this particular path. This tree has height 4, which is 1 more than the length of this longest path.
In general, the height of a tree is 1 more than the length of the longest of the paths between its root
and its leaves. Alternatively, the height of a tree is the number of nodes along the longest path
between the root and a leaf.

Note: Can a tree be empty?
We allow any of our trees to be empty. Some people allow empty binary trees but require that
general trees contain at least one node. While the reasons for doing so are quite valid, we will
avoid confusion here by not making this subtle distinction between binary and general trees.

Question 2 This book has a hierarchical organization that you can represent by using a
tree. Sketch a portion of this tree and indicate whether it is a general tree or a binary tree.

Note: The path between a tree’s root and any other node is unique.

Note: The height of a tree is the number of levels in the tree. The height also equals the
number of nodes along the longest path between the root and a leaf.

Note: Alternate definitions of height and level
Some people define both the height of a tree and its levels to be 1 less than those we will use
in this book. For example, a one-node tree would have height 0 instead of 1. Also, the root of
a tree would be at level 0 instead of 1.

Question 3 What are the heights of the trees in Figures 23-1, 23-2, and 23-4?

574 CHAPTER 23 Trees

23.8 Binary trees. As we mentioned earlier, each node in a binary tree has at most two children. They
are called the left child and the right child. For example, each tree in Figure 23-6 is a binary tree.
In Figure 23-6a, nodes B, D, and F are left children, and nodes C, E, and G are right children. The
root of this binary tree has two subtrees. The left subtree is rooted at B and the right subtree is
rooted at C. Thus, the left subtree of a binary tree is the left subtree of its root; likewise for the
right subtree.

FIGURE 23-6 Three binary trees

Every subtree in a binary tree is also a binary tree. In fact, we can think of a binary tree recur-
sively, as follows:

When a binary tree of height h has all of its leaves at level h and every nonleaf (parent) has
exactly two children, the tree is said to be full. Figure 23-6a shows a full binary tree. If all levels of
a binary tree but the last contain as many nodes as possible, and the nodes on the last level are filled
in from left to right—as in Figure 23-6b—the tree is complete. The binary tree in Figure 23-6c is
neither full nor complete. In this case, a node can have a left child but no right child (for example,
node S), or a right child but no left child (for example, node U).

I J

A

KG

B

M

Q

NL

PO

E FD

X

U

H

(a) Full tree (b) Complete tree (c) Tree that is not full
 and not complete

Left children: B, D, F
Right children: C, E, G

C S

R

T

V W

Y

Note: A binary tree is either empty or has the following form:

where Tleft and Tright are binary trees.

Root

Tleft Tright

Note: All leaves in a full binary tree are on the same level and every nonleaf has exactly
two children. A complete binary tree is full to its next-to-last level, and its leaves on the last
level are filled from left to right. Binary trees are used extensively, and these special trees will
be important to our later discussions.

Tree Concepts 575

23.9 The height of full or complete trees. In later chapters, the height of trees that are either full or
complete will be important in our discussions of efficiency. Figure 23-7 shows some full trees that
get progressively taller. We can compute the number of nodes that each tree contains as a function
of its height. Beginning at the root of the tallest tree in the figure, we can see that the number of
nodes at each level doubles as we move toward the leaves. The total number of nodes in this tallest
tree is 1 + 2 + 4 + 8 + 16, or, 31. In general, the number of nodes in a full binary tree is

where h is the tree’s height. This sum is equal to 2h - 1. You can convince yourself that this result is
true by examining Figure 23-7, and you can prove it as an exercise by using mathematical induction.

FIGURE 23-7 The number of nodes in a full binary tree as a function of the
tree’s height

Now, if n is the number of nodes in a full tree, we have the following results:
n = 2h - 1
2h = n + 1
h = log2 (n + 1)

That is, the height of a full tree that has n nodes is log2 (n + 1).

2i

i 0=

h 1–

5 31 � 25
 116

Number of
nodes per level

8
4

2

1

4 15 � 24
 1

3 7 � 23
 1

2 3 � 22
 1

1 1 � 21
 1

Full Tree Height Number
of Nodes

576 CHAPTER 23 Trees

We leave it to you as an exercise to prove that the height of a complete tree having n nodes is
log2 (n + 1) rounded up.

Traversals of a Tree

23.10 Until now, we treated the contents of the nodes in a tree simply as labels for identification. Because
the tree is an ADT, however, its nodes contain data that we process. We now consider the nodes in
this way.

VideoNote

Traversing the items in a data collection is a common operation that we have seen in previous
chapters. In those cases, data was arranged linearly, so the sequence of the items in the traversal
was clear. Such is not the case for a tree.

In defining a traversal, or iteration, of a tree, we must visit, or process, each data item exactly
once. However, the order in which we visit items is not unique. We can choose an order suitable to
our application. Because traversals of a binary tree are somewhat easier to understand than travers-
als of a general tree, we begin there. To simplify our discussion, we will use the phrase “visit a
node” to mean “process the data within a node.”

Traversals of a Binary Tree
23.11 We know that the subtrees of the root of a binary tree are themselves binary trees. Using this recur-

sive nature of a binary tree in the definition of its traversal is natural. To visit all the nodes in a
binary tree, we must

Visit the root
Visit all the nodes in the root’s left subtree
Visit all the nodes in the root’s right subtree

Note: The height of a binary tree with n nodes that is either complete or full is log2 (n + 1)
rounded up.

Programming Tip: To compute log2 x in Java, first observe that loga x = logb x/logb a. In Java,
Math.log(x) returns the natural logarithm of x. So Math.log(x) / Math.log(2.0) computes the
base 2 logarithm of x.

Question 4 Show that the relationship between a tree’s height and its number of nodes is true
for the binary trees in Parts a and b of Figure 23-6.

Question 5 How many nodes are in a full binary tree of height 6?

Question 6 What is the height of a complete tree that contains 14 nodes?

The ADT Tree

Note: “Visiting a node” means “processing the data within a node.” It is an action that we
perform during a traversal of a tree. A traversal can pass through a node without visiting it at
that moment.

Traversals of a Tree 577

Visiting the nodes in the left subtree before visiting those in the right subtree is simply a conven-
tion. Whether we visit the root before, between, or after visiting these two subtrees, however,
defines three common orders for a traversal.

In a preorder traversal, we visit the root before we visit the root’s subtrees. We then visit all
the nodes in the root’s left subtree before we visit the nodes in the right subtree. Figure 23-8 num-
bers the nodes in a binary tree in the order in which a preorder traversal visits them. After first vis-
iting the root, we visit the nodes in the root’s left subtree. Since this subtree is a binary tree,
visiting its nodes in preorder means that we visit its root before visiting its left subtree. The tra-
versal continues in this recursive manner until all nodes are visited.

FIGURE 23-8 The visitation order of a preorder traversal

23.12 An inorder traversal visits the root of a binary tree between visiting the nodes in the root’s sub-
trees. In particular, it visits nodes in the following order:

Visit all the nodes in the root’s left subtree
Visit the root
Visit all the nodes in the root’s right subtree

Figure 23-9 numbers the nodes in a binary tree in the order in which an inorder traversal visits
them. Recursively visiting the nodes in the left subtree results in visiting the leftmost leaf first. We
visit that leaf’s parent next and then the parent’s right child. We visit the tree’s root after we have
visited all of the nodes in the root’s left subtree. Finally, we visit the nodes in the root’s right subtree
in this recursive manner.

FIGURE 23-9 The visitation order of an inorder traversal

1

2

3

54

6 8

7

9

1110

6

4

2

31

5 7

8

10

119

578 CHAPTER 23 Trees

23.13 A postorder traversal visits the root of a binary tree after visiting the nodes in the root’s subtrees.
In particular, it visits nodes in the following order:

Visit all the nodes in the root’s left subtree
Visit all the nodes in the root’s right subtree
Visit the root

Figure 23-10 numbers the nodes in a binary tree in the order in which a postorder traversal vis-
its them. Recursively visiting the nodes in the left subtree results in visiting the leftmost leaf
first. We then visit that leaf’s sibling and then their parent. After visiting all the nodes in the
root’s left subtree, we visit the nodes in the root’s right subtree in this recursive manner. Finally
we visit the root.

FIGURE 23-10 The visitation order of a postorder traversal

23.14 A level-order traversal—the last traversal we will consider—begins at the root and visits nodes
one level at a time. Within a level, it visits nodes from left to right. Figure 23-11 numbers the nodes
in a binary tree in the order in which a level-order traversal visits them.

FIGURE 23-11 The visitation order of a level-order traversal

The level-order traversal is an example of a breadth-first traversal. It follows a path that
explores an entire level before moving to the next level. The preorder traversal is an example of a
depth-first traversal. This kind of traversal fully explores one subtree before exploring another.
That is, the traversal follows a path that descends the levels of a tree as deeply as possible until it
reaches a leaf.

11

5

3

21

4 6

10

9

87

1

2

4

98

5 6

3

7

1110

Java Interfaces for Trees 579

Traversals of a General Tree
23.15 A general tree has traversals that are in level order, preorder, and postorder. An inorder traversal is

not well defined for a general tree.
A level-order traversal visits nodes level by level, beginning at the root. This traversal is just

like a level-order traversal of a binary tree, except that nodes in a general tree can have more than
two children each.

A preorder traversal visits the root and then visits the nodes in each of the root’s subtrees. A
postorder traversal first visits the nodes in each of the root’s subtrees and then visits the root last.
Figure 23-12 gives an example of a preorder traversal and a postorder traversal for a general tree.

FIGURE 23-12 The visitation order of two traversals of a general tree:
(a) preorder; (b) postorder

Java Interfaces for Trees
Trees come in many shapes and have varied applications. Writing one Java interface for an ADT tree
that satisfies every use would be an unwieldy task. Instead we will write several interfaces that we can
combine as needed for a particular application. We will include these interfaces in a package that also

Note: Traversals of a binary tree
A preorder traversal visits the root of a binary tree before visiting the nodes in its two subtrees.
An inorder traversal visits the root between visiting the nodes in its two subtrees.
A postorder traversal visits the root after visiting the nodes in its two subtrees.
A level-order traversal visits nodes from left to right within each level of the tree, beginning
with the root.

Question 7 Suppose that visiting a node means simply displaying the data in the node. What
are the results of each of the following traversals of the binary tree in Figure 23-2? Preorder,
postorder, inorder, and level order.

1
(a)

3

65

9 11

16

15

14134

7

2 8 10

12

16
(b)

4

32

7 9

15

13

11101

5

6 8 14

12

Postorder traversalPreorder traversal

1
(a)

3

65

9 11

16

15

14134

7

2 8 10

12

16
(b)

4

32

7 9

15

13

11101

5

6 8 14

12

Postorder traversalPreorder traversal

Question 8 In what order will a level-order traversal visit the nodes of the tree in Figure 23-12?

580 CHAPTER 23 Trees

will contain the classes that implement them. In this way, the package can contain implementation
details, such as a class of nodes, that we want to hide from the trees’ clients. The next chapter will
examine these implementations.

Interfaces for All Trees
23.16 Fundamental operations. We begin with an interface that specifies operations common to all trees.

The interface in Listing 23-1 uses the generic type T as the type of data in the nodes of the tree.

This interface is quite basic. It does not include operations to add or remove nodes, as even the
specification of these operations depends on the kind of tree. We also did not include traversal oper-
ations in this interface, since not every application uses them. Instead we will provide a separate
interface for traversals.

23.17 Traversals. One way to traverse a tree is to use an iterator that has the methods hasNext and next,
as given in the interface java.util.Iterator. As in previous chapters, we can define a method that
returns such an iterator. Since we can have several kinds of traversals, a tree class could have several
methods that each return a different kind of iterator. Listing 23-2 defines an interface for these meth-
ods. A tree class can implement this interface and define as many of the methods as are needed.

An Interface for Binary Trees
23.18 Many applications of trees in fact use binary trees. We could use a Java class of general trees for

such an application, but using a special class of binary trees is more convenient and efficient.
Because binary trees occur so frequently, developing special Java classes for them is worthwhile.

LISTING 23-1 An interface of methods common to all trees

package TreePackage;
public interface TreeInterface<T>
{

public T getRootData();
public int getHeight();
public int getNumberOfNodes();
public boolean isEmpty();
public void clear();

} // end TreeInterface

LISTING 23-2 An interface of traversal methods for a tree

package TreePackage;
import java.util.Iterator;
public interface TreeIteratorInterface<T>
{

public Iterator<T> getPreorderIterator();
public Iterator<T> getPostorderIterator();
public Iterator<T> getInorderIterator();
public Iterator<T> getLevelOrderIterator();

} // end TreeIteratorInterface

Java Interfaces for Trees 581

We can define an interface for a basic binary tree by adding methods to those already in the
interfaces TreeInterface and TreeIteratorInterface. Since a Java interface can extend more
than one interface, we can write the interface shown in Listing 23-3 for a class of binary trees.

The two setTree methods transform an existing binary tree object into a new tree composed of
given arguments. The first method forms a one-node tree from a given data object. The second
method forms a tree whose root node contains a given data object and has as its subtrees the two
given binary trees. A class that implements this interface certainly could have constructors that per-
form the same tasks as these two methods. However, since an interface cannot contain constructors,
we have no way to force an implementor to provide them.

23.19 Example. Suppose that the class BinaryTree implements the interface BinaryTreeInterface. To
construct the binary tree in Figure 23-13, we first represent each of its leaves as a one-node tree.
Notice that each node in this tree contains a one-letter string. Moving up the tree from its leaves, we
use setTree to form larger and larger subtrees until we have the desired tree. Here are some Java
statements that build the tree and then display some of its characteristics:

// represent each leaf as a one-node tree
BinaryTreeInterface<String> dTree = new BinaryTree<String>();
dTree.setTree("D");
BinaryTreeInterface<String> fTree = new BinaryTree<String>();
fTree.setTree("F");
BinaryTreeInterface<String> gTree = new BinaryTree<String>();
gTree.setTree("G");
BinaryTreeInterface<String> hTree = new BinaryTree<String>();
hTree.setTree("H");
BinaryTreeInterface<String> emptyTree = new BinaryTree<String>();

// form larger subtrees
BinaryTreeInterface<String> eTree = new BinaryTree<String>();
eTree.setTree("E", fTree, gTree); // subtree rooted at E

LISTING 23-3 An interface for a binary tree

package TreePackage;
public interface BinaryTreeInterface<T> extends TreeInterface<T>,

TreeIteratorInterface<T>
{

/** Sets this binary tree to a new one-node binary tree.
@param rootData an object that is the data in the new tree’s root

*/
public void setTree(T rootData);

/** Sets this binary tree to a new binary tree.
@param rootData an object that is the data in the new tree’s root
@param leftTree the left subtree of the new tree
@param rightTree the right subtree of the new tree */

public void setTree(T rootData, BinaryTreeInterface<T> leftTree,
BinaryTreeInterface<T> rightTree);

} // end BinaryTreeInterface

582 CHAPTER 23 Trees

BinaryTreeInterface<String> bTree = new BinaryTree<String>();
bTree.setTree("B", dTree, eTree); // subtree rooted at B

BinaryTreeInterface<String> cTree = new BinaryTree<String>();
cTree.setTree("C", emptyTree, hTree); // subtree rooted at C

BinaryTreeInterface<String> aTree = new BinaryTree<String>();
aTree.setTree("A", bTree, cTree); // desired tree rooted at A

// display root, height, number of nodes
System.out.println("Root of tree contains " + aTree.getRootData());
System.out.println("Height of tree is " + aTree.getHeight());
System.out.println("Tree has " + aTree.getNumberOfNodes() + " nodes");

// display nodes in preorder
System.out.println("A preorder traversal visits nodes in this order:");
Iterator<String> preorder = aTree.getPreorderIterator();
while (preorder.hasNext())

System.out.print(preorder.next() + " ");
System.out.println();

FIGURE 23-13 A binary tree whose nodes contain one-letter strings

Examples of Binary Trees
We now look at some examples that use trees to organize data, leaving details of the implementa-
tions for the next chapter. Our first example includes a demonstration of some of the traversals
introduced earlier in this chapter.

Expression Trees
23.20 We can use a binary tree to represent an algebraic expression whose operators are binary. Recall

from Segment 5.5 in Chapter 5 that a binary operator has two operands. For example, we can repre-
sent the expression a / b as the binary tree in Figure 23-14a. The root of the tree contains the opera-

VideoNote

tor / and the root’s children contain the operands for the operator. Notice that the order of the children
matches the order of the operands. Such a binary tree is called an expression tree. Figure 23-14
also contains other examples of expression trees. Notice that any parentheses in an expression do
not appear in its tree. The tree in fact captures the order of the expression’s operations without the
need for parentheses.

A

B

D

GF

E

C

H

Using the ADT tree

Examples of Binary Trees 583

FIGURE 23-14 Expression trees for four algebraic expressions

23.21 Segment 5.5 mentioned that we can write an algebraic expression in several ways. The expressions
that we normally write, in which each binary operator appears between its two operands, are called
infix expressions. A prefix expression places each operator before its two operands, and a postfix
expression places each operator after its two operands. Various traversals of an expression tree are
related to these forms of an expression.

An inorder traversal of an expression tree visits the variables and operators in the tree in the
order in which they appear in the original infix expression. If we were to write each node’s contents
when we visited it, we would get the infix expression, but without any parentheses.

A preorder traversal produces a prefix expression that is equivalent to the original infix expression.
For example, a preorder traversal of the tree in Figure 23-14b visits nodes in this order: + * a b c.
This result is the prefix form of the infix expression a * b + c. Recall that, like an expression tree, a
prefix expression never contains parentheses.

A postorder traversal produces a postfix expression that is equivalent to the original expression.
A postfix expression also has no parentheses, so the traversal produces the correct result. For exam-
ple, a postorder traversal of the tree in Figure 23-14b visits nodes in the following order: a b * c +.
This result is the postfix form of the infix expression a * b + c.

23.22 Evaluating an algebraic expression. Since an expression tree represents the order of an expres-
sion’s operations, we can use it to evaluate the expression. The root of an expression tree is always
an operator whose operands are represented by the root’s left and right subtrees. If we can evaluate
the subexpressions that these subtrees represent, we can evaluate the entire expression. Notice that
such is the case for each expression tree in Figure 23-14, if we know the values of the variables.

d

�

a b

* c

(b) a * b � c

/

a b

(a) a / b (d) a * (b � c * d) / e

b

c

/

a

*

�

* e

(c) a * (b � c)

*

b c

a �

Question 9 Write an expression tree for each of these algebraic expressions.
a. a + b * c
b. (a + b) * c

Question 10 In what order are nodes visited by a preorder, inorder, and postorder traversal
of the trees in Parts a, c, and d of Figure 23-14?

Question 11 Which trees, if any, in Figure 23-14 are full? Which are complete?

584 CHAPTER 23 Trees

A postorder traversal of an expression tree visits the root’s left subtree, then the root’s right
subtree, and finally the root. If during the visits to the subtrees we evaluate their expressions, we
can combine the results with the operator in the root and get the value of the original expression.
Thus, the value of an expression tree is given by the following recursive algorithm:

Algorithm evaluate(expressionTree)
if (expressionTree is empty)

return 0
else
{

firstOperand = evaluate(left subtree of expressionTree)
secondOperand = evaluate(right subtree of expressionTree)
operator = the root of expressionTree
return the result of the operation operator and its operands firstOperand

and secondOperand
}

We will implement an expression tree in the next chapter.

Decision Trees

23.23 Example: Expert systems. An expert system helps its users solve problems or make decisions.
Such a program might help you pick a major or apply for financial aid. It reaches a conclusion
based upon your answers to a series of questions.

A decision tree can be the basis of an expert system. Each parent (nonleaf) in a decision tree is
a question that has a finite number of responses. For example, we might use questions whose
answers are true or false, yes or no, or multiple choice. Each possible answer to the question corre-
sponds to a child of that node. Each child might be an additional question or a conclusion. Nodes
that are conclusions would have no children, and so they would be leaves.

In general, a decision tree is an n-ary tree so that it can accommodate multiple-choice questions.
Often, however, a decision tree is a binary tree. For example, the decision tree in Figure 23-15 shows
part of a binary tree of yes-or-no questions that diagnose a problem with a television. To use this
decision tree, we first would display the question in the root. According to the user’s answer, we
would move to the appropriate child and display its contents. Thus, we move along a path in a deci-
sion tree from the root to a leaf according to responses made by the user. At each nonleaf, we display
a question. When we reach a leaf, we provide a conclusion. Notice that each node in a binary deci-
sion tree either has two children or is a leaf.

A decision tree provides operations that move us along a path through the tree and access the
current node. Listing 23-4 contains a possible Java interface for a binary decision tree.

Question 12 What value does the previous algorithm return for the expression tree in
Figure 23-14b? Assume that a is 3, b is 4, and c is 5.

LISTING 23-4 An interface for a binary decision tree

package TreePackage;
public interface DecisionTreeInterface<T> extends BinaryTreeInterface<T>
{

/** Gets the data in the current node.
@return the data object in the current node, or

null if the current node is null */
public T getCurrentData();

Examples of Binary Trees 585

FIGURE 23-15 A portion of a binary decision tree

/** Sets the data in the current node.
Precondition: The current node is not null.
@param newData the new data object */

public void setCurrentData(T newData);

/** Sets the data in the children of the current node,
creating them if they do not exist.
Precondition: The current node is not null.
@param answerForNo the new data object for the left child
@param answerForYes the new data object for the right child */

public void setAnswers(T answerForNo, T answerForYes);

/** Sees whether the current node contains an answer.
@return true if the current node is a leaf, or

false if it is a nonleaf */
public boolean isAnswer();

/** Sets the current node to its left child.
If the child does not exist, sets the current node to null.
Precondition: The current node is not null. */

public void advanceToNo();

/** Sets the current node to its right child.
If the child does not exist, sets the current node to null.
Precondition: The current node is not null. */

public void advanceToYes();

/** Makes the root of the tree the current node.*/
public void reset();

} // end DecisionTreeInterface

No

Is the screen blank?

Is the picture clear?

Is there sound?

No Yes

Check mute button

YesNo

Check power cord

Yes

Is there sound?

No

Yes

586 CHAPTER 23 Trees

23.24 Example: Guessing game. In a guessing game, you think of something and I have to guess what it
is by asking you questions that have a yes or no answer. Suppose that a program asks the questions
for me. This program uses a binary decision tree that grows as the game progresses. Instead of cre-
ating the tree before it is used, the program acquires facts from the user and adds them to the deci-
sion tree. Thus, the program learns by playing the game and becomes more proficient over time.

To simplify the problem, let’s restrict your choice of things. For example, suppose that you think
of a country. The program could begin with the simple three-node tree pictured in Figure 23-16. With
this tree, the program asks the question in the root and makes one of two guesses. Depending on the
answer to the question. Here is one possible exchange between the program and the user (user replies
are blue):

Is it in North America?
Yes
My guess is U. S. A. Am I right?
Yes
I win.
Play again?

The program has guessed correctly; the tree remains unchanged.

FIGURE 23-16 An initial decision tree for a guessing game

23.25 Augmenting the tree in the guessing game. Suppose the user is thinking of something else. The
exchange might go like this:

Is it in North America?
No
My guess is Brazil. Am I right?
No
I give up; what are you thinking of?
England
Give me a question whose answer is yes for England and no for Brazil.
Is it in Europe?
Play again?

With this new information, we augment the tree, as in Figure 23-17. We replace the contents of the
leaf that contained the wrong answer—Brazil in this case—with the new question provided by the
user. We then give the leaf two children. One child contains the guess that was in the former leaf
(Brazil), and the other contains the user’s answer (England) as a new guess. The program now can
distinguish between Brazil and England.

23.26 A class for the guessing game. We demonstrate some of the methods declared in the interface
DecisionTreeInterface by implementing part of a class GuessingGame. This class, as shown in
Listing 23-5, begins with a decision tree as a data field and a constructor that creates an initial tree.
The tree has one yes-or-no question as its root and two guesses as children, one guess for each
possible answer to the question. We assume that DecisionTree will have the constructors that we
used here.

Is it in North America?

No

Brazil U.S.A.

Yes

Examples of Binary Trees 587

FIGURE 23-17 The decision tree for a guessing game after acquiring another fact

Is it in Europe?

England

U.S.A.

Brazil

No Yes

Yes

Is it in North America?

No

LISTING 23-5 The class GuessingGame

import TreePackage.DecisionTreeInterface;
import TreePackage.DecisionTree;
public class GuessingGame
{

private DecisionTreeInterface<String> tree;

public GuessingGame(String question, String noAnswer, String yesAnswer)
{

DecisionTree<String> no = new DecisionTree<String>(noAnswer);
DecisionTree<String> yes = new DecisionTree<String>(yesAnswer);
tree = new DecisionTree<String>(question, no, yes);

} // end default constructor

public void play()
{

tree.reset();
while (!tree.isAnswer())
{

// ask current question
System.out.println(tree.getCurrentData());

if (Client.isUserResponseYes())
tree.advanceToYes();

else
tree.advanceToNo();

} // end while
assert tree.isAnswer(); // Assertion: leaf is reached

// make guess
System.out.println("My guess is " + tree.getCurrentData() +

". Am I right?");
if (Client.isUserResponseYes())

System.out.println("I win.");

588 CHAPTER 23 Trees

The public method play uses methods of DecisionTree to maintain the tree. Since the
game requires user interaction, we assume that the client of GuessingGame provides methods
that communicate with the user. In particular, we assume that a class Client has a static method
isUserResponseYes that returns true if the user responds “yes” to a question.

The private method learn asks the user for a question that distinguishes between two guesses. Using
this information, the method adds nodes to the decision tree, as described earlier in Segment 23.25. The
next chapter will give you the tools to implement this method.

Binary Search Trees
23.27 Earlier chapters have already discussed the importance of searching for data. Since we can traverse

the nodes in any tree, searching a tree for a specific piece of data is certainly feasible. Doing so,
however, can be as inefficient as performing a sequential search of an array. A search tree, on the
other hand, organizes its data so that a search can be more efficient. In this chapter, we present the
simplest kind of search tree, the binary search tree. Chapter 27 will look at other search trees.

A binary search tree is a binary tree whose nodes contain Comparable objects and are orga-
nized as follows:

For example, Figure 23-18 shows a binary search tree of names. As a string, Jared is greater
than all the names in Jared’s left subtree but less than all names in Jared’s right subtree. These
characteristics are true for every node in the tree, not only for the root. Notice that each of Jared’s
subtrees is itself a binary search tree.

The previous definition of a binary search tree implies that the tree’s entries are distinct. We
have imposed this restriction to make our discussion simpler, but we could revise our definition to
allow duplicate entries. Chapter 25 considers this possibility.

else
learn();

} // end play

private void learn()
{

< Implementation left as a project in the next chapter. >
. . .

} // end learn
} // end GuessingGame

Question 13 Why should the method learn be private within the class GuessingGame?

Note: For each node in a binary search tree,

• The node’s data is greater than all the data in the node’s left subtree
• The node’s data is less than all the data in the node’s right subtree

Note: Every node in a binary search tree is the root of a binary search tree.

Examples of Binary Trees 589

FIGURE 23-18 A binary search tree of names

23.28 The configuration of a binary search tree is not unique. That is, we can form several different
binary search trees from the same set of data. For example, Figure 23-19 shows two binary search
trees containing the same names that are in Figure 23-18; other binary search trees are possible.

FIGURE 23-19 Two binary search trees containing the same data as the tree in
Figure 23-18

23.29 Searching a binary search tree. The organization of the nodes in a binary search tree enables us to
search the tree for a particular data object, given its search key. For example, suppose that we
search the tree in Figure 23-18 for the string Jim. Beginning at the root of the tree, we compare Jim
with Jared. Since the string Jim is greater than the string Jared, we search the right subtree of the
root. Comparing Jim to Megan, we find that Jim is less than Megan. We search Megan’s left subtree
next and find Jim.

Jared

Jim Whitney

Megan

Brett Doug

Brittany

Question 14 How many different binary search trees can you form from the strings a, b,
and c?

Question 15 What are the heights of the shortest and tallest trees that you formed in
Question 14?

Brett

Megan

Jim

Whitney

Brittany Jared

Doug

(a) (b)

Brett

Brittany

Doug

Jared

Jim

Megan

Whitney

590 CHAPTER 23 Trees

To search for Laura, we would compare Laura with Jared, then with Megan, and then with
Jim. Since Laura is greater than Jim, we would search Jim’s right subtree. But this subtree is empty,
so we conclude that Laura does not occur in the tree.

We can express our search algorithm recursively: To search a binary search tree, we search one
of its two subtrees. The search ends when either we find the item we seek or we encounter an empty
subtree. We can formalize this search by writing the following pseudocode:

Algorithm bstSearch(binarySearchTree, desiredObject)
// Searches a binary search tree for a given object.
// Returns true if the object is found.

if (binarySearchTree is empty)
return false

else if (desiredObject == object in the root of binarySearchTree)
return true

else if (desiredObject < object in the root of binarySearchTree)
return bstSearch(left subtree of binarySearchTree, desiredObject)

else
return bstSearch(right subtree of binarySearchTree, desiredObject)

This algorithm is somewhat like a binary search of an array. Here we search one of two subtrees; a
binary search searches one half of an array. You will see how to implement this algorithm in Chapter 25.

If you think that you could implement the ADT dictionary by using a binary search tree, you
would be right. Chapter 25 will show you how.

23.30 The efficiency of a search. The algorithm bstSearch examines nodes along a path through a
binary search tree, beginning at the tree’s root. The path ends at either the node that contains the
desired object or some other node that is a leaf. In the previous segment, the search for Jim in
Figure 23-18 examined the three nodes containing Jared, Megan, and Jim. In general, the number
of comparisons that a successful search requires is the number of nodes along the path from the root
to the node that contains the desired item.

Searching for Jim in Figure 23-19a requires four comparisons; searching Figure 23-19b for
Jim requires five comparisons. Both trees in Figure 23-19 are taller than the tree in Figure 23-18.
As you can see, the height of a tree directly affects the length of the longest path from the root to a
leaf and hence affects the efficiency of a worst-case search. Thus, searching a binary search tree of
height h is O(h).

Note that the tree in Figure 23-19b is as tall as a tree containing seven nodes can be. A search
of this tree has the performance of a sequential search of either a sorted array or a sorted linked
chain. Each of these searches has an efficiency of O(n).

To make searching a binary search tree as efficient as possible, the tree must be as short as pos-
sible. The tree in Figure 23-18 is full and is the shortest possible binary search tree that we can form
with this data. As you will see in Chapter 25, inserting or deleting nodes can change the shape of a
binary search tree. Thus, such operations can decrease the time efficiency of a search. Chapter 27
will show you strategies for maintaining the search’s efficiency.

Heaps

23.31 Definitions. A heap is a complete binary tree whose nodes contain Comparable objects and are
organized as follows. Each node contains an object that is no smaller (or no larger) than the objects
in its descendants. In a maxheap, the object in a node is greater than or equal to its descendant
objects. In a minheap, the relation is less than or equal to. Figure 23-20 gives an example of a max-
heap and a minheap. For simplicity, we use integers instead of objects in our illustrations.

Examples of Binary Trees 591

FIGURE 23-20 (a) A maxheap and (b) a minheap that contain the same values

The root of a maxheap contains the largest object in the heap. Notice that the subtrees of any
node in a maxheap are also maxheaps. Although we will focus on maxheaps, minheaps behave in
an analogous fashion.

23.32 Operations. In addition to typical ADT operations such as add, isEmpty, getSize, and clear, a heap
has operations that retrieve and remove the object in its root. This object is either the largest or the
smallest object in the heap, depending on whether we have a maxheap or a minheap. This characteris-
tic enables us to use a heap to implement the ADT priority queue, as you will see in the next segment.

The Java interface in Listing 23-6 specifies operations for a maxheap.

8 6

7 2 53

41

9
(a)

Maxheap

2 4

3 8 57

69

1
(b)

Minheap

Note: A maxheap is a complete binary tree such that each node in the tree contains a
Comparable object that is greater than or equal to the objects in the node’s descendants.

LISTING 23-6 An interface for a maxheap

public interface MaxHeapInterface<T extends Comparable<? super T>>
{

/** Adds a new entry to this heap.
@param newEntry an object to be added */

public void add(T newEntry);

/** Removes and returns the largest item in this heap.
@return either the largest object in the heap or,

if the heap is empty before the operation, null */
public T removeMax();

/** Retrieves the largest item in this heap.
@return either the largest object in the heap or,

if the heap is empty, null */
public T getMax();

592 CHAPTER 23 Trees

If you place items into a maxheap and then remove them, you will get the items in descending
order. Thus, we can use a heap to sort an array, as you will see in Chapter 26.

23.33 Priority queues. We can use a heap to implement the ADT priority queue. Assuming that the
class MaxHeap implements MaxHeapInterface, a class that implements the priority queue as an
adapter class begins as given in Listing 23-7. Recall that we defined PriorityQueueInterface in
Segment 10.19 of Chapter 10.

Alternatively, the class MaxHeap could implement PriorityQueueInterface. We then could
define a priority queue of strings, as follows:

PriorityQueueInterface<String> pq = new MaxHeap<String>();

/** Detects whether this heap is empty.
 @return true if the heap is empty, else returns false */

public boolean isEmpty();

/** Gets the size of this heap.
@return the number of entries currently in the heap */

public int getSize();

/** Removes all entries from this heap. */
public void clear();

} // end MaxHeapInterface

Question 16 Does a maxheap that contains a given set of objects have a unique root? Jus-
tify your answer by using the maxheap in Figure 23-20a as an example.

Question 17 Is a maxheap that contains a given set of objects unique? Justify your answer
by using the maxheap in Figure 23-20a as an example.

LISTING 23-7 The beginning of the class PriorityQueue

public class PriorityQueue<T extends Comparable<? super T>>
implements PriorityQueueInterface<T>

{
private MaxHeapInterface<T> pq;

public PriorityQueue()
{

pq = new MaxHeap<T>();
} // end default constructor

public void add(T newEntry)
{

pq.add(newEntry);
} // end add
< Implementations of remove, peek, isEmpty, getSize, and clear are here. >
. . .

} // end PriorityQueue

Examples of General Trees 593

Examples of General Trees
We conclude this chapter with two examples of general trees. A parse tree is useful in the construc-
tion of a compiler; a game tree is a generalization of the decision tree that Segment 23.23 described.

Parse Trees

23.34 Segment 7.44 in Chapter 7 gave the following rules to describe strings that are valid algebraic
expressions:

• An algebraic expression is either a term or two terms separated by a + or - operator.
• A term is either a factor or two factors separated by a * or / operator.
• A factor is either a variable or an algebraic expression enclosed in parentheses.
• A variable is a single letter.

These rules form a grammar for algebraic expressions, much like the grammar that describes the
English language. In fact, every programming language has a grammar.

Typically, computer scientists use a notation to write the rules of a grammar. For example, the
rules just given for algebraic expressions could appear as follows, where the symbol | means “or”:

<expression> ::= <term> | <term> + <term> | <term> - <term>
<term> ::= <factor> | <factor> * <factor> | <factor> / <factor>
<factor> ::= <variable> | (<expression>)
<variable> ::= a | b | … | z | A | B … | Z

To see whether a string is a valid algebraic expression—that is, to check its syntax—we must
see whether we can derive the string from <expression> by applying these rules. If we can, the der-
ivation can be given as a parse tree with <expression> as its root and the variables and operators of
the algebraic expression as its leaves. A parse tree for the expression a * (b + c) is shown in
Figure 23-21. Beginning at the tree’s root, we see that an expression is a term. A term is the product
of two factors. The first factor is a variable, in particular, a. The second factor is an expression
enclosed in parentheses. That expression is the sum of two terms. Each of those terms is a factor;
each of those factors is a variable. The first variable is b; the second is c. Since we are able to form
this parse tree, the string a * (b + c) is a valid algebraic expression.

A parse tree must be a general tree so that it can accommodate any expression. In fact, we are
not restricted to algebraic expressions. We can use a parse tree to check the validity of any string
according to any grammar. Since programming languages have grammars, compilers use parse
trees both to check the syntax of a program and to produce executable code.

Game Trees

23.35 For a two-person game such as tic-tac-toe, we can use a general decision tree to represent the possi-
ble moves in any situation. Such a decision tree is called a game tree. If a given node in the tree
represents the state of the game after one player has made a move, the node’s children represent the
states possible after the second player makes a move. Figure 23-22 shows a portion of a game tree
for tic-tac-toe.

We can use a game tree like the one shown in the figure in a program that plays tic-tac-toe. We
could create the tree ahead of time or have the program build the tree as it plays. In either case, the
program could ensure that poor moves do not remain in the tree. In this way, the program could use
a game tree to improve its play.

Question 18 Draw a parse tree for the algebraic expression a * b + c.

594 CHAPTER 23 Trees

FIGURE 23-21 A parse tree for the algebraic expression a * (b + c)

FIGURE 23-22 A portion of a game tree for tic-tac-toe

<expression>

<factor><factor> *

a <term>

<factor>

<variable>

b c

()

�

<expression><variable>

<term>

<factor>

<variable>

<term>

X
X

X

X
O

O
X

X
O

X

Chapter Summary 595

CHAPTER SUMMARY

• A tree is a set of nodes connected by edges that indicate the relationships among the nodes. The nodes are
arranged in levels that denote their hierarchy. At the top level is a single node called the root.

• At each successive level of a tree are nodes that are the children of the nodes at the previous level. A node
with no children is called a leaf. A node that has children is the parent of those children. The root is the only
node with no parent. All other nodes have one parent each.

• A node in a binary tree has at most two children. In an n-ary tree, a node can have up to n children. In a gen-
eral tree, a node can have any number of children.

• The height of a tree is the number of levels in the tree. The height also equals the number of nodes along the
longest path between the root and a leaf.

• All leaves in a full binary tree are on the same level, and every nonleaf has exactly two children.

• A full tree of height h has 2h - 1 nodes, which is as many as it can contain.

• A complete binary tree is full to its next-to-last level. Its leaves on the last level are filled from left to right.

• The height of a binary tree with n nodes that is either complete or full is log2 (n + 1) rounded up.

• You can traverse the nodes in a tree by visiting each node exactly once. Several traversal orders are possible.
A level-order traversal begins at the root and visits nodes from left to right, one level at a time. In a preorder
traversal, you visit the root before you visit nodes in the root’s subtrees. In a postorder traversal, you visit the
root after you visit the root’s subtrees. For a binary tree, an inorder traversal visits the nodes in the left sub-
tree, then the root, and finally the nodes in the right subtree. For a general tree, an inorder traversal is not
well defined.

• An expression tree is a binary tree that represents an algebraic expression whose operators are binary. The
operands of the expression appear in the tree’s leaves. Any parentheses in an expression do not appear in the
tree. You can use an expression tree to evaluate an algebraic expression.

• A decision tree contains a question in each nonleaf. Each child of the nonleaf corresponds to one possible
response to the question. Within each of these children is either an additional question or a conclusion.
Nodes that are conclusions have no children, and so they are leaves. You can use a decision tree to create an
expert system.

• A binary search tree is a binary tree whose nodes contain Comparable objects that are organized as follows:
• The data in a node is greater than the data in the node’s left subtree.
• The data in a node is less than the data in the node’s right subtree.

• A search of a binary search tree can be as fast as O(log n) or as slow as O(n). The performance of the search
depends on the shape of the tree.

• A heap is a complete binary tree whose nodes contain Comparable objects. The data in each node is no
smaller (or no larger) than the data in the node’s descendants.

• You can use a heap to implement a priority queue.

• Certain rules form a grammar that describes an algebraic expression. A parse tree is a general tree that pictures
how these rules apply to a specific expression. You can use a parse tree to check the syntax of a given expression.

• A game tree is a general decision tree that contains the possible moves for a game such as tic-tac-toe.

596 CHAPTER 23 Trees

EXERCISES

1. In Chapter 7, Figure 7-10a shows the recursive computation of the term F6 in the Fibonacci sequence. Recall that
this sequence is defined as follows:

F0 = 1, F1 = 1, Fn = Fn - 1 + Fn - 2 when n ≥ 2

The root of the tree is the value for F6. The children of F6 are F5 and F4, the two values necessary to compute F6.
Notice that the leaves of the tree contain the base-case values F0 and F1.

Using Figure 7-10a as an example, draw a binary tree that represents the recursive calls in the algorithm
mergeSort, as given in Segment 9.3 of Chapter 9. Assume an array of 20 entries.

2. What is the height of the shortest binary tree that contains 21 nodes? Is this tree full?

3. Consider a binary tree that has three levels.
a. What is the maximum number of nodes in this tree?
b. What is the maximum number of leaves in this tree?
c. Answer the previous two questions for a binary tree that has 10 levels.

4. Write a recursive algorithm that counts the nodes in a binary tree.

5. Suppose that you draw a binary tree so that no two nodes align vertically. Demonstrate that a vertical line moving
from left to right across the tree crosses the nodes in the same order in which an inorder traversal visits nodes.

6. Consider a traversal of a binary tree. Suppose that visiting a node means to simply display the data in the node.
What are the results of each of the following traversals of the tree in Figure 23-23a?

a. Preorder
b. Postorder
c. Inorder
d. Level order

FIGURE 23-23 Two trees for Exercises 6, 7, and 8

7. Repeat Exercise 6, but instead traverse the tree in Figure 23-23b.

8. The two trees in Figure 23-23 contain integer data.
a. Is the tree in Part a a binary search tree? Why or why not?
b. Is the tree in Part b a maxheap? Why or why not?

(a)

6

4

2 5 7

8

10

31 119

11

8

3

12

5 9

10

7

64

(b)

Exercises 597

9. Draw the shortest possible binary search tree from the following strings: Ann, Ben, Chad, Drew, Ella, Jenn, Jess,
Kip, Luis, Pat, Rico, Scott, Tracy, Zak. Is your tree unique?

10. Suppose we know that the preorder traversal of a binary search tree is

6 2 1 4 3 7 10 9 11

What is the postorder traversal of the tree?

11. Draw a maxheap from the strings given in Exercise 9. Is your maxheap unique?

12. Can a binary search tree ever be a maxheap? Explain.

13. Prove that the sum

is equal to 2h - 1. Use mathematical induction.

14. At most, how many nodes can a binary tree have at level n? Use induction to prove your answer.

15. Prove that the height of a complete tree having n nodes is log2 (n + 1) rounded up.

16. Suppose that you number the nodes of a complete binary tree in the order in which a level-order traversal would
visit them. The tree’s root would then be node 1. Figure 23-24 shows an example of such a tree. What number, in
terms of i, is node i’s

a. Sibling, if any
b. Left child, if any
c. Right child, if any
d. Parent, if any

FIGURE 23-24 A complete binary tree with its nodes numbered in level order (Exercise 16)

17. Consider a full n-ary tree of height h. Its leaves are all on the last level. During the traversal of such a tree,

a. What fraction of the time would be spent at a leaf node?
b. What fraction of the time would be spent at nodes in the top half of the tree (nodes at levels 1 through h/2)?
c. Compare the fractions in Parts a and b for n = 2, 10, and 100.

1

2

4 5 6

3

7

9

8 10

2i

i 0=

h 1–

598 CHAPTER 23 Trees

PROJECTS

18. Suppose that you have n values to put into an empty binary search tree.

a. In how many different orders can you add the n values to the tree? This is not the same as the number of
possible binary search trees for n values. Explain why.

b. Figure 23-19b shows a binary search tree that effectively acts like a sorted list. In how many different
orders can you add the n values to the tree such that every parent has only one child? Such a tree has worst-
case performance.

c. What is the probability that a randomly constructed binary search tree has worst-case performance? Hint:
Compute the fraction of the total number of possible orders that results in the worst case.

19. Draw an expression tree for the algebraic expression (a + b) * (c - d).

20. What value does the algorithm given in Segment 23.22 return for the expression tree in Figure 23-14c? Assume
that a is 3, b is 4, and c is 5.

21. Draw a parse tree for each of the following algebraic expressions:

a. a + b * c
b. (a + b) * (c - d)

1. Draw a class diagram for the guessing game described in Segments 23.24 through 23.26.

For each of the following projects, assume that you have a class that implements BinaryTreeInterface, given in
Segment 23.18. The next chapter will discuss such implementations.

2. Write Java code like the code in Segment 23.19 that creates a binary tree whose eight nodes contain the strings
A, B, . . ., H, such that the inorder traversal of the tree visits the nodes in alphabetical order. Write one version that
creates a full tree and one version that creates a tree of maximum height. The inorder traversals of both trees should
produce the same result.

3. Given an array wordList of 15 strings in any order, write Java code that creates a full binary tree whose inorder
traversal returns the strings in alphabetical order. Hint: Sort the list of strings and then use the eighth string as
the root.

4. Design an algorithm that produces a binary expression tree from a given postfix expression. You can assume that
the postfix expression is a string that has only binary operators and one-letter operands.

5. Repeat the previous project, but begin with an infix expression instead of a postfix expression.

6. Develop an interface GeneralTreeInterface for a general tree.

7. Given a class GeneralTree that implements the GeneralTreeInterface from Project 6, implement a program that
will read a fully parenthesized Lisp expression, as described in Projects 6 and 7 of Chapter 5, and create an
expression tree. For example, the expression

(+ (- height)
(* 3 3 4)
(/ 3 width length)
(* radius radius)

)

has the expression tree shown in Figure 23-25.

Answers to Self-Test Questions 599

ANSWERS TO SELF-TEST QUESTIONS

FIGURE 23-25 An expression tree for Project 7

8. Design and create a spelling checker that has at least the following methods:
• void add(String word)—Adds a word to a spelling checker’s collection of correctly spelled words
• boolean check(String word)—Returns true if the given word is spelled correctly

Store the collection of correctly spelled words in a 26-ary tree. Each node in this tree has a child corresponding
to a letter in the alphabet. Each node also indicates whether the word represented by the path between the root and
the node is spelled correctly. For example, the tree shown in Figure 23-26 depicts this indication as a filled-in node.
This tree stores the words “boa,” “boar,” “boat,” “board,” “hi,” “hip,” “hit,” “hop,” “hot,” “trek,” and “tram.”

 To check whether a given word is spelled correctly, you begin at the tree’s root and follow the reference
associated with the first letter in the word. If the reference is null, the word is not in the tree. Otherwise, you
follow the reference associated with the second letter in the word, and so on. If you finally arrive at a node, you
check whether it indicates a correctly spelled word. For example, the tree in Figure 23-26 indicates that “t,” “tr,”
and “tre” are spelling mistakes, but “trek” is spelled correctly.

FIGURE 23-26 A general tree for Project 8

radiuswidthheight

*

+

- /

length

*

3 3 4 3 radius

b

o

a

r

d
t

h

o

p t

i

p t

r

e

k

t

a

m

1. a. N, O, P, G, H, Q, R, S, T, L, M.
b. I, J.
c. F, G.
d. F, G, N, O, P.
e. F, B, A.
f. A, B, C, D, E, F, I, J, K

600 CHAPTER 23 Trees

2. A tree that represents the organization of this book is a general tree, such as the following:

3. 3, 3, and 4, respectively.

4. a. For the tree in Figure 23-6a, n is 7 and h is 3. Since the tree is full and 7 = 23 - 1, the relationship n = 2h - 1 is
true. Also, 3 = log2 (7 + 1), so the relationship h = log2 (n + 1) is true.

b. For the tree in Figure 23-6b, n is 10 and h is 4. The tree is complete, and log2 (10 + 1) is approximately 3.5,
which rounded up is 4. Thus, the relationship h = log2 (n + 1) rounded up is true.

5. 26 - 1, or 63.

6. log2 (14 + 1) is approximately 3.9. When rounded up, we get 4

7. Preorder: Jared, John, James, Mary, Jennifer, Robert, Carole
Postorder: James, Mary, John, Robert, Carole, Jennifer, Jared
Inorder: James, John, Mary, Jared, Robert, Jennifer, Carole
Level order: Jared, John, Jennifer, James, Mary, Robert, Carole

8.

Book

Front pages Chapters Appendices Index

Title page Chapter 1 Appendix A

Opening pages Sections Summaries Exercises

1

6

1413

8 9

5

11

161512

7

2 3 4

10

Answers to Self-Test Questions 601

9.

10. Figure 23-14a
Preorder: / a b
Inorder: a / b
Postorder: a b /

Figure 23-14c
Preorder: * a + b c
Inorder: a * b + c
Postorder: a b c + *

Figure 23-14d
Preorder: / * a + b * c d e
Inorder: a * b + c * d / e
Postorder: a b c d * + * e /

11. The tree in Figure 23-14a is full; the tree in Figure 23-14b is complete.

12. 17.

13. The method learn augments the tree under conditions that the class GuessingGame must control. It would be
inappropriate for a client to invoke this method.

14. 5.

15. The shortest tree has height 2; the tallest tree has height 3.

16. The root of a maxheap contains the object with the largest value. If this object is unique in the set of objects, the
root is unique. If another object has the same value, it would be a child of the root. In Figure 23-20a, only 9 can be
the root.

17. No. The order of siblings is not specified in a heap, so several different heaps can contain the same data. For
example, in Figure 23-20a, you could exchange 2 and 5, or you could exchange the root’s two subtrees, and still
have a maxheap.

*

a b

� c

(a) a � b * c (b) (a � b) * c

�

b c

a *

602 CHAPTER 23 Trees

18.

<term>

<expression>

<factor>

�

a

<term>

<factor>

<variable>

b c

<variable>

<factor>

<variable>

*

Chapter

24TreeImplementations
Contents
The Nodes in a Binary Tree

An Interface for a Node
An Implementation of BinaryNode

An Implementation of the ADT Binary Tree
Creating a Basic Binary Tree
The Method privateSetTree
Accessor and Mutator Methods
Computing the Height and Counting Nodes
Traversals

An Implementation of an Expression Tree
General Trees

A Node for a General Tree
Using a Binary Tree to Represent a General Tree

Prerequisites
Appendix C Creating Classes from Other Classes
Appendix E Exception handling
Chapter 5 Stacks
Chapter 10 Queues
Chapter 14 A List Implementation That Links Data
Chapter 23 Trees

Objectives
After studying this chapter, you should be able to
• Describe the necessary operations on a node within a binary tree
• Implement a class of nodes for a binary tree
• Implement a class of binary trees
• Implement an expression tree by extending the class of binary trees
• Describe the necessary operations on a node within a general tree
• Use a binary tree to represent a general tree

604 CHAPTER 24 Tree Implementations

The most common implementation of a tree uses a linked structure. Nodes, analogous to the nodes
we used in a linked chain, represent each element in the tree. Each node can reference its children,
which are other nodes in the tree. This chapter emphasizes binary trees, although it concludes with a
brief discussion of general trees. We do not cover binary search trees here, as the entire next chapter is
devoted to them.

Although we could use either an array or a vector to implement a tree, we will not do so in this
chapter. These implementations are attractive only when the tree is complete. In such cases, the link
between a parent and child is not stored explicitly, so the data structure is simpler than if the tree is
not complete. In Chapter 26, we will encounter a use for a complete tree, so we will postpone until
then any other implementation of the tree.

The Nodes in a Binary Tree

24.1 The elements in a tree are called nodes, as are the Java objects in a linked chain. We will use similar
objects to represent a tree’s nodes and call them nodes as well. The distinction between a node in a
tree that you draw and the Java node that represents it usually is not essential.

A node object that represents a node in a tree references both data and the node’s children. We
could define one class of nodes for all trees, regardless of how many children a node has. But such
a class would not be convenient or efficient for a node in a binary tree, since it has at most two chil-
dren. Figure 24-1 illustrates a node for a binary tree. It contains a reference to a data object and ref-
erences to its left child and right child, which are other nodes in the tree. Either reference to a child
could be null. If both of them are null, the node is a leaf node.

FIGURE 24-1 A node in a binary tree

Although the nodes in a linked chain belong to a private class Node that is internal to classes
such as LinkedStack and LList, our class of tree nodes will not be internal to the class of binary
trees. Since any class that extends our fundamental class of binary trees might need to manipulate
nodes, we will define our class of tree nodes outside of our binary tree class. But we will not make
this class of nodes public. Instead, we will give it package access within a package that contains the
classes of the various trees and their interfaces. In this way the node remains an implementation
detail that is not available to any of the tree’s clients.

Reference to another node, if any

Data object

Note: A node object in a linked chain references another node in the chain. Although we
can process the chain recursively, a node does not reference a chain. Likewise, a node object
in a binary tree references other nodes in the tree. Although we often think of a binary tree
recursively, as Segment 23.8 describes, a tree node does not reference another tree.

The Nodes in a Binary Tree 605

An Interface for a Node
24.2 Listing 24-1 contains a Java interface for a class of nodes suitable for a binary tree. We place the

interface in the package TreePackage and omit its access modifier. Without this modifier, the inter-
face is accessible only by classes within TreePackage.

LISTING 24-1 An interface for the nodes in a binary tree

package TreePackage;
interface BinaryNodeInterface<T>
{

/** Retrieves the data portion of this node.
@return the object in the data portion of the node */

public T getData();

/** Sets the data portion of this node.
@param newData the data object */

public void setData(T newData);

/** Retrieves the left child of this node.
@return the node that is this node’s left child */

public BinaryNodeInterface<T> getLeftChild();

/** Retrieves the right child of this node.
@return the node that is this node’s right child */

public BinaryNodeInterface<T> getRightChild();

/** Sets this node’s left child to a given node.
@param leftChild a node that will be the left child */

public void setLeftChild(BinaryNodeInterface<T> leftChild);

/** Sets this node’s right child to a given node.
@param rightChild a node that will be the right child */

public void setRightChild(BinaryNodeInterface<T> rightChild);

/** Detects whether this node has a left child.
@return true if the node has a left child */

public boolean hasLeftChild();

/** Detects whether this node has a right child.
@return true if the node has a right child */

public boolean hasRightChild();

/** Detects whether this node is a leaf.
@return true if the node is a leaf */

public boolean isLeaf();

/** Counts the nodes in the subtree rooted at this node.
@return the number of nodes in the subtree rooted at this node */

public int getNumberOfNodes();

/** Computes the height of the subtree rooted at this node.
@return the height of the subtree rooted at this node */

public int getHeight();

606 CHAPTER 24 Tree Implementations

These nodes have more responsibilities than the nodes in a linked chain. Soon you will see
how the last three methods in this interface simplify the implementation of the binary tree. But first
we will implement this interface as the class BinaryNode.

An Implementation of BinaryNode
24.3 Since we want to hide the node from clients of the binary tree, we place BinaryNode within

TreePackage, along with BinaryNodeInterface, and omit its access modifier. We present a portion
of the implementation of BinaryNode in Listing 24-1.

/** Copies the subtree rooted at this node.
@return the root of a copy of the subtree rooted at this node */

public BinaryNodeInterface<T> copy();
} // end BinaryNodeInterface

LISTING 24-2 The class BinaryNode

package TreePackage;
class BinaryNode<T> implements BinaryNodeInterface<T>
{

private T data;
private BinaryNode<T> left;
private BinaryNode<T> right;

public BinaryNode()
{

this(null); // call next constructor
} // end default constructor

public BinaryNode(T dataPortion)
{

this(dataPortion, null, null); // call next constructor
} // end constructor

public BinaryNode(T dataPortion, BinaryNode<T> leftChild,
BinaryNode<T> rightChild)

{
data = dataPortion;
left = leftChild;
right = rightChild;

} // end constructor

public T getData()
{

return data;
} // end getData

An Implementation of the ADT Binary Tree 607

An Implementation of the ADT Binary Tree
The previous chapter described several variations of a binary tree. The expression tree and deci-
sion tree, for example, each include operations that augment the basic operations of a binary tree.
We will define a class of binary trees that can be the superclass of other classes like the class of
expression trees.

public void setData(T newData)
{

data = newData;
} // end setData

public BinaryNodeInterface<T> getLeftChild()
{

return left;
} // end getLeftChild

public void setLeftChild(BinaryNodeInterface<T> leftChild)
{

left = (BinaryNode<T>)leftChild;
} // end setLeftChild

public boolean hasLeftChild()
{

return left != null;
} // end hasLeftChild

public boolean isLeaf()
{

return (left == null) && (right == null);
} // end isLeaf

< Implementations of getRightChild, setRightChild, and hasRightChild are
analogous to their left-child counterparts. >

< Implementation of copy appears in Segment 24.6. >

< Implementations of getHeight and getNumberOfNodes appear in Segment 24.11. >
. . .

} // end BinaryNode

Note: Typically, the class that represents a node in a tree is a detail that you hide from the
client. Omitting its access modifier and placing it within a package of classes that implement
trees makes it available only to other classes in the package.

608 CHAPTER 24 Tree Implementations

Creating a Basic Binary Tree

24.4 Recall from Segment 23.18 of the previous chapter the following interface for a class of binary trees:

public interface BinaryTreeInterface<T>
extends TreeInterface<T>, TreeIteratorInterface<T>

{
public void setTree(T rootData);

public void setTree(T rootData, BinaryTreeInterface<T> leftTree,
BinaryTreeInterface<T> rightTree);

} // end BinaryTreeInterface

VideoNote

Recall that TreeInterface in Segment 23.16 specifies basic operations—getRootData, getHeight,
getNumberOfNodes, isEmpty, and clear—common to all trees, and TreeIteratorInterface in
Segment 23.17 specifies operations for traversals of a tree. These three interfaces are in our package
TreePackage.

We begin our implementation of a binary tree with constructors and the setTree methods, as given
in Listing 24-3. The private method privateSetTree has parameters of type BinaryTree, whereas the
public setTree that the interface specifies has parameters of type BinaryTreeInterface. We use this
private method in the implementation of setTree to simplify the casts from BinaryTreeInterface to
BinaryTree.

The third constructor—which has parameters of type BinaryTree—also calls privateSetTree.
If it called setTree, we would declare setTree as a final method so that no subclass could override it
and thereby change the effect of the constructor. Note as well that we could have named the private
method setTree instead of privateSetTree.

Creating a binary tree

LISTING 24-3 A first draft of the class BinaryTree

package TreePackage;
import java.util.Iterator;
import java.util.NoSuchElementException;
import StackAndQueuePackage.*; // needed by tree iterators
/**

A class that implements the ADT binary tree.
@author Frank M. Carrano.

*/
public class BinaryTree<T> implements BinaryTreeInterface<T>
{

private BinaryNodeInterface<T> root;

public BinaryTree()
{

root = null;
} // end default constructor

public BinaryTree(T rootData)
{

root = new BinaryNode<T>(rootData);
} // end constructor

An Implementation of the ADT Binary Tree 609

The Method privateSetTree
24.5 A problem. The implementation of privateSetTree just given is really not sufficient to han-

dle all possible uses of the method. Suppose that the client defines three distinct instances of
BinaryTree—treeA, treeB, and treeC—and executes the statement

treeA.setTree(a, treeB, treeC);

public BinaryTree(T rootData, BinaryTree<T> leftTree,
BinaryTree<T> rightTree)

{
privateSetTree(rootData, leftTree, rightTree);

} // end constructor

public void setTree(T rootData)
{

root = new BinaryNode<T>(rootData);
} // end setTree

public void setTree(T rootData, BinaryTreeInterface<T> leftTree,
BinaryTreeInterface<T> rightTree)

{
privateSetTree(rootData, (BinaryTree<T>)leftTree,

(BinaryTree<T>)rightTree);
} // end setTree

private void privateSetTree(T rootData, BinaryTree<T> leftTree,
BinaryTree<T> rightTree)

{

< FIRST DRAFT - See Segments 24.5 - 24.8 for improvements. >
root = new BinaryNode<T>(rootData);

if (leftTree != null)
root.setLeftChild(leftTree.root);

if (rightTree != null)
root.setRightChild(rightTree.root);

} // end privateSetTree

< Implementations of getRootData, getHeight, getNumberOfNodes, isEmpty, clear,
and the methods specified in TreeIteratorInterface are here. >

. . .
} // end BinaryTree

Programming Tip: No cast is needed when you pass an instance of BinaryTree to a
method whose parameter has the type BinaryTreeInterface. The converse, however,
requires a cast.

610 CHAPTER 24 Tree Implementations

Since setTree calls privateSetTree, treeA shares nodes with treeB and treeC, as Figure 24-2
illustrates. If the client now changes treeB, for example, treeA also changes. This result generally
is undesirable.

FIGURE 24-2 The binary tree treeA shares nodes with treeB and treeC

24.6 One solution. One solution is for privateSetTree to copy the nodes in treeB and treeC. Then
treeA will be separate and distinct from treeB and treeC. Any subsequent changes to either treeB
or treeC will not affect treeA. Let’s explore this approach.

Since we are copying nodes, we use the method copy as specified in the interface Binary-
NodeInterface. To copy a node, we actually must copy the subtree rooted at the node. Beginning
with the node, we copy it and then copy the nodes in its left and right subtrees. Thus, we perform a
preorder traversal of the subtree. For simplicity, we will not copy the data in the nodes.

We define the method copy in the class BinaryNode as follows:
public BinaryNodeInterface<T> copy()
{

BinaryNode<T> newRoot = new BinaryNode<T>(data);

if (left != null)
newRoot.left = (BinaryNode<T>)left.copy();

if (right != null)
newRoot.right = (BinaryNode<T>)right.copy();

return newRoot;
} // end copy

Now privateSetTree can invoke copy to copy the nodes from the two given subtrees:
private void privateSetTree(T rootData, BinaryTree<T> leftTree,

BinaryTree<T> rightTree)
{

root = new BinaryNode<T>(rootData);

if ((leftTree != null) && !leftTree.isEmpty())
root.setLeftChild(leftTree.root.copy());

if ((rightTree != null) && !rightTree.isEmpty())
root.setRightChild(rightTree.root.copy());

} // end privateSetTree

Since copying nodes is expensive, we could consider other implementations of privateSetTree.
As you will see next, we must copy at least some nodes in certain situations.

treeA.root

treeB.root

treeA

a

treeCtreeB

treeC.root

Question 1 In the previous method copy, are the casts to BinaryNode<T> necessary? Explain.

An Implementation of the ADT Binary Tree 611

24.7 Another approach, more problems. Instead of always copying nodes, privateSetTree could
behave as follows. Returning to our earlier example,

treeA.setTree(a, treeB, treeC);

privateSetTree first could link the root node of treeA to the root nodes of treeB and treeC. It
then could set treeB.root and treeC.root to null. This approach solves the problem of a node
appearing in more than one tree, but it makes the trees that the client passed as arguments empty.
As a result, two other difficulties can occur.

Suppose that the client executes
treeA.setTree(a, treeA, treeB);

If privateSetTree makes the subtrees empty, setTree will destroy the new treeA!
Another problem occurs if the client executes
treeA.setTree(a, treeB, treeB);

In this case, the left and right subtrees of treeA’s root will be identical, as Figure 24-3 illustrates.
The solution to this dilemma is to copy the nodes of treeB so that the subtrees are distinct. Thus,
the general case cannot avoid copying nodes, but such copying will be infrequent.

We now implement a solution to these difficulties.

FIGURE 24-3 treeA has identical subtrees

24.8 The second solution. To summarize, privateSetTree should take the following steps:

1. Create a root node r containing the given data.
2. If the left subtree exists and is not empty, attach its root node to r as a left child.
3. If the right subtree exists, is not empty, and is distinct from the left subtree, attach its root

node to r as a right child. But if the right and left subtrees are the same, attach a copy of the
right subtree to r instead.

4. If the left subtree exists and differs from the tree object used to call privateSetTree, set the
subtree’s data field root to null.

5. If the right subtree exists and differs from the tree object used to call privateSetTree, set the
subtree’s data field root to null.

An implementation of privateSetTree follows:

private void privateSetTree(T rootData, BinaryTree<T> leftTree,
BinaryTree<T> rightTree)

{
root = new BinaryNode<T>(rootData);

treeA.root

treeB.root

treeA

treeB

a

612 CHAPTER 24 Tree Implementations

if ((leftTree != null) && !leftTree.isEmpty())
root.setLeftChild(leftTree.root);

if ((rightTree != null) && !rightTree.isEmpty())
{

if (rightTree != leftTree)
root.setRightChild(rightTree.root);

else
root.setRightChild(rightTree.root.copy());

} // end if

if ((leftTree != null) && (leftTree != this))
leftTree.clear();

if ((rightTree != null) && (rightTree != this))
rightTree.clear();

} // end privateSetTree

Accessor and Mutator Methods
24.9 The public methods getRootData, isEmpty, and clear are easy to implement. In addition

to these methods, we define several protected methods—setRootData, setRootNode, and
getRootNode—that will be useful in the implementation of a subclass. The implementa-
tions of these methods follow:

VideoNote

public T getRootData()
{

T rootData = null;

if (root != null)
rootData = root.getData();

return rootData;
} // end getRootData

public boolean isEmpty()
{

return root == null;
} // end isEmpty

public void clear()
{

root = null;
} // end clear

protected void setRootData(T rootData)
{

root.setData(rootData);
} // end setRootData

protected void setRootNode(BinaryNodeInterface<T> rootNode)
{

root = rootNode;
} // end setRootNode

protected BinaryNodeInterface<T> getRootNode()
{

return root;
} // end getRootNode

Question 2 At the end of the implementation of privateSetTree, can you set rightTree to
null instead of invoking clear? Explain.

Binary tree operations

An Implementation of the ADT Binary Tree 613

Computing the Height and Counting Nodes
24.10 Methods within BinaryTree. The methods getHeight and getNumberOfNodes are more interesting

than the methods given in the previous segment. Although we could perform the necessary compu-
tations within the class BinaryTree, performing them within the class BinaryNode is easier. Thus,
the following methods of BinaryTree invoke analogous methods of BinaryNode:

public int getHeight()
{

return root.getHeight();
} // end getHeight

public int getNumberOfNodes()
{

return root.getNumberOfNodes();
} // end getNumberOfNodes

We now complete the methods getHeight and getNumberOfNodes within BinaryNode.

24.11 Methods within BinaryNode. Within BinaryNode, the method getHeight returns the height of the
subtree rooted at the node used to invoke the method. Likewise, getNumberOfNodes returns the
number of nodes within that same subtree.

The public method getHeight can call a private recursive method getHeight that has a node
as its parameter. The height of the tree rooted at a node is 1—for the node itself—plus the height of
the node’s tallest subtree. Thus, we have the following implementation:

public int getHeight()
{
return getHeight(this); // call private getHeight

} // end getHeight

private int getHeight(BinaryNode<T> node)
{

int height = 0;

if (node != null)
height = 1 + Math.max(getHeight(node.left),

getHeight(node.right));

return height;
} // end getHeight

We could implement getNumberOfNodes by using the same approach, but instead we will
show you another way. The number of nodes in a tree rooted at a given node is 1—for the node
itself—plus the number of nodes in both the left and right subtrees. Thus, we have the following
recursive implementation:

public int getNumberOfNodes()
{

int leftNumber = 0;
int rightNumber = 0;

if (left != null)
leftNumber = left.getNumberOfNodes();

if (right != null)
rightNumber = right.getNumberOfNodes();

return 1 + leftNumber + rightNumber;
} // end getNumberOfNodes

614 CHAPTER 24 Tree Implementations

Traversals
24.12 Traversing a binary tree recursively. The previous chapter described four orders in which we

could traverse all the nodes in a binary tree: inorder, preorder, postorder, and level order. An inorder
traversal, for example, visits all nodes in the root’s left subtree, then visits the root, and finally visits
all nodes in the root’s right subtree. Since an inorder traversal visits the nodes in the subtrees by
using an inorder traversal, its description is recursive.

We could add a recursive method to the class BinaryTree to perform an inorder traversal. Such
a method, however, must do something specific to or with the data in each node that it visits. For
simplicity, we will display the data, even though a class that implements an ADT generally should
not perform input or output.

For the method to process the subtrees recursively, it needs the root of a subtree as a parameter.
To hide this detail from the client, we make the recursive method private and call it from a public
method that has no parameters. Thus, we have the following result:

public void inorderTraverse()
{

inorderTraverse(root);
} // end inorderTraverse

private void inorderTraverse(BinaryNodeInterface<T> node)
{

if (node != null)
{

inorderTraverse(node.getLeftChild());
System.out.println(node.getData());
inorderTraverse(node.getRightChild());

} // end if
} // end inorderTraverse

We could implement similar methods for preorder and postorder traversals.

Question 3 Trace the method inorderTraverse with the binary tree in Figure 24-4. What
data is displayed?

Question 4 Implement a recursive method preorderTraverse that displays the data in a
binary tree in preorder.

Note: Generally, the methods in a class that implements an ADT should not perform input
and output. We are doing so here to simplify the discussion that follows. However, instead of
actually displaying the data in the tree, a method like inorderTraverse could return a string
composed of the data. The client that uses the tree could display this string by using a state-
ment such as

System.out.println(myTree.inorderTraverse());

An Implementation of the ADT Binary Tree 615

FIGURE 24-4 A binary tree

24.13 Traversals that use an iterator. A method such as inorderTraverse is not hard to implement, but
this method only displays the data during the traversal. In addition, the entire traversal takes place
once the method is invoked. To provide the client with more flexibility, we should define the tra-
versals as iterators. In this way, the client can do more than simply display data during a visit and
can control when each visit takes place.

Recall that Java’s interface Iterator declares the methods hasNext and next. These methods
enable a client to retrieve the data from the current node in the traversal at any time. That is, the cli-
ent can retrieve a node’s data, do something with it, perhaps do something else, and then retrieve
the data in the next node in the iteration.

If we look at BinaryTreeInterface in Segment 24.4, we see that the class BinaryTree must
implement the methods in the interface TreeIteratorInterface. For example, the method get-
InorderIterator can be implemented within BinaryTree as follows:

public Iterator<T> getInorderIterator()
{

return new InorderIterator();
} // end getInorderIterator

As we did in earlier chapters, we define the class InorderIterator as a private inner class of
BinaryTree.

An iterator must be able to pause during a traversal. This suggests that we not use recursion in
its implementation. Chapter 5 showed how to use a stack instead of recursion. That is what we will
do here.

24.14 An iterative version of inorderTraverse. Before we define an iterator, let’s consider an iterative
version of the method inorderTraverse. This method will be a little easier to construct than the
iterator, yet it will take similar steps.

Figure 24-5 shows the tree in Figure 24-4 and the result of using a stack to perform its inorder
traversal. We begin by pushing the root, a, onto the stack. We then traverse to the left as far as possi-
ble, pushing each node onto the stack. We then pop the d from the stack and display it. Since d has no
children, we pop the stack again and display b. Now b has a right child, e, which we push onto the
stack. Since e has no children, we pop it from the stack and display it. The process continues until we
have visited all the nodes—that is, until both the stack is empty and the current node is null.

a

cb

e fd

g

616 CHAPTER 24 Tree Implementations

FIGURE 24-5 Using a stack to perform an inorder traversal of a binary tree

Here is an iterative implementation of inorderTraverse:

public void inorderTraverse()
{

StackInterface<BinaryNodeInterface<T>> nodeStack =
new LinkedStack<BinaryNodeInterface<T>>();

BinaryNodeInterface<T> currentNode = root;

while (!nodeStack.isEmpty() || (currentNode != null))
{

// find leftmost node with no left child
while (currentNode != null)
{

nodeStack.push(currentNode);
currentNode = currentNode.getLeftChild();

} // end while

// visit leftmost node, then traverse its right subtree
if (!nodeStack.isEmpty())
{

BinaryNodeInterface<T> nextNode = nodeStack.pop();
assert nextNode != null; // since nodeStack was not empty

// before the pop
System.out.println(nextNode.getData());
currentNode = nextNode.getRightChild();

} // end if
} // end while

} // end inorderTraverse

24.15 The private class InorderIterator. Now let’s implement an inorder traversal as an iterator. We
distribute the logic of the previous method inorderTraverse among the iterator’s constructor and
the methods hasNext and next. The stack and the variable currentNode are data fields in the itera-
tor class. The method next advances currentNode, adds to the stack as necessary, and eventually
pops the stack to return the data in the node that is next in the iteration. Thus, the implementation of
the private inner class InorderIterator appears as given in Listing 24-3.

a a
b

a
b

a a
b
a c c

f

d

a
e

d b e a f g c

c c
g

c

Traversal order:

Stack after
each push

or pop

a

cb

e fd

g

Question 5 In the previous method, if you replace each occurrence of BinaryNodeInterface
with BinaryNode, what other changes, if any, must you make?

An Implementation of the ADT Binary Tree 617

LISTING 24-4 The private inner class InorderIterator

private class InorderIterator implements Iterator<T>
{

private StackInterface<BinaryNodeInterface<T>> nodeStack;
private BinaryNodeInterface<T> currentNode;

public InorderIterator()
{

nodeStack = new LinkedStack<BinaryNodeInterface<T>>();
currentNode = root;

} // end default constructor

public boolean hasNext()
{

return !nodeStack.isEmpty() || (currentNode != null);
} // end hasNext

public T next()
{

BinaryNodeInterface<T> nextNode = null;

// find leftmost node with no left child
while (currentNode != null)
{

nodeStack.push(currentNode);
currentNode = currentNode.getLeftChild();

} // end while

// get leftmost node, then move to its right subtree
if (!nodeStack.isEmpty())
{

nextNode = nodeStack.pop();
assert nextNode != null; // since nodeStack was not empty

// before the pop
currentNode = nextNode.getRightChild();

}
else

throw new NoSuchElementException();

return nextNode.getData();
} // end next

public void remove()
{

throw new UnsupportedOperationException();
} // end remove

} // end InorderIterator

618 CHAPTER 24 Tree Implementations

24.16 Preorder, postorder, and level-order traversals. Figure 24-6 shows the result of using a stack to
perform a preorder traversal and a postorder traversal of the tree in Figure 24-4. A level-order tra-
versal has logic similar to that of a preorder traversal, but we use a queue instead of a stack.

FIGURE 24-6 Using a stack to traverse a binary tree in (a) preorder;
(b) postorder

Figure 24-7 shows the result of using a queue to perform a level-order traversal of the same tree.
We leave the implementation of the necessary iterator classes for you as an exercise.

FIGURE 24-7 Using a queue to traverse a binary tree in level order

a c
b

c cc cc
e

a b d e f g

f g

(a)

Stack after
each push

or pop

Traversal order:

e

d

c

e

c

d b g c(b)

Stack after
each push

or pop

Traversal order: e f a

a a

b

a a

d

aa a a

b

a

c

a

b

a
b

e

b

f

c

a

f

c

g

f

c

a

c

a

cb

e fd

g

Traversal
order a

a

b

b

b c

c

d

d

e f

f

g

g

Queue (front to
back) after each

 enqueue or dequeue

a

cb

e fd

gc

d e

d e

e

f

f

An Implementation of an Expression Tree 619

An Implementation of an Expression Tree

24.17 In the previous chapter, you saw that an expression tree is a binary tree that represents an algebraic
expression. Figure 23-14 provided some examples of these trees. By using the algorithm given in
Segment 23.22, we can evaluate the expression in this type of tree.

We can define an interface for an expression tree by extending the interface for a binary tree and
adding a declaration for the method evaluate, as shown in Listing 24-4. Since you can treat the com-
ponents of an expression as strings, we assume that an expression tree contains strings as its data.

24.18 An expression tree is a binary tree, so we can derive a class of expression trees from BinaryTree. We
implement the method evaluate as a part of the derived class. A portion of the class ExpressionTree
appears in Listing 24-5.

Programming Tip: An iterator object that has not traversed the entire binary tree can be
adversely affected by changes to the tree.

Note: A complete traversal of an n-node binary tree is an O(n) operation, if visiting a node
is O(1), for both recursive and iterative implementations.

LISTING 24-5 An interface for an expression tree

package TreePackage;
public interface ExpressionTreeInterface

extends BinaryTreeInterface<String>
{

/** Computes the value of the expression in this tree.
@return the value of the expression */

public double evaluate();
} // end ExpressionTreeInterface

LISTING 24-6 The class ExpressionTree

package TreePackage;
public class ExpressionTree extends BinaryTree<String>

implements ExpressionTreeInterface
{

public ExpressionTree()
{
} // end default constructor

public double evaluate()
{

return evaluate(getRootNode());
} // end evaluate

620 CHAPTER 24 Tree Implementations

The public method evaluate calls a private method evaluate that is recursive. This private
method calls the private methods getValueOf and compute as well as methods declared in
BinaryNodeInterface. The method getValueOf returns the numeric value of a given variable in
the expression, and compute returns the result of a given arithmetic operation and two given
operands.

Notice how important the methods of the class BinaryNode are to the implementation of
evaluate. For this reason, we do not want BinaryNode to be hidden within BinaryTree. Rather, it
should be part of a package.

private double evaluate(BinaryNodeInterface<String> rootNode)
{

double result;
if (rootNode == null)

result = 0;
else if (rootNode.isLeaf())
{

String variable = rootNode.getData();
result = getValueOf(variable);

}
else
{

double firstOperand = evaluate(rootNode.getLeftChild());
double secondOperand = evaluate(rootNode.getRightChild());
String operator = rootNode.getData();
result = compute(operator, firstOperand, secondOperand);

} // end if

return result;
} // end evaluate

private double getValueOf(String variable)
{

. . .
} // end getValueOf

private double compute(String operator, double firstOperand,
double secondOperand)

{
. . .

} // end compute
} // end ExpressionTree

Question 6 Trace the method evaluate for the expression tree in Figure 23-14c of the pre-
vious chapter. What value is returned? Assume that a is 3, b is 4, and c is 5.

General Trees 621

General Trees
To wrap up our discussion of tree implementations, we will consider one way to represent a node
for a general tree. Rather than developing an implementation of a general tree that uses this node,
we will see that we can use a binary tree to represent a general tree.

A Node for a General Tree
24.19 Since a node in a binary tree can have only two children, it is reasonable for each node to contain

two references to these children. In addition, the number of node operations that test for, set, or get
each child is reasonable. But dealing with more children per node in this way quickly becomes
unwieldy.

We can define a node for a general tree that accommodates any number of children by refer-
encing an object, such as a list or a vector, that contains the children. For example, the node in
Figure 24-8 contains two references. One reference is to the data object, and the other is to a list of
child nodes. An iterator for the list enables us to access these children.

FIGURE 24-8 A node for a general tree

In the interface for a general node given in Listing 24-6, getChildrenIterator returns an iter-
ator to the node’s children. A separate operation adds a child to the node, assuming that the children
are in no particular order. If the order of the children is important, the iterator could provide an
operation to insert a new child at the current position within the iteration.

List of child nodes
Data object

LISTING 24-7 An interface for a node in a general tree

package TreePackage;
import java.util.Iterator;
interface GeneralNodeInterface<T>
{

public T getData();
public void setData(T newData);
public boolean isLeaf();
public Iterator<T> getChildrenIterator();
public void addChild(GeneralNodeInterface<T> newChild);

} // end GeneralNodeInterface

622 CHAPTER 24 Tree Implementations

Using a Binary Tree to Represent a General Tree
24.20 Instead of the implementation just suggested, we can use a binary tree to represent any general tree.

For example, let’s represent the general tree in Figure 24-9a as a binary tree. As an intermediate step,
we connect the nodes with new edges, as follows. We give the root A one of its original children—B
in this case—as a left child. We then draw an edge from B to its sibling C and from C to another sib-
ling D, as Figure 24-9b shows. Likewise, we give each parent in the general tree one of its original
children as a left child in the binary tree, and link these children by edges.

If we consider each node in Figure 24-9b that is to the right of its sibling as the right child of
that sibling, we will have a binary tree that has an unorthodox form. We can move the nodes in the
drawing without disconnecting them to get the familiar look of a binary tree, as Figure 24-9c shows.

24.21 Traversals. Let’s examine the various traversals of the general tree in Figure 24-9a and compare
them with traversals of the equivalent binary tree pictured in Figure 24-9c. The general tree has the
following traversals:

Preorder: A B E F C G H I D J
Postorder: E F B G H I C J D A
Level order: A B C D E F G H I J

The traversals of the binary tree are as follows:

Preorder: A B E F C G H I D J
Postorder: F E I H G J D C B A
Level order: A B E C F G D H J I
Inorder: E F B G H I C J D A

The preorder traversals of the two trees are the same. The postorder traversal of the general
tree is the same as the inorder traversal of the binary tree. We must invent a new kind of traversal of
the binary tree to get the same results as a level-order traversal of the general tree. We leave that
task to you as an exercise.

Note: Algorithms for the operations on a general tree are more complex than those for a
binary tree due to the flexible number of children per node in a general tree. For this reason,
general trees are often represented by binary trees. The next section discusses how to trans-
form a general tree into an equivalent binary tree.

Question 7 What binary tree can represent the general tree in Figure 23-1 of the previous chapter?

Chapter Summary 623

FIGURE 24-9 (a) A general tree; (b) an equivalent binary tree; (c) a more
conventional view of the same binary tree

CHAPTER SUMMARY

A

F G H JE

B C D

I

(a)

A

E

H J

I

F

B

G

C

D

(c)

(b)
A

F G H JE

B C D

I

• A node in a binary tree is an object that references a data object and two child nodes in the tree.

• A basic class of binary trees contains methods common to all trees: getRootData, getHeight, getNumberOfNodes,
isEmpty, clear, and various traversals. The basic class also has a method that sets the root and subtrees of an
existing binary tree to given values.

• The implementation of getHeight and getNumberOfNodes is easier if the class of nodes has similar methods.

• Preorder, postorder, and inorder traversals have simple recursive implementations. But to implement a traversal as
an iterator, you must use an iterative approach, since an iterator needs to be able to pause during the traversal. You
use a stack for preorder, postorder, and inorder traversals; you use a queue for a level-order traversal.

• You can derive a particular binary tree, such as an expression tree, from the class of basic binary trees.

• A node in a general tree is an object that references its children and a data object. To accommodate any num-
ber of children, the node can reference a list or a vector, for example. An iterator can provide access to the
children. In this way, the node contains only two references.

• Instead of creating a general node for a general tree, you can use a binary tree to represent a general tree.

624 CHAPTER 24 Tree Implementations

PROGRAMMING TIPS

EXERCISES

• No cast is needed when you pass an instance of BinaryTree to a method whose parameter has the type
BinaryTreeInterface. The converse, however, requires a cast.

• An iterator object that has not traversed the entire binary tree can be adversely affected by changes to the tree.

1. Implement getHeight in the class BinaryNode, using the approach that Segment 24.11 uses for
getNumberOfNodes. That is, getHeight should not call a private method.

2. Implement getNumberOfNodes in the class BinaryNode, using the approach that Segment 24.11 uses for
getHeight. That is, getNumberOfNodes should not call a private method.

3. In Segment 24.12, Question 4 asked you to implement a recursive preorder traversal of a binary tree. Implement a
recursive method postorderTraverse that displays the data in a binary tree in postorder.

4. Trace the iterative method inorderTraverse given in Segment 24.14 with the binary tree in Figure 24-10. Show
the contents of the stack after each push and pop.

FIGURE 24-10 A binary tree for Exercises 4, 5, 6, and 17

5. Show the contents of the stack after each push and pop during a preorder traversal of the binary tree in Figure 24-10.
Repeat for a postorder traversal.

6. Show the contents of the queue after each enqueue and dequeue during a level-order traversal of the binary tree in
Figure 24-10.

7. Suppose we want to create a method for the class BinaryTree that counts the number of times an object occurs in
the tree. The header of the method could be as follows:

public int count(T anObject)

a. Write this method using a private recursive method of the same name.
b. Write the method using one of the iterators of the binary tree.
c. Compare the efficiencies of the previous two versions of the method.

8. Trace the method evaluate given in Segment 24.18 for the expression tree in Figure 23-14d of the previous
chapter. What value is returned? Assume that a is 2, b is 4, c is 5, d is 6, and e is 4.

9. Write a recursive definition for the number of possible binary trees that have distinct shapes and contain n nodes.

a

f

e

g h

b c

d

Exercises 625

10. What binary tree represents the general tree in each of the following figures from the previous chapter?
a. Figure 23-5
b. Figure 23-21

11. Given a general tree, consider an equivalent binary tree. Define a traversal of this binary tree that is equivalent to
a level-order traversal of the general tree.

12. Knowing the preorder and inorder traversals of a binary tree will enable you to uniquely define the tree. The same
is true for the postorder and inorder traversals.

a. Draw the unique binary tree that has the following preorder and inorder traversals:
Preorder: A, B, D, E, C, F, G, H
Inorder: E, D, B, A, G, F, H, C

b. Draw the unique binary tree that has the following postorder and inorder traversals:
Postorder: B, D, F, G, E, C, A
Inorder: B, A, D, C, F, E, G

13. Although you can uniquely construct a binary tree from either its preorder and inorder traversals or its postorder
and inorder traversals, more than one binary tree can have the same preorder traversal and the same postorder
traversal. Give an example of two different binary trees that have the same preorder and postorder traversals.

14. Suppose we want to create a method for the class BinaryTree that decides whether two trees have the same
structure. The header of the method could be as follows:

public boolean isIsomorphic(BinaryTreeInterface<T> otherTree)

Write this method, using a private recursive method of the same name.

15. Consider two binary trees that have the same structure. A node in one tree can contain different data than the
corresponding node in the other tree. Write code that uses a dictionary to map the objects in the first tree to the
corresponding objects in the second tree.

16. Sometimes you need to move from a tree node to its parent. To do this, a binary tree node would need a reference
to its parent. You then would be able to traverse a path from a leaf to the root. Redesign the node used in a binary
tree so that each one has a reference to its parent as well as to its left child and right child. What methods will need
to be changed?

17. Another way of representing a binary tree is to use an array. The items in the tree are assigned to locations in the array
in a level-order fashion. For example, Figure 24-11 shows an array that represents the binary tree in Figure 24-10.
Notice that gaps in the array correspond to missing nodes in the tree. The array is sufficiently large to represent any
binary tree up to height 4.

a. What are the indices of the children of the node stored at index i?
b. What is the parent of the node stored at index i?
c. What are the advantages and disadvantages of this representation?

FIGURE 24-11 An array for Exercise 17 that represents the binary tree in Figure 24-10

a b c d e f g h

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

626 CHAPTER 24 Tree Implementations

PROJECTS

18. Add a method to the class BinaryTree that accepts as its argument a BinaryTree object and returns true if the
argument tree is structurally identical to this binary tree. Two trees are structurally identical if their nodes
correspond in value and position.

1. Using the examples in Figures 24-6 and 24-7 to suggest algorithms, implement iterator classes for preorder,
postorder, and level-order traversals of a binary tree.

2. Write a Java program that distinguishes among 10 different animals. The program should play a guessing game
similar to the one described in Segment 23.24 of the previous chapter. The user thinks of one of the 10 animals,
and the program asks a sequence of questions until it can guess the animal.

Your program should learn from the user. If the program makes an incorrect guess, it asks the user to enter a
new question that can distinguish between the correct animal and the program’s incorrect guess. The decision tree
should be updated with this new question.

3. Complete the implementation of an expression tree that was begun in Segment 24.18. Add two constructors that
create an expression tree given either a postfix expression or an infix expression. Projects 4 and 5 in the previous
chapter asked you to design algorithms for these two tasks. To simplify the method getValueOf, you can restrict
the choice of variables and give them specific values.

4. Consider the redesigned node for a binary tree that Exercise 16 describes. Add an additional data field to the node
to record the height of the subtree tree rooted at the node. Modify all the methods in the implementation of the
binary tree so that the height field is updated anytime the structure of the tree changes.

5. Project 6 in the previous chapter asked you to develop an interface GeneralTreeInterface for a general tree.
Using that interface as a base, develop an interface GeneralSearchTreeInterface for a general search tree. Then
write the class GeneralSearchTree that implements GeneralSearchTreeInterface. Use a binary tree to
represent the general tree, as described in Segment 24.20. Implement iterators for the preorder and postorder
traversals. As an extra challenge, implement an iterator for the level-order traversal.

6. Some implementations of a binary tree do not use null to indicate the absence of a child. Instead, they use
references to a single dummy node. The reference to an empty tree is to this same dummy node. Modify the
implementation of BinaryTree in this way.

7. Implement the class ArrayBinaryTree that uses an array representation of the tree, as described in Exercise 17.

8. Create a dictionary for a glossary of terms, as described in Project 13 of Chapter 20. Instead of an array of sorted
lists, use a 26-ary tree to represent the glossary. Figure 23-26 in Project 8 of the previous chapter illustrates such a
tree, but one that is used for a spelling checker. To adapt that tree for this project, place a term’s definition in the
filled-in node instead of an indicator of the term’s spelling.

9. Huffman coding is a technique that compresses the size of data. For example, an audio file in mp3 format is a com-
pressed version of an original recording that, for most people, sounds like the original. This so-called lossless data
compression is a result of Huffman coding.

Although ASCII and Unicode use bit strings having a fixed length—8 and 16, respectively—to represent
symbols, Huffman codes have variable lengths. These codes are based on the frequency of occurrence of a symbol
in a given data set. Symbols that occur frequently have shorter codes than those occurring less frequently.
A binary tree—called a Huffman tree—is used to generate these codes.

Projects 627

For example, let’s encode some text composed only of the letters A through E. Suppose these letters occur
with the following frequencies: A, 12 times; B, 3 times; C, 1 time; D, 9 times; and E, 15 times. We need to
arrange these letters by their frequencies in increasing order. To do so, we associate each letter with its fre-
quency of occurrence and add these pairs to a collection, such as a sorted list or a priority queue. The result is
shown in Figure 24-12a. Now we remove the two entries having the lowest frequencies and make them leaves
in a binary tree. The parent of these leaves is a node containing the sum of the frequencies in the leaves, as
illustrated in Figure 24-12b. Since the parent contains only a frequency, the letter portion of the node is null,
which is shown as • in the figure. We now add the contents of the parent to our list or queue, as shown to the
right of the tree in Figure 24-12b.

When we remove the next two entries from the list, we create a new leaf containing D 9 and join it to the
existing tree with a new root containing the sum of the frequencies in its two children. The result is given in
Figure 24-12c. Note that we then place the contents of this new root in its correct order within the remaining data.
Parts d and e of the figure show the remaining steps in this process.

Figure 24-12f shows the resulting binary tree with its left links and right links labeled with 0 and 1, respec-
tively. To encode a character, you begin at a leaf and traverse the tree to its root, recording 0s and 1s in reverse
order according to the left and right branches that you take. The Huffman codes for our example are as follows:
A is 10, B is 1101, C is 1100, D is 111, and E is 0. To decode a Huffman code, you traverse the tree from its root to
a leaf by taking a left branch for each 0 encountered and a right branch for each 1 encountered.

Write a program that reads a text file of alphabetic data, creates a Huffman tree, and uses the tree to compress
the file. Your program should then take the compressed file and, using your tree, decode it.

FIGURE 24-12 The steps in creating a binary tree for Huffman coding

(c)C 1(a)

E 15

D 9

B 3

A 12 B 3C 1

• 4
(b)

E 15

D 9

A 12

• 13

B 3C 1

• 4 D 9
E 15

A 12

(d)

• 13

B 3C 1

• 4 D 9

A 12

• 25
E 15 (e)

• 40

• 13

B 3C 1

• 4 D 9

A 12

• 25E 15

C 1

E 15

D 9

B 3

A 12 E 15

D 9

• 4

A 12

E 15

A 12

• 13

E 15

• 25
• 40

• 13

B 3C 1

• 4 D 9

A 12

• 25

0

0

0

0

E 15

1

1

1

1

(f)

• 4

• 13

• 25

628 CHAPTER 24 Tree Implementations

ANSWERS TO SELF-TEST QUESTIONS

1. Yes. The fields left and right of BinaryNode (see Segment 24.3) have BinaryNode<T> as their data type, but the
return type of the method copy is BinaryNodeInterface<T>.

2. No. Setting rightTree to null affects only the local copy of the reference argument rightTree. An analogous
comment applies to leftTree.

3. The data in the objects d, b, e, a, f, g, and c is displayed on separate lines.
4. public void preorderTraverse()

{
preorderTraverse(root);

} // end preorderTraverse

private void preorderTraverse(BinaryNodeInterface<T> node)
{

if (node != null)
{

System.out.println(node.getData());
preorderTraverse(node.getLeftChild());
preorderTraverse(node.getRightChild());

} // end if
} // end preorderTraverse

5. You must cast to BinaryNode<T> three times, as follows:
• BinaryNode<T> currentNode = (BinaryNode<T>)root;
• currentNode = (BinaryNode<T>)currentNode.getLeftChild();
• currentNode = (BinaryNode<T>)nextNode.getRightChild();

6. 27.

7.
Carole

Jennifer

Jared Brian

Brett

Susan

Jamie

Chapter

25
A Binary

Search Tree
Implementation

Contents
Getting Started

An Interface for the Binary Search Tree
Duplicate Entries
Beginning the Class Definition

Searching and Retrieving
Traversing
Adding an Entry

A Recursive Implementation
An Iterative Implementation

Removing an Entry
Removing an Entry Whose Node Is a Leaf
Removing an Entry Whose Node Has One Child
Removing an Entry Whose Node Has Two Children
Removing an Entry in the Root
A Recursive Implementation
An Iterative Implementation

The Efficiency of Operations
The Importance of Balance
The Order in Which Nodes Are Added

An Implementation of the ADT Dictionary

Prerequisites
Appendix C Creating Classes from Other Classes
Chapter 7 Recursion
Chapter 19 Dictionaries
Chapter 23 Trees
Chapter 24 Tree Implementations

630 CHAPTER 25 A Binary Search Tree Implementation

Objectives
After studying this chapter, you should be able to
• Decide whether a binary tree is a binary search tree
• Locate a given entry in a binary search tree using the fewest comparisons
• Traverse the entries in a binary search tree in sorted order
• Add a new entry to a binary search tree
• Remove an entry from a binary search tree
• Describe the efficiency of operations on a binary search tree
• Use a binary search tree to implement the ADT dictionary

Recall from Chapter 23 that a search tree stores data in a way that facilitates searching. In particular,
we saw the binary search tree, which is both a binary tree and a search tree. The nature of a binary
search tree enables us to search it by using a simple recursive algorithm. This algorithm is similar in
spirit to a binary search of an array and can be just as efficient. However, the shape of a binary search
tree affects the efficiency of this algorithm. Since we can create several different binary search trees
from the same data, we want to pick the tree whose shape provides the most efficient search.

For a database that remains stable, a binary search tree provides a relatively simple way to
achieve an efficient search. Most databases, however, change to remain current. Thus, we must add
nodes to and remove nodes from the binary search tree. Unfortunately, these operations change the
shape of the tree, often making a search less efficient.

This chapter implements the binary search tree and, in doing so, describes the algorithms for
adding and removing entries. Chapter 27 looks at ways that a search tree can provide an efficient
search despite additions and removals.

Getting Started

25.1 A binary search tree is a binary tree whose nodes contain Comparable objects and are organized
as follows. For each node in the tree,

• The data in a node is greater than the data in the node’s left subtree
• The data in a node is less than the data in the node’s right subtree

Figure 25-1 shows the binary search tree that you saw in Chapter 23.

FIGURE 25-1 A binary search tree of names

Recall that a Comparable object belongs to a class that implements the interface Comparable.
We use the class’s method compareTo to compare such objects. The basis for this comparison varies
from class to class, depending on the data fields compareTo examines.

Jared

Jim Whitney

Megan

Brett Doug

Brittany

Getting Started 631

An Interface for the Binary Search Tree
25.2 The operations. In addition to the common operations of a tree, as given in the interface

TreeInterface, a binary search tree has basic database operations that search, retrieve, add,
remove, and traverse its entries. We can design an interface for a binary search tree, as well as for
other search trees that you will see in Chapter 27. Listing 25-1 provides such an interface.

LISTING 25-1 An interface for a search tree

package TreePackage;
import java.util.Iterator;
public interface SearchTreeInterface<T extends Comparable<? super T>>

extends TreeInterface<T>
{

/** Searches for a specific entry in this tree.
@param entry an object to be found
@return true if the object was found in the tree */

public boolean contains(T entry);

/** Retrieves a specific entry in this tree.
@param entry an object to be found
@return either the object that was found in the tree or

null if no such object exists */
public T getEntry(T entry);

/** Adds a new entry to this tree.
If the entry matches an object that exists in the tree
already, replaces the object with the new entry.
@param newEntry an object to be added to the tree
@return either null if newEntry was not in the tree already, or

an existing entry that matched the parameter newEntry
and has been replaced in the tree */

public T add(T newEntry);

/** Removes a specific entry from this tree.
@param entry an object to be removed
@return either the object that was removed from the tree or

null if no such object exists */
public T remove(T entry);

/** Creates an iterator that traverses all entries in this tree.
@return an iterator that provides sequential and ordered access

to the entries in the tree */
public Iterator<T> getInorderIterator();

} // end SearchTreeInterface

632 CHAPTER 25 A Binary Search Tree Implementation

25.3 Understanding the specifications. These specifications allow us to use a binary search tree in the
implementation of the ADT dictionary, as you will see later in this chapter. The methods use return
values instead of exceptions to indicate whether an operation has failed. The return value for a suc-
cessful retrieve, add, or remove operation, however, might seem strange at first. For example, it
appears that the retrieve operation, getEntry, returns the same entry it is given to find. In fact,
getEntry returns an object that is in the tree and that matches the given entry according to the
entry’s compareTo method. Let’s look at an example that adds entries and then retrieves them.

Imagine a class Person that has two strings as data fields representing the person’s name and
identification number. The class implements the Comparable interface, and so has a compareTo
method. Suppose that compareTo bases its comparison only on the name field. Consider the follow-
ing statements that create and add to a binary search tree:

SearchTreeInterface<Person> myTree = new BinarySearchTree<Person>();
Person whitney = new Person("Whitney", "111223333");
Person returnValue = myTree.add(whitney);

Following the add operation, returnValue is null, since whitney was not in the tree already. Now
suppose we try to add another Whitney, who has a different identification number:

Person whitney2 = new Person("Whitney", "444556666");
returnValue = myTree.add(whitney2);

Since whitney and whitney2 have the same names, they are equal. That is, the expression
whitney.compareTo(whitney2) is zero. Therefore, the add method will not add whitney2 to the
tree. Instead it replaces whitney with whitney2 and returns whitney, the original object in the
tree, as Figure 25-2 illustrates. We can think of this as a way to change the identification num-
ber of a person named Whitney.

FIGURE 25-2 Adding an entry that matches an entry already in a binary search tree

Whitney

Whitney

Whitney

Whitney

whitney2

whitney

myTree

whitney

whitney2

myTree

After myTree.add(whitney2) executes

Returned from add

(a)

(b)

Before myTree.add(whitney2) executes

444556666

444556666

111223333

111223333

Getting Started 633

Now the statement
returnValue = myTree.getEntry(whitney);

sets returnValue to whitney2, since it is in the tree and matches whitney. Similarly,
returnValue = myTree.remove(whitney);

returns and removes whitney2.
Now imagine that the method compareTo uses both the name and identification fields of a

Person object to make a comparison. Since whitney and whitney2 would not be equal accord-
ing to this compareTo, we could add both objects to the tree. Then getEntry(whitney) would
return whitney, and remove(whitney) would remove and return whitney.

Duplicate Entries
25.4 To make our discussion a bit simpler, we insist that a binary search tree contain distinct entries.

Notice that the add method, as specified in SearchTreeInterface, ensures that duplicates are
never added to the tree. In practice, this restriction can be desirable for many applications, but
sometimes it is not. By making a small change to our definition of a binary search tree, we can
allow duplicate entries, that is, multiple entries that are equal according to compareTo.

Figure 25-3 shows a binary search tree in which Jared occurs twice. If we are at the root of this
tree and want to know whether Jared occurs again, it would help to know in which subtree we
should look. Thus, if any entry e has a duplicate entry d, we arbitrarily require that d occur in the
right subtree of e’s node. Accordingly, we modify our definition as follows:

For each node in a binary search tree,

• The data in a node is greater than the data in the node’s left subtree
• The data in a node is less than or equal to the data in the node’s right subtree

Notice that an inorder traversal of the tree in Figure 25-3 visits the duplicate entry Jared immedi-
ately after visiting the original Jared.

FIGURE 25-3 A binary search tree with duplicate entries

With duplicate entries permitted, the add method has less to do. But which entry will getEntry
retrieve? Will the method remove delete the first occurrence of an entry or all occurrences? Exactly
what happens is up to the class designer, but these questions should indicate the complications that
duplicate entries cause. We will not consider duplicate entries any further, and will leave this issue
to you as a programming project. (See Project 1 at the end of this chapter.)

Jared

Jim Whitney

Megan

Brett Doug

Brittany

Jared

634 CHAPTER 25 A Binary Search Tree Implementation

Beginning the Class Definition

VideoNote

25.5 An outline of the class. Let’s begin the definition of a class of binary search trees. Since a binary
search tree is a binary tree, we derive our new class from the class BinaryTree that we defined in
the previous chapter. Thus, we begin our class as indicated in Listing 25-2. Note the call by the
constructor to the protected method setRootNode, which the class inherits from BinaryTree.
Segment 24.9 of the previous chapter contains a definition of setRootNode.

Note: Duplicate entries
If you permit duplicate entries in a binary search tree, you can arbitrarily place the duplicate
of an entry in the entry’s right subtree. Once you choose the right subtree, you must be con-
sistent. Project 2 at the end of this chapter suggests another strategy for handling duplicates.

Question 1 If you add a duplicate entry Megan to the binary search tree in Figure 25-3 as
a leaf, where should you place the new node?

Creating a binary search tree

LISTING 25-2 An outline of the class BinarySearchTree

package TreePackage;
import java.util.Iterator;
public class BinarySearchTree<T extends Comparable<? super T>>

extends BinaryTree<T>
implements SearchTreeInterface<T>

{
public BinarySearchTree()
{

super();
} // end default constructor

public BinarySearchTree(T rootEntry)
{

super();
setRootNode(new BinaryNode<T>(rootEntry));

} // end constructor

public void setTree(T rootData) // disable setTree (see Segment 25.6)
{

throw new UnsupportedOperationException();
} // end setTree

public void setTree(T rootData, BinaryTreeInterface<T> leftTree,
BinaryTreeInterface<T> rightTree)

{
throw new UnsupportedOperationException();

} // end setTree

Searching and Retrieving 635

25.6 Disable setTree. Before we go any further, consider the two setTree methods that our class inher-
its from BinaryTree. The client could use these methods to create a tree that, unfortunately, is not a
binary search tree. This outcome would be impossible if the client used SearchTreeInterface to
declare an instance of the tree. For example, if we wrote

SearchTreeInterface<String> dataSet = new BinarySearchTree<String>();

dataSet would not have either of the setTree methods, since they are not in SearchTreeInterface.
But if we wrote

BinarySearchTree<String> dataSet = new BinarySearchTree<String>();

dataSet would have the setTree methods.
To prevent a client from using either version of setTree, we should override these two meth-

ods so that they throw an exception if called. Listing 25-2 shows definitions for these methods that
do just that.

Searching and Retrieving

25.7 The search algorithm. Segment 23.29 presented the following recursive algorithm to search a
binary search tree:

Algorithm bstSearch(binarySearchTree, desiredObject)
// Searches a binary search tree for a given object.
// Returns true if the object is found.

if (binarySearchTree is empty)
return false

else if (desiredObject == object in the root of binarySearchTree)
return true

else if (desiredObject < object in the root of binarySearchTree)
return bstSearch(left subtree of binarySearchTree, desiredObject)

else
return bstSearch(right subtree of binarySearchTree, desiredObject)

This algorithm is the basis of the method getEntry.

< Implementations of contains, getEntry, add, and remove are here. Their definitions appear
in subsequent sections of this chapter. Other methods in SearchTreeInterface are inherited
 from BinaryTree. >
. . .

} // end BinarySearchTree

Question 2 The second constructor in the class BinarySearchTree calls the method
setRootNode. Is it possible to replace this call with the call setRootData(rootEntry)? Explain.

Question 3 Is it necessary to define the methods isEmpty and clear within the class
BinarySearchTree? Explain.

Note: Searching a binary search tree is like performing a binary search of an array: You
search one of two subtrees of the binary search tree instead of searching one of two halves of
an array.

636 CHAPTER 25 A Binary Search Tree Implementation

25.8 While it is convenient to express our recursive algorithm in terms of trees and subtrees, our imple-
mentation of a binary tree in the previous chapter suggests that we use root nodes instead. The root
node of a tree or subtree provides a way for us to search or manipulate its descendant nodes.

The following algorithm is equivalent to the one just given, but describes our actual implemen-
tation more closely:

Algorithm bstSearch(binarySearchTreeRoot, desiredObject)
// Searches a binary search tree for a given object.
// Returns true if the object is found.

if (binarySearchTreeRoot is null)
return false

else if (desiredObject == object in binarySearchTreeRoot)
return true

else if (desiredObject < object in binarySearchTreeRoot)
return bstSearch(left child of binarySearchTreeRoot, desiredObject)

else
return bstSearch(right child of binarySearchTreeRoot, desiredObject)

We will continue to express subsequent algorithms in terms of trees and subtrees, but will use
root nodes in our implementations without explicitly mentioning it.

25.9 The method getEntry. As is often the case with recursive algorithms, we implement the actual
search as a private method findEntry that the public method getEntry invokes. Although the algo-
rithm returns a boolean value, our implementation will return the located data object. Thus, we
have the following methods:

public T getEntry(T entry)
{

return findEntry(getRootNode(), entry);
} // end getEntry

private T findEntry(BinaryNodeInterface<T> rootNode, T entry)
{

T result = null;

if (rootNode != null)
{

T rootEntry = rootNode.getData();

if (entry.equals(rootEntry))
result = rootEntry;

else if (entry.compareTo(rootEntry) < 0)
result = findEntry(rootNode.getLeftChild(), entry);

else
result = findEntry(rootNode.getRightChild(), entry);

} // end if

return result;
} // end findEntry

We use the methods compareTo and equals to compare the given entry with the existing
entries in the tree. Also, notice our use of methods from the class BinaryNode. We assume that we
have at least package access to this class.

You can implement getEntry iteratively as well, with or without the use of a private method
such as findEntry. We leave this implementation as an exercise.

Adding an Entry 637

25.10 The method contains. The method contains can simply call getEntry to see whether a given
entry is in the tree:

public boolean contains(T entry)
{

return getEntry(entry) != null;
} // end contains

Traversing

25.11 SearchTreeInterface provides the method getInorderIterator, which returns an inorder itera-
tor. Since our class is a subclass of BinaryTree, it inherits getInorderIterator. For a binary
search tree, this iterator traverses the entries in ascending order, as defined by the entries’ method
compareTo.

Adding an Entry

VideoNote

25.12 Adding entries to a binary search tree is an essential operation, since that is how we build one ini-
tially. So suppose that we have a binary search tree and we want to add a new entry to it. We cannot
add it just anywhere in the tree, because we must retain the relationships among the nodes. That is,
the tree must still be a binary search tree after the addition. Also, the method getEntry must be able
to locate the new entry. For example, if we want to add the entry Chad to the tree in Figure 25-4a, we
could not add the new node to Jared’s right subtree. Since Chad comes before Jared, Chad must be
in Jared’s left subtree. Since Brittany is the root of this left subtree, we compare Chad with Brittany
and find that Chad is larger. Thus, Chad belongs in Brittany’s right subtree. Continuing, we compare
Chad with Doug and find that Chad belongs in Doug’s left subtree. But this subtree is empty. That is,
Doug has no left child.

If we make Chad the left child of Doug, we will get the binary search tree in Figure 25-4b.
Now getEntry will be able to locate Chad by making the same comparisons we just described.
That is, getEntry will compare Chad with Jared, Brittany, and Doug before locating Chad. Notice
that the new node is a leaf.

Question 4 When getEntry calls findEntry, it passes getRootNode() as the first argu-
ment. This argument’s data type is BinaryNodeInterface<T>, which corresponds to the type
of the parameter rootNode. If you change rootNode’s type to BinaryNode<T>, what other
changes, if any, must you make?

Question 5 Under what circumstance will a client of BinarySearchTree be able to call the
other methods in TreeIteratorInterface? Under what circumstance will such a client be
unable to call these methods?

Binary search tree additions
and removals

Note: Every addition to a binary search tree adds a new leaf to the tree.

638 CHAPTER 25 A Binary Search Tree Implementation

FIGURE 25-4 (a) A binary search tree; (b) the same tree after adding Chad

A Recursive Implementation
25.13 The method add has an elegant recursive implementation. Consider again the example given in

the previous segment. If we want to add Chad to the binary search tree in Figure 25-4a, we
take the following steps:

• To add Chad to the binary search tree whose root is Jared:
Observe that Chad is less than Jared.
Add Chad to Jared’s left subtree, whose root is Brittany.

• To add Chad to the binary search tree whose root is Brittany:
Observe that Chad is greater than Brittany.
Add Chad to Brittany’s right subtree, whose root is Doug.

• To add Chad to the binary search tree whose root is Doug:
Observe that Chad is less than Doug.
Since Doug has no left subtree, make Chad the left child of Doug.

We can see that adding an entry to the tree rooted at Jared depends upon adding to progressively
smaller subtrees, as Figure 25-5 shows.

Jared

Jim Whitney

Megan

Brett Doug

Brittany

(a)
Jared

Jim Whitney

Megan

Brett Doug

Brittany

Chad

(b)

Question 6 Add the names Chris, Jason, and Kelley to the binary search tree in Figure 25-4b.

Question 7 Add the name Miguel to the binary search tree in Figure 25-4a, and then add
Nancy. Now go back to the original tree and add Nancy and then add Miguel. Does the order
in which you add the two names affect the tree that results?

Adding an Entry 639

FIGURE 25-5 Recursively adding Chad to smaller subtrees of a binary search tree

25.14 A recursive algorithm for adding a new entry. The following recursive algorithm formalizes this
approach, in accordance with the specifications of the method add in SearchTreeInterface.
Recall that we decided to have only distinct entries in the binary search tree. If we try to add an
entry to a tree that matches an entry already in the tree, we replace that entry with the new entry and
return the old entry.

(a)

(b)

(c)

(d)

Jared

Jim Whitney

Megan

Brett Doug

Brittany

Jared

Jim Whitney

Megan

Brett Doug

Brittany

Jared

Jim Whitney

Megan

Brett Doug

Brittany
Chad

Jared

Jim Whitney

Megan

Brett Doug

Brittany

Chad

Chad

Chad

640 CHAPTER 25 A Binary Search Tree Implementation

To simplify our algorithm, let’s assume for the moment that the binary search tree is not empty:

Algorithm addEntry(binarySearchTree, newEntry)
// Adds a new entry to a binary search tree that is not empty.
// Returns null if newEntry did not exist already in the tree. Otherwise, returns the
// tree entry that matched and was replaced by newEntry.

result = null
if (newEntry matches the entry in the root of binarySearchTree)
{

result = entry in the root
Replace entry in the root with newEntry

}
else if (newEntry < entry in the root of binarySearchTree)
{

if (the root of binarySearchTree has a left child)
result = addEntry(left subtree of binarySearchTree, newEntry)

else
Give the root a left child containing newEntry

}
else // newEntry > entry in the root of binarySearchTree
{

if (the root of binarySearchTree has a right child)
result = addEntry(right subtree of binarySearchTree, newEntry)

else
Give the root a right child containing newEntry

}

return result

We can handle the addition to an empty binary search tree as a special case within another
algorithm that invokes addEntry, as follows:

Algorithm add(binarySearchTree, newEntry)
// Adds a new entry to a binary search tree.
// Returns null if newEntry did not exist already in the tree. Otherwise, returns the
// tree entry that matched and was replaced by newEntry.

result = null
if (binarySearchTree is empty)

Create a node containing newEntry and make it the root of binarySearchTree
else

result = addEntry(binarySearchTree, newEntry)

return result;

25.15 The private recursive method addEntry. Recall the recursive search algorithm given in Segment 25.7.
The public method getEntry in Segment 25.9 invokes a private recursive method findEntry that imple-
ments the search algorithm. We have a similar organization here. The public method add calls a private
recursive method addEntry, if the tree is not empty. Like findEntry, addEntry has a node as a parameter
that is initially the root node of the tree. When addEntry is called recursively, this parameter is either the
left child or the right child of the current root.

Remember where we place a new node into a binary search tree. As Figures 25-4 and 25-5 illus-
trate, a new node always becomes a leaf in the tree. Now imagine the recursive calls to addEntry
when adding Chad to the tree in Figure 25-5a. Eventually, the node containing Doug is passed to
addEntry as its argument (Figure 25-5c). Since Chad is less than Doug, and Doug’s node has no left
child, addEntry creates one containing Chad (Figure 25-5d).

Adding an Entry 641

The following implementation of addEntry closely follows the pseudocode given in Segment 25.14:

// Adds newEntry to the nonempty subtree rooted at rootNode.
private T addEntry(BinaryNodeInterface<T> rootNode, T newEntry)
{

assert rootNode != null;
T result = null;
int comparison = newEntry.compareTo(rootNode.getData());

if (comparison == 0)
{

result = rootNode.getData();
rootNode.setData(newEntry);

}
else if (comparison < 0)
{

if (rootNode.hasLeftChild())
result = addEntry(rootNode.getLeftChild(), newEntry);

else
rootNode.setLeftChild(new BinaryNode<T>(newEntry));

}
else
{

assert comparison > 0;

if (rootNode.hasRightChild())
result = addEntry(rootNode.getRightChild(), newEntry);

else
rootNode.setRightChild(new BinaryNode<T>(newEntry));

} // end if

return result;
} // end addEntry

We begin by comparing the new entry with the entry in the root. If the entries match, we
replace and return the original entry in the root. If the comparison is “less than,” and the root has a
left child, we pass that child to addEntry. Remember that when we are coding a recursive method
such as addEntry, we assume that it works when we write the recursive call. Thus, addEntry places
a new node containing newEntry into the root’s left subtree. If the root has no left child, we give it
one containing the new entry. Analogous code handles the case when the new entry is greater than
the entry in the root.

25.16 The public method add. The public method add not only invokes the recursive addEntry, it ensures
that the tree it passes to addEntry is not empty. Accordingly, add deals with empty trees itself. The fol-
lowing implementation of add adheres to the algorithm given in Segment 25.14. Note the use of the pro-
tected methods setRootNode and getRootNode that are inherited from BinaryTree.

public T add(T newEntry)
{

T result = null;

if (isEmpty())
setRootNode(new BinaryNode<T>(newEntry));

else
result = addEntry(getRootNode(), newEntry);

return result;
} // end add

642 CHAPTER 25 A Binary Search Tree Implementation

An Iterative Implementation
You can implement the method addEntry iteratively. We will mimic the logic of the recursive ver-
sion of addEntry given earlier, so you can compare the two approaches. Exercise 12 at the end of
this chapter suggests another iterative algorithm.

25.17 An iterative algorithm for adding a new entry. The following iterative algorithm adds a new
entry to a binary search tree that is not empty:

Algorithm addEntry(binarySearchTree, newEntry)
// Adds a new entry to a binary search tree that is not empty.
// Returns null if newEntry did not exist already in the tree. Otherwise, returns the
// tree entry that matched and was replaced by newEntry.

result = null
currentNode = root node of binarySearchTree
found = false

while (found is false)
{

if (newEntry matches the entry in currentNode)
{

found = true
result = entry in currentNode
Replace entry in currentNode with newEntry

}
else if (newEntry < entry in currentNode)
{

if (currentNode has a left child)
currentNode = left child of currentNode

else
{

found = true
Give currentNode a left child containing newEntry

}
}
else // newEntry > entry in currentNode
{

if (currentNode has a right child)
currentNode = right child of currentNode

else
{

found = true
Give currentNode a right child containing newEntry

}
}

}

return result

The while loop tries to match the new entry with an existing entry in the tree. If the new entry
is not in the tree already, the search for it ends at a node’s null child reference. This is where a new
node belongs. But if the new entry matches an entry in the tree, we return the existing entry and
replace it in the tree with the new entry.

25.18 An iterative implementation of the method addEntry. The Java implementation of the previous
algorithm closely follows the algorithm’s logic. Note the use of the protected method getRootNode
that is inherited from BinaryTree.

Removing an Entry 643

private T addEntry(T newEntry)
{

BinaryNodeInterface<T> currentNode = getRootNode();
assert currentNode != null;
T result = null;
boolean found = false;

while (!found)
{

T currentEntry = currentNode.getData();
int comparison = newEntry.compareTo(currentEntry);

if (comparison == 0)
{ // newEntry matches currentEntry;

// return and replace currentEntry
found = true;
result = currentEntry;
currentNode.setData(newEntry);

}
else if (comparison < 0)
{

if (currentNode.hasLeftChild())
currentNode = currentNode.getLeftChild();

else
{

found = true;
currentNode.setLeftChild(new BinaryNode<T>(newEntry));

} // end if
}
else
{

assert comparison > 0;

if (currentNode.hasRightChild())
currentNode = currentNode.getRightChild();

else
{

found = true;
currentNode.setRightChild(new BinaryNode<T>(newEntry));

} // end if
} // end if

} // end while

return result;
} // end addEntry

The method add that calls this iterative addEntry is like the one given in Segment 25.16, except
for the actual invocation of addEntry. Since the iterative addEntry has one parameter instead of
two, the invocation is addEntry(newEntry) instead of addEntry(getRootNode(), newEntry).

Whether you use this iterative addEntry method, the one suggested in Exercise 12, or the
recursive version given earlier depends in part on which approach is clearest to you. You’ll spend
less time debugging if you really understand your algorithm.

Removing an Entry

25.19 To remove an entry from a binary search tree, we pass a matching entry to the method remove. The
desired entry is then removed from the tree and returned to the client. If no such entry exists, the
method returns null and the tree remains unchanged.

644 CHAPTER 25 A Binary Search Tree Implementation

Removing an entry is somewhat more involved than adding an entry, as the required logic depends
upon how many children belong to the node containing the entry. We have three possibilities:

• The node has no children—it is a leaf
• The node has one child
• The node has two children

We now consider these three cases.

Removing an Entry Whose Node Is a Leaf
25.20 The simplest case in removing an entry is when the node is a leaf, that is, has no children. For

example, suppose that node N contains the entry to be removed from the binary search tree.
Figure 25-6a shows two possibilities for node N: It could be either the left child or the right child of
its parent node P. Since N is a leaf, we can delete it by setting the appropriate child reference in
node P to null. Figure 25-6b shows the result of this operation.

FIGURE 25-6 (a) Two possible configurations of a leaf node N; (b) the resulting
two possible configurations after removing node N

Removing an Entry Whose Node Has One Child
25.21 Now imagine that the entry to be removed is in a node N that has exactly one child C. Figure 25-7a shows

the four possibilities for node N and its parent P. To remove the entry in N, we remove N from the tree. We
do this by making C a child of P instead of N. As Figure 25-7b shows, if N was a left child of P, we make C
be the left child of P. Likewise, if N was a right child of P, we make C be the right child of P.

(a)

(b)

Node P

Node P

Node P

Node P

Node N Node N

Removing an Entry 645

FIGURE 25-7 (a) Four possible configurations of a node N that has one child;
(b) the resulting two possible configurations after removing node N

Removing an Entry Whose Node Has Two Children
25.22 The previous two cases are really not too difficult, conceptually or in practice. But this last case is a

bit involved. Once again, suppose that the entry to be removed is in a node N, but now N has two
children. Figure 25-8 shows two possible configurations for N. If we try to remove node N, we will
leave its two children without a parent. Although node P could reference one of them, it hasn’t
room for both. Thus, removing node N is not an option.

We do not actually have to remove node N to remove its entry. Let’s find a node A that is easy
to remove—it would have no more than one child—and replace N’s entry with the entry now in A.
We then can remove node A and still have the correct entries in the tree. But will the tree still be a
binary search tree? Clearly, node A cannot be just any node; it must contain an entry in the tree that
legally can be in node N.

(a)

(b)

Node P Node P Node PNode P

Node N Node N Node N Node N

Node C Node CNode CNode C

Node CNode C

Node P Node P

646 CHAPTER 25 A Binary Search Tree Implementation

FIGURE 25-8 Two possible configurations of a node N that has two children

25.23 We know that the entries in the tree are distinct. Let e be the entry in node N. Since node N has two
children, e is larger than the entry in N’s left child and smaller than the entry in N’s right child.
Thus, e cannot be the smallest entry in the tree, nor can it be the largest. So, if we imagine the tree’s
entries in ascending order, we can write

... a < e < b ...
Here, a is the entry that is immediately before e, and b is the one that is immediately after. An inor-
der traversal of the tree would visit these entries in this same order. Thus, a is called the inorder
predecessor of e, and b is the inorder successor of e.

The entry a must occur in a node in N’s left subtree; b is in a node in N’s right subtree, as Figure 25-9a
illustrates. Moreover, a is the largest entry in N’s left subtree, since a is the entry that is immediately
before e. Suppose that we are able to delete the node that contains a and replace e with a, as Figure 25-9b
shows. Now all of the remaining entries in N’s left subtree are less than a, as needed. All of the entries in
N’s right subtree are greater than e and so are greater than a. Thus, we still have a binary search tree.

FIGURE 25-9 Node N and its subtrees: (a) the entry a is immediately before the entry e,
and b is immediately after e; (b) after deleting the node that contained a and
replacing e with a

25.24 Locating the entry a. The previous segment assumed that we could find the appropriate entry a and
delete its node. So, let’s locate the node that contains a and verify that it does not have two children.
Consider again the original tree in Figure 25-9a. We already know that a must be in N’s left subtree,
and that a is the largest entry in that subtree. To find an entry larger than the one in any given node,
we look at the node’s right child. Thus, a occurs in the subtree’s rightmost node R, as Figure 25-10
illustrates. Node R cannot have a right child, because if it did, the child’s entry would be greater than
a. Therefore, node R has no more than one child and so can be removed from the tree easily.

(a) (b)

Node P Node P

Node N Node N

Node CL Node CR Node CL Node CR

(a)

Entries � e � aEntries � a

(b)

Entries � eEntries � e

Node N Node N

a b b

ae

Removing an Entry 647

FIGURE 25-10 The largest entry a in node N’s left subtree occurs in the subtree’s rightmost
node R

25.25 The following pseudocode summarizes this discussion:

Algorithm Delete the entry e from a node N that has two children
Find the rightmost node R in N’s left subtree
Replace the entry in node N with the entry that is in node R
Delete node R

An alternate approach involves b, the entry that is immediately after e in sorted order. We have
already noted that b occurs in N’s right subtree. It would have to be the smallest entry in that sub-
tree, so it would occur in the leftmost node in the subtree. Thus, we have the following alternate
pseudocode:

Algorithm Delete the entry e from a node N that has two children
Find the leftmost node L in N’s right subtree
Replace the entry in node N with the entry that is in node L
Delete node L

Both approaches work equally well.

25.26 Example. Figure 25-11 shows several consecutive removals from a binary search tree of names.
The first algorithm given in the previous segment is used. To remove Chad from the tree in
Figure 25-11a, we replace it with its inorder predecessor Brittany. We then remove the node that
contained Brittany to get the tree in Figure 25-11b. To remove Sean from this new tree, we replace
it with its inorder predecessor Reba and remove Reba’s original node. This gives us the tree in
Figure 25-11c. Finally, to remove Kathy from this tree, we replace it with its inorder predecessor
Doug and remove Doug’s original node, to get the tree in Figure 25-11d.

e Node N

a Node R

Note: To remove an entry whose node has two children, you first replace the entry with
another whose node has no more than one child. You then remove the second node from the
binary search tree.

648 CHAPTER 25 A Binary Search Tree Implementation

FIGURE 25-11 (a) A binary search tree; (b) after removing Chad; (c) after removing Sean;
(d) after removing Kathy

Removing an Entry in the Root
25.27 Removing an entry that is in the root of the tree is a special case only if we actually remove the root

node. That will occur when the root has at most one child. If the root has two children, the previous
segment shows that we would replace the root’s entry and delete a different node.

If the root is a leaf, the tree has only one node. Deleting it results in an empty tree. If the root
has one child, as Figure 25-12 illustrates, the child is either a right child or a left child. In either
case, we simply delete the root node by making the child node C the root of the tree.

DirkDan

(a)

Sean

Pat Whitney

Megan

Brett Lance

Kathy

Reba

Derek

Zak

DougBrittany

MariaChad

DirkDan

(b)

Sean

Pat Whitney

Megan

Brett Lance

Kathy

Reba

Derek

Zak

Doug

Brittany Maria

DirkDan

(d)

Reba

Pat Whitney

Megan

Brett Lance

Doug

Zak

Derek

Brittany Maria

DirkDan

(c)

Reba

Pat Whitney

Megan

Brett Lance

Kathy

Derek

Zak

Doug

Brittany Maria

Question 8 The second algorithm described in Segment 25.25 involves the inorder
successor. Using this algorithm, remove Sean and Chad from the tree in Figure 25-11a.

Question 9 Remove Megan from the tree in Figure 25-11a in two different ways.

Removing an Entry 649

FIGURE 25-12 (a) Two possible configurations of a root that has one child;
(b) after removing the root

A Recursive Implementation
25.28 The algorithm. The entry to be removed from the tree is the one that matches the object passed to

the method remove as its argument. The method returns the removed entry. The following recursive
algorithm describes the method’s logic at a high level:

Algorithm remove(binarySearchTree, entry)
oldEntry = null
if (binarySearchTree is not empty)
{

if (entry matches the entry in the root of binarySearchTree)
{

oldEntry = entry in root
removeFromRoot(root of binarySearchTree)

}
else if (entry < entry in root)

oldEntry = remove(left subtree of binarySearchTree, entry)
else // entry > entry in root

oldEntry = remove(right subtree of binarySearchTree, entry)
}
return oldEntry

The method removeFromRoot will remove the entry in the root of a given subtree based on how
many children belong to the root.

25.29 The public method remove. We have several details to consider before implementing the previous
algorithm. The public method remove should have only one parameter—entry—so just as the
method add calls the private recursive method addEntry, remove will call a private recursive
method removeEntry.

As we mentioned in Segment 25.8, we will pass the root of the tree, instead of the tree itself, to
removeEntry. Since the method might remove the root node from the tree, we must be careful to
always retain a reference to the tree’s root. As a result, we make removeEntry return a reference to the
root of the revised tree, which remove can save. But removeEntry must also give to remove the entry
it removes. A solution is to pass another parameter—oldEntry—to removeEntry and have the
method change its value to the removed entry. Thus, the header for removeEntry will be

private BinaryNodeInterface<T> removeEntry(BinaryNodeInterface<T> rootNode,
T entry, ReturnObject oldEntry)

(a)

(b)

e

Node N

Node C Node C

e

Node N

Node C

650 CHAPTER 25 A Binary Search Tree Implementation

ReturnObject is an inner class that has a single data field and simple methods set and get to
manipulate it. Initially, oldEntry’s data field is null, since remove returns null when the entry is
not found in the tree.

Thus, the public remove has the following implementation:
public T remove(T entry)
{

ReturnObject oldEntry = new ReturnObject(null);
BinaryNodeInterface<T> newRoot = removeEntry(getRootNode(), entry,

oldEntry);
setRootNode(newRoot);

return oldEntry.get();
} // end remove

25.30 The private method removeEntry. Since remove handles the communication with removeEntry, most
of the algorithm of Segment 25.28 is left for removeEntry. If the entry to be removed is in the root,
removeEntry calls the yet-to-be-written method removeFromRoot to remove it. If the entry is in either of
the root’s subtrees, removeEntry calls itself recursively. The implementation of removeEntry follows:

// Removes an entry from the tree rooted at a given node.
// rootNode is a reference to the root of a tree.
// entry is the object to be removed.
// oldEntry is an object whose data field is null.
// Returns the root node of the resulting tree; if entry matches
// an entry in the tree, oldEntry's data field is the entry
// that was removed from the tree; otherwise it is null.
private BinaryNodeInterface<T> removeEntry(BinaryNodeInterface<T> rootNode,

T entry, ReturnObject oldEntry)
{

if (rootNode != null)
{

T rootData = rootNode.getData();
int comparison = entry.compareTo(rootData);

if (comparison == 0) // entry == root entry
{

oldEntry.set(rootData);
rootNode = removeFromRoot(rootNode);

}
else if (comparison < 0) // entry < root entry
{

BinaryNodeInterface<T> leftChild = rootNode.getLeftChild();
BinaryNodeInterface<T> subtreeRoot = removeEntry(leftChild,

entry, oldEntry);
rootNode.setLeftChild(subtreeRoot);

}
else // entry > root entry
{

BinaryNodeInterface<T> rightChild = rootNode.getRightChild();
rootNode.setRightChild(removeEntry(rightChild, entry, oldEntry));

} // end if
} // end if

return rootNode;
} // end removeEntry

25.31 The algorithm removeFromRoot. The previous method removeEntry removes the entry in the root of
a given subtree by calling the method removeFromRoot. In that method, we see whether the root node
has zero, one, or two children and then proceed according to the discussion in Segments 25.20 through
25.27. If the given node has at most one child, we delete the node and its entry. To remove the entry in a

Removing an Entry 651

node having two children, we must find the largest entry in the node’s left subtree. We remove the node
containing this largest entry. The largest entry then replaces the entry to be removed.

The following algorithm summarizes these steps:
Algorithm removeFromRoot(rootNode)
// Removes the entry in a given root node of a subtree.

if (rootNode has two children)
{

largestNode = node with the largest entry in the left subtree of rootNode
Replace the entry in rootNode with the entry in largestNode
Remove largestNode from the tree

}
else if (rootNode has a right child)

rootNode = rootNode’s right child
else

rootNode = rootNode’s left child // possibly null
// Assertion: if rootNode was a leaf, it is now null

return rootNode

25.32 The private method removeFromRoot. The implementation of the previous algorithm calls the private
methods findLargest and removeLargest, which we will write shortly. Although removeFromRoot is
not recursive, both findLargest and removeLargest are.

Given the root of a subtree, removeFromRoot returns the root of the subtree after a node is removed.
// Removes the entry in a given root node of a subtree.
// rootNode is the root node of the subtree.
// Returns the root node of the revised subtree.
private BinaryNodeInterface<T> removeFromRoot(BinaryNodeInterface<T> rootNode)
{

// Case 1: rootNode has two children
if (rootNode.hasLeftChild() && rootNode.hasRightChild())
{

// find node with largest entry in left subtree
BinaryNodeInterface<T> leftSubtreeRoot = rootNode.getLeftChild();
BinaryNodeInterface<T> largestNode = findLargest(leftSubtreeRoot);

// replace entry in root
rootNode.setData(largestNode.getData());

// remove node with largest entry in left subtree
rootNode.setLeftChild(removeLargest(leftSubtreeRoot));

} // end if

// Case 2: rootNode has at most one child
else if (rootNode.hasRightChild())

rootNode = rootNode.getRightChild();
else

rootNode = rootNode.getLeftChild();

// Assertion: if rootNode was a leaf, it is now null

return rootNode;
} // end removeEntry

25.33 The private method findLargest. The node with the largest entry will occur in the rightmost
node of a binary search tree. Thus, as long as a node has a right child, we search the subtree rooted
at that child. The following recursive method performs this search, given the tree:

// Finds the node containing the largest entry in a given tree.
// rootNode is the root node of the tree.
// Returns the node containing the largest entry in the tree.

652 CHAPTER 25 A Binary Search Tree Implementation

private BinaryNodeInterface<T> findLargest(BinaryNodeInterface<T> rootNode)
{

if (rootNode.hasRightChild())
rootNode = findLargest(rootNode.getRightChild());

return rootNode;
} // end findLargest

25.34 The private method removeLargest. To remove the node with the largest entry, we cannot simply
call findLargest and then remove the returned node. We cannot remove a node from a tree know-
ing only its reference. We must have a reference to its parent as well. The following recursive
method removes the node with the largest entry—that is, the rightmost node—but unfortunately it
must repeat the search that findLargest just performed.

// Removes the node containing the largest entry in a given tree.
// rootNode is the root node of the tree.
// Returns the root node of the revised tree.
private BinaryNodeInterface<T> removeLargest(BinaryNodeInterface<T> rootNode)
{

if (rootNode.hasRightChild())
{

BinaryNodeInterface<T> rightChild = rootNode.getRightChild();
BinaryNodeInterface<T> root = removeLargest(rightChild);
rootNode.setRightChild(root);

}
else

rootNode = rootNode.getLeftChild();

return rootNode;
} // end removeLargest

The method begins much like findLargest. To remove the rightmost node from the given tree,
we remove the rightmost node from tree’s right subtree. The recursive call returns the root of the
revised subtree. This root must become the right child of the original tree’s root.

When a tree’s root has no right child, the left child is returned, effectively deleting the root.
Notice that this recursive method does not explicitly keep track of the parent of the current right
child. Rather, a reference to this parent is retained in the implicit stack of the recursion.

An Iterative Implementation
25.35 The algorithm. Recall that the method remove is given an entry that matches the entry to be

removed from the tree. So remove’s first step is to search the tree. We locate the node whose data
matches the given entry, and we note the node’s parent, if any. Whether we delete the node we’ve
found or another one depends on how many children it has. Although Segment 25.19 listed three
possibilities, we can collapse them into two cases:

1. The node has two children
2. The node has at most one child

Note: The previous recursive approach to removing an entry from a binary search tree is
typical. A language, such as Java, that uses only call-by-value to pass arguments tends to
complicate this recursive implementation by forcing methods to return references to root
nodes. You might find the following iterative approach somewhat easier to understand. Since
it deletes the node containing the inorder predecessor without repeating the search for it, the
iterative remove is more efficient than the recursive version.

Removing an Entry 653

In the second case, we delete the node itself. But if the node has two children, we delete another
node that has at most one child. That is, we transform Case 1 into Case 2.

The following pseudocode describes what remove must do:

Algorithm remove(entry)
result = null
currentNode = node that contains a match for entry
parentNode = currentNode’s parent

if (currentNode != null) // that is, if entry is found
{

result = currentNode’s data (the entry to be removed from the tree)

// Case 1
if (currentNode has two children)
{

// get node to remove and its parent
nodeToRemove = node containing entry’s inorder predecessor; it has at most one child
parentNode = nodeToRemove’s parent

Copy entry from nodeToRemove to currentNode
currentNode = nodeToRemove
// Assertion: currentNode is the node to be removed; it has at most one child
// Assertion: Case 1 has been transformed to Case 2

}

// Case 2: currentNode has at most one child
Delete currentNode from the tree

}

return result

25.36 The public method remove. We will implement the major steps of the previous algorithm as pri-
vate methods that remove can call. The private method findNode locates the node that contains a
match for the given entry. Since we need a reference to that node as well as one to its parent, we
make findNode return a pair of nodes. To that end, we design a private class NodePair that has con-
structors and the accessor methods getFirst and getSecond. NodePair will be an inner class of our
class BinarySearchTree.

The private method getNodeToRemove finds the node containing the inorder predecessor of the
the entry in a given node. Since we also need that node’s parent, the method returns a pair of nodes
as an instance of the class NodePair.

Finally, the private method removeNode deletes a node that has at most one child. We give the
method references to the node and its parent, if any.

Using these private methods, we can implement remove, as follows:

public T remove(T entry)
{

T result = null;

// locate node (and its parent) that contains a match for entry
NodePair pair = findNode(entry);
BinaryNodeInterface<T> currentNode = pair.getFirst();
BinaryNodeInterface<T> parentNode = pair.getSecond();

if (currentNode != null) // entry is found
{

result = currentNode.getData(); // get entry to be removed

// Case 1: currentNode has two children
if (currentNode.hasLeftChild() && currentNode.hasRightChild())
{

654 CHAPTER 25 A Binary Search Tree Implementation

// replace entry in currentNode with the entry in another node
// that has at most one child; that node can be deleted

// get node to remove (contains inorder predecessor; has at
// most one child) and its parent
pair = getNodeToRemove(currentNode);
BinaryNodeInterface<T> nodeToRemove = pair.getFirst();
parentNode = pair.getSecond();

// copy entry from nodeToRemove to currentNode
currentNode.setData(nodeToRemove.getData());

currentNode = nodeToRemove;
// Assertion: currentNode is the node to be removed; it has at
// most one child
// Assertion: Case 1 has been transformed to Case 2

} // end if

// Case 2: currentNode has at most one child; delete it
removeNode(currentNode, parentNode);

} // end if

return result;
} // end remove

25.37 The private method findNode. To find the node that contains a match for a given entry, we use the
compareTo method within a loop to compare the given entry with the other entries in the tree. The
method returns a pair of references to the desired node and its parent as an instance of the class
NodePair. Thus, findNode has the following form:

private NodePair findNode(T entry)
{

NodePair result = new NodePair();
boolean found = false;
. . .

if (found)
result = new NodePair(currentNode, parentNode);
// found entry is currentNode.getData()

return result;
} // end findNode

The details of the implementation of findNode are left as an exercise.

25.38 The private method getNodeToRemove. After remove locates the node that contains the entry to be
removed from the tree, it proceeds according the number of the node’s children. If the node has two
children, remove must remove another node that has no more than one child. The private method
getNodeToRemove finds this node. In particular, the method implements the first step of the pseudo-
code given in Segment 25.25:

Find the rightmost node R in N’s left subtree

Here, node N is currentNode and node R is rightChild.

Question 10 Complete the implementation of the method findNode.

Removing an Entry 655

The details of this step are described by the following pseudocode:

// find the inorder predecessor by searching the left subtree; it will be the largest
// entry in the subtree, occurring in the node as far right as possible
leftSubtreeRoot = left child of currentNode
rightChild = leftSubtreeRoot
priorNode = currentNode

while (rightChild has a right child)
{

priorNode = rightChild
rightChild = right child of rightChild

}
// Assertion: rightChild is the node to be removed and has no more than one child

The following Java code implements getNodeToRemove:
private NodePair getNodeToRemove(BinaryNodeInterface<T> currentNode)
{

// find node with largest entry in left subtree by
// moving as far right in the subtree as possible
BinaryNodeInterface<T> leftSubtreeRoot = currentNode.getLeftChild();
BinaryNodeInterface<T> rightChild = leftSubtreeRoot;
BinaryNodeInterface<T> priorNode = currentNode;

while (rightChild.hasRightChild())
{

priorNode = rightChild;
rightChild = rightChild.getRightChild();

} // end while

// rightChild contains the inorder predecessor and is the node to
// remove; priorNode is its parent

return new NodePair(rightChild, priorNode);
} // end getNodeToRemove

25.39 The private method removeNode. Our last method assumes that the node to remove—call it
nodeToRemove—has at most one child. If nodeToRemove is not the root, parentNode is its parent.

The method begins by setting childNode to the child, if any, of nodeToRemove. If nodeToRemove
is a leaf, childNode is set to null. Then the method removes nodeToRemove, accounting for the case
when the node is the root as follows:

if (nodeToRemove is the root of the tree)
Set the root of the tree to childNode

else
Link parentNode to childNode, thereby deleting nodeToRemove

If we set the root of the tree to childNode, realize that we will correctly set the root to null if
nodeToRemove is a leaf.

The implementation of removeNode follows:

private void removeNode(BinaryNodeInterface<T> nodeToRemove,
BinaryNodeInterface<T> parentNode)

{
BinaryNodeInterface<T> childNode;

if (nodeToRemove.hasLeftChild())
childNode = nodeToRemove.getLeftChild();

else
childNode = nodeToRemove.getRightChild();

656 CHAPTER 25 A Binary Search Tree Implementation

// Assertion: if nodeToRemove is a leaf, childNode is null
assert (nodeToRemove.isLeaf() && childNode == null) ||

!nodeToRemove.isLeaf();

if (nodeToRemove == getRootNode())
setRootNode(childNode);

else if (parentNode.getLeftChild() == nodeToRemove)
parentNode.setLeftChild(childNode);

else
parentNode.setRightChild(childNode);

} // end removeNode

The Efficiency of Operations
25.40 Each of the operations add, remove, and getEntry requires a search that begins at the root of the

tree. When adding an entry, the search ends at a leaf if the entry is not already in the tree; otherwise,
the search can end sooner. When removing or retrieving an entry, the search ends at a leaf if it is
unsuccessful; a successful search can end sooner. So in the worst case, these searches begin at the
root and examine each node on a path that ends at a leaf. The longest path from the root to a leaf has
a length that equals the height of the tree. Thus, the maximum number of comparisons that each
operation requires is directly proportional to the height h of the tree. That is, the operations add,
remove, and getEntry are O(h).

Recall that several different binary search trees can contain the same data. Figure 25-13 con-
tains two such trees. Figure 25-13a is the shortest binary search tree that we can form from this
data; Figure 25-13b is the tallest such tree.

The tallest tree has height n if it contains n nodes. In fact, this tree looks like a linked chain,
and searching it is like searching a linked chain. It is an O(n) operation. Thus, add, remove, and
getEntry for this tree are also O(n) operations.

In contrast, the shortest tree is full. Searching this tree will be as efficient as possible. In
Chapter 23, we saw that the height of a full tree containing n nodes is log2 (n + 1). Thus, in the
worst case, searching a full binary search tree is an O(log n) operation. So add, remove, and
getEntry are O(log n) operations in this case.

Question 11 Using Big Oh notation, what is the time complexity of the method contains?

Question 12 Using Big Oh notation, what is the time complexity of the method isEmpty?

The Efficiency of Operations 657

FIGURE 25-13 Two binary search trees that contain the same data

The Importance of Balance
25.41 We do not need a full binary search tree to get O(log n) performance from the addition, removal,

and retrieval operations. For example, if we remove some of the leaves from a full tree, we will
not change the performance of these operations. In particular, a complete tree will also give us
O(log n) performance.

Jared

Jim Whitney

Megan

Brett Doug

Brittany

(a)

Jared

Jim

Whitney

Megan

Brett

Doug

Brittany

(b)

658 CHAPTER 25 A Binary Search Tree Implementation

The notion of balance affects the performance of a particular search tree. In a completely balanced
tree, the subtrees of each node have exactly the same height. The only completely balanced binary trees are
full. Other trees are said to be height balanced, or simply balanced, if the subtrees of each node in the
tree differ in height by no more than 1. A complete binary tree is height balanced, for example, but so are
some trees that are not complete, as Figure 25-14 shows. Moreover, the concept of balance applies to all
trees, not just binary trees or binary search trees.

It happens that the addition, removal, and retrieval operations of a binary search tree will have
O(log n) performance if the tree is height balanced. Certainly when we create a binary search tree,
we want it to be height balanced. Unfortunately, we can disturb the balance of a binary search tree
by adding or removing entries, since these operations affect the shape of the tree.

FIGURE 25-14 Some binary trees that are height balanced

The Order in Which Nodes Are Added
25.42 If you answered Question 7 in Segment 25.12 correctly, you realized that the order in which you

add entries to a binary search tree affects the shape of the tree. This observation is most important
when you create a binary search tree by making additions to an initially empty tree.

For example, suppose that we want to create the full binary search tree in Figure 25-13a
from a given set of data. Often such data sets are sorted, so it is reasonable to assume that we
have the names in alphabetical order. Now imagine that we define an empty binary search tree
and then add the names to it in the following order: Brett, Brittany, Doug, Jared, Jim, Megan,
Whitney. Figure 25-13b shows the tree that results from these additions. It is as tall as possible and
has the least efficient operations among the trees that we could build.

Balanced and complete

Balanced but not complete

(a)

(b) (c) (d)

Note: If you add entries into an initially empty binary search tree, do not add them in
sorted order.

An Implementation of the ADT Dictionary 659

25.43 In what order should we add the entries? Jared is the root of the tree in Figure 25-13a, so let’s add
Jared first. Next add Brittany and then Brett and Doug. Finally, add Megan, Jim, and Whitney.
While it should be clear that by using this order we get the tree in Figure 25-13a, how do we deter-
mine the order ahead of time? Looking at our alphabetical set of names, notice that Jared is exactly
in the middle. We add Jared first. Brittany is in the middle of the left half of the data set, so we add
Brittany next. The halves that Brittany defines each contain only one name, so we add them next.
We repeat this process with the names that occur after Jared—that is, the right half of the data set.

We shouldn’t have to do this much work! In fact, if we add data to a binary search tree in ran-
dom order, we can expect a tree whose operations are O(log n). It probably will not be the shortest
tree we could create, but it will be close.

The operations of a binary search tree ensure that the tree remains a binary search tree. Unfor-
tunately, they do not ensure that the tree remains balanced. Chapter 27 looks at search trees that are
responsible for maintaining their balance, and hence their efficiency.

An Implementation of the ADT Dictionary

25.44 We can use the ideas developed thus far in this chapter to implement the ADT dictionary. Recall
from Chapter 19 that a dictionary stores search keys and their associated values. For example, sup-
pose that you want a dictionary of names and telephone numbers. In terms of the ADT dictionary,
the name could be the search key and the telephone number could be the corresponding value. To
retrieve a telephone number, we would provide a name, and the dictionary would return its value.

Here is the interface for a dictionary as given in Segment 19.4, but without the comments:

import java.util.Iterator;
public interface DictionaryInterface<K, V>
{

public V add(K key, V value);
public V remove(K key);
public V getValue(K key);
public boolean contains(K key);
public Iterator<K> getKeyIterator();
public Iterator<V> getValueIterator();
public boolean isEmpty();
public int getSize();
public void clear();

} // end DictionaryInterface

Earlier in this book we saw several implementations of the ADT dictionary. A dictionary
implementation that uses a balanced search tree to store its entries can be an attractive alternative to
these implementations. As an example of such an implementation, we will use a binary search tree
here, even though it might not remain balanced after additions or removals. Chapter 27 presents
search trees that are always balanced and could be used instead to implement the dictionary.

25.45 The data entries. We need a class of data objects that will contain both a search key and an associ-
ated value. A class Entry—similar to the class we used in the array-based implementation of the
ADT dictionary in Chapter 20—is suitable for our purpose. Here, we make the class Comparable
by defining the method compareTo. This method compares two instances of Entry by comparing
their search keys. Thus, the search keys of this dictionary must belong to a Comparable class.

660 CHAPTER 25 A Binary Search Tree Implementation

The class Entry can be private and internal to the class Dictionary, as Listing 25-3 shows.
This listing also shows Dictionary’s data field—a binary search tree—as well as the constructor
that allocates the tree. Notice how Entry is used in both the declaration and allocation of the tree.

LISTING 25-3 An outline of an implementation of the ADT dictionary that
uses a binary search tree

import TreePackage.SearchTreeInterface;
import TreePackage.BinarySearchTree;
import java.util.Iterator;
public class Dictionary<K extends Comparable<? super K>, V>

implements DictionaryInterface<K, V>
{

private SearchTreeInterface<Entry<K, V>> bst;

public Dictionary()
{

bst = new BinarySearchTree<Entry<K, V>>();
} // end default constructor

< Methods that implement dictionary operations are here. >
. . .

private class Entry<S extends Comparable<? super S>, T>
implements Comparable<Entry<S, T>>

{
private S key;
private T value;

private Entry(S searchKey, T dataValue)
{

key = searchKey;
value = dataValue;

} // end constructor

public int compareTo(Entry<S, T> other)
{

return key.compareTo(other.key);
} // end compareTo

< The class Entry also defines the methods equals, getKey, getValue, and setValue;
no setKey method is provided. >

. . .
} // end Entry

} // end Dictionary

An Implementation of the ADT Dictionary 661

25.46 The Dictionary methods. The method add encapsulates the given search key and value into an
instance of Entry that it passes to BinarySearchTree’s add method. It then uses the entry that this
method returns to form its own return value. Dictionary’s add method has the following implementation:

public V add(K key, V value)
{

Entry<K, V> newEntry = new Entry<K, V>(key, value);
Entry<K, V> returnedEntry = bst.add(newEntry);

V result = null;
if (returnedEntry != null)

result = returnedEntry.getValue();

return result;
} // end add

Both remove and getValue have implementations that are similar to add’s. Since these meth-
ods have only a search key as a parameter, the instances of Entry that they form encapsulate the
key and a null value. For example, remove begins as

public V remove(K key)
{

Entry<K, V> findEntry = new Entry<K, V>(key, null);
Entry<K, V> returnedEntry = bst.remove(findEntry);

and ends just like the method add. The implementation of the method getValue is identical to that
of remove, except that it calls getEntry from BinarySearchTree instead of remove.

We can implement the methods getSize, isEmpty, contains, and clear by calling appropriate
methods of BinarySearchTree. We leave these to you as exercises.

25.47 The iterators. DictionaryInterface specifies two methods that return iterators. The method
getKeyIterator returns an iterator that accesses the search keys in sorted order; getValueIterator
returns an iterator that provides the values belonging to these search keys.

For example, getKeyIterator has the following implementation:

public Iterator<K> getKeyIterator()
{

return new KeyIterator();
} // end getKeyIterator

The class KeyIterator is internal to Dictionary and uses the method getInorderIterator from
BinarySearchTree. It has the following implementation:

private class KeyIterator implements Iterator<K>
{

Iterator<Entry<K, V>> localIterator;

public KeyIterator()
{

localIterator = bst.getInorderIterator();
} // end default constructor

Question 13 Implement each of the Dictionary methods getSize, isEmpty, contains, and
clear by calling methods of BinarySearchTree.

Question 14 Write another implementation of the method contains by invoking Dictionary’s
method getValue.

662 CHAPTER 25 A Binary Search Tree Implementation

public boolean hasNext()
{

return localIterator.hasNext();
} // end hasNext

public K next()
{

Entry<K, V> nextEntry = localIterator.next();
return nextEntry.getKey();

} // end next

public void remove()
{

throw new UnsupportedOperationException();
} // end remove

} // end KeyIterator

You implement getValueIterator in a similar manner.

25.48 Comments. This implementation of the ADT dictionary is as time efficient as the underlying
search tree. When the binary search tree is balanced, the operations are O(log n). But a binary
search tree can lose its balance, and so the efficiency of the dictionary operations can degrade to
O(n) as entries are added or removed. A search tree that stays balanced, such as those you will see
in Chapter 27, would provide a better implementation of the dictionary than the one shown here.

Also, notice that a binary search tree maintains the dictionary entries in sorted order by their
search keys. As a result, getKeyIterator enables us to traverse the search keys in sorted order. In
contrast, other dictionary implementations—hashing, for example—traverse the search keys in
unsorted order.

CHAPTER SUMMARY

• A binary search tree is a binary tree whose nodes contain Comparable objects. For each node in the tree,
■ The data in a node is greater than the data in the node’s left subtree
■ The data in a node is less than (or equal to) the data in the node’s right subtree

• A search tree has the operations contains, getEntry, add, remove, and getInorderIterator, in addition to
the operations common to all trees.

• The class BinarySearchTree can be a subclass of BinaryTree, but it must disallow setTree. A client must
create a binary search tree by using only the add method, to avoid changing the order of the nodes in the tree.

• The search algorithm to locate an entry in a binary search tree forms the basis of the methods getEntry, add,
and remove. These methods each have reasonable iterative and recursive implementations.

• Each addition of an entry to a binary search tree adds a leaf to the tree. The new entry is placed where the
search algorithm will find it.

• Removing an entry from a binary search tree depends on the number of children that belong to the node con-
taining the entry. When the node is a leaf or has one child, you remove the node itself. The node’s parent can
adopt a solitary child when it exists. However, when the node N has two children, you replace the node’s
entry with another one r whose node is easy to remove. To maintain the order of the binary search tree, this
entry r can be either the largest entry in N’s left subtree or the smallest entry in N’s right subtree. It follows
that r ’s node is either a leaf or a node with one child.

Exercises 663

EXERCISES

• In a completely balanced binary tree, the subtrees of each node have exactly the same height. Such trees
must be full. Other binary trees are said to be height balanced if the subtrees of each node in the tree differ in
height by no more than 1.

• The retrieve, add, and remove operations on a binary search tree can be as fast as O(log n) or as slow as
O(n). The performance of the search depends on the shape of the tree. When the tree is height balanced, the
operations on a binary search tree are O(log n).

• The order in which you add entries to a binary search tree affects the tree’s shape and hence its balance. Ran-
dom additions, as opposed to sorted ones, tend to result in a balanced tree.

• You can implement the ADT dictionary by using a binary search tree. Although the implementation is not
difficult to write, its efficiency can suffer if additions and removals destroy the balance of the tree.

1. Show the results of adding the following search keys to an initially empty binary search tree: 10, 5, 6, 13, 15, 8,
14, 7, 12, 4.

2. What ordering of the search keys 10, 5, 6, 13, 15, 8, 14, 7, 12, 4 would result in the most balanced tree if they were
added to an initially empty binary search tree?

3. Give four different orderings of the search keys 10, 5, 6, 13, 15, 8, 14, 7, 12, 4 that would result in the least
balanced tree if they were added to an initially empty binary search tree.

4. In Chapter 7, Figure 7-10a shows the recursive computation of the term F6 in the Fibonacci sequence. Is this tree
height balanced?

5. Implement the method getEntry iteratively.

6. Remove Doug from the binary search tree pictured in Figure 25-11a. Then remove Chad in two different ways.

7. Remove Doug from the binary search tree pictured in Figure 25-11d in two different ways.

8. Suppose that a node with two children contains an entry e, as Figure 25-9a illustrates. Show that you will have a
binary search tree if you replace e with its inorder successor b and remove the node that contains b.

9. Why does an inorder traversal of a binary search tree visit the nodes in sorted search-key order? Use the definition
of a binary search tree given in Segment 25.1.

10. Consider the full binary search tree pictured in Figure 25-13a. Now imagine that you traverse the tree and save its
data in a file. If you then read the file and add the data to an initially empty binary search tree, what tree will you
get if the traversal was

a. Preorder b. Inorder c. Level order d. Postorder

11. Imagine that you traverse a binary search tree and save its data in a file. If you then read the file and add the
data to an initially empty binary search tree, what traversal should you use when writing the file so that the
new tree is

a. As tall as possible
b. Identical to the original binary search tree

664 CHAPTER 25 A Binary Search Tree Implementation

12. Segment 25.17 gave an iterative algorithm for the method addEntry. Implement the following alternate algorithm
for this method:

Algorithm addEntry(binarySearchTree, newEntry)
result = null
currentNode = root node of binarySearchTree
parentNode = null

while (newEntry is not found and currentNode is not null)
{

if (newEntry matches entry in currentNode)
{

result = entry in currentNode
Replace entry in currentNode with newEntry

}
else if (newEntry < entry in currentNode)
{

parentNode = currentNode
currentNode = the left child of currentNode

}
else // newEntry > entry in currentNode
{

parentNode = currentNode
currentNode = the right child of currentNode

}
}

if (newEntry is not found in the tree)
{

Create a new node and place newEntry into it
if (newEntry < entry in parentNode)

Make the new node the left child of parentNode
else

Make the new node the right child of parentNode
}

return result

13. The methods remove and the recursive removeEntry, as described in Segments 25.28 through 25.30, use the inner
class ReturnObject. In this way, removeEntry can convey to remove both the root of the revised tree and the entry
it removed. Revise these methods to instead use a class Pair<T1, T2>, like the one given in Segment B.40 of
Appendix B. Pair will need accessor methods for its fields. The method removeEntry can then return the root and
the removed entry as a Pair object.

14. Segment 25.43 builds a balanced binary search tree from one particular group of search keys. Generalize this
approach, and write a recursive algorithm that creates a balanced binary search tree from a sorted collection
of n items.

15. Write an algorithm that returns the smallest search key in a binary search tree.

16. Beginning with Segment 25.23, you saw how to find the inorder predecessor or the inorder successor of a node
with two children. Unfortunately, this approach will not work for a leaf node. For a node with one child, the
technique will find either the predecessor or the successor, but not both. Discuss how the structure of a node might
be modified so that the inorder predecessor or the inorder successor can be found for any node.

17. Write an algorithm that returns the second largest value in a binary search tree containing at least two nodes.

Projects 665

PROJECTS

18. Why might a binary search tree work poorly as an implementation of a priority queue?

19. Consider a method for a binary search tree that decides whether the tree is height balanced, as Segment 25.41
describes. The header of the method could be as follows:

public boolean isBalanced()

Write this method for the class BinarySearchTree. It should call a private recursive method of the same name.

20. Write a static method that accepts as its argument a BinaryTree object and returns true if the argument tree is a
binary search tree. Examine each node in the given tree only once.

21. Implement the method toString for the class BinarySearchTree. The method should return a string that, when
displayed, shows the shape of the tree in two dimensions. Ignore the data in each node. For example a tree might
appear as follows:

o
/ \

o o
/ \

o o

22. Consider two empty binary search trees that allow duplicate entries with the same search key. To one of the trees,
add m unique entries, each with a different search key. To the other, add each of these m entries k times for a total
of m × k entries. Assuming that each entry is stored in a single node, compare the heights of the two trees. Discuss
how the order in which entries are added to the second tree affects its height. Give the addition orders that lead to
the tallest tree and the shortest tree.

23. Segment 25.4 describes a binary search tree that allows duplicates. You place the duplicate of an entry in the
entry’s right subtree.

a. What is an advantage and a disadvantage of this scheme?
b. Suppose that we change the definition of a binary search tree so that the duplicate of an entry can be in

either the entry’s right subtree or its left subtree. If we choose the subtree randomly, what is an advantage
and a disadvantage of this scheme?

1. Specify and implement a class of binary search trees in which duplicate entries are allowed. Place the duplicate of
an entry in the entry’s right subtree, as suggested in Segment 25.4. Provide a method that searches the tree for a
given entry and returns the first one it finds. Also, provide a similar method that returns a list of all entries that
match the given one.

2. Repeat the previous project, but instead randomly place the duplicate of an entry in the entry’s left or right subtree.
Thus, we modify the definition of a binary search tree as follows.

For each node in a binary search tree,

• The data in a node is greater than or equal to the data in the node’s left subtree
• The data in a node is less than or equal to the data in the node’s right subtree

Searching for a duplicate must allow a search of both subtrees.

3. Implement the ADT sorted list by using a binary search tree.

666 CHAPTER 25 A Binary Search Tree Implementation

4. Devise an algorithm that uses a binary search tree to sort an array of objects. Such a sort is called treesort.
Implement and test your algorithm. Discuss the time efficiency of your treesort in both the average and worst cases.

5. Implement a binary search tree that includes the following methods based on Exercises 15 and 16:
/** @return the entry with the smallest search key */
public T getMin();

/** @return the entry with the largest search key */
public T getMax();

/** @return either the inorder predecessor of entry, or
entry if it’s the smallest element in the tree, or
null if entry is not in the tree */

public T getPredecessor(T entry);

/** @return either the inorder successor of entry, or
entry if it’s the largest element in the tree, or
null if entry is not in the tree */

public T getSuccessor(T entry);

6. Implement the class ArrayBinarySearchTree that extends ArrayBinaryTree, described in Project 7 of Chapter 24.

7. Write Java code that creates a binary search tree from n random integer values and returns the height of the search
tree. Run the code for n = 2h-1, where h ranges from 4 to 12. Compare the height of the randomly built search tree
with h, the height of the shortest binary search tree.

8. Chapter 1 defined a set as a bag that does not permit duplicate entries. Define a class of sets that uses a binary
search tree to store a set’s entries.

9. Repeat Project 3 of Chapter 19, but use binary search trees to implement the two dictionaries. Write Java code that
will create within the first dictionary a balanced binary search tree of the reserved words in the Java language.
Why is it important that the search tree containing Java reserved words be balanced? Can you guarantee that the
search tree of user-defined identifiers is also balanced?

10. Compare the performance of two binary search trees as more objects are added to them. Initially, one tree is
balanced and the other is not.

First modify BinarySearchTreeInterface and BinarySearchTree so that the add method returns the number
of comparisons used. Then write a program that uses the new version of BinarySearchTree, as follows. Create two
empty binary search trees. Associate two variables with each tree. One variable sums the number of comparisons
used in adding values to a tree, and the other sums the heights of a tree at certain times following the insertion of
several values. Name these variables comparisonSum1, comparisonSum2, heightSum1, and heightSum2.

In a loop that executes 100 times, do the following:
• Add the values 1000, 2000, 3000, 4000, 5000, 6000, and 7000 to both trees. In the first tree, add

them in increasing order. In the second, add them in an order that forms a complete tree. Your first
tree will be unbalanced, while the second tree will be balanced.

• Generate 10 random values between 0 and 8000. Add these values to each tree in the same order.
After each of these additions, update each tree’s comparisonSum variable by the number of compar-
isons performed for the insertion.

• Add each tree’s height to its heightSum variable.
• Clear the two trees.

Projects 667

After the loop ends, compute the average number of comparisons needed to insert values into each tree. (For
each tree, divide its comparisonSum by 1000. Note that 1000 is 100—the number of iterations—multiplied by
10—the number of values inserted in one iteration.) Also compute the average height of each tree after the
insertions. (Divide each heightSum variable by 100.) Display and record your results.

Run the program a second time, but instead add 100 random values between 0 and 8000 during each
iteration of the loop. Run it a third time, but instead add 1000 random values. Discuss your results and draw
a conclusion.

11. A kd-tree, or k-dimensional tree, is a binary tree that organizes points in k-dimensional space. Every node
contains and represents a k-dimensional point. Every node N that is not a leaf corresponds to a hyperplane1 that
divides the space into two portions. Points to the left of the hyperplane are in N’s left subtree, and points to the
right of the hyperplane are in N’s right subtree. The relationship between the k-dimensional space and a kd-tree
enables you to use the tree to find all points within a given range—a range search—or to find the closest point to
a given point—a nearest-neighbor search.

In this project, we will choose k to be 2 and consider two-dimensional space and a 2d-tree whose nodes
contain points in that space. In an attempt to avoid any confusion that the term “2d-tree” might cause, computer
scientists commonly would describe the tree as a “2-dimensional kd-tree.” We, however, will use the shorter name
“2d-tree” here.

A 2d-tree generalizes a binary search tree in that it positions each node according to either the x or y coordinate
of its data point. The coordinate choice depends on the level at which the node is inserted into the tree. The first point
you insert into an empty tree is placed into a node that becomes the tree’s root. If the next point to be inserted has an
x-coordinate that is less than the x-coordinate of the point in the root, you place the new point into the left child of the
root. Otherwise, you place it into the root’s right child. Insertions at the next level—level 3—compare y-coordinates;
insertions at level 4 compare x-coordinates, and so on.

For example, let’s insert the points (50, 40), (40, 70), (80, 20), (90, 10), and (60, 30) into an initially empty
2d-tree. Figure 25-15 traces the construction of this tree. Part a shows the root containing the first point, (50, 40).
(For the moment, ignore the drawings beneath the trees.) To insert (40, 70) into a child of the root, you compare
40, the point’s x-coordinate with 50, the x-coordinate of the point in the root. Since 40 is less than 50, the new
point goes into the left child of the root, as Figure 25-15b shows. Similarly, since 80 is greater than 50, you
place the next point, (80, 20), into the right child of the root (Figure 25-15c). To insert (90, 10), you begin at the
tree’s root and compare x-coordinates. Since 90 is greater than 50, you move to the root’s right child and
compare y-coordinates. We find that 10 is less than 20, so (90, 10) goes into the left child of the root’s right
child, as shown in Figure 25-15d. The final point, (60, 30), is positioned using similar steps to obtain the tree in
Figure 25-15e.

The graphical significance of a 2d-tree is illustrated beneath the trees shown in Figure 25-15. We begin
with a square that contains all of the points in the tree. For example, a 100 by 100 square, as shown in
Figure 25-15a, will contain the five points in our example. By passing a vertical line through the x-coordinate
of the point in the root, we divide the square into two regions. Any points in the root’s left subtree will be to the
left of this line, while points in the root’s right subtree will lie to the right of the line. Figure 25-15b shows a
horizontal line through the point (40, 70). Points in the left subtree of the node containing (40, 70) lie above
this horizontal line and to the left of the vertical line; that is, they lie within the upper-left rectangle within the
original square.

1. A hyperplane in k-dimensional space is a (k - 1)-dimensional surface, described by a single linear equation in k variables, that divides the space
into two regions. For example, in 2-dimensional space, a straight line divides the space and is described by a linear equation in the variables x and y.
In 3-dimensional space, a plane divides the space and is described by a linear equation in the variables x , y, and z.

668 CHAPTER 25 A Binary Search Tree Implementation

ANSWERS TO SELF-TEST QUESTIONS

Implement a 2d-tree, providing at least a method to insert a new point and a method to test whether a given
point is in the tree.

FIGURE 25-15 The steps in creating a 2d-tree for five given points

(50, 40) (50, 40)

(40, 70)

(50, 40)

(40, 70) (80, 20)

(90, 10)

(50, 40)

(40, 70) (80, 20)

(90, 10)

(50, 40)

(40, 70) (80, 20)

(60, 30)

•

•

•

•
•

•

•

(d) After inserting (90, 10) (e) After inserting (60, 30)

••

•

•
••

•

•

0 50 100

100

50

0

0 50 100

100

50

0

0 50 100

100

50

0

0 50 100

100

50

0

0 50 100

100

50

0

1. As the left child of the node that contains Whitney.

2. No. The constructor first calls the default constructor of BinaryTree, which sets root to null. The method
setRootData contains the call root.setData(rootData), which would cause an exception.

Answers to Self-Test Questions 669

3. No; BinarySearchTree inherits these methods from BinaryTree.

4. In getEntry’s call to findEntry, you would cast getRootNode() to BinaryNode<T>, as follows:
findEntry((BinaryNode<T>)getRootNode(), entry)

Within findEntry, the first recursive call to findEntry must be
findEntry((BinaryNode<T>)rootNode.getLeftChild(), entry)

since the return type of getLeftChild is BinaryNodeInterface<T>. Analogous comments apply to the second
recursive call and getRightChild.

5. The situation is like that described for setTree in Segment 25.6. BinarySearchTree inherits the methods declared
in TreeIteratorInterface from BinaryTree. An object whose static type is BinarySearchTree can invoke these
methods, but an object whose static type is SearchTreeInterface cannot.

6. Chris is the right child of Chad. Jason is the left child of Jim. Kelley is the right child of Jim.

7. When you add Miguel first, Miguel is the left child of Whitney, and Nancy is the right child of Miguel.
When you add Nancy first, Nancy is the left child of Whitney, and Miguel is the left child of Nancy. Thus, the order
of the additions does affect the tree that results.

8.

9.

Dirk

Whitney

Pat Zak

Megan

Brett Lance

Kathy

Reba

Derek

DougBrittany

MariaDan

DirkDan

Sean

Pat Whitney

Maria

Brett Lance

Kathy

Reba

Derek

Zak

DougBrittany

Chad

DirkDan

Sean

Reba Whitney

Pat

Brett Lance

Kathy

Derek

Zak

Doug

Chad Maria

Brittany

670 CHAPTER 25 A Binary Search Tree Implementation

10. private NodePair findNode(T entry)
{

NodePair result = new NodePair();
boolean found = false;

BinaryNodeInterface<T> currentNode = getRootNode();
BinaryNodeInterface<T> parentNode = null;
while (!found && (currentNode != null))
{

T currentEntry = currentNode.getData();
int comparison = entry.compareTo(currentEntry);

if (comparison < 0)
{

parentNode = currentNode;
currentNode = currentNode.getLeftChild();

}
else if (comparison > 0)
{

parentNode = currentNode;
currentNode = currentNode.getRightChild();

}
else // comparison == 0

found = true;
} // end while

if (found)
result = new NodePair(currentNode, parentNode);
// found entry is currentNode.getData()

return result;
} // end findNode

11. Since the method contains invokes getEntry, the efficiency of these methods is the same. So if the tree’s height
is as small as possible, the efficiency is O(log n). If the tree’s height is as large as possible, the efficiency is O(n).

12. O(1).

13. public int getSize()
{

return bst.getNumberOfNodes();
} // end getSize

public boolean isEmpty()
{

return bst.isEmpty();
} // end isEmpty

public boolean contains(K key)
{

Entry<K, V> findEntry = new Entry<K, V>(key, null);

return bst.contains(findEntry);
} // end contains

Answers to Self-Test Questions 671

public void clear()
{

bst.clear();
} // end clear

public boolean contains(K key)
{

return getValue(key) != null;
} // end contains

14. public boolean contains(K key)
{

return getValue(key) != null;
} // end contains

This page intentionally left blank

Chapter

26A HeapImplementation
Contents
Reprise: The ADT Heap
Using an Array to Represent a Heap
Adding an Entry
Removing the Root
Creating a Heap
Heap Sort

Prerequisites
Chapter 2 Bag Implementations That Use Arrays
Chapter 13 List Implementations That Use Arrays
Chapter 23 Trees

Objectives
After studying this chapter, you should be able to
• Use an array to represent a heap
• Add an entry to an array-based heap
• Remove the root of an array-based heap
• Create a heap from given entries
• Sort an array by using a heap sort

Recall from Chapter 23 that a heap is a complete binary tree whose nodes are
ordered in a certain manner. When a binary tree is complete, you can use an array to
represent it in an efficient and elegant way. The most common implementation of a
heap uses an array, and that is the one we will describe in this chapter.

As you saw in Chapter 23, you can use a heap as an efficient implementation of
the ADT priority queue. Later, this chapter will show you how to sort an array by
using a heap.

674 CHAPTER 26 A Heap Implementation

Reprise: The ADT Heap

26.1 A heap is a complete binary tree whose nodes contain Comparable objects. In a maxheap, the object
in each node is greater than or equal to the objects in the node’s descendants. Segment 23.32 pro-
vided the following interface for the maxheap:

public interface MaxHeapInterface<T extends Comparable<? super T>>
{

public void add(T newEntry);
public T removeMax();
public T getMax();
public boolean isEmpty();
public int getSize();
public void clear();

} // end MaxHeapInterface

We will use this interface in our implementation of a maxheap.

Using an Array to Represent a Heap

26.2 Representing a complete binary tree. We begin by using an array to represent a complete binary
tree. A complete tree is full to its next-to-last level, and its leaves on the last level are filled in from
left to right. Thus, until we get to the last leaf, a complete tree has no holes.

VideoNote

Suppose that we number the nodes in a complete binary tree in the order in which a level-order
traversal would visit them, beginning with 1. Figure 26-1a shows such a tree numbered in this way.
Now suppose that we place the result of this tree’s level-order traversal into consecutive array loca-
tions beginning at index 1, as Figure 26-1b shows. This representation of the data in the tree enables
us to implement any needed tree operations. By beginning at index 1 instead of 0, we can simplify the
implementation somewhat, as you will see.

26.3 Since the tree is complete, we can locate either the children or the parent of any node by performing
a simple computation on the node’s number. This number is the same as the node’s corresponding
array index. Thus, the children of the node i—if they exist—are stored in the array at indices 2i and
2i + 1. The parent of this node is at array index i/2, unless of course the node is the root. In that
case, i/2 is 0, since the root is at index 1. To detect the root, we can watch for either this index or a
special value—called a sentinel—that we place at index 0.

Note: You may also have heard the word “heap” used to refer to the collection of memory
cells that are available for allocation to your program when the new operator executes. But
that heap is not an instance of the ADT heap that we will discuss in this chapter. It would be
considered, however, in a book about programming languages.

Implementing the ADT heap

Note: When a binary tree is complete, using an array instead of linked nodes is desirable.
You can use a level-order traversal to store the tree’s data into consecutive locations of an
array. This representation enables you to quickly locate the data in a node’s parent or chil-
dren. If you begin storing the tree at index 1 of the array—that is, if you skip the array’s first
element—the node at array index i

• Has a parent at index i/2, unless the node is the root (i is 1)
• Has any children at indices 2i and 2i + 1

Using an Array to Represent a Heap 675

FIGURE 26-1 (a) A complete binary tree with its nodes numbered in level order;
(b) its representation as an array

The complete binary tree in Figure 26-1 is actually a maxheap. We will now use the previous
array representation of a complete tree in our implementation of a maxheap.

26.4 Beginning the class MaxHeap. As Listing 26-1 shows, our class begins with the following data
fields: an array of Comparable heap entries, the index of the last entry in the array, and a constant
for the default initial capacity of the heap. If lastIndex is less than 1, the heap is empty, since we
begin the heap at index 1. Two simple constructors are similar to constructors we have seen
before in array-based implementations. We allocate one extra array location, since we will not
use the first one. The methods getMax, isEmpty, getSize, and clear have simple implementations
that are shown in this listing. We consider the methods add and removeMax next.

(a)

90

80

70 30 20

60

50

4010

(b)

1

32

6 754

8 9

90 80 60 70 30 20 50 10 40
0 1 2 3 4 5 6 7 8 9 10 11 12

Question 1 If an array contains the entries of a heap in level order beginning at index 0,
what array entries represent a node’s parent, left child, and right child?

LISTING 26-1 The class MaxHeap, partially completed

import java.util.Arrays;
public class MaxHeap<T extends Comparable<? super T>>

implements MaxHeapInterface<T>
{

private T[] heap; // array of heap entries
private int lastIndex; // index of last entry
private static final int DEFAULT_INITIAL_CAPACITY = 25;

public MaxHeap()
{

this(DEFAULT_INITIAL_CAPACITY); // call next constructor
} // end default constructor

676 CHAPTER 26 A Heap Implementation

public MaxHeap(int initialCapacity)
{
// the cast is safe because the new array contains all null entries

@SuppressWarnings("unchecked")
T[] tempHeap = (T[]) new Comparable[initialCapacity + 1];
heap = tempHeap;
lastIndex = 0;

} // end constructor

public void add(T newEntry)
{

< See Segment 26.8. >
} // end add

public T removeMax()
{

< See Segment 26.12. >
} // end removeMax

public T getMax()
{

T root = null;
if (!isEmpty())

root = heap[1];
return root;

} // end getMax

public boolean isEmpty()
{

return lastIndex < 1;
} // end isEmpty

public int getSize()
{

return lastIndex;
} // end getSize

public void clear()
{

for (; lastIndex > -1; lastIndex--)
heap[lastIndex] = null;

lastIndex = 0;
} // end clear

< Private methods >
. . .

} // end MaxHeap

Adding an Entry 677

Adding an Entry

26.5 The basic algorithm. The algorithm to add an entry to a heap is not difficult. Recall that in a max-
heap, the object in a node is greater than or equal to its descendant objects. Suppose that we want to
add 85 to the maxheap in Figure 26-1. We first would place the new entry as the next leaf in the
tree. Figure 26-2a shows that we add 85 as a left child of the 30. Notice that we actually would
place 85 at index 10 of the array in Figure 26-1b.

Figure 26-2a is no longer a heap, since 85 is out of place. To transform the tree into a heap, we let
85 float up to its correct location. Since 85 is larger than its parent, 30, we swap it with the parent, as
Figure 26-2b shows. The 85 is still larger than its new parent, 80, so we swap again (Figure 26-2c).
Now 85 is less than its parent, so we have transformed the tree in Figure 26-2a into a maxheap.

FIGURE 26-2 The steps in adding 85 to the maxheap in Figure 26-1a

26.6 Avoiding swaps. Although the swaps mentioned in the previous segment make the algorithm easier
to understand and to describe, they require more work than is actually necessary. Instead of placing
the new entry in the next available position within the tree, as we did in Figure 26-2a, we need only
reserve space for it. In an array-based implementation, we simply check that the array is not full.
Figure 26-3a shows the new child as an empty circle.

We then compare the new entry—the 85 in this example—with the parent of the new child.
Since 85 is larger than 30, we move the 30 to the new child, as Figure 26-3b shows. We treat the
node that originally contained 30 as if it were empty. We now compare 85 with the parent, 80, of
the empty node. Since 85 is larger than 80, we move the 80 to the empty node, as Figure 26-3c
shows. Since 85 is not larger than the next parent, 90, we place the new entry into the empty node,
as Figure 26-3d shows.

(b) (a)

90

80

70 30 20

60

50

4010 85

(c)

90

85

70 80 20

60

50

4010 30

90

80

70 85 20

60

50

4010 30

Question 2 What steps are necessary to add 100 to the heap in Figure 26-2c?

Note: To add a new entry to a heap, you begin at the next available position for a leaf.
You follow a path from this leaf toward the root until you find the correct position for the
new entry. As you do, you move entries from parent to child to ultimately make room for
the new entry.

678 CHAPTER 26 A Heap Implementation

FIGURE 26-3 A revision of the steps shown in Figure 26-2, to avoid swaps

Figure 26-4 shows these same steps from the viewpoint of the array that represents the heap. In
Part a, which is analogous to Figure 26-3a, we note that we have room for a new entry at index 10.
The parent of this location is at location 10/2, or 5. We thus compare the new entry 85 to 30, the
contents of the location at index 5. Since 85 > 30, we move 30 to the location at index 10
(Figures 26-4b and 26-3b.) The remaining steps proceed in a similar fashion. Note that Figure 26-4d
corresponds to Figure 26-3c, and Figure 26-4f corresponds to Figure 26-3d.

26.7 The refined algorithm. The following algorithm summarizes the steps that add a new entry to a
heap. Notice that the size of the array is expanded as necessary. To ignore the first location of the
array, we simply ensure that parentIndex is greater than 0.

Algorithm add(newEntry)
if (the array heap is full)

Double the size of the array

newIndex = index of next available array location
parentIndex = newIndex/2 // index of parent of available location
while (parentIndex > 0 and newEntry > heap[parentIndex])
{

heap[newIndex] = heap[parentIndex] // move parent to available location

// update indices
newIndex = parentIndex
parentIndex = newIndex/2

}

heap[newIndex] = newEntry // place new entry in correct location

(b) (a)
90

80

70 30 20

60

50

4010 85

90

80

70 85 20

60

50

4010 30

(d)
90

85

70 80 20

60

50

4010 30

(c)
90

85

70 80 20

60

50

4010 30

Adding an Entry 679

FIGURE 26-4 An array representation of the steps in Figure 26-3

26.8 The method add. We now implement the previous algorithm. The add method begins by incre-
menting the index lastIndex of the last array entry and then checks that the array is large enough
to hold a new entry. If it is not, we double the size of the array, as we have done in previous chap-
ters. (See Segment 2.34 of Chapter 2, for example.) The rest of the implementation closely follows
the pseudocode.

public void add(T newEntry)
{

lastIndex++;
ensureCapacity();

85 � 90

Move 30

85 � 30

85 � 80

Move 80

Insert 85

(a)

0

90

1 2

80 60

3

70 30 20 50 10 40
121110984 5

(10/2)
6 7

(b)

90

0 1 2 3

80 60 70

4 5 6

20 50

7 8

10
9

40

10

30

11 12

(c)

0

90

1

80

2
(5/2)

3

60

4

70

5 6 7 8

20

20

50

50

10

10

40

40

30

30

9 10 11 12

6 7 8 9 10 11 12

(d)

0 1

90

2

60

3 4

70 80

5

6 7 8 9 10 11 120 1 2 3 4 5

6 7 8 9 10 11 120 2 3 4 5

(e)

1
(2/2)

90 60 70 80 20 50 10 40 30

(f)

90 85 60 70 80 20 50 10 40 30

Question 3 Repeat Question 2 using the previous algorithm without swaps. Show the heap at
each step as a tree and as an array.

680 CHAPTER 26 A Heap Implementation

int newIndex = lastIndex;
int parentIndex = newIndex / 2;
while ((parentIndex > 0) && newEntry.compareTo(heap[parentIndex]) > 0)
{

heap[newIndex] = heap[parentIndex];
newIndex = parentIndex;
parentIndex = newIndex / 2;

} // end while

heap[newIndex] = newEntry;
} // end add

We can omit the test of parentIndex in the while statement if we place a sentinel value in
the unused array location at index 0. We can use newEntry as this sentinel. You should answer
Question 5 and convince yourself that this change will work.

In the worst case, this method follows a path from a leaf to the root. In Segment 23.9 of
Chapter 23, we saw that the height of a complete tree having n nodes is log2 (n + 1) rounded up.
Thus, the add method is an O(log n) operation in the worst case.

Removing the Root

26.9 The basic algorithm. The removeMax method for a maxheap removes and returns the heap’s largest
object. This object is in the root of the maxheap. Let’s remove the entry in the root of the heap in
Figure 26-3d. Figure 26-5a shows this heap as if its root was empty.

We do not want to rip the root node out of the heap, as this will leave two disjoint subtrees.
Instead we remove a leaf, namely the last one in the heap. To do so, we copy the leaf’s data—30—to
the root and then remove the leaf from the tree, as Figure 26-5b illustrates. Of course, in the array-
based implementation, removing this leaf simply means adjusting lastIndex.

The 30 is out of place, so we no longer have a heap. We let the 30 sink down to its correct loca-
tion. As long as 30 is less than its children, we swap it with its larger child. Thus, in Figure 26-5c,
we have swapped 30 and 85. Continuing, we swap 30 and 80, as Figure 26-5d shows. In this case
the 30 has settled at a leaf. In general, the out-of-place entry will settle at a node whose children are
not greater than the entry.

26.10 Transforming a semiheap into a heap. The tree in Figure 26-5b is called a semiheap. Except for
the root, the objects in a semiheap are ordered as they are in a heap. In removing the root of the
heap, we formed a semiheap and then transformed it back into a heap. As in the method add, we
can save time by not swapping entries. Figure 26-6 shows the semiheap from Figure 26-5b and the
steps that transform it into a heap without the swaps.

Question 4 Define the private method ensureCapacity.

Question 5 Revise the previous method add by placing newEntry as a sentinel value in
the unused array location at index 0. You then can omit the test of parentIndex in the
while statement.

Question 6 What steps are necessary to remove the root from the heap in Figure 26-5d?

Removing the Root 681

FIGURE 26-5 The steps to remove the entry in the root of the maxheap in
Figure 26-3d

FIGURE 26-6 The steps that transform a semiheap into a heap without swaps

(b) (a)

85

70 80 20

60

50

4010 30

30

85

70 80 20

60

50

4010

(d)
85

80

70 30 20

60

50

4010

(c)

30

70 80 20

60

50

4010

85

(b) (a)

85

70 80 20

60

50

4010

85

30

70 80 20

60

50

4010

(d)
85

80

70 30 20

60

50

4010

(c)

80

70 30 20

60

50

4010

85

30

682 CHAPTER 26 A Heap Implementation

The following algorithm transforms a semiheap to a heap. To make the algorithm more gen-
eral, we assume that the root of the semiheap is at a given index instead of at index 1.

Algorithm reheap(rootIndex)
// Transforms the semiheap rooted at rootIndex into a heap

done = false
orphan = heap[rootIndex]

while (!done and heap[rootIndex] has a child)
{

largerChildIndex = index of the larger child of heap[rootIndex]
if (orphan < heap[largerChildIndex])
{

heap[rootIndex] = heap[largerChildIndex]
rootIndex = largerChildIndex

}
else

done = true
}

heap[rootIndex] = orphan

As you will see, this algorithm has several uses.

26.11 The method reheap. The implementation of the reheap algorithm as a private method follows:
private void reheap(int rootIndex)
{

boolean done = false;
T orphan = heap[rootIndex];
int leftChildIndex = 2 * rootIndex;

while (!done && (leftChildIndex <= lastIndex))
{

int largerChildIndex = leftChildIndex; // assume larger
int rightChildIndex = leftChildIndex + 1;
if ((rightChildIndex <= lastIndex) &&

heap[rightChildIndex].compareTo(heap[largerChildIndex]) > 0)
{

largerChildIndex = rightChildIndex;
} // end if

if (orphan.compareTo(heap[largerChildIndex]) < 0)
{

heap[rootIndex] = heap[largerChildIndex];
rootIndex = largerChildIndex;
leftChildIndex = 2 * rootIndex;

}

Question 7 Show the contents of the array heap as you trace the steps of the algorithm
reheap that correspond to those pictured in Figure 26-6.

Creating a Heap 683

else
done = true;

} // end while

heap[rootIndex] = orphan;
} // end reheap

In the worst case, the method reheap follows a path from the root to a leaf. The number of
nodes along this path is less than or equal to the height h of the heap. Thus, reheap is O(h). Recall
that the height of a complete n-node tree is log2 (n + 1) rounded up, so reheap is an O(log n)
operation.

26.12 The method removeMax. The method removeMax replaces the heap’s root with its last leaf to form a
semiheap like the one in Figure 26-6a. The method then calls reheap to transform the semiheap
back into a heap. Thus, removeMax has the following implementation:

public T removeMax()
{

T root = null;

if (!isEmpty())
{

root = heap[1]; // return value
heap[1] = heap[lastIndex]; // form a semiheap
lastIndex--; // decrease size
reheap(1); // transform to a heap

} // end if

return root;
} // end removeMax

Since reheap is an O(log n) operation in the worst case, so is removeMax.

Creating a Heap

26.13 Using add. We could create a heap from a collection of objects by using the add method to add each
object to an initially empty heap. Figure 26-7 shows the steps that this approach would take to add
20, 40, 30, 10, 90, and 70 to a heap. Since add is an O(log n) operation, creating the heap in this
manner would be O(n log n).

Notice that we have a heap after each addition. This process does more than we really need.
With less work, we can create one heap from a collection of objects without maintaining a heap at
each intermediate step, as the next segment shows.

Note: To remove a heap’s root, you first replace the root with the heap’s last leaf. This step
forms a semiheap, so you use the method reheap to transform the semiheap to a heap.

684 CHAPTER 26 A Heap Implementation

FIGURE 26-7 The steps in adding 20, 40, 30, 10, 90, and 70 to an initially
empty heap

26.14 Using reheap. A more efficient way to create a heap uses the method reheap. We begin by placing
the entries for the heap into an array beginning at index 1. Figure 26-8a provides an example of one
such array. This array can represent the complete tree shown in Figure 26-8b. Does this tree contain
any semiheaps that we can transform into heaps? The leaves are semiheaps, but they are also heaps.
Thus, we can ignore the entries 70, 90, and 10. These entries are at the end of the array.

Moving toward the beginning of the array, we encounter 30, which is the root of a semiheap
within the tree pictured in Figure 26-8b. If we apply reheap to this semiheap, we get the tree in
Figure 26-8c. Continuing in this manner, we apply reheap to the semiheap rooted at 40 and then to
the one rooted at 20. Parts d, e, and f of Figure 26-8 show the results of these steps. Figure 26-8f is
the desired heap.

The following Java statements transform the array heap—whose entries are at the indices 1
through lastIndex—into a heap:

for (int rootIndex = lastIndex / 2; rootIndex > 0; rootIndex--)
reheap(rootIndex);

In applying reheap, we begin at the first nonleaf closest to the end of the array. This nonleaf is at
index lastIndex/2, since it is the parent of the last leaf in the tree. We then work toward heap[1].

26.15 Using reheap to transform an array of entries into a heap takes less work than if we used add to add
the entries to the heap. In fact, building a heap in this manner is O(n), as we will now demonstrate.

90

40

10 20 30

70

90

40

10 20 70

30

90

40

10 20

30

40

90

10 20

30

40

20

10 90

30

40

20

10

30

40

20 30

20

40

20 40

20

Question 8 If an array represents a heap, and lastIndex is the index of the heap’s last leaf,
show why the index of the first nonleaf closest to the end of the array is lastIndex/2.

Creating a Heap 685

FIGURE 26-8 The steps in creating a heap of the entries 20, 40, 30, 10, 90, and
70 by using reheap

 By the observation at the end of Segment 26.11, reheap is O(hi), where hi is the height of the
subtree rooted at index i. In the worst case, the heap would be a full tree of height h. Each node in
level l < h is the root of a subtree whose height is h - l + 1. Moreover, level l contains 2l - 1 nodes.
Thus, the sum of the heights of the subtrees rooted at level l of a full heap is (h - l + 1) × 2l - 1.

Since the loop in the previous segment ignores the nodes in the last level—level h—of the
heap, its complexity is

O

Exercise 6 at the end of this chapter asks you to show that this expression is equivalent to O(2h),
which is O(n).

(a) An array of entries (b) The complete tree that

(d) After reheap(2)

90

40

10 20 30

70

(f) After reheap(1)

90

20

10 40 30

70

(e) During reheap(1)

20

40

10 90 30

70

(c) After reheap(3)

20

 90

10 40 30

70

20

40

10 90 70

30

0 1

20 40
2 3

30 10
4 5

90 70
6

the array represents

h l– 1+() 2l 1–⋅
l 1=

h 1–

Note: You can create a heap more efficiently by using the method reheap instead of the
method add.

686 CHAPTER 26 A Heap Implementation

26.16 Another constructor. We can use the technique described in Segment 26.14 to implement another
constructor for the class MaxHeap. Suppose that n entries for our heap are given in an array of
exactly n locations. The following constructor takes this array, copies it into the data field heap, and
uses reheap to create a heap. Although the entries in the given array begin at index 0, we place
them into the array heap beginning at index 1.

public MaxHeap(T[] entries)
{

// the cast is safe because the new array contains null entries
@SuppressWarnings("unchecked")
T[] tempHeap = (T[]) new Comparable[entries.length + 1];
heap = tempHeap;
lastIndex = entries.length;

// copy given array to data field
for (int index = 0; index < entries.length; index++)

heap[index + 1] = entries[index];

// create heap
for (int rootIndex = lastIndex / 2; rootIndex > 0; rootIndex--)

reheap(rootIndex);
} // end constructor

Heap Sort

26.17 We can use a heap to sort an array. If we place the array items into a maxheap and then remove them
one at a time, we will get the items in descending order. We saw in Segments 26.13 and 26.14 that

VideoNote

using reheap instead of add is a more efficient way to create a heap from an array of items. In fact,
we wrote a constructor in the previous segment that invoked reheap for this purpose. So if a is the
array of items—strings, for example—we could use this constructor to create the heap, as follows:

MaxHeapInterface<String> myHeap = new MaxHeap<String>(a);

As we remove the items from myHeap, we could place them in order back into the array a. The
problem with this approach is the additional memory required, since the heap uses an array besides the
given array. However, by mimicking the heap’s array-based implementation, we can make this
approach more efficient without using the class MaxHeap. The resulting algorithm is called a heap sort.

26.18 To create an initial heap from the given array, we call reheap repeatedly, as we did in the construc-
tor given in Segment 26.16. Parts a and b of Figure 26-9 show an array and the heap that results
after this step. Since the array to be sorted begins at index 0, but in the constructor the heap begins
at index 1, we must adjust reheap, as you will see.

The largest item in the array of Figure 26-9b is now first in the array, so we swap it with the
last item in the array, as Figure 26-9c shows. The array is now partitioned into a tree region and a
sorted region.

Following this swap, we call reheap on the tree portion—transforming it into a heap—and
perform another swap, as Figures 26-9d and 26-9e illustrate. We repeat these operations until the
tree region consists of one item (Figure 26-9k). The array is now sorted into ascending order.
Notice that the array actually is sorted in Figure 26-9g, but the algorithm does not detect this fact.

The heap sort

Heap Sort 687

FIGURE 26-9 A trace of heap sort

Array view

Heap

Swap

Tree Sorted

Heap

Swap

Tree Sorted

Heap

Swap

Tree Sorted

Heap

Swap

Tree Sorted

Heap

Swap

Tree Sorted

Sorted

(b) After creating
a heap

(c) After swapping

(d) After reheap

(e) After swapping

(f) After reheap

(g) After swapping

(h) After reheap

(i) After swapping

(j) After reheap

(k) After swapping

(l) Array is sorted

(a) The original array

Tree view

10
20 30

30
20 10

10
20

10

20
10

20
40

10 90 70

30

90
40

10 20 30

70

30
40

10 20

70

70
40

10 20

30

20
40

10

30

40
20

10

30

20 40 30 10 90 70

90 40 70 10 20 30

30 40 70 10 20 90

70 40 30 10 20 90

20 40 30 10

30

30

10

10

70 90

70

70

90

90

20

20

40

40

30 20 10 40 70 90

10 20 30 40 70 90

20 10 30 40 70 90

10 20 30 40 70 90

10 20 30 40 70 90

688 CHAPTER 26 A Heap Implementation

26.19 Adjusting reheap. We must revise the method reheap so that it is suitable for our sorting algorithm.
The original method in Segment 26.11 uses the data fields heap and lastIndex of the class MaxHeap.
Here, we make them parameters of the method. Thus, we change the method’s header, as follows:

private static <T extends Comparable<? super T>>
void reheap(T[] heap, int rootIndex, int lastIndex)

The portion of the array heap that represents the heap ranges from the index 0 to the index lastIndex.
The semiheap is rooted at the index rootIndex.

Since the heap begins at index 0 instead of 1, as it did in Segment 26.11, the left child of the
node at index i is at index 2i + 1 instead of 2i. Recall that Question 1 asked you to find this index.
This change affects the two statements within reheap that determine leftChildIndex.

The revised reheap appears as follows:

private static <T extends Comparable<? super T>>
void reheap(T[] heap, int rootIndex, int lastIndex)

{
boolean done = false;
T orphan = heap[rootIndex];

while (!done && (leftChildIndex <= lastIndex))
{

int largerChildIndex = leftChildIndex;
int rightChildIndex = leftChildIndex + 1;
if ((rightChildIndex <= lastIndex) &&

heap[rightChildIndex].compareTo(heap[largerChildIndex]) > 0)
{

largerChildIndex = rightChildIndex;
} // end if

if (orphan.compareTo(heap[largerChildIndex]) < 0)
{

heap[rootIndex] = heap[largerChildIndex];
rootIndex = largerChildIndex;

}
else

done = true;
} // end while

heap[rootIndex] = orphan;
} // end reheap

26.20 The method heapSort. The implementation of heap sort begins by calling reheap repeatedly, as
we did in the constructor given in Segment 26.16, to create an initial heap from the given array.
However, since the heap begins at index 0 instead of 1, we must adjust the loop somewhat:

for (int rootIndex = n / 2 - 1; rootIndex >= 0; rootIndex--)
reheap(heap, rootIndex, n - 1);

This loop assumes n entries in the array heap, beginning at index 0. Exercise 3 at the end of this
chapter asks you to verify the starting value of rootIndex.

The complete method appears as follows:

public static <T extends Comparable<? super T>>
void heapSort(T[] array, int n)

{
// create first heap
for (int rootIndex = n / 2 - 1; rootIndex >= 0; rootIndex--)

reheap(array, rootIndex, n - 1);

int leftChildIndex = 2 * rootIndex + 1;

leftChildIndex = 2 * rootIndex + 1;

Exercises 689

swap(array, 0, n - 1);

for (int lastIndex = n - 2; lastIndex > 0; lastIndex--)
{

reheap(array, 0, lastIndex);
swap(array, 0, lastIndex);

} // end for
} // end heapSort

Like merge sort and quick sort, heap sort is an O(n log n) algorithm. As implemented here,
heap sort does not require a second array, but merge sort does. Recall from Chapter 9 that quick sort
is O(n log n) most of the time, but is O(n2) in its worst case. Since we usually can avoid quick sort’s
worst case by choosing appropriate pivots, it generally is the preferred sorting method.

CHAPTER SUMMARY

EXERCISES

Note: The time efficiency of heap sort
Although heap sort is O(n log n) in the average case, quick sort usually is the sorting method
of choice.

Question 9 Trace the steps that the method heapSort takes when sorting the following array
into ascending order: 9 6 2 4 8 7 5 3.

• Since a heap is a complete binary tree, it has an efficient array-based implementation.

• You add a new entry to a heap as the next leaf in a complete binary tree. You then make the entry float up to
its proper location within the heap.

• You begin to remove the root entry of a heap by replacing it with the entry in the last leaf and then removing
the leaf. The result is a semiheap. You transform the semiheap into a heap by making the new root entry sink
down to its proper location within the heap.

• You could create a heap from a given array of entries by adding each entry to the heap. A more efficient
approach considers the complete tree that the array represents and treats each nonleaf as a semiheap. You
transform each such semiheap into a heap by using the same technique that you use when removing the root
of the heap.

• A heap sort uses a heap to sort the entries in a given array.

1. Trace the formation of a maxheap by the constructor given in Segment 26.16 for each of the following arrays:
a. 10 20 30 40 50
b. 10 20 30 40 50 60 70 80 90 100

2. Trace the addition of each of the following values to an initially empty maxheap:
10 20 30 40 50

Compare your trace with the results of Exercise 1a.

690 CHAPTER 26 A Heap Implementation

PROJECTS

3. The method heapSort given in Segment 26.20 contains a loop that creates an initial heap from an array of n
values. The loop variable rootIndex begins at n/2 - 1. Derive this starting value and show that the loop executes
the same number of times as the corresponding loop in the constructor given in Segment 26.16.

4. Trace the steps of a heap sort on each of the following arrays:
a. 10 20 30 40 50 60
b. 60 50 40 30 20 10
c. 20 50 40 10 60 30

5. Consider an array that represents a heap. Suppose that you replace the value at index i with a new value. It is
likely that you will no longer have a heap. Write an algorithm that will give you a heap again.

6. Segment 26.15 showed that the complexity of creating a heap by using reheap is

O

Show that this expression is equivalent to O(2h), which is O(n). Hint: First, change the summation variable from
l to j, where j = h - l + 1. Then show by induction that

7. Consider the loop in a heap sort that creates the initial heap from an array of n values (see Segment 26.20):
// create first heap
for (int rootIndex = n / 2 - 1; rootIndex >= 0; rootIndex--)

reheap(array, rootIndex, n - 1);

Show that the actual number of calls to the method compareTo during the execution of this loop is no less than n - 1.

8. Consider again the loop mentioned in the previous exercise. Show that the actual number of calls to the method
compareTo during the execution of this loop is no greater than n log2 n.

9. Heap sort is not the only way to sort an array using a heap. In this exercise you will explore a less efficient
algorithm. After building an initial heap, as you would in the first step of a heap sort, the largest value will be in
the first position of the array. If you leave this value in place and then build a new heap using the remaining
values, you will get the next largest value in the entire array. By continuing in this manner, you can sort the array
into descending order. If you use a minheap instead of a maxheap, you will sort the array into ascending order.

a. Implement one of these sorts as the method newSortUsingAHeap.
b. What is the Big Oh performance of this method?

1. Recall from Segment 23.31 of Chapter 23 that in a minheap, the object in each node is less than or equal to the
objects in the node’s descendants. While a maxheap has the method getMax, a minheap has the method getMin
instead. Use an array to implement a minheap.

2. Compare the execution times of heap sort, merge sort, and quick sort on various arrays chosen at random. The
“Projects” section of Chapter 4 described one way to time the execution of code.

3. Use a binary search tree in the implementation of MaxHeapInterface. Where in the tree will the largest entry
occur? How efficient is this implementation?

h l– 1+() 2l 1–⋅
l 1=

h 1–

j 2j⁄
j 2=

h
3 2⁄ h 2+

2h
------------–=

Answers to Self-Test Questions 691

ANSWERS TO SELF-TEST QUESTIONS

4. Consider the problem of combining two heaps together into a single heap.
a. Write an efficient algorithm for combining two heaps, one with size n and the other with size 1. What is

the Big Oh performance of your algorithm?
b. Write an efficient algorithm for combining two heaps of equal size n. What is the Big Oh performance of

your algorithm?
c. Write an efficient algorithm for combining two arbitrary sized heaps into one heap. What is the Big Oh

performance of your algorithm?
d. Implement the algorithm that you wrote in Part c.

5. You can study the average performance of the first step in a heap sort—building the initial heap—by taking the
following steps:

• Modify the method reheap so that it returns the number of calls made to compareTo.
• Write a program that will iterate 1000 times. During each iteration, generate n random values and place

them into an array. Count the number of comparisons needed by the code given in Exercise 7 to convert
the array into a heap. Add the number of comparisons in each iteration into a total. After the loop has
ended, compute the average number of comparisons needed to build the heap by dividing the number of
comparisons by 1000.

• In the previous step, let n = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 400, and 800. For each n, see
whether the average number of calls to compareTo is greater than or equal to the lower bound n - 1 (see
Exercise 7) and less than or equal to the upper bound n log2 n (see Exercise 8).

6. Statisticians often are interested in the median value in a collection of data. In a collection, about the same number
of values are greater than the median value as are less than the median value. When the data is sorted, the median
value occurs at the midpoint of the collection. But when the data is not sorted, the median is not as easy to find.

A problem more general than finding the median is to find the kth smallest value in a collection of n values,
where 0 < k < n. To find the median, k would be —that is, the smallest integer greater than or equal to .
For example, the median value of 11 items is the 6th smallest one.

Design an algorithm that uses a minheap to find the kth smallest value in a collection of n values. Using the
class of minheaps defined in Project 1, implement your algorithm as a method at the client level.

n 2⁄ n 2⁄

1. The node at array index i
• Has a parent at index (i - 1)/2, unless the node is the root (i is 0).
• Has any children at indices 2i + 1 and 2i + 2.

2. Place 100 as a right child of 80. Then swap 100 with 80, swap 100 with 85, and finally swap 100 with 90.

3.

40 30

90

80

85

20 50

60

100

70

10

100 > 80, so move 80

90 85 60 70 80 20 50 10 40 30
0 1 2 3 4 5 6 7 8 9 10 11 12

692 CHAPTER 26 A Heap Implementation

4. private void ensureCapacity()
{

if (lastIndex >= heap.length)
heap = Arrays.copyOf(heap, 2 * heap.length);

} // end ensureCapacity

5. public void add(T newEntry)
{

lastIndex++;
ensureCapacity();
heap[0] = newEntry; // sentinel
int newIndex = lastIndex;
int parentIndex = newIndex / 2;

while (newEntry.compareTo(heap[parentIndex]) > 0)
{

heap[newIndex] = heap[parentIndex];

newIndex = parentIndex;
parentIndex = newIndex / 2;

} // end while

heap[newIndex] = newEntry;
} // end add

100 > 85, so move 85

100 > 90, so move 90

Insert 100

40 30

90

80

85 20 50

60

100

70

10

40 30

90

80

85 20 50

60100

70

10

40 30

90

80

85

20 50

60

10070

10

90 85 60 70 20 50 10 40 30 80
0 1 2 3 4 5 6 7 8 9 10 11 12

90 60 70 85 20 50 10 40 30 80
0 1 2 3 4 5 6 7 8 9 10 11 12

100 90 60 70 85 20 50 10 40 30 80
0 1 2 3 4 5 6 7 8 9 10 11 12

Answers to Self-Test Questions 693

6.

7.

8. If a node at index i has children, they are at indices 2i and 2i + 1. The node at lastIndex/2 then has a child at
lastIndex. Since this child is the last leaf, any nodes beyond the one at lastIndex/2 cannot have children and so
must be leaves. Thus, the node at lastIndex/2 must be the nonleaf closest to the end of the array.

Alternatively, examine some complete trees and notice that the desired nonleaf is the parent of the last child.
This child is at index lastIndex of the array representation, so its parent has index lastIndex/2.

40

30

80

20 50

60

70

10

70

80

30 20 50

60

40

10

40

30 20 50

60

70

10

80

40

20 50

60

70

10

(a) (b)

(c) (d)

80

30

80 is larger child of vacated node; 30 < 80, so move 80

Insert 30

Reached leaf

85 is larger child of 30; 30 < 85, so move 85
(a)

30 85 60 70 80 20 50 10 40
0 1 2 3 4 5 6 7 8 9 10

(b)

85 60 70 80 20 50 10 40
0 1 2 3 4 5 6 7 8 9 10

(c)

85 80 60 70 20 50 10 40

0 1 2 3 4 5 6 7 8 9 10

(d)

85 80 60 70 30 20 50 10 40
0 1 2 3 4 5 6 7 8 9 10

694 CHAPTER 26 A Heap Implementation

9. 9 6 2 4 8 7 5 3 Original array
9 8 7 4 6 2 5 3 After repeated calls to reheap
3 8 7 4 6 2 5 9 After swap
8 6 7 4 3 2 5 9 After reheap
5 6 7 4 3 2 8 9 After swap
7 6 5 4 3 2 8 9 After reheap
2 6 5 4 3 7 8 9 After swap
6 4 5 2 3 7 8 9 After reheap
3 4 5 2 6 7 8 9 After swap
5 4 3 2 6 7 8 9 After reheap
2 4 3 5 6 7 8 9 After swap
4 2 3 5 6 7 8 9 After reheap
3 2 4 5 6 7 8 9 After swap
3 2 4 5 6 7 8 9 After reheap
2 3 4 5 6 7 8 9 After swap
2 3 4 5 6 7 8 9 Done

Chapter

27BalancedSearch Trees
Contents
AVL Trees

Single Rotations
Double Rotations
Implementation Details

2-3 Trees
Searching a 2-3 Tree
Adding Entries to a 2-3 Tree
Splitting Nodes During Addition

2-4 Trees
Adding Entries to a 2-4 Tree
Comparing AVL, 2-3, and 2-4 Trees

Red-Black Trees
Properties of a Red-Black Tree
Adding Entries to a Red-Black Tree
Java Class Library: The Class TreeMap

B-Trees

Prerequisites
Chapter 23 Trees
Chapter 24 Tree Implementations
Chapter 25 A Binary Search Tree Implementation

Objectives
After studying this chapter, you should be able to
• Perform a rotation to restore the balance of an AVL tree after an addition
• Search for or add an entry to a 2-3 tree
• Search for or add an entry to a 2-4 tree
• Form a red-black tree from a given 2-4 tree
• Search for or add an entry to a red-black tree
• Describe the purpose of a B-tree

696 CHAPTER 27 Balanced Search Trees

In Chapter 25, you saw that the operations on a binary search tree are O(log n) if the tree is balanced.
Unfortunately, the add and remove operations do not ensure that a binary search tree remains balanced.
This chapter will consider search trees that maintain their balance, and hence their efficiency.

Our goal is to introduce you to several types of balanced search trees and compare them. We
will discuss the algorithms that add entries to a search tree while retaining its balance. We also will
show you how to search the trees. We will not, however, cover the algorithms that remove entries,
leaving this topic for a future course.

The entries in a tree are usually objects, but to make the pictures of trees clear and concise, we
will show the entries as integers.

AVL Trees

27.1 Segment 23.28 in Chapter 23 showed that you can form several differently shaped binary search trees
from the same collection of data. Some of these trees will be balanced and some will not. You could
take an unbalanced binary search tree and rearrange its nodes to get a balanced binary search tree.
Recall that every node in a balanced binary tree has subtrees whose heights differ by no more than 1.

VideoNote

This idea of rearranging nodes to balance a tree was first developed in 1962 by two mathema-
ticians, Adel’son-Vel’skii and Landis. Named after them, the AVL tree is a binary search tree that
rearranges its nodes whenever it becomes unbalanced. The balance of a binary search tree is upset
only when you add or remove a node. Thus, during these operations, the AVL tree rearranges nodes
as necessary to maintain its balance.

For example, Parts a, b, and c of Figure 27-1 show a binary search tree as we add 60, 50, and 20 to
it. After the third addition, the tree is not balanced. An AVL tree would rearrange its nodes to restore bal-
ance, as shown in Figure 27-1d. This particular reorganization is called a right rotation, since you can
imagine the nodes rotating about 50. If we now add 80 to the tree, it remains balanced, as Figure 27-2a
shows. Adding 90 disrupts the balance (Figure 27-2b), but a left rotation restores it (Figure 27-2c).
Here the rotation is about 80. Notice that after each rotation, the tree is still a binary search tree.

In discussing balance, we sometimes will mention a balanced node. A node is balanced if it is
the root of a balanced tree, that is, if its two subtrees differ in height by no more than 1.

Single Rotations
27.2 Right rotations. Let’s examine the previous rotations in more detail. Figure 27-3a shows a subtree

of an AVL tree that is balanced. The heights of the subtrees T1, T2, and T3 are the same. An addition
that occurs in the left subtree T1 of node C will add a leaf to T1. Suppose that such an addition increases
the height of T1 by 1, as Figure 27-3b shows. The subtree rooted at node N is now unbalanced.

FIGURE 27-1 After inserting (a) 60; (b) 50; and (c) 20 into an initially empty
binary search tree, the tree is not balanced; (d) a corresponding
AVL tree rotates its nodes to restore balance

AVL trees

(c)

60

50

20

50

20 60

(b)

Unbalanced Balanced

60

50

60

(d)(a)

AVL Trees 697

FIGURE 27-2 (a) Adding 80 to the tree in Figure 27-1d does not change the
balance of the tree; (b) a subsequent addition of 90 makes the
tree unbalanced ; (c) a left rotation restores its balance

N is the first node that is unbalanced along the path between the inserted leaf and N. A right rotation
about node C restores the balance of the tree, as Figure 27-3c shows. After the rotation, C is above
N, and the tree has the same height as it did before the addition of a node.

Since we had a binary search tree before the rotation (Figure 27-3b), the value in node N is
greater than the value in node C and all the values in T2. Moreover, all values in T2 are greater
than the value in node C. These relationships are maintained after the rotation (Figure 27-3c),
since node N is a right child of node C, and T2 is a left subtree of node N. Finally, the subtrees
T1 and T3 have their original parents in the new tree. Thus, the resulting tree is still a binary
search tree.

Figure 27-4 provides a specific instance of the right rotation depicted in Figure 27-3. Part a
of the figure shows an imbalance at node N after 4 was added to the tree. A right rotation restores
the tree’s balance, as Part b illustrates. To simplify the figure, we have labeled only the roots of
the subtrees T1, T2, and T3. Here, node N was the root of the AVL tree, and node C became the
root. However if node N had a parent before the rotation, we would make node C a child of that
parent after the rotation.

FIGURE 27-3 Before and after an addition to an AVL subtree that requires
a right rotation to maintain its balance

90

(b)

60

50

20 80

Unbalanced Balanced

(c) (a)

Balanced

80

50

20 60

80

90

50

20 60

(a) Before addition

N

C

T1 T2

T3

h

(b) After addition

N

C

T1

T2

T3

h + 1

N

C

T1 T2 T3

h

(c) After right rotation

698 CHAPTER 27 Balanced Search Trees

FIGURE 27-4 Before and after a right rotation restores balance to an AVL tree

The following algorithm performs the right rotation illustrated in Figures 27-3 and 27-4:

Algorithm rotateRight(nodeN)
// Corrects an imbalance at a given node nodeN due to an addition
// in the left subtree of nodeN’s left child.

nodeC = left child of nodeN
Set nodeN’s left child to nodeC’s right child
Set nodeC’s right child to nodeN
return nodeC

27.3 Left rotations. Figure 27-5 shows a left rotation in a mirror image of Figure 27-3. The following
algorithm performs this left rotation:

Algorithm rotateLeft(nodeN)
// Corrects an imbalance at a given node nodeN due to an addition
// in the right subtree of nodeN’s right child.

nodeC = right child of nodeN
Set nodeN’s right child to nodeC’s left child
Set nodeC’s left child to nodeN
return nodeC

FIGURE 27-5 Before and after an addition to an AVL subtree that requires a
left rotation to maintain its balance

9
6

4

T1
4

T1

(b)

6

5

3 7

Balanced

(a)

Unbalanced

7

5 9

3

N

C

T2

T3

C

N

T2 T3

Question 1 Using the notation of Figure 27-3, label nodes N and C, and subtrees T1, T2,
and T3, in Parts c and d of Figure 27-1.

N

C

T1
T2 T3

h

(a) Before addition (b) After addition (c) After left rotation

N

C

T1
T2

T3

h + 1

N

C

T1 T2 T3

h

AVL Trees 699

Double Rotations
27.4 Right-left double rotations. Now we add 70 to the AVL tree in Figure 27-2c. An imbalance occurs at

the tree’s root, as Figure 27-6a shows. A right rotation about the node containing 60 results in the tree
in Figure 27-6b. The mechanics of this rotation are the same as the one in Figure 27-3, where the rota-
tion is about node C. The subtree heights differ in these two figures, however.

Unfortunately, this rotation does not balance the tree. A subsequent left rotation about the node
containing 60—corresponding to node C in Figure 27-5b—is necessary to restore the balance
(Figure 27-6c). Together, these two rotations are called a right-left double rotation. First, 60
rotates above 80 and then it rotates above 50. Again, notice that after each rotation, the tree is still a
binary search tree.

FIGURE 27-6 (a) Adding 70 to the tree in Figure 27-2c destroys its balance; to
restore the balance, perform both (b) a right rotation and (c) a
left rotation

Let’s look at the general case. Figure 27-7a shows a subtree of an AVL tree that is height bal-
anced. Node N has a child C and a grandchild G. An addition that occurs in the right subtree T3 of
node G adds a leaf to T3. When such an addition increases the height of T3, as Figure 27-7b shows,
the subtree rooted at N becomes unbalanced. Notice that nodes N, C, and G correspond to the nodes
in Figure 27-6a that contain 50, 80, and 60, respectively.

Node N is the first node that is unbalanced along the path between the inserted leaf and N.
After a right rotation about node G, the subtree rooted at G is unbalanced, as Figure 27-7c shows.

Question 2 Why is the tree in Figure 27-5c a binary search tree?

Question 3 Using the notation of Figure 27-5, label nodes N and C, and subtrees T1, T2,
and T3, in Parts b and c of Figure 27-2.

Question 4 Just as Figure 27-4 gave an example of a right rotation, provide a specific
example of the left rotation illustrated in Figure 27-5.

Note: An imbalance at node N of an AVL tree due to an addition to the tree can be cor-
rected by a single rotation if

• The addition occurred in the left subtree of N’s left child C (right rotation), or
• The addition occurred in the right subtree of N’s right child C (left rotation)

In both cases, we can imagine node C rotating above node N.

70

20 9060

70

(b) After right rotation

70

60

50 80

(c) After left rotation (a) After adding 70

90

50

20 80

80

90

50

20 60

700 CHAPTER 27 Balanced Search Trees

A left rotation about G restores the balance of the tree, as you can see in Figure 27-7d. Note that G
first rotates above C and then above N.

FIGURE 27-7 Before and after an addition to an AVL subtree that requires
both a right rotation and a left rotation to maintain its balance

The following algorithm performs the right-left double rotation illustrated in Figure 27-7:

Algorithm rotateRightLeft(nodeN)
// Corrects an imbalance at a given node nodeN due to an addition
// in the left subtree of nodeN’s right child.

nodeC = right child of nodeN
Set nodeN’s right child to the node returned by rotateRight(nodeC)
return rotateLeft(nodeN)

The right rotation transforms the tree in Figure 27-7b into the one in Figure 27-7c. The left rotation
then transforms Figure 27-7c to Figure 27-7d.

27.5 Left-right double rotations. Now we add 55, 10, and 40 to the tree in Figure 27-6c to get the tree
in Figure 27-8a. As long as we add 55 first, these additions maintain the tree’s balance without rota-
tions. After we add 35, as Figure 27-8b shows, the tree is unbalanced at the node containing 50. To
restore the balance, we perform a left rotation about the node containing 40—so 40 rotates above
20—to get the tree in Figure 27-8c. Then we perform a right rotation about the node containing
40—so 40 rotates above 50—to get the balanced tree in Figure 27-8d.

N

C

T1 T2

T3 T4

G

h + 1
N C

T1

T2
T3 T4

G

h

(a) Before addition

N

C

T1
T2 T3

h

(b) After addition

T4

G

N

C

T1
T2

T3

T4

G

(c) After right rotation (d) After left rotation

h + 1

Question 5 Using the notation of Figure 27-7, label nodes N, C, and G, and subtrees T1, T2,
T3, and T4 in Figure 27-6.

AVL Trees 701

FIGURE 27-8 (a) The AVL tree in Figure 27-6c after additions that maintain
its balance; (b) after an addition that destroys the balance;
(c) after a left rotation; (d) after a right rotation

FIGURE 27-9 Before and after an addition to an AVL subtree that requires
both a left rotation and a right rotation to maintain its balance

(b) After adding 35 (a) After adding 55, 10, and 40

50

20 55 70

80

90

4010

60

50

20 55 70

80

90

4010

60

40

20 50 70

80

90

3510

(c) After left rotation about 40

50

40 55 70

80

90

35

20

60

60

Imbalance at
this node

(d) After right rotation about 40

55

10

35

N

C

T1
T2

T3

T4

G
h � 1

NC

T1 T2

T3
T4

G

h

(a) Before addition (b) After addition

(c) After left rotation (d) After right rotation

N

C

T1 T2 T3

T4

G h

N

C

T1 T2

T3 T4

G

h + 1

702 CHAPTER 27 Balanced Search Trees

Figure 27-9 shows a left-right double rotation in general. It is a mirror image of the right-left
double rotation pictured in Figure 27-7. Both left-right and right-left double rotations cause node G
to rotate first above node C and then above node N.

The following algorithm performs the left-right double rotation illustrated in Figure 27-9:

Algorithm rotateLeftRight(nodeN)
// Corrects an imbalance at a given node nodeN due to an addition
// in the right subtree of nodeN’s left child.

nodeC = left child of nodeN
Set nodeN’s left child to the node returned by rotateLeft(nodeC)
return rotateRight(nodeN)

27.6 Summary comments about rotation after an addition. Following an addition to an AVL tree, a
temporary imbalance might occur. Let N be an unbalanced node that is closest to the new leaf.
Either a single or double rotation will restore the tree’s balance. No other rotations are necessary.
To see this, remember that before the addition, the tree was balanced; after all, it is an AVL tree.
After an addition that causes a rotation, the tree has the same height as it did before the addition.
Therefore, no node above N can be unbalanced now if it was balanced before the addition. More-
over, the four rotations cover the only four possibilities for the cause of the imbalance at node N:

• The addition occurred in the left subtree of N’s left child (right rotation)
• The addition occurred in the right subtree of N’s left child (left-right rotation)
• The addition occurred in the left subtree of N’s right child (right-left rotation)
• The addition occurred in the right subtree of N’s right child (left rotation)

Removing an entry from a binary search tree results in the removal of a node, but not necessar-
ily the node that contained the entry. Thus, removing an entry from an AVL tree can lead to a tem-
porary imbalance. We restore the tree’s balance by using single or double rotations as described
previously for addition. We leave the details for you to develop in Project 1.

Question 6 Using the notation of Figure 27-9, label nodes N, C, and G, and subtrees T1,
T2, T3, and T4 in Figure 27-8.

Note: A double rotation is accomplished by performing two single rotations:

1. A rotation about node N’s grandchild G (its child’s child)
2. A rotation about node N’s new child

We can imagine G rotating first above N’s original child C and then above N.

Note: An imbalance at node N of an AVL tree can be corrected by a double rotation if

• The addition occurred in the left subtree of N’s right child (right-left rotation), or
• The addition occurred in the right subtree of N’s left child (left-right rotation)

Note: One single or double rotation during the addition of an entry will restore the balance
of an AVL tree.

AVL Trees 703

27.7 An AVL tree versus a binary search tree. We created the AVL tree in Figure 27-8d by adding 60,
50, 20, 80, 90, 70, 55, 10, 40, and 35 to an initially empty AVL tree. Figure 27-10a shows that tree
again. If we make the same additions to an initially empty binary search tree, we get the tree in
Figure 27-10b. This tree is unbalanced and is taller than the AVL tree.

FIGURE 27-10 The result of adding 60, 50, 20, 80, 90, 70, 55, 10, 40, and 35 to
an initially empty (a) AVL tree; (b) binary search tree

Implementation Details
27.8 An outline of the class. Listing 27-1 outlines our class of AVL trees. Since an AVL tree is also

a binary search tree, we will derive the class AVLTree from the class BinarySearchTree, which
we discussed in Chapter 25. The methods add and remove are like those in BinarySearchTree
but require logic to detect and correct any imbalance that might occur. Thus, we need to over-
ride these methods. The other methods specified in SearchTreeInterface are inherited from
BinarySearchTree.

Question 7 What AVL tree results when you make the following additions to an initially
empty AVL tree? 70, 80, 90, 20, 10, 50, 60, 40, 30

Question 8 What tree results when you make the same additions given in the previous
question to an initially empty binary search tree? How does this tree compare to the AVL
tree you created in the previous question?

Question 9 Why is the tree shown in Figure 27-7d a binary search tree?

Question 10 Why is the tree shown in Figure 27-9d a binary search tree?

60

50

20 55 70

80

90

4010

(a)

40

20 50 70

80

90

3510

60
(b)

35

55

LISTING 27-1 An outline of the class AVLTree

package TreePackage;
public class AVLTree<T extends Comparable<? super T>>

extends BinarySearchTree<T>
implements SearchTreeInterface<T>

{

704 CHAPTER 27 Balanced Search Trees

27.9 Rotations. As we discussed earlier, an AVL tree uses rotations to maintain its balance following the
addition or removal of a node. The methods that perform these rotations closely follow the pseudo-
code given in the previous segments.

For example, consider the algorithm for a single right rotation, as given in Segment 27.2:

Algorithm rotateRight(nodeN)
// Corrects an imbalance at a given node nodeN due to an addition
// in the left subtree of nodeN’s left child.

nodeC = left child of nodeN
Set nodeN’s left child to nodeC’s right child
Set nodeC’s right child to nodeN
return nodeC

The following method implements this pseudocode as a private method of the class AVLTree:

// Corrects an imbalance at the node closest to a structural
// change in the left subtree of the node's left child.
// nodeN is a node, closest to the newly added leaf, at which
// an imbalance occurs and that has a left child.
private BinaryNodeInterface<T> rotateRight(BinaryNodeInterface<T> nodeN)
{

BinaryNodeInterface<T> nodeC = nodeN.getLeftChild();
nodeN.setLeftChild(nodeC.getRightChild());
nodeC.setRightChild(nodeN);
return nodeC;

} // end rotateRight

The method rotateLeft has a similar implementation and is left as an exercise.
 Since a double rotation is equivalent to two single rotations, the methods that perform double

rotations each call the methods that perform single rotations. For example, the algorithm for a right-
left double rotation, as it appeared in Segment 27.4, is

Algorithm rotateRightLeft(nodeN)
// Corrects an imbalance at a given node nodeN due to an addition
// in the left subtree of nodeN’s right child.

nodeC = right child of nodeN
Set nodeN’s right child to the node returned by rotateRight(nodeC)
return rotateLeft(nodeN)

public AVLTree()
{

super();
} // end default constructor

public AVLTree(T rootEntry)
{

super(rootEntry);
} // end constructor

< Implementations of add and remove are here. A definition of add appears in Segment 27.12
 of this chapter. Other methods in SearchTreeInterface are inherited. >
. . .
< Implementations of private methods to rebalance the tree using rotations are here. >
. . .

} // end AVLTree

AVL Trees 705

An implementation of this pseudocode follows:

// Corrects an imbalance at the node closest to a structural
// change in the left subtree of the node's right child.
// nodeN is a node, closest to the newly added leaf, at which
// an imbalance occurs and that has a right child.
private BinaryNodeInterface<T> rotateRightLeft(BinaryNodeInterface<T> nodeN)
{

BinaryNodeInterface<T> nodeC = nodeN.getRightChild();
nodeN.setRightChild(rotateRight(nodeC));
return rotateLeft(nodeN);

} // end rotateRightLeft

The method rotateLeftRight has a similar implementation and is left as an exercise.

27.10 Rebalancing. As you saw previously, you can correct an imbalance at node N of an AVL tree
caused by the addition of a node by performing only one of the following rotations, according to
where in the tree the change to its structure occurred:

• Right rotation if the addition occurred in the left subtree of N’s left child
• Left-right rotation if the addition occurred in the right subtree of N’s left child
• Left rotation if the addition occurred in the right subtree of N’s right child
• Right-left rotation if the addition occurred in the left subtree of N’s right child

The following pseudocode uses these criteria and the rotation methods to rebalance the tree:

Algorithm rebalance(nodeN)
if (nodeN’s left subtree is taller than its right subtree by more than 1)
{ // addition was in nodeN’s left subtree

if (the left child of nodeN has a left subtree that is taller than its right subtree)
rotateRight(nodeN) // addition was in left subtree of left child

else
rotateLeftRight(nodeN) // addition was in right subtree of left child

}
else if (nodeN’s right subtree is taller than its left subtree by more than 1)
{ // addition was in nodeN’s right subtree

if (the right child of nodeN has a right subtree that is taller than its left subtree)
rotateLeft(nodeN) // addition was in right subtree of right child

else
rotateRightLeft(nodeN) // addition was in left subtree of right child

}

No rebalancing is needed if the heights of node N’s two subtrees either are the same or differ by 1.

27.11 The method rebalance. A method getHeightDifference that returns the difference in the heights
of a node’s left and right subtrees would help us to implement the previous algorithm. By giving a
sign to the height difference it returns, getHeightDifference can indicate which subtree is taller.
This method can be defined within either the class AVLTree or the class BinaryNode. The latter
choice would be more efficient if each node maintained height information as one or more data
fields instead of recomputing it each time the method is called. (See Project 4.)

A node is unbalanced if its two subtrees differ in height by more than 1, that is, if
getHeightDifference returns a value either greater than 1 or less than -1. If this return value is
greater than 1, the left subtree is taller; if it is less than -1, the right subtree is taller.

Question 11 Implement the algorithm given in Segment 27.3 for a single left rotation.

706 CHAPTER 27 Balanced Search Trees

Using the method getHeightDifference, we can implement the previous pseudocode for
rebalance within the class AVLTree as follows:

private BinaryNodeInterface<T> rebalance(BinaryNodeInterface<T> nodeN)
{

int heightDifference = getHeightDifference(nodeN);

if (heightDifference > 1)
{ // left subtree is taller by more than 1,
// so addition was in left subtree
if (getHeightDifference(nodeN.getLeftChild()) > 0)

// addition was in left subtree of left child
nodeN = rotateRight(nodeN);

else
// addition was in right subtree of left child
nodeN = rotateLeftRight(nodeN);

}
else if (heightDifference < -1)
{ // right subtree is taller by more than 1,
// so addition was in right subtree
if (getHeightDifference(nodeN.getRightChild()) < 0)

// addition was in right subtree of right child
nodeN = rotateLeft(nodeN);

else
// addition was in left subtree of right child
nodeN = rotateRightLeft(nodeN);

} // end if
// else nodeN is balanced

return nodeN;
} // end rebalance

27.12 The method add. Adding to an AVL tree is just like adding to a binary search tree, but with a rebal-
ancing step. For example, we can begin with the recursive implementations of the methods add and
addEntry of BinarySearchTree (Segments 25.15 and 25.16 in Chapter 25) and insert calls to
rebalance. The resulting methods in AVLTree are as follows:

public T add(T newEntry)
{

T result = null;

if (isEmpty())
setRootNode(new BinaryNode<T>(newEntry));

else
{

BinaryNodeInterface<T> rootNode = getRootNode();
result = addEntry(rootNode, newEntry);

} // end if

return result;
} // end add

private T addEntry(BinaryNodeInterface<T> rootNode, T newEntry)
{

assert rootNode != null;
T result = null;
int comparison = newEntry.compareTo(rootNode.getData());

setRootNode(rebalance(rootNode));

2-3 Trees 707

if (comparison == 0)
{

result = rootNode.getData();
rootNode.setData(newEntry);

}
else if (comparison < 0)
{

if (rootNode.hasLeftChild())
{

BinaryNodeInterface<T> leftChild = rootNode.getLeftChild();
result = addEntry(leftChild, newEntry);

}
else

rootNode.setLeftChild(new BinaryNode<T>(newEntry));
}
else
{

assert comparison > 0;

if (rootNode.hasRightChild())
{

BinaryNodeInterface<T> rightChild = rootNode.getRightChild();
result = addEntry(rightChild, newEntry);

}
else

rootNode.setRightChild(new BinaryNode<T>(newEntry));
} // end if

return result;
} // end addEntry

Although rebalance is called several times during the course of executing these methods, a
rebalancing of the tree occurs at most once. Most calls to rebalance simply check whether a rebal-
ancing is needed.

As attractive as an AVL tree might seem, better search trees have been developed, as you will
now see.

2-3 Trees

27.13 A 2-3 tree is a general search tree whose interior nodes must have either two or three children.
A 2-node contains one data item s and has two children, like the nodes in a binary search tree.
This data s is greater than any data in the node’s left subtree and less than any data in the right
subtree. That is, the data in the node’s left subtree is less than s, and any data in the right subtree
is greater than s, as Figure 27-11a shows.

VideoNote

A 3-node contains two data items, s and l, and has three children. Data that is less than the
smaller data item s occurs in the node’s left subtree. Data that is greater than the larger data item l
occurs in the node’s right subtree. Data that is between s and l occurs in the node’s middle subtree.
Figure 27-11b shows a typical 3-node.

Because it can contain 3-nodes, a 2-3 tree tends to be shorter than a binary search tree. To make
the 2-3 tree balanced, we require that all leaves occur on the same level. Thus, a 2-3 tree is com-
pletely balanced.

rootNode.setLeftChild(rebalance(leftChild));

rootNode.setRightChild(rebalance(rightChild));

2-3 trees

708 CHAPTER 27 Balanced Search Trees

FIGURE 27-11 (a) A 2-node; (b) a 3-node

Searching a 2-3 Tree
27.14 If we had a 2-3 tree, such as the one in Figure 27-12, how would we search it? Notice that each

2-node adheres to the ordering of a binary search tree. The 3-node leaf <35 40> contains values that
are between the values in its parent. Knowing this, we can search for the 40, for example, by first
comparing 40 with the root value 60. We then move to 60’s left subtree and compare 40 with the
values in the root of this subtree. Since 40 lies between 20 and 50, it would occur in the middle sub-
tree, if it appears at all. While searching the middle subtree, we compare 40 with 35 and then finally
with 40.

FIGURE 27-12 A 2-3 tree

The search algorithm is an extension of the search algorithm for a binary search tree:

Algorithm search23Tree(23Tree, desiredObject)
// Searches a 2-3 tree for a given object.
// Returns true if the object is found.

if (23Tree is empty)
return false

else if (desiredObject is in the root of 23Tree)
return true

else if (the root of 23Tree contains two entries)
{

if (desiredObject < smaller object in the root)
return search23Tree(left subtree of 23Tree, desiredObject)

Note: A 2-3 tree is a general search tree whose interior nodes must have either two or three
children and whose leaves occur on the same level. A 2-3 tree is completely balanced.

(b)

s l

� s
� l

� s � l

(a)

� s � s

s

 20 50

60

55 70

80

9010 35 40

2-3 Trees 709

else if (desiredObject > larger object in the root)
return search23Tree(right subtree of 23Tree, desiredObject)

else
return search23Tree(middle subtree of 23Tree, desiredObject)

}
else if (desiredObject < object in the root)

return search23Tree(left subtree of 23Tree, desiredObject)
else

return search23Tree(right subtree of 23Tree, desiredObject)

Adding Entries to a 2-3 Tree
27.15 Using an example, we will describe how to add an entry to a 2-3 tree. So that we can compare our

results with an AVL tree, we will make the same sequence of additions to an initially empty 2-3 tree
that we made when forming the AVL tree in Figure 27-10a.

As we did when adding to a binary search tree, we add an entry to a 2-3 tree at a leaf. We locate
this leaf by using the search algorithm that we described in the previous segment. Thus, once we
make the addition, the search algorithm will be able to locate the new entry.

We will now add the following entries: 60, 50, 20, 80, 90, 70, 55, 10, 40, and 35.

27.16 Adding 60, 50, and 20. After we add 60, the 2-3 tree consists of a single 2-node. After we add 50,
the tree is a single 3-node. Figures 27-13a and 27-13b show the tree after each of these additions.

Now we add 20. To facilitate our description of this addition, we show the 20 in Figure 27-13c
within the only node in the tree. This is an imaginary placement, since a 3-node can contain only
two data items. We would not actually place more data in this node. Since the node cannot accom-
modate the 20, we split it into three nodes, moving the middle value 50 up one level. In this case,
we are splitting a leaf that is also the tree’s root. Moving the 50 up requires that we create a new
node that becomes the new root of the tree. This step increases the height of the tree by 1, as
Figure 27-13d shows.

FIGURE 27-13 An initially empty 2-3 tree after adding (a) 60 and (b) 50; (c),
(d) adding 20 causes the 3-node to split

27.17 Adding 80, 90, and 70. To add 80, we note that the search algorithm would look for 80 in the tree’s
rightmost leaf. Since this leaf has room for another data entry, that is where we should add 80.
Figure 27-14a shows the result of this addition.

The search algorithm would look for 90 in the leaf to which we just added 80. Although the
leaf has no room for another entry, we imagine that we have added 90 there. We then move the mid-
dle value—the 80—up a level and split the leaf into two nodes for the 60 and 90, as Figure 27-14b
shows. Since the root can accept the 80, the addition is complete.

Question 12 What comparisons are made while searching the 2-3 tree in Figure 27-12 for
each of the following values?

a. 5 b. 55 c. 41 d. 30

20

50

6060 20 50 60
Split

 50 60

(a) (b) (c) (d)

710 CHAPTER 27 Balanced Search Trees

The entry 70 belongs in the root’s middle subtree, and since this leaf can accept another entry,
we add 70 there. Figure 27-14c shows the tree after this addition.

FIGURE 27-14 The 2-3 tree after adding (a) 80; (b) 90; (c) 70

27.18 Adding 55. When we add 55 to the tree in Figure 27-14c, the search algorithm terminates at the
root’s middle subtree—a leaf—as Figure 27-15a indicates. Since this leaf cannot accommodate
another entry, we split the leaf and move 60 up a level to the root, as shown in Figure 27-15b.
Moving the 60 causes the root to split, and 60 moves up another level to a new node that becomes
the new root. Figure 27-15c shows the result of this addition.

FIGURE 27-15 Adding 55 to the 2-3 tree causes a leaf and then the root to split

27.19 Adding 10, 40, and 35. The leaf that contains 20 has room for 10 as an additional entry, as
Figure 27-16a shows. An additional entry, 40, belongs in the same leaf. Since the leaf already con-
tains two entries, we split it and move 20 up a level to the node that contains 50. Figures 27-16b and
27-16c show this result. Finally, Figure 27-17 shows the result of adding 35 to the tree. The leaf
that contains 40 accommodates this new entry.

FIGURE 27-16 The 2-3 tree after adding (a) 10; (b), (c) 40

20

50 50 80

Split
 60 80

(a) (b) (c)

60 80 9020

50

20 60 90 20 90

 50 80

 60 70

(a)

20 90

 50 80

(c)(b)

20 90

60

50 80

5520 907055 60 70 55 70

50 60 80

(a)

 10 20

60

50 80

55 9070 10 20 40

 20 50

(b)
60

50

55 70

80

90

(c)
60

55 70

80

9010 40

2-3 Trees 711

FIGURE 27-17 The 2-3 tree after adding 35

Compare the final 2-3 tree in Figure 27-17 with the AVL tree in Figure 27-10a. We used the
same sequence of additions to form both trees. The 2-3 tree is completely balanced and shorter than
the balanced AVL tree. Later, we will compare these trees with the 2-4 tree in the next section and
draw some conclusions.

Splitting Nodes During Addition
27.20 Splitting a leaf. During the addition of a new entry to a 2-3 tree, the first node that splits is a leaf

that already contains two entries. Figure 27-18a shows a leaf that would need to accommodate
three entries. These entries are shown in ascending order as s, m, and l: s is the smallest entry in the
node, m is the middle entry, and l is the largest. The node splits into two nodes that contain s and l,
respectively, and the middle entry m moves up a level. If the parent of the leaf has room for m, no
further action is necessary. This is the case in Figure 27-18a. But in Figure 27-18b, the parent
already contains two entries, so we must split it as well. We consider that case next.

Although Figure 27-18 shows the leaf as a right child of its parent, other analogous configura-
tions are possible.

FIGURE 27-18 Splitting a leaf to accommodate a new entry when the leaf’s
parent contains (a) one entry; (b) two entries

27.21 Splitting an internal node. You just saw that splitting a leaf can cause the leaf’s parent to have too
many entries. This parent also has too many children, as illustrated in Figure 27-18b. Figure 27-19
shows such an internal node in general. This node must accommodate three entries s, m, and l,
given in ascending order, and four children that are the roots of the subtrees T1 through T4. Thus,

 20 50

60

55 70

80

9010 35 40

p m

p m s m l

(a)

Split

p mp Parent

s m l s l

s l

(b)

Split

p q mp q Parent Parent must split

s m l

712 CHAPTER 27 Balanced Search Trees

we split the node, move the middle entry m up to the node’s parent, place s and l into their own
nodes, and distribute the original node’s subtrees between s and l. If the parent has room for m, no
further splitting is necessary. If not, we split the parent as just described.

Other analogous configurations for an internal node are possible.

FIGURE 27-19 Splitting an internal node to accommodate a new entry

27.22 Splitting the root. Splitting a root proceeds just like the previous cases, except that when we move
an entry up a level, we allocate a new node for the entry. This new node becomes the root of the
tree, as Figure 27-20 illustrates. Notice that only this case increases the height of a 2-3 tree.

FIGURE 27-20 Splitting the root to accommodate a new entry

2-4 Trees

27.23 A 2-4 tree, sometimes called a 2-3-4 tree, is a general search tree whose interior nodes must have
either two, three, or four children and whose leaves occur on the same level. In addition to 2-nodes
and 3-nodes, as we described in the previous section, this tree also contains 4-nodes. A 4-node con-
tains three data items s, m, and l and has four children. Data that is less than the smallest data item s

Split

s l

m

T1 T2 T3 T4 T1 T2 T3 T4

s m l

Split

s l

m

T1 T2 T3 T4 T1 T2 T3 T4

ms l

Question 13 What tree results when you add 30 to the 2-3 tree in Figure 27-17?

Question 14 What 2-3 tree results when you make the following additions to an initially
empty 2-3 tree? 70, 80, 90, 20, 10, 50, 60, 40, 30

Question 15 How does the tree that you created in the previous question compare to the
AVL tree you created in Question 7?

2-4 Trees 713

VideoNote

occurs in the node’s left subtree. Data that is greater than the largest data item l occurs in the node’s
right subtree. Data that is between s and the middle data item m or between m and l occurs in the
node’s middle subtrees. Figure 27-21 illustrates a typical 4-node.

Searching a 2-4 tree is like searching a 2-3 tree, but with additional logic to handle the 4-nodes.
This search forms the basis of an algorithm to add entries to a 2-4 tree.

FIGURE 27-21 A 4-node

Adding Entries to a 2-4 Tree
27.24 Recall how we add a new entry to a 2-3 tree. We make comparisons along a path that begins at the

root and ends at a leaf. At this point, if the leaf is a 3-node, it already contains two data entries, and
so we must split it. Since an entry would now move up a level, this split could require splits in
nodes above the leaf. Thus, adding to a 2-3 tree can require us to retrace the path from the leaf back
to the root.

In a 2-4 tree, we avoid this retrace by splitting each 4-node as soon as we first consider it dur-
ing the search from root to leaf. After a split, the next node along the comparison path is the result
of the split, and so is not a 4-node. If this node has a 4-node child that we consider next, it has room
for the entry that moves up from this child. No other splits occur, as would happen in a 2-3 tree.
You will see an example of this shortly.

As in the previous section, we will use an example to demonstrate how to add entries to a
2-4 tree. So that we can compare our results with previous trees, we will use the same sequence
of additions—namely, 60, 50, 20, 80, 90, 70, 55, 10, 40, and 35—that we used earlier.

27.25 Adding 60, 50, and 20. Figure 27-22 shows the effect of adding 60, 50, and 20 to an initially empty
2-4 tree. The resulting tree consists of a single 4-node.

FIGURE 27-22 An initially empty 2-4 tree after adding (a) 60; (b) 50; (c) 20

2-4 and red-black trees

� s
 � m

� s � l � m
� l

ls m

Note: A 2-4 tree is a general search tree whose interior nodes must have two, three, or four
children and whose leaves occur on the same level. A 2-4 tree is completely balanced.

(a)

60

(c)(b)

50 60 20 50 60

714 CHAPTER 27 Balanced Search Trees

27.26 Adding 80 and 90. To add an entry to the 2-4 tree in Figure 27-22c, we find that the root is a
4-node. We split it by moving the middle entry, 50, up. Since we are at a root, we create a new node
for the 50. That node becomes the new root of the tree, as shown in Figure 27-23a. We now can add
80 and 90 to the root’s right leaf, as Figures 27-23b and 27-23c illustrate.

FIGURE 27-23 The 2-4 tree after (a) splitting the root; (b) adding 80; (c) adding 90

27.27 Adding 70. While searching the 2-4 tree in Figure 27-23c for a place to add 70, we encounter the
4-node that is the root’s right child. We split this node into two nodes and move the middle entry 80
up to the root. The result of this split is shown in Figure 27-24a. We now have room to add 70 to the
root’s middle child, as Figure 27-24b shows.

FIGURE 27-24 The 2-4 tree after (a) splitting a 4-node; (b) adding 70

27.28 Adding 55, 10, and 40. The 2-4 tree in Figure 27-24b can accommodate the addition of 55, 10, and
40 without splitting nodes. Figure 27-25 shows the results of these additions.

FIGURE 27-25 The 2-4 tree after adding (a) 55; (b) 10; (c) 40

27.29 Adding 35. While adding 35 to the 2-4 tree in Figure 27-25c, our search encounters the root’s left
child, which is a 4-node. We split this node into two nodes and move the middle entry, 20, up to the
root, as shown in Figure 27-26a. We now can add 35 to the root’s middle left child, as Figure 27-26b
shows. This is the final addition that we will make.

60 60 80 9020

50

20

50

(a) (b) (c)

60 8020

50

 50 80

9020 60 70

(a) (b)

 50 80

9020 60

90

 50 80

9020 55 60 70

(a)

 50 80

9055 60 70

(b)

 10 20

 50 80

55 60 70

(c)

 10 20 40

2-4 Trees 715

FIGURE 27-26 The 2-4 tree after (a) splitting the leftmost 4-node; (b) adding 35

Comparing AVL, 2-3, and 2-4 Trees
27.30 Figure 27-27 compares the AVL tree in Figure 27-10a, the final 2-3 tree in Figure 27-17, and the 2-4 tree

that we just constructed. The AVL tree is a balanced binary search tree of height 4. The other trees are
completely balanced general search trees. The height of the 2-3 tree is 3; the height of the 2-4 tree is 2. In
general, 2-4 trees are shorter than 2-3 trees, which are shorter than AVL trees.

FIGURE 27-27 Three balanced search trees obtained by adding 60, 50, 20, 80,
90, 70, 55, 10, 40, and 35: (a) AVL tree; (b) 2-3 tree; (c) 2-4 tree

10

20 50 80

9055 60 7035 4010

20 50 80

9040 55 60 70

(a) (b)

Note: When adding a new entry to a 2-4 tree, you split any 4-node as soon as you encoun-
ter it during the search for the new entry’s position in the tree. The addition is complete right
after this search ends. Thus, adding to a 2-4 tree is more efficient than adding to a 2-3 tree.

Question 16 What comparisons are made while searching the 2-4 tree in Figure 27-26b
for each of the following values?

a. 5 b. 56 c. 41 d. 30

Question 17 What tree results when you add 30 to the 2-4 tree in Figure 27-26b?

Question 18 What 2-4 tree results when you make the following additions to an initially
empty 2-4 tree? 70, 80, 90, 20, 10, 50, 60, 40, 30

Question 19 How does the tree that you created in the previous question compare to the
2-3 tree you created in Question 14?

(a)
60

40 80

50 9070 35 40

(b)
60

55 70

80

90

(c)

 20 50

1020

10 35 55

35 40 90

 20 50 80

10 55 60 70

716 CHAPTER 27 Balanced Search Trees

You saw in Segment 25.42 of Chapter 25 that searching a balanced binary search tree, such as
an AVL tree, is an O(log n) operation. Since 2-3 and 2-4 trees are no taller than a corresponding
AVL tree, we usually can search them by examining fewer nodes. However, 3-nodes and 4-nodes
contain more entries than 2-nodes, and so they require a longer search time. In general, searching
an AVL, 2-3, or 2-4 tree is an O(log n) operation.

A 2-3 tree is appealing because maintaining its balance is easier than for an AVL tree. Main-
taining the balance of a 2-4 tree is even easier. But defining search trees whose nodes contain more
than three data items is usually counterproductive, because the number of comparisons per node
increases. As you will see later in this chapter, such a search tree is attractive when it is maintained
in external storage, such as a disk, instead of internal memory.

Red-Black Trees

27.31 You just saw that maintaining the balance of a 2-4 tree is easier than maintaining either an AVL tree
or a 2-3 tree. While a 2-4 tree is a general tree, a red-black tree is a binary tree that is equivalent to
a 2-4 tree. Adding an entry to a red-black tree is like adding an entry to a 2-4 tree, in that only one
pass from root to leaf is necessary. But a red-black tree is a binary tree, so it uses simpler operations
to maintain its balance than does a 2-4 tree. Additionally, the implementation of a red-black tree
uses only 2-nodes, whereas a 2-4 tree requires 2-nodes, 3-nodes, and 4-nodes. This added require-
ment of a 2-4 tree makes it less desirable than a red-black tree.

27.32 When designing a node for the 2-4 tree, you need to decide how to represent the entries that are in
the node. Since you must order these entries, you could use an ADT such as the sorted list for the
entries. You might also use a binary search tree. For example, consider the 2-4 tree in Figure 27-27c.
The entries in the root of this tree are 20, 50, and 80. We can represent these entries as a binary
search tree whose root is 50 and whose subtrees are 20 and 80. Likewise, the entries in the 3-node
leaf of this 2-4 tree are 35 and 40. We can represent these entries as one of two binary search trees:
One has 35 as its root and 40 as its right subtree; the other has 40 as its root and 35 as its left subtree.
Thus, we can convert all 3-nodes and 4-nodes to 2-nodes. The result is a binary search tree instead of
a 2-4 tree.

Each time we convert a 3-node or a 4-node to a 2-node, we increase the height of the tree.
We use color to highlight the new nodes that cause this increase in height. We use black for all
the nodes in the original 2-4 tree. Since we do not change the 2-nodes, they remain black in the
new tree.

Figure 27-28a shows how to represent a 4-node by using 2-nodes. The root of the resulting
subtree remains black, but we color its children. The traditional color is red. Our figures use blue
since that is our book’s second color. Similarly, Figure 27-28b shows how to represent a 3-node by
using one of two different subtrees, each having a black root and a red child.

With this notation, we can draw the 2-4 tree in Figure 27-27c as the balanced binary search tree
in Figure 27-29. This binary search tree is called a red-black tree.

Note: A red-black tree is a binary tree that is equivalent to a 2-4 tree. Conceptually, a red-
black tree is more involved than a 2-4 tree, but its implementation uses only 2-nodes and so is
more efficient.

Question 20 What comparisons are made while searching the 2-4 tree in Figure 27-27c
and the equivalent red-black tree in Figure 27-29 for

a. 60 b. 55

Red-Black Trees 717

FIGURE 27-28 Using 2-nodes to represent (a) a 4-node; (b) a 3-node

FIGURE 27-29 \A red-black tree that is equivalent to the 2-4 tree in
Figure 27-27c

Properties of a Red-Black Tree
27.33 The root of every red-black tree is black. If the original 2-4 tree had a 2-node as its root, the 2-node

would be black. And if its root was either a 3-node or a 4-node, we would replace it with a subtree
whose root is black, as shown in Figure 27-28.

Since we create red nodes only when we convert 3-nodes and 4-nodes to 2-nodes, every red
node has a black parent, as you can see in Figure 27-29. It follows that a red node cannot have red
children. If it did, a red child would have a red parent, and this contradicts our previous conclusion
that every red node has a black parent.

When we formed a red-black tree equivalent to a 2-4 tree, 2-nodes stayed black and the repre-
sentation of any other node contained one black node. Thus, every node in a 2-4 tree produced
exactly one black node in the equivalent red-black tree. Since a 2-4 tree is completely balanced, all
paths from its root to a leaf connect the same number of nodes. So every path from the root to a leaf
in a red-black tree must contain the same number of black nodes.

Split
s m l s l

m

T1 T2 T3 T4 T1 T2 T3 T4

(a)

Split OR

(b)

s l

T1 T2 T3

s

l

T1

T2 T3

s

l

T1 T2

T3

50

20 80

40 906010

7035 55

718 CHAPTER 27 Balanced Search Trees

Adding Entries to a Red-Black Tree
27.34 Adding a leaf. What color should we assign to a new node that we add to the tree? An addition to a

binary search tree always occurs at a leaf, so the same is true for a red-black tree. If we use black
for a new leaf, we will increase the number of black nodes on the paths to that leaf. This increase
violates the fourth property of a red-black tree. Thus, any new node must be red. However, do not
assume that all the leaves in a red-black tree are red. Adding or removing entries can change the
color of various nodes, including that of leaves added earlier.

Consider some simple cases of adding to a red-black tree. A one-node red-black tree has one
black node, its root. Figure 27-30 shows two possibilities when we add a new entry e to this tree. In
each case, the new red node maintains the properties of a red-black tree, so it is legal.

FIGURE 27-30 The result of adding a new entry e to a one-node red-black tree

Note: Properties of a red-black tree

1. The root is black.
2. Every red node has a black parent.
3. Any children of a red node are black; that is, a red node cannot have red children.
4. Every path from the root to a leaf contains the same number of black nodes.

Question 21 Show that the red-black tree in Figure 27-29 satisfies the four properties just given.

Question 22 What red-black tree is equivalent to the 2-4 tree in Figure 27-25c?

Question 23 Show that the red-black tree that answers Question 22 satisfies the four
properties given previously.

Note: Creating a red-black tree
In practice, you do not convert 2-4 trees into red-black trees. You create a red-black tree by
adding entries to an initially empty tree according to the steps described in the following
section. These steps consider both the balance of the tree and the color of its nodes.

Note: The color of nodes added to a red-black tree
Adding an entry to a red-black tree results in a new red leaf. The color of this leaf can change
later when other entries are added or removed.

x

e
OR

x

e

Red-Black Trees 719

Now suppose that the red-black tree had two nodes before we added the new entry e.
Figure 27-31a shows this original tree when it consists of a root x and right child y. Also pictured is
the 2-4 tree that is equivalent to the original red-black tree. The rest of the figure shows the possible
outcomes of the addition, depending on how e compares with x and y. In Part b, e is the left child of
the root, and we are done. In Part c, a red node has a red child. These two consecutive red nodes are
illegal in a red-black tree (properties 2 and 3). To understand what further action is necessary, con-
sider the equivalent 2-4 tree. The original 2-node red-black tree is equivalent to the 2-4 tree that
contains the one node <x y> (Figure 27-31a). If we add an entry e that is larger than y, the 2-4 tree
becomes the single node <x y e> (Figure 27-31c). Notice the red-black tree that is equivalent to this
3-node. This tree is the one we need as the result of adding e. We can get it from the first red-black
tree shown in Part c by first performing a single left rotation about the node containing y. You have
seen this rotation before in Figures 27-5b and 27-5c when we talked about AVL trees. After the
rotation, we need to reverse the colors of the nodes containing x and y—that is, the original parent
and grandparent of the new node. We call this step a color flip.

FIGURE 27-31 The possible results of adding a new entry e to a two-node
red-black tree

Figure 27-31d shows the last possible result of adding e to the two-node red-black tree. Here, a
right-left double rotation followed by a color flip of the new node and its original grandparent are
necessary to avoid two consecutive red nodes. Figures 27-7b, 27-7c, and 27-7d show the rotation in
general in the context of an AVL tree.

Figure 27-32 shows mirror images of the cases in Figure 27-31.

(a) Before addition

x

e y

x y

(b) Case 1:
The tree is balanced

x

y

Red-black tree Equivalent 2-4 tree

Red-black equivalent
of the 2-4 tree

Action after addition
 to transform

 column 1 into column 3
After adding e to
the red-black tree

After adding e to
the 2-4 tree

(c) Case 2:
A red node has a
red right child

None

Single left rotation
and color flip

Right-left double
rotation and color flip

(d) Case 3:
A red node has a
red left child

x

e y

e x y

y

x e

x y ex

e

y

e

x y

x e yx

e

y

720 CHAPTER 27 Balanced Search Trees

FIGURE 27-32 The possible results of adding a new entry e to a two-node
red-black tree: mirror images of Figure 27-31

27.35 Splitting a 4-node whose parent is black. During an addition to a 2-4 tree, we split any 4-nodes
that we encounter as we move along the path from the root to the eventual insertion point. We must
perform an equivalent action during an addition to a red-black tree. Figure 27-28a shows that when
a black node has two red children, we have encountered the red-black representation of a 4-node.
We will call this configuration a red-black 4-node, or simply a 4-node.

Figure 27-33a recalls how to split a 4-node when its parent in the 2-4 tree is a 2-node. The mid-
dle entry m moves up to the node’s parent, and the other entries s and l are given their own nodes as
replacement children of the parent. Figure 27-33b shows the corresponding red-black trees. Notice
that the three nodes in the subtree rooted at m reverse colors. Thus, we split the red-black represen-
tation of a 4-node by performing a color flip.

(a) Before addition

x

ey

y x

(b) Case 1:
The tree is balanced

x

y

Red-black tree Equivalent 2-4 tree

Red-black equivalent
of the 2-4 tree

Action after addition
 to transform

 column 1 into column 3
After adding e to
the red-black tree

After adding e to
the 2-4 tree

(c) Case 2:
A red node has a
red left child

None

Single right rotation
and color flip

Left-right double
rotation and color flip

(d) Case 3:
A red node has a
red right child

x

ey

y x e

y

xe

e y xx

e

y

e

xy

y e xx

e

y

Note: A red-black 4-node
A red-black 4-node consists of a black node and two red children.

Red-Black Trees 721

 A color flip is all that is necessary when a red-black 4-node has a black parent. As you can see
from Figure 27-33, a black parent corresponds to a 2-node in the 2-4 tree. If a 4-node in a 2-4 tree
has a 3-node as its parent, the red-black 4-node will have a red parent. We examine this situation in
the next segment.

FIGURE 27-33 Splitting a 4-node whose parent is a 2-node in (a) a 2-4 tree;
(b) a red-black tree

27.36 Splitting a 4-node whose parent is red: Case 1. Figure 27-34a shows the splitting of a 4-node that
has a 3-node parent within a 2-4 tree. Here, the 4-node is the right child of its parent. Figure 27-34b
shows the red-black representations of the two trees in Part a. How can we transform the first red-
black tree into the second? Figure 27-35 shows the necessary steps. In Part a, we detect a 4-node at
m, since this black node has two red children. A color flip results in two adjacent red nodes, as
shown in Figure 27-35b. Earlier, in Figure 27-31c, we saw this configuration of a black node and
two consecutive right descendants that are red. As we did then, we perform a left rotation about p,
as Figure 27-35c shows, and then we reverse the colors of the nodes containing p and g. This color
flip, together with the rotation, resolves the illegal red nodes. The result in Figure 27-35d is the
desired red-black tree that we saw in Figure 27-34b.

Since a 3-node has two different red-black representations, we can replace Figure 27-35a with
a different red-black tree. We leave it to you to show that the final result will be the same, but with
less work. (See Exercise 13.)

27.37 Splitting a 4-node whose parent is red: Case 2. The 4-node in Figure 27-34a is a right child of its
parent. If it were a left child, the red-black representation would be as in Figure 27-36a. The rest of
this figure shows that both color flips and a right rotation are necessary to split the 4-node.

As before, we can replace Figure 27-36a with a different red-black tree and get the same final
result. Again we leave the details to you as an exercise. (See Exercise 14.)

p m p m

(a)

Split

p mp

s m l s l

(b)

OR

OR

Split

m pp

s m l s l

p

m

ls

p

m

ls

p

m

ls

p

m

ls

722 CHAPTER 27 Balanced Search Trees

FIGURE 27-34 Splitting a 4-node that has a 3-node parent within (a) a 2-4 tree;
(b) a red-black tree

FIGURE 27-35 Splitting a 4-node that has a red parent within a red-black
tree: Case 1

FIGURE 27-36 Splitting a 4-node that has a red parent within a red-black
tree: Case 2

p m

l

(a)

Split

g p mg p

s m l s l

(b)
g

p

m

s

p

m

ls

g

l

(d)(a)

g

p

m

s

p

m

ls

g

l l

(b)

g

p

m

s

(c)

p

m

s

g

Color flip

Rotate left

Color flip

(d)(a)

p

g

m

s

g

p

ls

m

l l

(b)

p

g

m

s

(c)

g

p

s

m

Color flip

Rotate right

Color flip

l

Red-Black Trees 723

27.38 Splitting a 4-node whose parent is red: Cases 3 and 4. Now consider the case in which the
4-node is the middle child of its 3-node parent. This time, we look at both red-black representa-
tions that the 3-node parent produces. Figure 27-37a shows one possible red-black tree. After the
color flip in Part b, we resolve the consecutive red nodes as we did in Figure 27-31d. A right-left
double rotation followed by a color flip produces the desired results, as you can see in the rest of
Figure 27-37.

Figure 27-38a shows the second possible red-black tree. After the color flip in Part b, we
resolve the consecutive red nodes as we did in Figure 27-32d. A left-right double rotation followed
by a color flip is necessary, as the rest of Figure 27-38 shows. Notice that the tree in Figure 27-38e
is the same as the one in Figure 27-37e.

FIGURE 27-37 Splitting a 4-node that has a red parent within a red-black
tree: Case 3

FIGURE 27-38 Splitting a 4-node that has a red parent within a red-black
tree: Case 4

s l

(d)(a)

g

p

m

s

g

m

s

l

p

l l

(b)

g

p

m

s

(c)

m

pg

Color flip

Rotate right

Color flip

Rotate left

(e)

m

p

s

g

l

(d)(a)

p

g

m

s

p

m

s

lg

l l

(b)

p

g

m

s

(c)

m

g

s

p

Color flip

Rotate left

Color flip

l

Rotate right

(e)

m

g

s

p

l

Note: Splitting a red-black 4-node
When splitting a red-black 4-node, the color of its parent determines the necessary opera-
tions. If the parent is black, a color flip is sufficient. But if the parent is red, a color flip, a
rotation, and another color flip are necessary.

724 CHAPTER 27 Balanced Search Trees

Java Class Library: The Class TreeMap
27.39 The package java.util contains the class TreeMap<K, V>. This class uses a red-black tree to

implement the methods in the interface SortedMap<K, V> in the same package. SortedMap
extends the interface Map<K, V>, which we described in Segment 19.22 of Chapter 19. Recall
that the interface Map is similar to our interface for the ADT dictionary. SortedMap specifies a
sorted dictionary in which the search keys are maintained in ascending order. Because
TreeMap uses a red-black tree, methods such as get, put, remove, and containsKey are each
an O(log n) operation.

B-Trees

27.40 A multiway search tree of order m—or sometimes an m-way search tree—is a general tree
whose nodes have up to m children each. A node that has k - 1 data items and k children is called a
k-node. An order m multiway search tree can contain k-nodes for values of k ranging from 2 to m.

A binary search tree is a multiway search tree of order 2. You know that not all binary search
trees are balanced; likewise, not all multiway search trees are balanced. However, 2-3 trees and 2-4
trees are balanced multiway search trees of orders 3 and 4, respectively. We maintained the balance
of a 2-3 tree, for example, by insisting that every interior node have two or three children and that
all leaves occur on the same level.

A B-tree of order m is a balanced multiway search tree of order m that has the following
additional properties to maintain its balance:

• The root has either no children or between 2 and m children.
• Other interior nodes (nonleaves) have between and m children each.
• All leaves are on the same level.

2-3 and 2-4 trees satisfy these constraints, and so are examples of B-trees.

27.41 The search trees that you have seen so far maintain their data within the main memory of a
computer. At some point, we probably will save this data in external memory, such as a disk. As
long as we can read the data back into internal memory, we can use any of the previous search trees.
But what happens when your database becomes too large to be retained entirely within internal
memory? Typically, you use a B-tree.

Accessing data in external memory is much slower than accessing data in main memory. When
reading external data, the major cost is locating it on the storage device. Data on a disk, for exam-
ple, is organized sequentially into blocks, whose size depends on the physical characteristics of the
disk. When you read data from a disk, an entire block is read. Locating the block takes much more
time than reading the data. If each block contains the data for at least one node, you can reduce the
access time by placing numerous data items in each node. Although many comparisons per node
could be necessary, their cost is much less than the cost of accessing external data.

Since increasing the number of data items per node decreases the tree’s height, you decrease
the number of nodes that you must search and hence the number of disk accesses. A high-order
B-tree fits these requirements. You would choose the order m so that m - 1 data items fit into a
block on the disk.

m 2⁄

Note: Although a high-order B-tree is usually counterproductive for an internal database
because the number of comparisons per node increases, it is attractive when it is maintained
in external storage such as a disk.

Exercises 725

CHAPTER SUMMARY

EXERCISES

• An AVL tree is a balanced binary search tree that rearranges its nodes whenever it becomes unbalanced. If
adding a node causes an imbalance, one single or double rotation restores the tree’s balance.

• A 2-node is a node that has two children and one data item. A 3-node has three children and two data items.

• A 2-3 tree is a balanced search tree that contains 2-nodes and 3-nodes. When an addition to the tree would
cause a leaf to have three data items, the leaf splits into two 2-nodes. These nodes contain the smallest and
largest of the three data items and become the children of the former leaf’s parent. The middle data item
moves up to this parent node, possibly causing the node to split.

• A disadvantage of the 2-3 tree is that the addition algorithm follows a path from the root to a leaf and then
returns along that path as nodes split.

• A 4-node has four children and three data items.

• A 2-4 (or 2-3-4) tree is a balanced search tree that contains 2-nodes, 3-nodes, and 4-nodes. During an addi-
tion to the tree, each 4-node is split as it is considered during the search from root to leaf. Thus, returning
along the path to the root is unnecessary.

• A red-black tree is a binary search tree that is logically equivalent to a 2-4 tree. Conceptually, a red-black
tree is more involved than a 2-4 tree, but its implementation is more efficient because it uses only 2-nodes.

• Additions to a red-black tree maintain the tree’s balance and status as a red-black tree by using color flips as
well as rotations like those used for an AVL tree.

• A k-node is a node that has k children and k -1 data items.

• A multiway search tree of order m is a general tree that contains k-nodes for values of k ranging from 2 to m.
A B-tree of order m is a balanced multiway search tree of order m. To maintain its balance, a B-tree requires
every interior node to have a certain number of children and has all its leaves on the same level.

• A 2-3 tree is a B-tree of order 3; a 2-4 tree is a B-tree of order 4.

• A B-tree is useful when data is maintained in external storage, such as a disk.

1. Implement the algorithm for a left-right double rotation, as given in Segment 27.5.

2. Add 62 and 65 to the AVL tree in Figure 27-27a.

3. Add 62 and 65 to the 2-3 tree in Figure 27-27b.

4. Add 62 and 65 to the 2-4 tree in Figure 27-27c.

5. Add 62 and 65 to the red-black tree in Figure 27-29.

6. Each of the trees in Figures 27-27 and 27-29 contains the same values. Exercises 2 through 5 asked you to add 62
and 65 to each of them. Describe the effect that these additions had on each tree.

7. What red-black tree is equivalent to the 2-4 tree in Figure 27-25b?

726 CHAPTER 27 Balanced Search Trees

PROJECTS

8. What tree results when you add the values 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100 to each of the following
initially empty trees?

a. An AVL tree b. A 2-3 tree c. A 2-4 tree d. A red-black tree

9. Add the values given in Exercise 8 to an initially empty binary search tree. Compare the resulting tree with the
trees you created in Exercise 8. Which tree could you search most efficiently?

10. Draw the shortest possible tree that contains 20 values for each of the following kinds of trees:
a. An AVL tree b. A 2-3 tree c. A 2-4 tree d. A red-black tree

11. Draw the tallest possible tree that contains 20 values for each of the following kinds of trees:
a. An AVL tree b. A 2-3 tree c. A 2-4 tree d. A red-black tree

12. Using pseudocode, describe an inorder traversal of
a. A 2-3 tree b. A 2-4 tree

13. Figure 27-34a shows a 4-node within a 2-4 tree that is the right child of a 3-node parent containing data items g
and p. When converting these nodes to red-black notation, make p be the parent of g. Revise Figure 27-35 to show
that a color flip is all that is necessary to get the desired red-black tree.

14. Repeat Exercise 13, but this time assume that the 4-node is a left child.

15. Color the nodes in each tree in Figure 27-39 so that it is a red-black tree.

FIGURE 27-39 Three binary trees for Exercise 15

16. Which of the trees that you studied in this chapter could be used to implement a priority queue? Recall that we
discussed the priority queue in Chapter 10.

17. How efficiently could a red-black tree or an AVL tree implement the add and remove methods of a priority queue?

18. Consider a B-tree of order 1000 whose height is 3. What is the smallest number of values that this tree can
contain? What is the largest number of values? Generalize your results to a B-tree of order 1000 and height h.

1. You remove an entry from an AVL tree in the same way that you remove an entry from a binary search tree.
However, after you remove the appropriate node from the tree, an imbalance can occur that you must correct by
performing single or double rotations. Develop an algorithm that removes a node from an AVL tree.

2. Implement a class of AVL trees.

(b) (c) (a)

Answers to Self-Test Questions 727

ANSWERS TO SELF-TEST QUESTIONS

3. Consider the implementation of the method rebalance for an AVL tree, as given in Segment 27.11. The perfor-
mance of this method depends on the cost of a rotation and the cost of the method getHeightDifference.

a. Assume that the tree has height h and that nodeN is at height k. What is the cost, using Big O notation, of
each of the following tasks?

• A rotation
• Executing the method getHeightDifference
• Executing the method rebalance

b. Suppose that a node is added at the bottom of the tree by the method add. How many times will rebalance
be called? Give a Big Oh expression for the cost of adding a node.

4. Design and implement a class of nodes that you can use in the implementation of an AVL tree. You can derive this
class from BinaryNode. Each node, as the root of a subtree, should contain the height of this subtree. Implement a
class of AVL trees using your new class of nodes.

5. Design a class of nodes that you can use in the implementation of a 2-4 tree. Is one class enough, or will you need
several?

6. Implement a class of 2-4 trees in which only additions and retrievals are permitted.

7. Implement a class of red-black trees that permit only additions and retrievals.

8. Implement a class of sets that stores its entries in an instance of the class of red-black trees defined in the previous
project. You can omit the methods remove and clear from your class. Recall that Chapter 1 defined a set as a bag
that does not permit duplicate entries.

9. Design and carry out an experiment to compare the heights of ordinary binary search trees with the heights of
either AVL trees or red-black trees. You first will need to complete either Project 2 or Project 7.

10. Design a class BTreeNode of nodes for a B-tree of order m. Consider operations that allow you to

• Get a particular value from the node
• Insert a value into the node while maintaining the links to subtrees (remember that the B-tree is a

search tree)
• Get a count of the number of values in the node
• Replace a value in the node, if the search tree is maintained
• Replace a subtree
• Split a node into two nodes, each containing half the values
• Give an algorithm for adding a new value to a B-tree whose implementation uses your definition of

BTreeNode.

11. Implement a priority queue by using one of the balanced search trees in this chapter.

1. Node N contains 60, and node C contains 50. T1 is the one-node subtree containing 20. T2 and T3 are empty.

2. Since we had a binary search tree before the rotation, the value in node N is less than the value in node C and all
the values in T2. Moreover, all values in T2 are less than the value in node C. These relationships are maintained
after the rotation, since node N is a le‘ft child of node C, and T2 is a right subtree of node N. Also, the subtrees T1
and T3 have their original parents in the new tree. Thus, the resulting tree is a binary search tree.

728 CHAPTER 27 Balanced Search Trees

3. Node N contains 60, and node C contains 80. T3 is the one-node subtree containing 90. T1 and T2 are empty.

4. Part a of the following figure shows an imbalance at node N after 10 was added to the tree. A left rotation restores
the tree’s balance, as Part b illustrates.

5. Node N contains 50, node C contains 80, and node G contains 60. T1, T3, and T4 are one-node subtrees: T1
contains 20, T3 contains 70, and T4 contains 90. T2 is empty. In Parts a and b, T2 is the left subtree of 60. In Part c,
it is the right subtree of 50.

6. Node N contains 50, node C contains 20, and node G contains 40. T1, T2, and T4 are one-node subtrees: T1
contains 10, T2 contains 35, and T4 contains 55. T3 is empty. In Parts a, b and c, T3 is the right subtree of 40. In
Part d, it is the left subtree of 50.

7.

8. The following binary search tree is taller than the previous AVL tree, and it is not balanced:

9. Since we had a binary search tree before the rotation, the value in node N is less than the values in nodes C and G
and all the values in T2 and T3. The value in node C is greater than the value in node G, and each of these two
values is greater than all values in T2. Moreover, all values in T3 are less than the value in node C but greater than
the value in node G. These relationships are maintained after the rotation: Node G has node N as its left child and
node C as its right child; T2 is a right subtree of node N, and T3 is a left subtree of node C. The subtrees T1 and T4
have their original parents in the new tree. Thus, the resulting tree is a binary search tree.

106T1

(b)

3

7

5 9

(a) C

N

T2

T3

9

T1

6

5

3 7 C

N

T2 T3

30

50

40

60

90

80

20

10

70

30

50

20

60

90

80

10

40

70

Answers to Self-Test Questions 729

10. Since we had a binary search tree before the rotation, the value in node N is greater than the values in nodes C and
G and all the values in T2 and T3. The value in node C is less than the value in node G, and each of these two
values is less than all values in T3. Moreover, all values in T2 are less than the value in node G but greater than the
value in node C. These relationships are maintained after the rotation: Node G has node C as its left child and
node N as its right child; T2 is a right subtree of node C, and T3 is a left subtree of node N. The subtrees T1 and T4
have their original parents in the new tree. Thus, the resulting tree is a binary search tree.

11. private BinaryNodeInterface<T> rotateLeft(BinaryNodeInterface<T> nodeN)
{

BinaryNodeInterface<T> nodeC = nodeN.getRightChild();
nodeN.setRightChild(nodeC.getLeftChild());
nodeC.setLeftChild(nodeN);
return nodeC;

} // end rotateLeft

12. 60, 20, 10.
60, 20, 50, 55.
60, 20, 50, 35, 40.
60, 20, 50, 35.

13.

14.

15. The 2-3 tree is shorter than the AVL tree and is balanced.

16. a. 20, 10.
b. 20, 50, 80, 55, 60.
c. 20, 50, 35, 40.
d. 20, 50, 35.

17.

40 5510 30

8050

35 60

20

70 90

5010 30

8020 40

60

70 90

20

55 60 7010

80

 35 40

50

90

730 CHAPTER 27 Balanced Search Trees

18.

19. Both trees are completely balanced, and they have the same height. The 2-4 tree has fewer nodes.

20. a. 2-4: 20, 50, 80, 55, 60; Red-black: 50, 80, 60.
b. 2-4: 20, 50, 80, 55; Red-black: 50, 80, 60, 55.

21. The first three properties follow immediately by observing the tree. Every path from the root to a leaf contains two
black nodes.

22.

If you tried to form a red-black tree whose root is 80, you would find that the tree was not balanced and so could
not be a red-black tree. (You normally do not convert 2-4 trees into red-black trees, but doing so as an exercise
should give you some insight into the rationale of red-black trees.)

23. The first three properties follow immediately by observing the tree. Every path from the root to a leaf contains two
black nodes.

20

7010

80

30 40 50

60

90

70

40

20

60 90

80

10

55

50

Chapter

28Graphs
Contents
Some Examples and Terminology

Road Maps
Airline Routes
Mazes
Course Prerequisites
Trees

Traversals
Breadth-First Traversal
Depth-First Traversal

Topological Order
Paths

Finding a Path
The Shortest Path in an Unweighted Graph
The Shortest Path in a Weighted Graph

Java Interfaces for the ADT Graph

Prerequisites
Chapter 5 Stacks
Chapter 10 Queues, Deques, and Priority Queues
Chapter 23 Trees

Objectives
After studying this chapter, you should be able to
● Describe the characteristics of a graph, including its vertices, edges, and paths
● Give examples of graphs, including those that are undirected, directed, unweighted, and weighted
● Give examples of vertices that are adjacent and that are not adjacent for both directed and undirected graphs
● Give examples of paths, simple paths, cycles, and simple cycles
● Give examples of connected graphs, disconnected graphs, and complete graphs
● Perform a depth-first traversal and a breadth-first traversal on a given graph
● List a topological order for the vertices of a directed graph without cycles

732 CHAPTER 28 Graphs

● Detect whether a path exists between two given vertices of a graph
● Find the path with the fewest edges that joins one vertex to another
● Find the path with the lowest cost that joins one vertex to another in a weighted graph
● Describe the operations for the ADT graph

The news media often use line graphs, pie charts, and bar graphs to help us visualize certain
statistics. But these common graphs are not examples of the kind of graph that we will study in this
chapter. The graphs that computer scientists and mathematicians use include the trees that you saw
in Chapter 23. In fact, a tree is a special kind of graph. These graphs represent the relationships
among data elements. This chapter will present the terminology we use when discussing graphs, the
operations on them, and some typical applications.

Some Examples and Terminology
Although the graphs you have drawn in the past likely are not the kind of graph we will discuss
here, the examples in this section will be familiar. But you probably have never called them graphs!

Road Maps
28.1 Figure 28-1 contains a portion of a road map for Cape Cod, Massachusetts. Small circles represent

the towns, and the lines that join them represent the roads. A road map is a graph. In a graph, the
circles are called vertices, or nodes, and the lines are called edges. A graph, then, is a collection of
distinct vertices and distinct edges. A subgraph is a portion of a graph that is itself a graph, just as
the road map in Figure 28-1 actually is a part of a larger map.

FIGURE 28-1 A portion of a road map

Falmouth

Sandwich
Barnstable

Hyannis

Orleans

Chatham

Truro

Provincetown

Some Examples and Terminology 733

VideoNote

 Since you can travel in both directions along the roads in Figure 28-1, the corresponding graph
and its edges are said to be undirected. But cities often have one-way streets. The graph in
Figure 28-2 has a vertex for each intersection in a city’s street map. The edges each have a direction
and are called directed edges. A graph with directed edges is called a directed graph, or digraph.
You can transform an undirected graph into a directed graph by replacing each undirected edge
with two directed edges that have opposite directions.

FIGURE 28-2 A directed graph representing a portion of a city’s street map

28.2 Paths. A path between two vertices in a graph is a sequence of edges. A path in a directed graph
must consider the direction of the edges, and is called a directed path. The length of a path is the
number of edges that it comprises. If the path does not pass through any vertex more than once, it is
a simple path. Figure 28-1 contains a simple path from Provincetown to Orleans of length 2.

A cycle is a path that begins and ends at the same vertex. A simple cycle passes through other
vertices only once each. In Figure 28-1, the cycle Chatham-Hyannis-Barnstable-Orleans-Chatham
is a simple cycle. A graph that has no cycles is acyclic.

You use a road or street map to see how to get from point A to point B. The path you choose
between these points will usually be a simple path. In doing so, you avoid retracing your steps or
going around in circles. People who take a ride to view the autumn leaves, however, would follow a
cycle that begins and ends at home.

28.3 Weights. You might be happy just to get from one place to another, but you often have a choice of
several paths. You could choose the shortest, the fastest, or the cheapest path, for example. To do
so, you use a weighted graph, which has values on its edges. These values are called either
weights or costs. For example, Figure 28-3 shows the road map from Figure 28-1 as a weighted
graph. In this version, each weight represents the distance in miles between two towns. Other types
of weights you might use could represent the driving time or the cost of traveling by taxi.

A path in a weighted graph also has a weight, or cost, that is the sum of its edge weights. For
example, the weight of the path from Provincetown to Orleans in Figure 28-3 is 27.

Graph concepts and
terminology

734 CHAPTER 28 Graphs

FIGURE 28-3 A weighted graph

28.4 Connected graphs. The towns on a road map are connected by roads in a way that enables you to
go from any town to any other town. That is, you can get from here to there. A graph that has a path
between every pair of distinct vertices is connected. A complete graph goes even further; it has an
edge between every pair of distinct vertices. Figure 28-4 provides examples of undirected graphs
that are connected, complete, or disconnected—that is, not connected. Notice the simple path in
Part a and the simple cycle in Part c.

FIGURE 28-4 Undirected graphs

28.5 Adjacent vertices. Two vertices are adjacent in an undirected graph if they are joined by an edge.
In Figure 28-3, Orleans and Chatham are adjacent, but Orleans and Sandwich are not. Adjacent
vertices are called neighbors. In a directed graph, vertex i is adjacent to vertex j if a directed edge

Falmouth

Sandwich
Barnstable

Hyannis

Orleans

Chatham

Truro

Provincetown 10

17

919

4 19

12

20

Question 1 Consider the graph in Figure 28-3.
a. What is the length of the path that begins in Provincetown, passes through Truro and

Orleans, and ends in Chatham?
b. What is the weight of the path just described?
c. Consider all paths from Truro to Sandwich that do not have cycles. Which path has the

shortest length?
d. Of the paths you considered in Part c, which one has the smallest weight?

(a) (b) (c)

A

B

Connected

Simple path
from A to B

Complete Disconnected

Simple cycle

Some Examples and Terminology 735

begins at j and ends at i. In Figure 28-5, vertex A is adjacent to vertex B, but vertex B is not adjacent
to vertex A. That is, vertex A is vertex B’s neighbor, but the converse is not true.

When convenient, we will place vertex labels within the circles that represent the vertices, as in
Figure 28-5. But sometimes, the vertex labels will appear next to the circles, as in Figure 28-3.

FIGURE 28-5 Vertex A is adjacent to vertex B, but B is not adjacent to A

28.6 The number of edges. If a directed graph has n vertices, how many edges can it have? If the graph
is complete, each vertex is a neighbor of all the other vertices. Thus, each vertex ends n - 1 directed
edges. Consequently, the graph has n (n - 1) edges. A complete undirected graph has half that num-
ber of edges. For example, the graph in Figure 28-4b has 4 vertices and 4 × 3 / 2, or 6, edges. To
make the graph directed and complete, we would replace each edge with two directed edges, which
results in a graph having 12 edges.

A graph is sparse if it has relatively few edges. It is dense if it has many edges. While these
terms have no precise definition, we will say that a sparse graph has O(n) edges, and a dense graph
has O(n2) edges. The graph in Figure 28-1 has eight vertices and eight edges. It is sparse.

Airline Routes
28.7 A graph that represents the routes that an airline flies is similar to one that represents a road map.

They are different, however, because not every city has an airport, and not every airline flies to or
from every airport. For example, the graph in Figure 28-6 shows the flights for a small airline on
the East Coast of the United States. The graph is undirected and consists of two subgraphs that are
each connected. The entire graph, however, is disconnected.

Notice that you can fly from Boston to Provincetown, but not from Boston to Key West.
Algorithms exist that see whether a flight between given cities is possible.

A B

Note: If a graph has n vertices, it can have at most

● n (n - 1) edges if the graph is directed
● n (n - 1) / 2 edges if the graph is undirected

Note: Typical graphs are sparse.

Note: Figure 28-6 contains one graph that consists of two distinct subgraphs. Although
each subgraph is connected, the entire graph is disconnected.

736 CHAPTER 28 Graphs

FIGURE 28-6 Airline routes

Mazes
28.8 Mazes have been constructed in Victorian English gardens and modern-day cornfields. A typical

maze, like the one in Figure 28-7a, has a path from its entrance to its exit. Other paths begin at
the entrance, but some lead to dead ends, rather than to the exit. Can you find your way through
the maze?

We can represent this maze as a graph by placing a vertex at the entrance and exit, at each turn in
the path, and at each dead end, as Figure 28-7b shows. This graph, like the road map in Figure 28-1,
is connected. For such graphs, we can find a path between any two vertices, as you will see later in
this chapter.

FIGURE 28-7 (a) A maze; (b) its representation as a graph

Course Prerequisites
28.9 As a college student, you must take a sequence of courses in your major. Each course has certain

prerequisite courses that you must complete first. In what order can you take the required courses
and satisfy the prerequisites?

Boston

Provincetown

Naples

Hyannis

Nantucket

Providence

Martha’s Vineyard

Miami

Key West

(a) (b)Entrance

Exit

Traversals 737

To answer this question, we first create a directed graph to represent the courses and their pre-
requisites. Figure 28-8 is an example of such a graph. Each vertex represents a course, and each
directed edge begins at a course that is a prerequisite to another. Notice, for example, that you must
complete cs1, cs2, cs4, cs7, cs9, and cs5 before you can take cs10.

This graph has no cycles. In a directed graph without cycles, we can arrange the vertices so that
vertex a precedes vertex b whenever a directed edge exists from a to b. The order of the vertices in
this arrangement is called a topological order. Later in this chapter, you will see how to find this
order and, therefore, the order in which you should complete your course requirements.

FIGURE 28-8 The prerequisite structure for a selection of courses as a
directed graph without cycles

Trees
28.10 The ADT tree is a kind of graph that uses parent-child relationships to organize its nodes in a hier-

archical fashion. One particular node, the root, is the ancestor of all other nodes in the tree. But not
all graphs have a hierarchical organization, and so not all graphs are trees.

Traversals

28.11 As you learned in earlier chapters, you usually search a tree for a node that contains a particular
value. Graph applications, however, focus on the connections between vertices, rather than the con-
tents of vertices. These applications often are based on a traversal of the graph’s vertices.

cs10cs9cs7cs4cs2cs1

cs8cs6cs3

cs5

Note: All trees are graphs, but not all graphs are trees. A tree is a connected graph
without cycles.

Question 2 What physical systems in a typical house could you represent as a graph?

Question 3 Is the graph in Figure 28-1 connected? Is it complete?

Question 4 Is the graph in Figure 28-8 a tree? Explain.

Question 5 For the graph in Figure 28-8,
a. Is cs1 adjacent to cs2? c. Is cs1 adjacent to cs4?
b. Is cs2 adjacent to cs1? d. Is cs4 adjacent to cs1?

738 CHAPTER 28 Graphs

VideoNote

In Chapter 23, we examined several orders in which we could visit the nodes of a tree. The preor-
der, inorder, and postorder traversals are examples of a depth-first traversal. This kind of traversal
follows a path that descends the levels of a tree as deeply as possible until it reaches a leaf, as
Figure 28-9a shows. More generally, a depth-first traversal of a graph follows a path that goes as
deeply into the graph as possible before following other paths. After visiting a vertex, this traversal
visits the vertex’s neighbor, the neighbor’s neighbor, and so on.

The level-order traversal of a tree is an example of a breadth-first traversal. It follows a path
that explores an entire level before moving to the next level, as Figure 28-9b shows. In a graph, a
breadth-first traversal visits all neighbors of a node before visiting the neighbors’ neighbors.

FIGURE 28-9 The visitation order of two traversals: (a) depth first;
(b) breadth first

A traversal of a tree visits all of the tree’s nodes beginning with the root. However, a graph tra-
versal begins at any vertex—called the origin vertex—and visits only the vertices that it can reach.
Only when a graph is connected can such a traversal visit all the vertices.

Breadth-First Traversal
28.12 Given an origin vertex, a breadth-first traversal visits the origin and the origin’s neighbors. It then

considers each of these neighbors and visits their neighbors. The traversal uses a queue to hold the
visited vertices. When we remove a vertex from this queue, we visit and enqueue the vertex’s
unvisited neighbors. The traversal order is then the order in which vertices are added to the queue.
We can retain this traversal order in a second queue.

The following algorithm performs a breadth-first traversal of a nonempty graph beginning at a
given vertex.

Algorithm getBreadthFirstTraversal(originVertex)
traversalOrder = a new queue for the resulting traversal order
vertexQueue = a new queue to hold vertices as they are visited

Graph operations

1
(a)

3

65

9 11

16

15

14134

7

2 8 10

12

1
(b)

6

1413

8 9

5

11

161512

7

2 3 4

10

Breadth-first traversalDepth-first traversal

Note: Visiting a node in either a tree or a graph is an action that we perform during a tra-
versal. In a tree, “visit a node” means to “process the node’s data.” In a graph, “visit a node”
means simply to “mark the node as visited.”

Traversals 739

Mark originVertex as visited
traversalOrder.enqueue(originVertex)
vertexQueue.enqueue(originVertex)

while (!vertexQueue.isEmpty())
{

frontVertex = vertexQueue.dequeue()
while (frontVertex has a neighbor)
{

nextNeighbor = next neighbor of frontVertex
if (nextNeighbor is not visited)
{

Mark nextNeighbor as visited
traversalOrder.enqueue(nextNeighbor)
vertexQueue.enqueue(nextNeighbor)

}
}

}
return traversalOrder

Figure 28-10 traces this algorithm for a directed graph.

FIGURE 28-10 A trace of a breadth-first traversal beginning at vertex A of a
directed graph

Note: Breadth-first traversal
A breadth-first traversal visits a vertex and then each of the vertex’s neighbors before advanc-
ing. The order in which these neighbors are visited is not specified and can depend on the
graph’s implementation.

Question 6 In what order does a breadth-first traversal visit the vertices in the graph shown in
Figure 28-10 when you begin at vertex E and visit neighbors in alphabetic order?

frontVertex nextNeighbor Visited vertex vertexQueue traversalOrder

 A A A
A empty
 B B B AB
 D D BD ABD
 E E BDE ABDE
B DE
D E
 G G EG ABDEG
E G
 F F GF ABDEGF
 H H GFH ABDEGFH
G FH
F H
 C C HC ABDEGFHC
H C
 I I CI ABDEGFHCI
C I
I empty

(front to back) (front to back)

A G

H

C

B E

D

F I

740 CHAPTER 28 Graphs

Depth-First Traversal

28.13 Given an origin vertex, a depth-first traversal visits the origin, then a neighbor of the origin, and a
neighbor of the neighbor. It continues in this fashion until it finds no unvisited neighbor. Backing
up by one vertex, it considers another neighbor. This traversal has a recursive feel, since traversing
from the origin leads to a traversal from the origin’s neighbor. It should not surprise you, then, that
we use a stack in the iterative description of this traversal.

We begin by pushing the origin vertex into the stack. When the vertex at the top of the stack
has an unvisited neighbor, we visit and push that neighbor onto the stack. If no such neighbor
exists, we pop the stack. The traversal order is the order in which vertices are added to the stack.
We can maintain this traversal order in a queue.

The following algorithm performs a depth-first traversal of a nonempty graph, beginning at a
given vertex:

Algorithm getDepthFirstTraversal(originVertex)
traversalOrder = a new queue for the resulting traversal order
vertexStack = a new stack to hold vertices as they are visited

Mark originVertex as visited
traversalOrder.enqueue(originVertex)
vertexStack.push(originVertex)

while (!vertexStack.isEmpty())
{

topVertex = vertexStack.peek()
if (topVertex has an unvisited neighbor)
{

nextNeighbor = next unvisited neighbor of topVertex
Mark nextNeighbor as visited
traversalOrder.enqueue(nextNeighbor)
vertexStack.push(nextNeighbor)

}
else // all neighbors are visited

vertexStack.pop()
}
return traversalOrder

Figure 28-11 traces this algorithm for the same directed graph as in Figure 28-10.

Note: Depth-first traversal
A depth-first traversal visits a vertex, then a neighbor of the vertex, a neighbor of the neigh-
bor, and so on, advancing as far as possible from the original vertex. It then backs up by one
vertex and considers another neighbor. The order in which these neighbors are visited is not
specified and can depend on the graph’s implementation.

Question 7 In what order does a depth-first traversal visit the vertices in the graph shown
in Figure 28-11 when you begin at vertex E and visit neighbors in alphabetic order?

Topological Order 741

FIGURE 28-11 A trace of a depth-first traversal beginning at vertex A of a
directed graph

Topological Order

28.14 Figure 28-8 shows a graph that represents the prerequisite structure of a group of computer science
courses. This graph is a directed graph without cycles. Recall that you can place the vertices of such
a graph in a topological order.

The vertices in a graph can have several different topological orders. For example, one such
order for the graph in Figure 28-8 is cs1, cs2, cs5, cs4, cs7, cs9, cs10, cs6, cs8, cs3. That is, if you
complete the courses in this order, you will satisfy all prerequisites. Suppose that you can move
the vertices in the graph so that they align in this order, stretching the edges as needed. The result
will be like the graph in Figure 28-12a. Each edge points toward a node that comes after the
edge’s origin node. You will be able to find at least one such arrangement for every directed
graph, if the graph has no cycles. Figure 28-12 shows two other topological orders for the graph

topVertex nextNeighbor Visited vertex vertexStack traversalOrder
 (top to bottom) (front to back)

 A A A
A A
 B B BA AB
B BA
 E E EBA ABE
E EBA
 F F FEBA ABEF
F FEBA
 C C CFEBA ABEFC
C FEBA
F FEBA
 H H HFEBA ABEFCH
H HFEBA
 I I IHFEBA ABEFCHI
I HFEBA
H FEBA
F EBA
E BA
B A
A A
 D D DA ABEFCHID
D DA
 G GDA ABEFCHIDG
G DA
D A
A empty ABEFCHIDG

A G

H

C

B E

D

F I

Note: In a topological order of the vertices in a directed graph without cycles, vertex a pre-
cedes vertex b whenever a directed edge exists from a to b.

742 CHAPTER 28 Graphs

in Figure 28-8 as well. As is true for this example, any one topological order is usually sufficient
to solve a given problem.

FIGURE 28-12 Three topological orders for the graph in Figure 28-8

A topological order is not possible for a graph that has a cycle. If vertices a and b are on the
cycle, a path exists from a to b and from b to a. One of these paths will contradict any order that we
choose for a and b. For example, the graph in Figure 28-13 contains a cycle. You need to complete
cs15 and cs20 before taking cs30. But you need to complete cs30 before taking cs20. This circular
logic is caused by the cycle and creates an impossible situation.

FIGURE 28-13 An impossible prerequisite structure for three courses, as a
directed graph with a cycle

28.15 The process that discovers a topological order for the vertices in a graph is called a topological
sort. Several algorithms for this process are possible. We can begin a topological sort by locating a
vertex that has no successor, that is, no adjacent vertex. Finding this vertex is possible because the

(b)

(c)

cs10cs9cs7cs4cs5cs2cs1 cs3cs8cs6

(a)

cs7cs6cs3cs4cs5cs2cs1 cs10cs8cs9

cs5cs9cs7cs4cs3cs2cs1 cs8cs6cs10

cs30cs20cs15

Question 8 What is another topological order of the vertices in the graph in Figure 28-8?

Topological Order 743

graph has no cycles. We mark the vertex as visited and push it onto a stack. We continue by finding
another vertex u that is unvisited and whose neighbors, if any, are visited. We mark u as visited and
push it onto the stack. We proceed in this way until we have visited all the vertices. At that time, the
stack contains the vertices in topological order, beginning at the top of the stack.

The following algorithm describes this topological sort:

Algorithm getTopologicalOrder()
vertexStack = a new stack to hold vertices as they are visited
numberOfVertices = number of vertices in the graph
for (counter = 1 to numberOfVertices)
{

nextVertex = an unvisited vertex whose neighbors, if any, are all visited
Mark nextVertex as visited
vertexStack.push(nextVertex)

}
return vertexStack

Figure 28-14 traces this algorithm for the graph in Figure 28-8. At each iteration of the
algorithm’s loop, nextVertex becomes shaded in the figure as it is visited. The topological order is
the opposite of the order in which this shading occurs. In this example, the topological order is the
one pictured in Figure 28-12a.

FIGURE 28-14 Finding a topological order for the graph in Figure 28-8

cs10cs9cs7cs4cs2cs1

cs8cs6cs3

cs5

(f)

cs10cs9cs7cs4cs2cs1

cs8cs6cs3

cs5

(a)

cs10cs9cs7cs4cs2cs1

cs8cs6cs3

cs5

(b)

cs10cs9cs7cs4cs2cs1

cs8cs6cs3

cs5

(c)

cs10cs9cs7cs4cs2cs1

cs8cs6cs3

cs5

(d)

cs10cs9cs7cs4cs2cs1

cs8cs6cs3

cs5

(e)

(continues on the next page)

744 CHAPTER 28 Graphs

(Figure 28-14 continued)

Paths
Learning whether a particular airline flies between two given cities is important to the average
traveler. We can obtain this information by using a graph—such as the one in Figure 28-6—to
represent the airline’s routes and testing whether a path exists from vertex a to vertex b. If a path
exists, we can also find out what it is. If not any path will do, we can find the one that is shortest
or cheapest.

Finding a Path
28.16 For the moment we are content to find any path, not necessarily the best one. A depth-first

traversal—discussed in Segment 28.13—stays on a path through the graph as it visits as many
vertices as possible. We can easily modify this traversal to locate a path between two vertices.
We begin at the origin vertex. Each time we visit another vertex, we see whether that vertex is
the desired destination. If so, we are done and the resulting stack contains the path. Other-
wise, we continue the traversal until either we are successful or the traversal ends. We leave
the development of this algorithm as an exercise.

The Shortest Path in an Unweighted Graph

28.17 Example. A graph can have several different paths between the same two vertices. In an unweighted
graph, we can find the path with the shortest length, that is, the path that has the fewest edges. For
example, consider the unweighted graph in Figure 28-15a. Suppose that we want to know the shortest
path from vertex A to vertex H. By inspecting the graph, we can see that several simple paths—shown
in Part b of the figure—are possible between these two vertices. The path from A to E to H has length
2 and is the shortest.

cs10cs9cs7cs4cs2cs1

cs8cs6cs3

cs5

(j)

cs10cs9cs7cs4cs2cs1

cs8cs6cs3

cs5

(i)

cs10cs9cs7cs4cs2cs1

cs8cs6cs3

cs5

(h)

cs10cs9cs7cs4cs2cs1

cs8cs6cs3

cs5

(g)

Paths 745

FIGURE 28-15 (a) An unweighted graph and (b) the possible paths from vertex A
to vertex H

28.18 Developing the algorithm. The algorithm to find the shortest path between two given vertices in
an unweighted graph is based on a breadth-first traversal. Recall that this traversal visits the origin
vertex, then the origin’s neighbors, the neighbors of each of these neighbors, and so on. Each vertex
is placed into a queue as it is visited.

To find the shortest path, we enhance the breadth-first traversal as follows. When we visit a
vertex v and mark it as visited, we note the vertex p that we just left to reach v. That is, p precedes v
in the graph. We also note the length of the path that the traversal followed to reach v. This length is
1 more than the length of the path to vertex p. We place both the length of the path to v and a refer-
ence to p into vertex v. At the end of the traversal, we will use this data in the vertices to construct
the shortest path. Let’s jump ahead to that part of the algorithm.

Figure 28-16a shows the state of the graph in Figure 28-15a after the algorithm has traversed
from vertex A to vertex H. Each vertex contains its label, the length of the path to it, and the vertex
that precedes it on this path, as shown in Figure 28-16b. Although a vertex also contains other data
fields, we have ignored them in this figure.

FIGURE 28-16 (a) The graph in Figure 28-15a after the shortest-path algorithm
has traversed from vertex A to vertex H; (b) the data in a vertex

Now, by examining the destination vertex—H—we find that the length of the shortest path
from A to H is 2. We also find that H’s predecessor along this shortest path is vertex E. From vertex
E we see that its predecessor is vertex A. Thus, the desired shortest path from vertex A to vertex H
is A → E → H. Our algorithm has discovered what we of course knew to be true by inspecting this
simple graph.

A
(a)

G

H

C

B E

D
(b)

F I

A
A
A
A
A

B
B
D
E
E

E
E
G
F
H

F
H
H
H

H

A

(a)

D

(b)

0 1 A

B 1 A

Vertex label

Path length

Predecessor
G 2 D

E 1 A H 2 E

C 0 F 2 E I 0

746 CHAPTER 28 Graphs

28.19 The algorithm. The following algorithm finds the shortest path in an unweighted graph between
the vertices originVertex and endVertex. Like the breath-first traversal in Segment 28.12, the
algorithm uses a queue to hold the vertices as they are visited. It then uses the given, initially empty
stack path to construct the shortest path.

Algorithm getShortestPath(originVertex, endVertex, path)
done = false
vertexQueue = a new queue to hold vertices as they are visited
Mark originVertex as visited
vertexQueue.enqueue(originVertex)

while (!done && !vertexQueue.isEmpty())
{

frontVertex = vertexQueue.dequeue()

while (!done && frontVertex has a neighbor)
{

nextNeighbor = next neighbor of frontVertex
if (nextNeighbor is not visited)
{

Mark nextNeighbor as visited
Set the length of the path to nextNeighbor to 1 + length of path to frontVertex
Set the predecessor of nextNeighbor to frontVertex
vertexQueue.enqueue(nextNeighbor)

}

if (nextNeighbor equals endVertex)
done = true

}
}

// traversal ends - construct shortest path
pathLength = length of path to endVertex
path.push(endVertex)

vertex = endVertex
while (vertex has a predecessor)
{

vertex = predecessor of vertex
path.push(vertex)

}
return pathLength

When the algorithm ends, the stack path contains the vertices along the shortest path, with the
origin at the top of the stack. The value returned is the length of this shortest path.

28.20 Tracing the algorithm. Figure 28-17 traces the steps that the algorithm takes to produce the
path information shown in Figure 28-16a for the unweighted graph in Figure 28-15a. After
adding the origin—vertex A—to the queue, we visit the origin’s three neighbors—B, D, and
E—and enqueue them.

Note: In an unweighted graph, the shortest path between two given vertices has the shortest
length—that is, it has the fewest edges. The algorithm to find this path is based on a breadth-
first traversal. If several paths have the same shortest length, the algorithm will find only one
of them.

Paths 747

FIGURE 28-17 A trace of the traversal in the algorithm to find the shortest path
from vertex A to vertex H in an unweighted graph

The length of each path from A to these neighbors is 1. Since vertex A has no more neighbors, we
remove vertex B from the queue. This vertex has vertex E as a neighbor, but E has been visited
already. This implies that we can get to E from A without first going through B. That is, B is not on
any shortest path that begins at A and goes through E. Indeed, the path A → B → E is longer than
the path A → E. We do not know whether our final path involves E, but if it does, it will not pass
through B.

The algorithm now removes vertex D from the queue. Its neighbor G is unvisited, so we
set G’s path-length field to 2 and its predecessor to D. We then enqueue G. The algorithm continues
in this manner and eventually encounters the destination vertex, H. After H is updated, the outer
loop ends. We then construct the path by working back from H, as we did earlier in Segment 28.18.

The Shortest Path in a Weighted Graph

28.21 Example. In a weighted graph, the shortest path is not necessarily the one with the fewest edges.
Rather, it is the one with the smallest edge-weight sum. Figure 28-18a shows a weighted graph
obtained by adding weights to the graph in Figure 28-15a. The possible paths from vertex A to ver-
tex H are the same as you saw in Figure 28-15b. This time, however, we list each path with its
weight—that is, the sum of the weights of its edges—in Figure 28-18b.

We can see that the smallest path weight is 8, so the shortest path is A → D → G → H. When
the weights are distances, the term “shortest” is appropriate. When the weights represent costs, we
might think of this path as the “cheapest” path.

empty

A

B

D

E

G

F

H

A 0

B 1

B 1

B 1

D 1

E 1

E 1

G 2

G 2

G 2

D 1

E 1

D 1

G 2

F 2

F 2

E 1

H 2

A

A

A

A

A

A

D

A

A

A

A

D

D

D

E

E E

A 0

E 1

B 1

D 1

A

A

A

B

D

E

G

F

H

A G

H

C

B E

D

F I

frontVertex (front to back)vertexQueueVisited vertexnextNeighbor

Question 9 Continue the trace begun in Figure 28-17 to find the shortest path from vertex A to
vertex C.

748 CHAPTER 28 Graphs

FIGURE 28-18 (a) A weighted graph and (b) the possible paths from vertex A
to vertex H, with their weights

28.22 Developing the algorithm. The algorithm to find the shortest, or cheapest, path between two given
vertices in a weighted graph is based on a breadth-first traversal. It is similar to the algorithm we
developed for an unweighted graph. In that algorithm, we noted the number of edges in the path
that led to the vertex under consideration. Here, we compute the sum of the edge weights in the
path leading to a vertex. In addition, we must record the cheapest of the possible paths. Whereas
before we used a queue to order vertices, this algorithm uses a priority queue.

Each entry in the priority queue is an object that contains a vertex, the cost of the path to that
vertex from the origin vertex, and the previous vertex on that path. The priority value is the cost of
the path, with the smallest value having the highest priority. Thus, the cheapest path is at the front
of the priority queue, and it is thus the first one removed. Note that several entries in the priority
queue might contain the same vertex but different costs.

At the conclusion of the algorithm, the vertices in the graph contain predecessors and costs that
enable us to construct the cheapest path, much as we constructed the path with the fewest edges
from the graph in Figure 28-16a.

28.23 Tracing the algorithm. Figure 28-19 traces the traversal portion of the algorithm for the weighted
graph in Figure 28-18a when vertex A is the origin. Initially, an object containing A, zero, and null
is placed in the priority queue. We begin a loop by removing the front entry from the priority queue.
We use the contents of this entry to change the state of the indicated vertex—A in this case—in the
graph. Thus, we store a path length of zero and a null predecessor into A. We also mark A as visited.

Vertex A has three unvisited neighbors, B, D, and E. The costs of the paths from A to each of
these neighbors is 2, 5, and 4, respectively. These costs, along with A as the previous vertex, are
used to create objects that are placed into the priority queue. The priority queue orders these objects
so that the cheapest path is first.

We remove the front entry from the priority queue. The entry contains vertex B, so we visit B.
We also store within vertex B the path cost 2 and its predecessor A. Now B has vertex E as its sole
unvisited neighbor. The cost of the path A → B → E is the cost of the path A → B plus the weight of

A(a) G

H

C

B E

D (b)

F I

A
A
A
A
A

B
B
D
E
E

E
E
G
F
H

F
H
H
H

H 9
9
8
10
10

Path Weight

5

42

1 6

2

1

33
3

4 1

1

Note: In a weighted graph, the shortest path between two given vertices has the smallest
edge-weight sum. The algorithm to find this path is based on a breadth-first traversal. Several
paths in a weighted graph might share the same minimum edge-weight sum. Our algorithm
will find only one of these paths.

Paths 749

FIGURE 28-19 A trace of the traversal in the algorithm to find the cheapest
path from vertex A to vertex H in a weighted graph

the edge from B to E. This total cost is 3. We encapsulate E, the cost 3, and the predecessor B into
an object that we add to the priority queue. Notice that two objects in the priority queue involve
vertex E, but the most recent one has the cheapest path.

We again remove the front entry from the priority queue. The entry contains vertex E, so we
visit it and store into E the path cost 3 and E’s predecessor B. Vertex E has two unvisited neighbors,
F and H. The cost of each path to a neighbor is the cost of the path to E plus the weight of the edge
to the neighbor. Two new objects are added to the priority queue.

The next object removed from the priority queue contains the vertex E, but since E has been
visited, we ignore it. We then remove the next object from the priority queue. The algorithm contin-
ues until the destination vertex H is visited.

Figure 28-20 shows the state of the graph at the conclusion of the trace given in Figure 28-19. By
looking at the destination vertex H, we can see that the weight of the cheapest path from A to H is 8.
Tracing back from H to A, we see that this path is A → D → G → H, as we noted in Segment 28.21.

frontVertex Visited vertex nextNeighbor Priority queue (front to back)

empty

A 0

B 2

B

B

B

2

B 2

E 4

E

E

E

E 3

E 4

E 4

E 4

D

D

D

5

E 4

D 5

D 5

D 5

D 5

F 6

D 5

H 9

A

A

A

A

A

B

A

A

A

A

A

A

A

A

A

A

E E

A 0

B 2

E 3

A

B

D 5 A

G

G

G

7 D H 9 E H 9 F

E 4 D 5A A

D 5 F 6A E

F 6 H 9E E

F 6 H 9E E

F

F

F

6 G 7 H 9E ED

G 7 H 9D E

H 9 F C 10 FG 7 D H 9 E

C 10 FH 9 E H 9 F

H 9 F C 10 FH

H

H

C

H

H

8 G H 9 E

C 10 FH 9 E H 9 F

F 6 E

G 7 D

H 8 G

A G

H

C

B E

D

F I

5

42

1 6

2

1

33
3

4 1

1

750 CHAPTER 28 Graphs

FIGURE 28-20 The graph in Figure 28-18a after finding the cheapest path from
vertex A to vertex H

28.24 The algorithm. The pseudocode for the algorithm we just described follows. Objects in the priority
queue are instances of a private class EntryPQ. Following the traversal, the algorithm pushes the
vertices that occur along the cheapest path from originVertex to endVertex into a given, initially
empty stack path.

Algorithm getCheapestPath(originVertex, endVertex, path)
done = false
priorityQueue = a new priority queue

priorityQueue.add(new EntryPQ(originVertex, 0, null))

while (!done && !priorityQueue.isEmpty())
{

frontEntry = priorityQueue.remove()
frontVertex = vertex in frontEntry

if (frontVertex is not visited)
{

Mark frontVertex as visited
Set the cost of the path to frontVertex to the cost recorded in frontEntry
Set the predecessor of frontVertex to the predecessor recorded in frontEntry

if (frontVertex equals endVertex)
done = true

else
{

while (frontVertex has a neighbor)
{

nextNeighbor = next neighbor of frontVertex
weightOfEdgeToNeighbor = weight of edge to nextNeighbor

if (nextNeighbor is not visited)
{

nextCost = weightOfEdgeToNeighbor + cost of path to frontVertex
priorityQueue.add(new EntryPQ(nextNeighbor, nextCost,

frontVertex))
}

}
}

}
}

// traversal ends; construct cheapest path

A D0 5 A

B 2 A

G 7 D

E 3 B H 8 G

C 0 F 6 E I 0

5 2

4

6

2

3 3

1

13

14

1

Java Interfaces for the ADT Graph 751

pathCost = cost of path to endVertex
path.push(endVertex)

vertex = endVertex
while (vertex has a predecessor)
{

vertex = predecessor of vertex
path.push(vertex)

}
return pathCost

The origin of the cheapest path will be at the top of the stack path. At the bottom of the stack is the
destination vertex. The cost of the path is returned by the algorithm.

This algorithm is based on Dijkstra’s algorithm, which finds the shortest paths from an origin
to all other vertices.

Java Interfaces for the ADT Graph

28.25 The ADT graph is a bit different from other ADTs in that, once you create it, you do not add, remove,
or retrieve components. Instead, you use a graph to answer questions based on the relationships
among its vertices.

We will divide the graph operations into two Java interfaces. You use the operations in the first
interface to create the graph and to obtain basic information such as the number of vertices. The
second interface specifies operations such as the traversals and path searches that we discussed ear-
lier in this chapter. For convenience, we define a third interface, GraphInterface, that combines
the first two interfaces.

To make these interfaces as general as possible, we have them specify graphs that are either
directed or undirected, and weighted or unweighted. The first interface appears in Listing 28-1. The
generic type T represents the data type of the objects that label the graph’s vertices.

Question 10 Continue the trace begun in Figure 28-19 to find the shortest (cheapest) path
from vertex A to vertex C.

Question 11 Why do we place instances of EntryPQ into the priority queue, instead of
placing vertices?

LISTING 28-1 An interface of basic graph operations

package GraphPackage;
/** An interface of methods providing basic operations for directed

and undirected graphs that are either weighted or unweighted. */
public interface BasicGraphInterface<T>
{
/** Adds a given vertex to the graph.

@param vertexLabel an object that labels the new vertex and is
distinct from the labels of current vertices

@return true if the vertex is added, or false if not */
public boolean addVertex(T vertexLabel);

752 CHAPTER 28 Graphs

/** Adds a weighted edge between two given distinct vertices that
are currently in the graph. The desired edge must not already
be in the graph. In a directed graph, the edge points toward
the second vertex given.
@param begin an object that labels the origin vertex of the edge
@param end an object, distinct from begin, that labels the end

vertex of the edge
@param edgeWeight the real value of the edge's weight
@return true if the edge is added, or false if not */

public boolean addEdge(T begin, T end, double edgeWeight);

/** Adds an unweighted edge between two given distinct vertices
that are currently in the graph. The desired edge must not
already be in the graph. In a directed graph, the edge points
toward the second vertex given.
@param begin an object that labels the origin vertex of the edge
@param end an object, distinct from begin, that labels the end

vertex of the edge
@return true if the edge is added, or false if not */

public boolean addEdge(T begin, T end);

/** Sees whether an edge exists between two given vertices.
@param begin an object that labels the origin vertex of the edge
@param end an object that labels the end vertex of the edge
@return true if an edge exists */

public boolean hasEdge(T begin, T end);

/** Sees whether the graph is empty.
@return true if the graph is empty */

public boolean isEmpty();

/** Gets the number of vertices in the graph.
@return the number of vertices in the graph */

public int getNumberOfVertices();

/** Gets the number of edges in the graph.
@return the number of edges in the graph */

public int getNumberOfEdges();

/** Removes all vertices and edges from the graph. */
public void clear();

} // end BasicGraphInterface

Java Interfaces for the ADT Graph 753

28.26 Example. The following statements create the graph shown in Figure 28-21, which is a portion of
the graph in Figure 28-6:

BasicGraphInterface<String> airMap = new UndirectedGraph<String>();
airMap.addVertex("Boston");
airMap.addVertex("Provincetown");
airMap.addVertex("Nantucket");
airMap.addEdge("Boston", "Provincetown");
airMap.addEdge("Boston", "Nantucket");

At this point,
airMap.getNumberOfVertices()

returns 3, and
airMap.getNumberOfEdges()

returns 2.

FIGURE 28-21 A portion of the flight map in Figure 28-6

28.27 The algorithms discussed earlier in this chapter use graph operations that are not specified in the
previous interface. Although we could add these operations to the interface so the client could
implement various algorithms, such as the topological sort, we choose not to do so. Instead, meth-
ods that implement the graph algorithms will be a part of the graph class. The interface in
Listing 28-2 specifies these methods. Again, the data type of the objects that label the graph’s ver-
tices are represented by the generic type T.

Question 12 What revisions to the previous Java statements are necessary to make airMap
a weighted graph?

Boston

Provincetown

Nantucket

LISTING 28-2 An interface of operations on an existing graph

package GraphPackage;
import ADTPackage.*; // classes that implement various ADTs
/** An interface of methods that process an existing graph. */
public interface GraphAlgorithmsInterface<T>

754 CHAPTER 28 Graphs

{
/** Performs a breadth-first traversal of a graph.

@param origin an object that labels the origin vertex of the
traversal

@return a queue of labels of the vertices in the traversal, with
the label of the origin vertex at the queue's front */

public QueueInterface<T> getBreadthFirstTraversal(T origin);

/** Performs a depth-first traversal of a graph.
@param origin an object that labels the origin vertex of the

traversal
@return a queue of labels of the vertices in the traversal, with

the label of the origin vertex at the queue's front */
public QueueInterface<T> getDepthFirstTraversal(T origin);

/** Performs a topological sort of the vertices in a graph
without cycles.
@return a stack of vertex labels in topological order, beginning

with the stack's top */
public StackInterface<T> getTopologicalOrder();

/** Finds the path between two given vertices that has the
shortest length.
@param begin an object that labels the path's origin vertex
@param end an object that labels the path's destination vertex
@param path a stack of labels that is empty initially;

at the completion of the method, this stack contains
the labels of the vertices along the shortest path;
the label of the origin vertex is at the top, and
the label of the destination vertex is at the bottom

@return the length of the shortest path */
public int getShortestPath(T begin, T end, StackInterface<T> path);

/** Finds the least-cost path between two given vertices.
@param begin an object that labels the path's origin vertex
@param end an object that labels the path's destination vertex
@param path a stack of labels that is empty initially;

at the completion of the method, this stack contains
the labels of the vertices along the cheapest path;
the label of the origin vertex is at the top, and
the label of the destination vertex is at the bottom

@return the cost of the cheapest path */
public double getCheapestPath(T begin, T end, StackInterface<T> path);

} // end GraphAlgorithmsInterface

Chapter Summary 755

The interface in Listing 28-3 combines BasicGraphInterface and GraphAlgorithmsInterface.

28.28 Example. Imagine that we want to find the shortest route between the towns of Truro and
Falmouth. By “shortest route” we mean the route with the least number of miles, not the path
with the fewest edges. We first could create the graph in Figure 28-3, using statements much
like those in Segment 28.26. We then could use the method getCheapestPath to answer our
question. The following statements indicate how to perform these steps and to display the
names of the cities along the shortest route:

GraphInterface<String> roadMap = new UndirectedGraph<String>();
roadMap.addVertex("Provincetown");
roadMap.addVertex("Truro");
. . .
roadMap.addVertex("Falmouth");

roadMap.addEdge("Provincetown", "Truro", 10);
. . .
roadMap.addEdge("Hyannis", "Falmouth", 20);

StackInterface<String> bestRoute = new LinkedStack<String>();
double distance = roadMap.getCheapestPath("Truro", "Falmouth", bestRoute);
System.out.println("The shortest route from Truro to Falmouth is " +

distance + " miles long and " +
"passes through the following towns:");

while (!bestRoute.isEmpty())
System.out.println(bestRoute.pop());

CHAPTER SUMMARY

LISTING 28-3 An interface for the ADT graph

package GraphPackage;
public interface GraphInterface<T> extends BasicGraphInterface<T>,

GraphAlgorithmsInterface<T>
{
} // end GraphInterface

Note: The operations of the ADT graph enable you to create a graph and answer questions
about the relationships among its vertices.

Question 13 The previous example finds the shortest route between two towns. Why did
we invoke the method getCheapestPath instead of getShortestPath?

● A graph is a collection of distinct vertices and distinct edges. Each edge joins two vertices. A subgraph is a
portion of a graph that is itself a graph.

● A tree is a special graph that has a hierarchical order and a root that is the ancestor of all other nodes—that
is, vertices—in the tree.

756 CHAPTER 28 Graphs

EXERCISES

● Each edge in a directed graph has a direction from one vertex to another. The edges in an undirected graph
are bidirectional.

● A path from one vertex to another is a sequence of edges. The length of the path is the number of these
edges. A simple path passes through each of its vertices once. A cycle is a path that begins and ends at the
same vertex. A simple cycle passes through its other vertices once.

● The edges in a weighted graph have values called weights or costs. A path in a weighted graph has a weight,
or cost, that is the sum of its edge weights.

● A graph that has a path between every pair of distinct vertices is connected. A complete graph has an edge
between every pair of distinct vertices.

● Two vertices in an undirected graph are adjacent if they are joined by an edge. In a directed graph, vertex i is
adjacent to vertex j if a directed edge begins at j and ends at i. Adjacent vertices are called neighbors.

● You can traverse the vertices in a graph by using either a depth-first traversal or a breadth-first traversal. A
depth-first traversal follows a path that goes as deeply into the graph as possible before following other
paths. A breadth-first traversal visits all neighbors of a vertex before visiting the neighbors’ neighbors.

● A directed graph without cycles imposes an order on its vertices called a topological order. This order is not
unique. You use a topological sort to discover these orders.

● You can use a depth-first traversal of a graph to see whether a path exists between two given vertices.

● You can modify the breadth-first traversal of a graph to find the path between two given vertices that has the
fewest edges.

● You can modify the breadth-first traversal of a weighted graph to find the path between two given vertices
that has the lowest cost.

1. Suppose that five vertices are arranged at the corners of an imaginary pentagon. Draw a connected graph that
contains these vertices.

2. Describe each graph in Figure 28-22, using the terms introduced in Segments 28.1 through 28.4.

FIGURE 28-22 Graphs for Exercise 2

3. Consider a graph that represents acquaintances among people. Each vertex represents a person. Each edge
represents an acquaintance between two people.

a. Is this graph directed or undirected?
b. Consider all vertices adjacent to a given vertex x. What does this set of vertices represent?
c. What does a path in this graph represent?
d. In what circumstance might one want to know the shortest path between two vertices in this graph?
e. Is the graph associated with all the people alive on January 1, 1995, connected? Justify your answer.

(a) (b) (c)

Exercises 757

4. In what order does a breadth-first traversal visit the vertices in the graph in Figure 28-10 when you begin at
a. Vertex G
b. Vertex F

5. Repeat the previous exercise, but perform a depth-first traversal instead.
6. Consider the directed graph that appears in Figure 28-10, and remove the edge between vertices E and F, and the

edge between vertices F and H.
a. In what order will a breadth-first traversal visit the vertices when you begin at vertex A?
b. Repeat Part a, but perform a depth-first traversal instead.

7. Draw a directed graph that depicts the prerequisite structure of the courses required for your major. Find a
topological order for these courses.

8. Construct the topological ordering for the weighted, directed, acyclic graph in Figure 28-23.

FIGURE 28-23 A graph for Exercises 8 and 22

9. A computer network such as the Internet or a local area network can be represented as a graph. Each computer is
a vertex in the graph. An edge between two vertices represents a direct connection between two computers.
Explain when and why you would be interested in each of the following tasks:

a. Finding a path in this graph
b. Finding multiple paths from one particular vertex to another
c. Finding the shortest path from one particular vertex to another
d. Seeing whether the graph is connected

10. Write an algorithm that finds a path from vertex a to vertex b in a directed graph by using a slightly modified
depth-first traversal. Segment 28.16 outlines an approach to this problem.

11. A tree is a connected graph without cycles.
a. What is the smallest number of edges that could be removed from the graph in Figure 28-1 to make it a tree?
b. Give one example of such a set of edges.

12. Figure 28-7b shows a graph that represents a maze. Label the vertices of this graph, with the uppermost vertex
labeled S (the entrance to the maze) and the lowest vertex labeled T (the exit from the maze).

a. Is this graph a tree?
b. What is the shortest path from S to T?
c. What is the longest simple path in this graph?

12

A C

H

I

F G

B

J K

5

4

1

3

ED
3

5

4

L M
7

1

1

3

2

4

2

758 CHAPTER 28 Graphs

13. Revise the unweighted, directed graph in Figure 28-15a by adding a directed edge from D to H. The resulting
graph has two paths from A to H that are shortest among all paths between these two vertices. Which of these two
paths will the algorithm getShortestPath in Segment 28.19 find?

14. Repeat the previous exercise, but remove the directed edge from E to H instead of adding a directed edge from D to H.
15. Revise the weighted, directed graph in Figure 28-18a by adding a directed edge from D to H. Let the weight of

this new edge be 3. The resulting graph has two paths from A to H that are cheapest among all paths between these
two vertices. Which of these two paths will the algorithm getCheapestPath in Segment 28.24 find?

16. Find a map of the routes of a major U. S. airline. Such maps are usually printed at the back of in-flight magazines.
You could also search the Internet for one. The map is a graph like the one in Figure 28-6. Consider the following
pairs of cities:

Providence (RI) and San Diego (CA)
Albany (NY) and Phoenix (AZ)
Boston (MA) and Baltimore (MD)
Dallas (TX) and Detroit (MI)
Charlotte (NC) and Chicago (IL)
Portland (ME) and Portland (OR)
a. Which pairs of cities in this list have edges (nonstop flights) between them?
b. Which pairs are not connected by any path?
c. For each of the remaining pairs, find the path with the fewest edges.

17. Find the trail map of a cross-country ski area. Represent the trail map as an undirected graph, where each intersection
of trails is a vertex, and each section of trail between intersections is an edge. Consider a cross-country skier who
wishes to take the longest tour possible, but does not want to ski on any trail more than once. What is the longest path
that starts and ends at the ski lodge and does not traverse any section of trail more than once? (Intersections may be
passed through more than once, and some sections of trail may be left unskied.)

18. Find the trail map of a downhill ski area. Represent the trail map as a graph, where each intersection of trails is a
vertex, and each section of trail between intersections is an edge.

a. Is the graph directed or undirected?
b. Does the graph have cycles?
c. Find the longest path possible that begins at the top of the mountain and ends at the ski lodge.

19. Write statements appropriate for the client of the class UndirectedGraph that create the graph in Figure 28-3.
Assume that UndirectedGraph implements GraphInterface.

20. Write statements appropriate for the client of the class DirectedGraph that create the graph in Figure 28-8.
Assume that DirectedGraph implements GraphInterface. Then write statements to find and display a
topological order for this graph.

21. A graph is said to be biconnected if two paths that do not share edges or vertices exist between every pair of vertices.
a. Which graphs in Figure 28-1 and 28-4 are biconnected?
b. What are some applications that would use a biconnected graph?

22. A critical path in a weighted, directed, acyclic graph is the path with the greatest weight. Let’s assume that all
edge weights are positive. Give each vertex a value equal to the weight of a path to that vertex. Initially, each
vertex’s value is zero.

We can find the critical path by considering the vertices one at a time in topological order. For each vertex,
consider all the edges that leave the vertex. For each of these edges, add the weight of the edge and the value of
the edge’s source vertex. Compare the sum with the value of the edge’s destination vertex. Make the larger of
these values the value of the destination vertex. After all vertices have been visited, the largest value stored in a
vertex will be the weight of the critical path.

Find the critical path for the graph in Figure 28-23.

Projects 759

PROJECTS

1. In a search tree, it is easy to search for any value. For other trees in which the children of a node are not ordered in
any particular way, you can use a breadth-first traversal, as described for graphs, to find a path from the root to
some other node (vertex) v. Implement such a method for a general tree.

2. Write Java code that creates the graph given in Figure 28-1. Find the shortest path from Sandwich to Falmouth.
Do the same for the weighted graph in Figure 28-3. (See Exercise 19.)

3. Write Java code that creates the graph in Figure 28-10. Perform a breadth-first traversal of the graph, beginning at
the node labeled A.

4. In the game of Nim, an arbitrary number of chips are divided into an arbitrary number of piles. Each player can
remove as many chips as desired from any single pile. The last player to remove a chip wins.

Consider a limited version of this game, in which three piles contain 3, 5, and 8 chips, respectively. You can
represent this game as a directed graph. Each vertex in this graph is a possible configuration of the piles (chips in each
pile). The initial configuration, for example, is (3, 5, 8). Each edge in the graph represents a legal move in the game.

a. Write Java statements that will construct this directed graph.
b. Discuss how a computer program might use this graph to play Nim.

5. The diameter of an unweighted graph is the maximum of all the shortest distances between pairs of vertices in the graph.
a. Give an algorithm for computing the diameter of a graph.
b. What is the Big Oh performance of your algorithm in terms of the number of vertices and edges in the graph?
c. Implement your algorithm.
d. Discuss possible ways that you can improve the performance of the algorithm.

6. Exercise 22 described how to find the critical path in a weighted, directed, acyclic graph. Write a method that will
find the critical path. You may assume the existence of a method that tests whether a graph is acyclic.

7. The n-puzzle is a one-person game that involves a square or rectangular frame that can contain exactly n + 1 square
tiles. The game begins with n tiles numbered from 1 to n positioned randomly in the frame. With one empty space in
the frame, the objective is to slide the tiles—one at a time and either horizontally or vertically—until they appear in
numerical order, as shown in Figure 28-24a. This solved configuration is for a 15-puzzle using a 4-by-4 frame.

FIGURE 28-24 (a) A solved 15-puzzle; (b) an unsolvable 15-puzzle

Not all initial configurations of an n-puzzle can be solved. For example, if the initial configuration of a
15-puzzle were as pictured in Figure 28-24b, with only the 14 and 15 tiles interchanged, no solution would be
possible. A solvable 15-puzzle can take up to 80 moves to reach the solution; an 8-puzzle using a 3 × 3 frame will
take at most 31 moves to solve, if it has a solution. To reduce our effort even further, we will consider 5-puzzles in
2 × 3 frames. Figure 28-25 shows two such puzzles with their solutions. Note that the empty space in a solution
can be either before the 1 or after the 5.

Figure 23-22 in Chapter 23 showed a game tree for tic-tac-toe. A game tree, which is a kind of graph,
contains the possible moves for a particular game. Because you cannot change a move made in tic-tac-toe, the
game tree is a directed graph. Such is not the case for the n-puzzle, as you can change your mind about any move.
Thus, an undirected graph can represent all of the possible moves.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

(a) (b)
1 2 3 4

5 6 7 8

9 10 11 12

13 15 14

760 CHAPTER 28 Graphs

ANSWERS TO SELF-TEST QUESTIONS

Write Java code that creates an undirected graph of the possible board configurations for the 5-puzzle. Using
a shortest-path search, find a solution to any given initial configuration.

FIGURE 28-25 The initial and final configurations of two 5-puzzles

1. a. 3.
b. 36.
c. Truro-Orleans-Barnstable-Sandwich, with a length of 3.
d. Truro-Orleans-Barnstable-Sandwich, with a weight of 48.

2. Electrical (or telephone or TV) wires, plumbing, hallways or other connections between rooms.

3. The graph is connected but not complete.

4. No; cs8 and cs10 each would have 2 parents.

5. a. No; b. Yes; c. No; d. No.

6. E, F, H, C, I, B.

7. E, F, C, B, H, I.

8. cs1, cs2, cs4, cs7, cs9, cs5, cs10, cs6, cs8, cs3; or cs1, cs2, cs3, cs4, cs5, cs6, cs7, cs8, cs9, cs10.

9. Remove vertex G from the queue. G’s neighbor H has been visited already. Now remove F from the queue.
F’s neighbor C is unvisited. Set C’s predecessor to F and its path-length field to 3 (1 + the length recorded in F).
Add C to the queue. Since C is the destination, construct the path by working backward from C, as we did in
Segment 28.18. The shortest path is A → E → F → C, with a length of 3.

10. Vertex H has one unvisited neighbor, I. The cost of the path to I is the cost of the path to H plus the weight of the
edge from H to I. This total cost is 9. Encapsulate vertex I, the cost 9, and the predecessor H into an object and add
it to the priority queue.

Now remove the front entry from the priority queue. The entry contains H, and since H is visited already,
ignore the entry. Remove the next entry. This entry also contains H, which is visited, so ignore it and remove the
next entry. This entry contains I, which is unvisited. Visit I. I’s neighbor F is visited, so remove the next entry
from the priority queue. This entry contains C, so visit C.

Since C is the destination, construct the path by working backward from C, as we did in Segment 28.18. The
shortest (cheapest) path is A → B → E → F → C, with a weight (cost) of 10.

11. Two or more entries in the priority queue can record data about the same vertex. For example, consider the trace in
Figure 28-19. After we visit vertex B, the first two entries in the priority queue record data about vertex E. The
first entry involves the path from B to E, while the second entry involves the path from A to E. While vertex E can
record similar data for one path, it cannot do so for multiple paths.

12. In the two calls to addEdge, you would add an edge weight as a third argument.

13. The method getCheapestPath finds the path with the smallest weight sum, which gives us the shortest route
when measured in miles; getShortestPath finds the path that contains the fewest number of edges.

1 23
4 5

(a)

1 2
3 4 5 1 2

34 5
(b)

1 2 3
4 5

Chapter

29GraphImplementations
Contents
An Overview of Two Implementations

The Adjacency Matrix
The Adjacency List

Vertices and Edges
Specifying the Class Vertex
The Inner Class Edge
Implementing the Class Vertex

An Implementation of the ADT Graph
Basic Operations
Graph Algorithms

Prerequisites
Chapter 5 Stacks
Chapter 10 Queues, Deques, and Priority Queues
Chapter 12 Lists
Chapter 15 Iterators
Chapter 19 Dictionaries
Chapter 23 Trees
Chapter 28 Graphs

Objectives
After studying this chapter, you should be able to
• Describe an adjacency matrix
• Describe an adjacency list
• Specify and implement the classes that represent the vertices and edges of a graph
• Implement the ADT graph by using adjacency lists

Like the ADTs you have seen previously, graphs have several implementations.
Each implementation must represent the vertices in the graph and the edges between

762 CHAPTER 29 Graph Implementations

the vertices. In general, you use either a list or a dictionary to hold the vertices, and an array or a list
to represent the edges. Each representation of the edges has its own advantages, but the list
representation is most typical.

An Overview of Two Implementations
Two common implementations of the ADT graph use either an array or a list to represent the
graph’s edges. The array is typically a two-dimensional array called an adjacency matrix. The list
is called an adjacency list. Each of these constructs represents the connections—that is, the
edges—among the vertices in the graph.

The Adjacency Matrix
29.1 The adjacency matrix for a graph of n vertices has n rows and n columns. Each row and each col-

umn corresponds to a vertex in the graph. You number the vertices from 0 through n - 1 to match
the row indices and the column indices. If aij is the element in row i and column j of the matrix, aij
indicates whether an edge exists between vertex i and vertex j. For an unweighted graph, you can
use boolean values in the matrix. For a weighted graph, you can use edge weights when edges exist
and a representation of infinity otherwise.

VideoNote

Figure 29-1 provides an example of an unweighted, directed graph and its adjacency matrix.
Let’s consider vertex A of the graph, which we have numbered as vertex 0. Since directed edges
exist from vertex A to each of the vertices B, D, and E, the matrix elements a01, a03, and a04 are
true. We have used a “T” in the figure to represent true. The other entries in the first row are false
(blank in the figure).

Although a directed edge exists from vertex A to vertex B, the converse is not true. Therefore,
a10 is false, even though a01 is true. The adjacency matrix for an undirected graph, however, is
symmetric; that is, aij and aji have the same value. When an undirected graph has an edge from
vertex i to vertex j, it also has an edge from vertex j to vertex i.

FIGURE 29-1 (a) An unweighted, directed graph and (b) its adjacency matrix

The adjacency matrix

A

(a)

G

H

C

B E

D

0

1

2 5 8

7

6

4

3

A

B

C

A

D

B C D

E

F

G

H

I

E F G H I

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8

T T

6

7

8

T

T

T

T

T

T

T

T

T

T

T

(b)

F I

An Overview of Two Implementations 763

29.2 From an adjacency matrix, you quickly can see whether an edge exists between any two given ver-
tices. This operation is O(1). But if you want to know all the neighbors of a particular vertex, you
need to scan an entire row of the matrix, an O(n) task. Additionally, the matrix occupies a consider-
able, fixed amount of space that depends on the number of vertices but not on the number of edges.
In fact, an adjacency matrix represents every possible edge in a graph, regardless of whether the
edges actually exist. However, most graphs have relatively few of the many edges possible—that
is, they are sparse. For such graphs, an adjacency list uses less space, as you will now see.

The Adjacency List
29.3 An adjacency list for a given vertex represents only those edges that originate from the vertex. In

Figure 29-2, each vertex of the graph in Figure 29-1a references a list of adjacent vertices. Space is
not reserved for edges that do not exist. Thus, the adjacency lists, taken together, use less memory
than the corresponding adjacency matrix in Figure 29-1b. For this reason, implementations of
sparse graphs use adjacency lists. The implementation that we present in this chapter will do so
also, since typical graphs are sparse.

Although the adjacency lists in our diagram contain vertices, they will actually contain
edges in our implementation. Each of these edges, however, will contain the illustrated vertex as
its terminal vertex.

Note: An adjacency matrix uses a fixed amount of space that depends on the number of
vertices, but not the number of edges, in a graph. The adjacency matrix for a sparse graph
wastes space, because the graph has relatively few edges.

Note: Seeing whether an edge exists between any two given vertices of a graph can be
done quickly when you use an adjacency matrix. But you need to scan an entire row of the
matrix if you want to know all the neighbors of a particular vertex.

Question 1 Consider the graph in Figure 28-4b of the previous chapter. Number the verti-
ces from 0 through 3, starting at the vertex in the upper left corner and moving in a clock-
wise direction. What adjacency matrix represents this graph?

Note: An adjacency list for a given vertex represents only those edges that originate from
the vertex. For a sparse graph, an adjacency list uses less memory than an adjacency matrix.
For a dense graph, an adjacency matrix can be the better choice.

Note: Using adjacency lists, you can find all the neighbors of a particular vertex by travers-
ing a list. If you want to know whether an edge exists between any two given vertices, you
need to search a list. If the graph contains n vertices, each of these operations is O(n) at worst,
but is faster on average.

764 CHAPTER 29 Graph Implementations

FIGURE 29-2 Adjacency lists for the directed graph in Figure 29-1a

Vertices and Edges

29.4 While designing a class that implements the ADT graph, we encounter two other types of objects,
the vertex and the edge. These objects are interrelated: A vertex has edges that leave it, and an edge
is defined by the vertices at its ends.

A vertex in a graph is somewhat like a node in a tree. Both vertices and nodes are implementa-
tion details that we hide from the client. In the implementation of a binary tree, we used a package-
friendly class BinaryNode. (See Segment 24.3 of Chapter 24.) Here, a graph will have package
access to the class Vertex. Previously, we simplified the implementation of a binary tree by giving

A

B

D

E

Vertices
Adjacency

lists

B E

C B

D G

E F

H

F C

H

G H

H I

I F

Question 2 What adjacency lists represent the graph described in Question 1?

Vertices and Edges 765

BinaryNode more than simple accessor and mutator operations. The same is true now for the imple-
mentation of the ADT graph. In fact, the specifications of the ADT graph that you saw in the previ-
ous chapter (Segment 28.25) omit the operations necessary to implement various graph algorithms.
We assign these operations to the vertices.

The structure of a vertex is more like the structure of a node in a general tree than the structure
of a node in a binary tree. Both the general node in Figure 24-8 and a vertex reference a list that you
use to address other nodes or vertices.

Specifying the Class Vertex
29.5 Identifying vertices. First, we need a way to identify the vertices in a graph. One simple way is to use

either integers or strings. A more general approach—the one we used in the previous chapter—labels
each vertex with an object. This label will be a data field of the class Vertex. One operation of Vertex,
then, is to retrieve a vertex’s label. We’ll use the constructor to set the label, omitting a mutator method
for this field.

29.6 Visiting vertices. The algorithms that we discussed in the previous chapter required us to mark cer-
tain vertices when they were visited. We therefore give operations to Vertex that mark a vertex as
visited, test whether a vertex has been visited, and remove the mark.

29.7 The adjacency list. As we mentioned earlier in this chapter, a vertex’s adjacency list indicates its
neighbors. Rather than placing this list within the class of graphs, it is more convenient to make it a
part of the class Vertex. Soon we will define a simple class Edge whose instances we will place in
these adjacency lists. Thus, a particular vertex’s adjacency list contains the edges that leave the ver-
tex. Each edge indicates its weight, if any, and references the vertex that ends the edge. Vertex then
needs methods to add edges to the adjacency list. These methods essentially connect a vertex to its
neighbors.

In addition, we must provide access to the adjacency list for a given vertex. Thus, we define an
iterator that returns a vertex’s neighbors, as well as an iterator that returns the weights of the edges
to those neighbors. For convenience, we also include a method to test whether a vertex has at least
one neighbor.

As you will see, the adjacency list is the only place where we need instances of Edge. Thus,
Edge is an implementation detail that we can hide within Vertex as an inner class.

29.8 Path operations. While finding a path through a graph, we must be able to locate the vertex that
comes before a given vertex on the path—in other words, the vertex’s predecessor. Thus, we need
set, get, and test operations for a vertex’s predecessor. Certain algorithms find the path with the
shortest length or the path that has the smallest weight, or cost. A vertex can record either the length
or the weight of the path from the origin to itself. Thus, we have operations that set and get this
recorded value.

29.9 The Java interface. The interface in Listing 29-1 specifies the vertex operations that we have just
introduced. The generic type T represents the data type of the object that labels a vertex.

LISTING 29-1 An interface for the vertices in a graph

package GraphPackage;
import java.util.Iterator;
public interface VertexInterface<T>

766 CHAPTER 29 Graph Implementations

{
/** Gets the vertex's label.

@return the object that labels the vertex */
public T getLabel();

/** Marks the vertex as visited. */
public void visit();

/** Removes the vertex's visited mark. */
public void unvisit();

/** Sees whether the vertex is marked as visited.
@return true if the vertex is visited */

public boolean isVisited();

/** Connects this vertex and a given vertex with a weighted edge.
The two vertices cannot be the same, and must not already
have this edge between them. In a directed graph, the edge
points toward the given vertex.
@param endVertex a vertex in the graph that ends the edge
@param edgeWeight a real-valued edge weight, if any
@return true if the edge is added, or false if not */

public boolean connect(VertexInterface<T> endVertex,
double edgeWeight);

/** Connects this vertex and a given vertex with an unweighted
edge. The two vertices cannot be the same, and must not
already have this edge between them. In a directed graph,
the edge points toward the given vertex.
@param endVertex a vertex in the graph that ends the edge
@return true if the edge is added, or false if not */

public boolean connect(VertexInterface<T> endVertex);

/** Creates an iterator of this vertex's neighbors by following
all edges that begin at this vertex.
@return an iterator of the neighboring vertices of this vertex */

public Iterator<VertexInterface<T>> getNeighborIterator();

/** Creates an iterator of the weights of the edges to this
vertex's neighbors.
@return an iterator of edge weights for edges to neighbors of this

vertex */
public Iterator<Double> getWeightIterator();

/** Sees whether this vertex has at least one neighbor.
@return true if the vertex has a neighbor */

public boolean hasNeighbor();

Vertices and Edges 767

The Inner Class Edge
29.10 As we mentioned, we will place instances of the class Edge in a vertex’s adjacency list to indicate

the edges that originate at the vertex. Thus, each edge must record both the vertex that ends it and
the edge’s weight, if any. Recording an edge weight is the only reason we need a class of edges. For
unweighted graphs, we could simply place vertices in the adjacency list. Using edge objects, how-
ever, allows us to use one class of vertices for both weighted and unweighted graphs.

Since Vertex is the only class that uses Edge, we make Edge an inner class of Vertex. Listing 29-2
shows an implementation of Edge. We provide a data field for an edge’s weight, if any. For unweighted
graphs, we will set this field to zero rather than creating a class of unweighted edges.

/** Gets an unvisited neighbor, if any, of this vertex.
@return either a vertex that is an unvisited neighbor or null

if no such neighbor exists */
public VertexInterface<T> getUnvisitedNeighbor();

/** Records the previous vertex on a path to this vertex.
@param predecessor the vertex previous to this one along a path

*/
public void setPredecessor(VertexInterface<T> predecessor);

/** Gets the recorded predecessor of this vertex.
@return either this vertex's predecessor or null if no predecessor

was recorded */
public VertexInterface<T> getPredecessor();

/** Sees whether a predecessor was recorded.
@return true if a predecessor was recorded for this vertex */

public boolean hasPredecessor();

/** Records the cost of a path to this vertex.
@param newCost the cost of the path */

public void setCost(double newCost);

/** Gets the recorded cost of the path to this vertex.
@return the cost of the path */

public double getCost();
} // end VertexInterface

LISTING 29-2 The protected class Edge, as an inner class of Vertex

protected class Edge
{

private VertexInterface<T> vertex; // end vertex
private double weight;

768 CHAPTER 29 Graph Implementations

Implementing the Class Vertex
29.11 An outline of the class. To hide Vertex from the clients of the graph, we place it within the pack-

age GraphPackage that we introduced in the previous chapter. Listing 29-3 outlines the class and
shows its data fields and constructor. An ADT list that has an iterator serves as the adjacency list
edgeList. We have chosen the linked implementation LinkedListWithIterator discussed in
Segment 15.19 of Chapter 15.

protected Edge(VertexInterface<T> endVertex, double edgeWeight)
{

vertex = endVertex;
weight = edgeWeight;

} // end constructor

protected VertexInterface<T> getEndVertex()
{

return vertex;
} // end getEndVertex

protected double getWeight()
{

return weight;
} // end getWeight

} // end Edge

Note: An instance of the inner class Edge contains both the vertex that ends it and the
edge’s weight, if any. Although not necessary for unweighted graphs, Edge allows us to use
one class of vertices for both weighted and unweighted graphs.

LISTING 29-3 An outline of the class Vertex

package GraphPackage;
import java.util.Iterator;
import java.util.NoSuchElementException;
import ADTPackage.*; // classes that implement various ADTs
class Vertex<T> implements VertexInterface<T>
{

private T label;
private ListWithIteratorInterface<Edge> edgeList; // edges to

// neighbors
private boolean visited; // true if visited
private VertexInterface<T> previousVertex; // on path to this vertex
private double cost; // of path to this vertex

public Vertex(T vertexLabel)
{

label = vertexLabel;
edgeList = new LinkedListWithIterator<Edge>();

Vertices and Edges 769

29.12 The two connect methods. Each method connect places an edge into a vertex’s adjacency list. We
first implement the method for weighted graphs and then use it to implement the method for
unweighted graphs. Preventing the addition of an edge that either exists in the graph already or con-
nects a vertex with itself consumes most of the method’s effort. Once those details are complete,
connect simply calls the ADT list’s add method to add the edge.

public boolean connect(VertexInterface<T> endVertex, double edgeWeight)
{

boolean result = false;

if (!this.equals(endVertex))
{ // vertices are distinct

Iterator<VertexInterface<T>> neighbors = this.getNeighborIterator();
boolean duplicateEdge = false;

while (!duplicateEdge && neighbors.hasNext())
{

VertexInterface<T> nextNeighbor = neighbors.next();
if (endVertex.equals(nextNeighbor))

duplicateEdge = true;
} // end while

if (!duplicateEdge)
{

edgeList.add(new Edge(endVertex, edgeWeight));
result = true;

} // end if
} // end if

return result;
} // end connect

public boolean connect(VertexInterface<T> endVertex)
{

return connect(endVertex, 0);
} // end connect

visited = false;
previousVertex = null;
cost = 0;

} // end constructor

< Implementations of the vertex operations go here. >
. . .

protected class Edge
{

< See Listing 29-2. >
} // end Edge

} // end Vertex

Note: The data fields of the class Vertex facilitate the implementation of the algorithms
presented in the previous chapter. For example, the fields previousVertex and cost are use-
ful in a breadth-first search for the cheapest path from one vertex to another.

770 CHAPTER 29 Graph Implementations

Although adding to a list can be done in O(1) time, scanning the list to prevent duplicate edges
takes more time. Since each vertex in a graph of n vertices can be the origin of at most n − 1 edges,
connect is an O(n) operation. For a sparse graph, however, the number of edges originating at any
vertex is much less than n. In this case, connect is significantly faster than O(n).

29.13 The iterators. The method getNeighborIterator returns an iterator to a vertex’s adjacent vertices,
that is, its neighbors. We define a private inner class—neighborIterator—within Vertex that imple-
ments Java’s interface Iterator. Thus, getNeighborIterator has the following implementation:

public Iterator<VertexInterface<T>> getNeighborIterator()
{

return new neighborIterator();
} // end getNeighborIterator

The class neighborIterator appears in Listing 29-4. Its constructor establishes an instance of
the iterator defined in LinkedListWithIterator. The method next uses this iterator to traverse the
edges in the vertex’s adjacency list. Then, using Edge’s method getEndVertex, next accesses the
neighboring vertex and returns it.

LISTING 29-4 The private class neighborIterator, as an inner class of Vertex

private class neighborIterator implements Iterator<VertexInterface<T>>
{

private Iterator<Edge> edges;

private neighborIterator()
{

edges = edgeList.getIterator();
} // end default constructor

public boolean hasNext()
{

return edges.hasNext();
} // end hasNext

public VertexInterface<T> next()
{

VertexInterface<T> nextNeighbor = null;

if (edges.hasNext())
{

Edge edgeToNextNeighbor = edges.next();
nextNeighbor = edgeToNextNeighbor.getEndVertex();

}
else

throw new NoSuchElementException();

return nextNeighbor;
} // end next

Vertices and Edges 771

In a similar manner, the method getWeightIterator returns an instance of a private inner
class weightIterator. This class is similar to the class neighborIterator.

29.14 The methods hasNeighbor and getUnvisitedNeighbor. The method hasNeighbor uses the
method isEmpty of LinkedListWithIterator to test whether edgeList is empty:

public boolean hasNeighbor()
{

return !edgeList.isEmpty();
} // end hasNeighbor

Using the iterator returned by getNeighborIterator, the method getUnvisitedNeighbor
returns an adjacent vertex that is unvisited. This task is necessary in a topological sort.

public VertexInterface<T> getUnvisitedNeighbor()
{

VertexInterface<T> result = null;

Iterator<VertexInterface<T>> neighbors = getNeighborIterator();
while ((neighbors.hasNext() && (result == null))
{

VertexInterface<T> nextNeighbor = neighbors.next();
if (!nextNeighbor.isVisited())

result = nextNeighbor;
} // end while

return result;
} // end getUnvisitedNeighbor

29.15 The remaining methods. Vertex should override the method equals. Two vertices are equal if
their labels are equal.

public boolean equals(Object other)
{

boolean result;

if ((other == null) || (getClass() != other.getClass()))
result = false;

else
{

Vertex<T> otherVertex = (Vertex<T>)other;
result = label.equals(otherVertex.label);

} // end if

return result;
} // end equals

The remaining methods of Vertex have uncomplicated implementations and are left as exercises.

public void remove()
{

throw new UnsupportedOperationException();
} // end remove

} // end neighborIterator

Question 3 Given the interface VertexInterface and the class Vertex, write Java statements
that create the vertices and edges for the following directed, weighted graph. This graph contains
three vertices—A, B, and C—and four edges, as follows: A → B, B → C, C → A, A → C. These
edges have the weights 2, 3, 4, and 5, respectively.

772 CHAPTER 29 Graph Implementations

An Implementation of the ADT Graph
We now consider how to use Vertex in an implementation of a directed graph that can be either
weighted or unweighted.

Basic Operations
29.16 Beginning the class. Whether our implementation uses an adjacency list—as it will here—or an

adjacency matrix, it must have a container for the graph’s vertices. If we use integers to identify the
vertices, a list would be a natural choice for this container, since each integer could correspond to a
position within the list. If we use an object such as a string to identify them, a dictionary is a better
choice. That is what we will do here.

VideoNote

Figure 29-3 illustrates a dictionary of vertices for a small directed graph. Each of the vertices A and
D has an adjacency list of the edges that originate at that vertex. The letters within these edges represent
references to corresponding vertices within the dictionary. Since the ADT dictionary consists of key-
value pairs, we can use the vertex labels as the search keys and the vertices themselves as the corre-
sponding values. This organization allows us to quickly locate a particular vertex, given its label.

FIGURE 29-3 (a) A directed graph and (b) its implementation using adjacency lists

Our class begins as shown in Listing 29-5. Recall that the generic type T represents the data
type of the objects that label the graph’s vertices. The class’s first data field is a dictionary of verti-
ces. A count of vertices is not necessary, since the dictionary will count the vertices for us.

Since each vertex maintains its own adjacency list, the edges in the graph are not easily
counted. Thus, we should maintain an edge count as a data field within the graph class.

Note: Regardless of the kind of graph or how you implement it, you need a container such
as a dictionary for the graph’s vertices.

Implementing graph
operations

A

Edges

Adjacency listsVerticesDictionary

A

(a)

B C

D

(b)

B

C

D

B C D

A C

LISTING 29-5 An outline of the class DirectedGraph

package GraphPackage;
import java.util.Iterator;
import ADTPackage.*; // classes that implement various ADTs

An Implementation of the ADT Graph 773

29.17 Adding vertices. The method addVertex uses Vertex’s constructor to create a new vertex. It then
adds the vertex to the dictionary by invoking the dictionary’s method add:

public boolean addVertex(T vertexLabel)
{

VertexInterface<T> isDuplicate =
vertices.add(vertexLabel, new Vertex(vertexLabel));

return isDuplicate == null; // was add to dictionary successful?
} // end addVertex

Notice that vertexLabel is the search key for the dictionary entry, and the new vertex is the associ-
ated value. Recall from the interface in Segment 19.4 of Chapter 19 that add returns null if the addi-
tion to the dictionary is successful. We use this fact to determine the return value for addVertex.

29.18 Adding edges. Methods such as addEdge that identify an existing vertex by its label must locate the ver-
tex within the dictionary vertices. To do this, they invoke the dictionary method getValue, using the
vertex label as the search key. Having located the two vertices that delineate the edge to be added, add-
Edge adds an edge to the adjacency list of the origin vertex. It does this by invoking Vertex’s connect
method. If the edge is added successfully, edgeCount is incremented. Thus, our graph’s addEdge meth-
ods have the following definitions, one for weighted graphs and one for unweighted graphs:

public boolean addEdge(T begin, T end, double edgeWeight)
{

boolean result = false;

VertexInterface<T> beginVertex = vertices.getValue(begin);
VertexInterface<T> endVertex = vertices.getValue(end);

if ((beginVertex != null) && (endVertex != null))
result = beginVertex.connect(endVertex, edgeWeight);

if (result)
edgeCount++;

return result;
} // end addEdge

public boolean addEdge(T begin, T end)
{

return addEdge(begin, end, 0);
} // end addEdge

public class DirectedGraph<T> implements GraphInterface<T>
{

private DictionaryInterface<T, VertexInterface<T>> vertices;
private int edgeCount;

public DirectedGraph()
{

vertices = new LinkedDictionary<T, VertexInterface<T>>();
edgeCount = 0;

} // end default constructor

< Implementations of the graph operations go here. >
. . .

} // end DirectedGraph

774 CHAPTER 29 Graph Implementations

29.19 Testing for an edge. The method hasEdge begins like addEdge, by locating the two vertices that
define the desired edge. With the origin vertex in hand, hasEdge invokes Vertex’s method
getNeighborIterator and searches the origin’s adjacency list for the desired edge. In the follow-
ing implementation, you can see why defining the equals method in Vertex is important.

public boolean hasEdge(T begin, T end)
{

boolean found = false;

VertexInterface<T> beginVertex = vertices.getValue(begin);
VertexInterface<T> endVertex = vertices.getValue(end);

if ((beginVertex != null) && (endVertex != null))
{

Iterator<VertexInterface<T>> neighbors =
beginVertex.getNeighborIterator();

while (!found && neighbors.hasNext())
{

VertexInterface<T> nextNeighbor = neighbors.next();
if (endVertex.equals(nextNeighbor))

found = true;
} // end while

} // end if

return found;
} // end hasEdge

29.20 Miscellaneous methods. The methods isEmpty, clear, getNumberOfVertices, and getNumber-
OfEdges have the following simple implementations:

public boolean isEmpty()
{

return vertices.isEmpty();
} // end isEmpty

public void clear()
{

vertices.clear();
edgeCount = 0;

} // end clear

public int getNumberOfVertices()
{

return vertices.getSize();
} // end getNumberOfVertices

public int getNumberOfEdges()
{

return edgeCount;
} // end getNumberOfEdges

29.21 Resetting vertices. You saw in Segment 29.11 that the class Vertex has the data fields visited,
previousVertex, and cost. These fields are necessary for the implementation of the graph algo-
rithms that we introduced in the previous chapter. Once you have searched a graph for a shortest
path, for example, many of the vertices will have been visited and marked accordingly. Before you
could perform a topological sort on the same graph, you would have to reset the field visited for
each vertex in the graph.

The following method resetVertices sets the fields visited, previousVertex, and
cost to their initial values. To do so, the method uses one of the iterators declared in the

An Implementation of the ADT Graph 775

interface DictionaryInterface. The method is not public, as we will call it only from
methods declared in GraphAlgorithmsInterface.

protected void resetVertices()
{

Iterator<VertexInterface<T>> vertexIterator = vertices.getValueIterator();
while (vertexIterator.hasNext())
{

VertexInterface<T> nextVertex = VertexIterator.next();
nextVertex.unvisit();
nextVertex.setCost(0);
nextVertex.setPredecessor(null);

} // end while
} // end resetVertices

29.22 Efficiency. Adding a vertex to a graph is an O(n) operation, since the vertex is added to a linked
dictionary. Adding an edge involves retrieving two vertices from the dictionary and then calling
Vertex’s method connect. Thus, the method addEdge is also O(n). Likewise, hasEdge is O(n), as it
first retrieves two vertices from the dictionary. It then iterates through the edges that leave the first
vertex to see whether one of them ends at the second vertex. As you can see, the performance of
these three graph operations depends on the number of vertices in the graph. The remaining meth-
ods in BasicGraphInterface are each O(1). Figure 29-4 summarizes these observations.

FIGURE 29-4 The performance of basic operations of the ADT graph when
implemented by using adjacency lists

Graph Algorithms
29.23 Breadth-first traversal. Segment 28.12 of the previous chapter presented an algorithm for a

breadth-first traversal of a nonempty graph, beginning at a given origin vertex. Recall that the tra-
versal first visits the origin and the origin’s neighbors. It then visits each neighbor of the origin’s
neighbors. The traversal uses a queue to hold the vertices as they are visited. The traversal order is
the order in which vertices are added to this queue. But since the algorithm must remove vertices
from this queue, we maintain the traversal order in a second queue. Since this second queue is
returned to the client, we enqueue vertex labels instead of vertices. Remember that the class Vertex
is unavailable to the client.

Question 4 Create an instance of the class DirectedGraph for the graph described in
Question 3.

addVertex
addEdge
hasEdge
isEmpty
getNumberOfVertices
getNumberOfEdges
clear

O(n)
O(n)
O(n)
O(1)
O(1)
O(1)
O(1)

776 CHAPTER 29 Graph Implementations

The following implementation of the method getBreadthFirstTraversal closely follows the
pseudocode given in the previous chapter. The parameter origin is an object that labels the origin
vertex of the traversal.

public QueueInterface<T> getBreadthFirstTraversal(T origin)
{

resetVertices();
QueueInterface<T> traversalOrder = new LinkedQueue<T>();
QueueInterface<VertexInterface<T>> vertexQueue =

new LinkedQueue<VertexInterface<T>>();

VertexInterface<T> originVertex = vertices.getValue(origin);
originVertex.visit();
traversalOrder.enqueue(origin); // enqueue vertex label
vertexQueue.enqueue(originVertex); // enqueue vertex

while (!vertexQueue.isEmpty())
{

VertexInterface<T> frontVertex = vertexQueue.dequeue();

Iterator<VertexInterface<T>> neighbors =
frontVertex.getNeighborIterator();

while (neighbors.hasNext())
{

VertexInterface<T> nextNeighbor = neighbors.next();
if (!nextNeighbor.isVisited())
{

nextNeighbor.visit();
traversalOrder.enqueue(nextNeighbor.getLabel());
vertexQueue.enqueue(nextNeighbor);

} // end if
} // end while

} // end while

return traversalOrder;
} // end getBreadthFirstTraversal

The implementation of a similar method to perform a depth-first traversal is left as an exercise.

29.24 Shortest path. The shortest path of all paths from one vertex to another in an unweighted graph is
the path that has the fewest edges. The algorithm that finds this path—as you saw in Segment 28.19
of the previous chapter—is based on a breadth-first traversal. When we visit a vertex v, we mark it
as visited, note the vertex p that precedes v in the graph, and note the length of the path that the tra-
versal followed to reach v. We place both this path length and a reference to p into the vertex v.
When the traversal reaches the desired destination, we can construct the shortest path from this data
in the vertices.

The implementation of the method getShortestPath closely follows the pseudocode given in
the previous chapter. The parameters begin and end are objects that label the origin and destination
vertices of the path. The third parameter path is an initially empty stack. At the conclusion of the
method, this stack contains the labels of the vertices along the shortest path. The method returns the
length of this path.

Question 5 Write Java statements that display the vertices in a breadth-first traversal of
the graph that you created in Question 4, beginning with vertex A.

An Implementation of the ADT Graph 777

public int getShortestPath(T begin, T end, StackInterface<T> path)
{

resetVertices();
boolean done = false;
QueueInterface<VertexInterface<T>> vertexQueue =

new LinkedQueue<VertexInterface<T>>();

VertexInterface<T> originVertex = vertices.getValue(begin);
VertexInterface<T> endVertex = vertices.getValue(end);

originVertex.visit();
// Assertion: resetVertices() has executed setCost(0)
// and setPredecessor(null) for originVertex

vertexQueue.enqueue(originVertex);

while (!done && !vertexQueue.isEmpty())
{

VertexInterface<T> frontVertex = vertexQueue.dequeue();

Iterator<VertexInterface<T>> neighbors =
frontVertex.getNeighborIterator();

while (!done && neighbors.hasNext())
{

VertexInterface<T> nextNeighbor = neighbors.next();

if (!nextNeighbor.isVisited())
{

nextNeighbor.visit();
nextNeighbor.setCost(1 + frontVertex.getCost());
nextNeighbor.setPredecessor(frontVertex);
vertexQueue.enqueue(nextNeighbor);

} // end if

if (nextNeighbor.equals(endVertex))
done = true;

} // end while
} // end while

// traversal ends; construct shortest path
int pathLength = (int)endVertex.getCost();
path.push(endVertex.getLabel());

VertexInterface<T> vertex = endVertex;
while (vertex.hasPredecessor())
{

vertex = vertex.getPredecessor();
path.push(vertex.getLabel());

} // end while

return pathLength;
} // end getShortestPath

The implementation of the method getCheapestPath for a weighted graph is left as an exercise.

Question 6 Write Java statements that display the vertices in the shortest path from
vertex A to vertex C for the graph that you created in Question 4. Also, display the length
of this path.

778 CHAPTER 29 Graph Implementations

CHAPTER SUMMARY

EXERCISES

• An adjacency list for a given vertex contains references to the vertex’s neighbors.

• Using an adjacency list, you can quickly find all the neighbors of a particular vertex. But if you want to
know whether an edge exists between any two given vertices, you need to search a list.

• An adjacency matrix is a two-dimensional array that represents the edges in a graph. If you number the ver-
tices from 0 through n - 1, the entry in row i and column j of the matrix indicates whether an edge exists
between vertex i and vertex j. For an unweighted graph, you can use boolean values in the matrix. For a
weighted graph, you can use edge weights when edges exist and a representation of infinity otherwise.

• Using an adjacency matrix, you can quickly discover whether an edge exists between any two given verti-
ces. But if you want to know all the neighbors of a particular vertex, you need to scan an entire row of the
matrix.

• Each adjacency list represents only those edges that originate from a vertex, but an adjacency matrix
reserves space for every possible edge in a graph. Thus, when a graph is sparse, adjacency lists use less
memory than a corresponding adjacency matrix. For this reason, typical graph implementations use adja-
cency lists.

• One way to implement an adjacency list is to make it a data field of a class Vertex. So that you can represent
weighted graphs as well as unweighted graphs, you place instances of a class Edge in the adjacency list.
Edge’s data fields include the terminal vertex of an edge and the edge weight. Vertex is accessed from
within a package instead of publicly. Edge is an inner class of Vertex. Thus, both Vertex and Edge are hid-
den from the graph’s client.

• To facilitate the implementation of various graph algorithms, an instance of the class Vertex can indicate
whether it has been visited. It also can record data about a path to it, such as the previous vertex and the
path’s cost.

1. What adjacency matrix represents the graph in Figure 28-15a of the previous chapter?

2. What adjacency matrix represents the graph in Figure 28-18a of the previous chapter?

3. What adjacency lists represent the graph in Figure 28-15a of the previous chapter?

4. What adjacency lists represent the graph in Figure 28-18a of the previous chapter?

5. When is an adjacency matrix just as space-efficient as adjacency lists?

6. Suppose that you want only to test whether an edge exists between two particular vertices. Does an adjacency
matrix or an adjacency list provide a more efficient way of doing this?

7. Suppose that you want only to find all vertices that are adjacent to some particular vertex. Does an adjacency
matrix or an adjacency list provide a more efficient way of doing this?

8. Complete the implementation of the class Vertex that was begun in Segment 29.11.

9. What is the Big Oh of the methods getBreadthFirstTraversal and getShortestPath, as given in
Segments 29.23 and 29.24?

Exercises 779

10. Implement the method getDepthFirstTraversal. Segment 28.13 of the previous chapter presents the
pseudocode for this method. What is its Big Oh?

11. Implement the method getCheapestPath for a weighted graph. The pseudocode for this method appears in
Segment 28.24 of the previous chapter. What is its Big Oh?

12. Draw a class diagram that shows the relationships among the classes DirectedGraph, Vertex, and any other
supporting classes such as LinkedDictionary.

13. The out degree of a vertex is the number of edges that originate at the vertex. The in degree of a vertex is the
number of edges that terminate at the vertex. Modify the class DirectedGraph so that it can compute the in degree
and out degree of any of its vertices.

14. Suppose that you have a weighted, directed graph in which the out degree and in degree of every vertex is at most 4.
(See the previous exercise.) If the graph has n vertices, you could represent it by using an array that has n rows and
4 columns. Each of the n rows is associated with a different vertex in the graph. The entries in a row associated with
vertex v are the vertices at the ends of the edges that begin at v. Since the out degree of a vertex can be less than 4,
some entries in a row might be null.

What is the Big Oh of each of the following operations?
a. Testing whether two given vertices are adjacent
b. Finding all vertices adjacent to a given vertex

15. A graph is said to be bipartite if the vertices can be divided into two groups such that every edge goes from a
vertex in one group to a vertex in the other group. Figure 28-1 of the previous chapter contains a bipartite graph.
We could put Sandwich, Hyannis, Orleans, and Provincetown in group A, and Barnstable, Falmouth, Chatham,
and Truro in group B. Every edge goes from a vertex of group A to a vertex of group B.

a. Which of the graphs in Figure 28-4, 28-6, and 28-7b are bipartite?
b. How might the implementation of a bipartite graph differ from that of a regular graph to take advantage of

its bipartite nature?

16. Consider a directed graph that has n nodes and e edges, where 0 ≤ e ≤ n2.
a. What is the time complexity, using Big Oh notation, for each of the following operations when an adja-

cency matrix is used to represent the graph?
• Testing whether two vertices are joined by an edge
• Finding the successors of a given vertex
• Finding the predecessors of a given vertex

b. Repeat part a, but assume that the graph uses an adjacency list in its implementation instead of an adja-
cency matrix.

17. A loop is an edge that starts and ends at the same vertex. Figure 29-5 shows an example of a loop in a directed,
weighted graph.

a. Give an example of a problem where allowing loops would be useful.
b. Can the adjacency matrix and adjacency list representations of a graph support loops?

FIGURE 29-5 A graph for Exercise 17

5
A B

2

Loop1

780 CHAPTER 29 Graph Implementations

PROJECTS

18. A multiple edge occurs when two vertices are joined by two or more edges in the same direction. Figure 29-6
shows a directed, weighted graph that has a multiple edge from D to B.

a. Give an example of a problem in which allowing multiple edges would be useful.
b. Can an adjacency matrix represent an unweighted graph that has multiple edges?
c. Can an adjacency matrix represent a weighted graph that has multiple edges?
d. Can adjacency lists represent an unweighted graph that has multiple edges?
e. Can adjacency lists represent a weighted graph that has multiple edges?

19.
FIGURE 29-6 A graph for Exercise 18

1. Complete the implementation of the class DirectedGraph that was begun in Segment 29.16 of this chapter.

2. Implement a class of undirected graphs by extending the class DirectedGraph. What methods should you
override? What methods, if any, in DirectedGraph do not apply to an undirected graph? If such methods exist,
what should you do in your new class? Note that the method getNumberOfEdges is the only accessor method to
a data field of DirectedGraph.

3. Revise the class DirectedGraph by defining protected mutator methods for the data fields vertices and
edgeCount. Also, define a protected accessor method for vertices. Then repeat Project 2, using your revised
DirectedGraph. Compare the performance of the addEdge methods in this implementation of an undirected graph
versus the implementation possible under the assumptions of Project 2.

4. Implement the classes Vertex and DirectedGraph by using an adjacency matrix.

5. Assuming an implementation of a class of undirected graphs, implement a method that detects whether an
undirected graph is acyclic. You can look for cycles during either a breadth-first traversal or a depth-first traversal
by discovering an edge to a vertex that is not the predecessor and has already been visited. To simplify the
problem initially, you can assume that the graph is connected. Then remove this assumption.

6. Implement a method that detects whether a graph is connected.

7. Create the classes LimitedVertex and LimitedDirectedGraph that use the representation described in Exercise 14.

8. A graph coloring assigns a color to every vertex in a graph, with the restriction that two vertices of the same
color cannot be adjacent. A graph is said to be k-colorable if it can be colored in k or fewer colors.

• Give an algorithm that will return true if a graph is 2-colorable and false otherwise.
• Exercise 15 defined a bipartite graph. Show that a graph is bipartite if and only if it is 2-colorable.

Then, using this fact, implement a method that detects whether a graph is bipartite.

9. Repeat Project 15 in Chapter 13 to create a simple social network. Use a graph to track the friend relationships
among members of the network. Add a feature to enable people to see a list of their friends’ friends.

5

5

A B

DC

2 2 3

4

12

Answers to Self-Test Questions 781

ANSWERS TO SELF-TEST QUESTIONS

1.

2. Vertex 0 references the list 1, 2, 3.
Vertex 1 references the list 0, 2, 3.
Vertex 2 references the list 0, 1, 3.
Vertex 3 references the list 0, 1, 2.

3. VertexInterface<String> vertexA = new Vertex<String>("A");
VertexInterface<String> vertexB = new Vertex<String>("B");
VertexInterface<String> vertexC = new Vertex<String>("C");
vertexA.addEdge(vertexB, 2.0);
vertexB.addEdge(vertexC, 3.0);
vertexC.addEdge(vertexA, 4.0);
vertexA.addEdge(vertexC, 5.0);

4. DirectedGraph<String> myGraph = new DirectedGraph<String>();
myGraph.addVertex("A");
myGraph.addVertex("B");
myGraph.addVertex("C");
myGraph.addEdge("A", "B", 2.0);
myGraph.addEdge("B", "C", 3.0);
myGraph.addEdge("C", "A", 4.0);
myGraph.addEdge("A", "C", 5.0);

5. QueueInterface<String> bfs = myGraph.getBreadthFirstTraversal("A");
while (!bfs.isEmpty())

System.out.print(bfs.dequeue() + " ");
System.out.println();

6. StackInterface<String> path = new LinkedStack<String>();
int pathLength = myGraph.getShortestPath("A", "C", path);
System.out.println("The shortest path from A to C has length " + pathLength +

" and passes through the following vertices:");
while (!path.isEmpty())

System.out.print(path.pop() + " ");
System.out.println();

T

T

 T

3

TT

TTT

T T T

T

210

0

1

2

3

This page intentionally left blank

Chapter

30
Mutable,

Immutable, and
Cloneable Objects

Contents
Mutable and Immutable Objects

Creating a Read-Only Class
Companion Classes

Cloneable Objects
Cloning an Array
Cloning a Chain
A Sorted List of Clones

Prerequisites
Appendix C Creating Classes from Other Classes
Appendix E Exception Handling
Chapter 13 List Implementations That Use Arrays
Chapter 14 A List Implementation That Links Data
Chapter 15 Iterators
Chapter 16 Sorted Lists
Chapter 17 Inheritance and Lists

Objectives
After studying this chapter, you should be able to
• Distinguish among mutable and immutable objects
• Define a class of immutable objects
• Define companion classes, one of immutable objects and the other of mutable objects
• Define a method clone for a given class
• Clone an array or chain of objects
• Implement a collection such as a sorted list that clones the objects added to it

When a class has public mutator, or set, methods, a client can use these methods to
alter objects of that class. Although this ability seems reasonable, it is unreasonable if

30-2 CHAPTER 30 Mutable, Immutable, and Cloneable Objects

another class organizes those objects in a particular way. For example, a sorted list of names
maintains the names in alphabetical order. If a client can alter a name in the list, it can destroy the
order of the list.

This chapter looks at two strategies that prevent this problem. The first one simply requires a
client to place into a collection only objects that cannot be altered. The second strategy requires the
collection to make a copy, or clone, of any object that a client adds to it. With this technique, the
client has no reference to the copy and so cannot change it. In describing this approach, we discuss
how to write methods that make clones of objects.

Mutable and Immutable Objects

30.1 Many of the classes you have studied so far have private data fields and public methods that either

VideoNote

look at or change these fields. As you know, such methods are called accessor methods and mutator
methods—or, alternatively, get and set methods. An object that belongs to a class that has public
mutator methods is said to be mutable—as we mentioned in Chapter 10—because the client can use
the set methods to change the values of the object’s data fields. For example, you saw the class Name
of two-part names in Segment B.16 of Appendix B. It has the following two data fields:

private String first; // first name
private String last; // last name

To change these fields, the class has the mutator methods setFirst and setLast. To look at the
fields, it has the accessor methods getFirst and getLast.

30.2 Let’s use this class to create an object for Chris Coffee by writing the following Java statement:
Name chris = new Name("Chris", "Coffee");

Figure 30-1 illustrates this object and the reference variable chris.

FIGURE 30-1 An object and its reference variable chris

Now suppose we create a list and then add chris to the list by writing

ListInterface<Name> nameList = new LList<Name>();
nameList.add(1, chris);

Since chris is a mutable object, we can change its data fields by writing, for example,
chris.setLast("Smith");

After this change, the object chris represents the name Chris Smith. Nothing is surprising here.
What might be surprising, however, is that the list has changed! That’s right: If we retrieve the first
item in the list by writing, for instance,

System.out.println(nameList.getEntry(1));

we will get Chris Smith instead of Chris Coffee.

Mutable and
immutable objects

Note: A mutable object belongs to a class that has mutator (set) methods for its data fields.

"Chris" "Coffee"

chris

Mutable and Immutable Objects 30-3

30.3 How can it be that the list, which we created before changing the name, contains the changed name?
Remember that in Java, the list contains references to the actual objects that the client places in it. So
the list has a reference to its first item, but so does the client, since it has the variable chris, as
Figure 30-2a shows.

FIGURE 30-2 An object in the list nameList (a) initially; (b) after the refer-
ence variable chris is used to change it

When we altered the object by executing
chris.setLast("Smith");

we changed the one and only copy of the object, as Figure 30-2b shows. Since the list still refer-
ences that object, nameList.getEntry(1) returns a reference to the object. This aspect of Java can
be a convenient way for the client to alter the objects it has placed in a list.

30.4 The ability to alter mutable objects in a collection can permit a client to destroy the collection’s integ-
rity. For example, suppose that we create a sorted list of names instead of a list of names. If we write

Name jesse = new Name("Jesse", "Java");
Name rob = new Name("Rob", "Bean");
SortedListInterface<Name> alphaList = new SortedList<Name>();
alphaList.add(jesse);
alphaList.add(rob);

we would get the sorted list

Rob Bean
Jesse Java

(a) chris

"Chris" "Coffee"

nameList

(b) chris

"Chris" "Smith"

nameList

Note: When a client creates a mutable object and adds it to an ADT list, only one copy of
the object ordinarily exists. Thus, if the client alters the object, the list changes. Ideally, the
client will use the replace operation to revise an entry in the list, but we cannot force the
client to do so.

30-4 CHAPTER 30 Mutable, Immutable, and Cloneable Objects

assuming that Name implements the interface Comparable. (See Question 9 of Appendix D.) Now if
we write

rob.setLast("Smith");

the list changes to

Rob Smith
Jesse Java

This sorted list is no longer alphabetical. One solution to this problem is to require the client to use
immutable objects, as the next segment describes.

30.5 As Chapter 10 indicated, an immutable object is one whose data fields cannot be altered by a client.
The class to which an immutable object belongs has no public mutator (set) methods, so once you cre-
ate the object, you cannot change its data fields. If you need to change them, you will have to discard
the object and create a new one with the revised fields. Such a class is said to be read only. A client
that places immutable objects into a sorted list cannot alter those objects and thus cannot destroy the
sorted order of the list.

30.6 Mutable or immutable? Most classes have set methods, so their instances are mutable. Being able
to change an object’s data is convenient and efficient, particularly when an object’s state must change
often during the course of a program’s execution. For example, a bank must regularly update the
object that represents your checking account. If that object were immutable, it would be discarded and
a new object representing the updated data would be created each time there was a change. But revis-
ing an object takes less time than replacing it.

On the other hand, sharing a mutable object can be dangerous. Suppose that you have two ref-
erences, a and b, to the same object. If you use a to modify the object, you might get confused when
you use b to reference it. But sharing immutable objects is safe, since no matter how you reference
them, they remain unchanged.

Creating a Read-Only Class
30.7 To convert the previous class Name into a read-only class, we can change the access modifiers of the

methods setFirst, setLast, and setName from public to private to prevent a client from invoking
them. (We could instead omit these methods altogether, modifying the other methods that invoke
them.) We also omit Name’s method giveLastNameTo.

Note: An immutable object belongs to a read-only class. Such a class prevents a client
from changing the values of its data fields.

Note: When a collection—such as a sorted list—organizes objects in a certain way, a client
should not destroy this organization by altering the objects directly. Yet if the client retains
references to the objects, that is exactly what a client could do. You can prevent this problem
by adding only immutable objects to the collection.

Programming Tip: Use an immutable object if it will be shared or added to a collection
that can be corrupted by changes to the object. Use a mutable object if its data will change
frequently.

Mutable and Immutable Objects 30-5

Let’s call the resulting class ImmutableName. If we place instances of ImmutableName in a list
or a sorted list, we will not be able to change these objects by using any references that we might
have retained to them. Of course, we can use the replace operation of the ADT list to replace a
particular item in a list, but no such operation exists for a sorted list. To change an entry in a
sorted list, we would remove the entry and add a new one. In this way, the sorted list maintains
its sorted order.

Suppose that ImmutableName had protected mutator methods such as setFirst and setLast.
A programmer could use inheritance to alter the behavior of the class. Imagine deriving a class of
mutable objects from ImmutableName. You then could add instances of this new class to a sorted list
of ImmutableName objects. Since these entries are mutable, you could change them and destroy the
order of the sorted list. To prevent this from happening, we can make the class final, as described in
Segment C.19 of Appendix C.

30.8 Listing 30-1 defines ImmutableName as a final class. Since the class has no set methods, we did not
define a default constructor. You could define one, even though its use is unnecessary.

LISTING 30-1 The read-only class ImmutableName

public final class ImmutableName
{

private String first; // first name
private String last; // last name

public ImmutableName(String firstName, String lastName)
{

first = firstName;
last = lastName;

} // end constructor

public String getFirst()
{

return first;
} // end getFirst

public String getLast()
{

return last;
} // end getLast

public String getName()
{

return toString();
} // end getName

public String toString()
{

return first + " " + last;
} // end toString

} // end ImmutableName

30-6 CHAPTER 30 Mutable, Immutable, and Cloneable Objects

30.9 We have one more concern. Imagine a class that has a Name object as a data field. The class has acces-
sor methods, including one that returns the Name field, but has no mutator methods. However, a client
of this class can access the Name field and then use Name’s set methods to alter the field’s value. In
other words, the class is not read only. To make it read only, we can define the field as final. Note that
the fields of ImmutableName are strings, which are immutable, so we need not make them final.

Companion Classes
30.10 Although immutable objects are desirable for certain applications, mutable objects have their place.

Sometimes we will want to represent an object in both immutable and mutable forms. In such cases, a
pair of companion classes can be convenient. The classes ImmutableName and Name are examples of
two such companion classes. The objects in both classes represent names, but one type of object can-
not be altered, while the other can be.

To make the classes even more convenient, you could include constructors and/or methods that
convert an object from one type to the other. For example, we might add the following constructor
and method to the class ImmutableName:

public ImmutableName(Name aName)
{
first = aName.getFirst();
last = aName.getLast();

} // end constructor

public Name getMutable()
{
return new Name(first, last);

} // end getMutable

Similarly, we could add the following constructor and method to the class Name:

public Name(ImmutableName aName)
{
first = aName.getFirst();
last = aName.getLast();

} // end constructor

public ImmutableName getImmutable()
{
return new ImmutableName(first, last);

} // end getMutable

Figure 30-3 illustrates the two classes Name and ImmutableName.

Note: Design guidelines for a read-only class

• The class should be final.
• Data fields should be private.
• The class should not have public set methods.
• Data fields that are mutable objects should be final.

Question 1 Define a constructor for ImmutableName that has a Name object as a parameter.

// add to the class ImmutableName:

// add to the class Name

Mutable and Immutable Objects 30-7

FIGURE 30-3 The classes Name and ImmutableName

30.11 Example. Let’s see how we can use the previous additions to our companion classes. If we have a
Name object such as flexibleName in the statement

Name flexibleName = new Name("Maria", "Mocha");

and we no longer need the capability to change it, we can use ImmutableName’s constructor, as
follows:

ImmutableName fixedName = new ImmutableName(flexibleName);

The new object fixedName has the same data fields as flexibleName, but it is immutable. Alterna-
tively, we could have invoked Name’s method getImmutable, as follows:

ImmutableName fixedName = flexibleName.getImmutable();

Similarly, if we have another instance of ImmutableName, such as
ImmutableName persistent = new ImmutableName("Jesse", "Java");

and we find that we need to alter it, we can define a new mutable object as either
Name transient = new Name(persistent);

or
Name transient = persistent.getMutable();

The new object transient has the same data fields as persistent, but it also has set methods to
change them.

Name

first
last

getFirst()
getLast()
getName()
setFirst(firstName)
setLast(lastName)
setName(firstName, lastName)
giveLastNameTo(aName)
toString()
getImmutable()

ImmutableName

first
last

getFirst()
getLast()
getName()
toString()
getMutable()

Question 2 Write Java statements that take the following steps:
• Create an object of the class Name.
• Convert the object to an immutable object without changing its data fields.
• Add the immutable object to the sorted list nameList.

Question 3 Write Java statements that take the following steps:
• Create an object of the class Immutable Name.
• Convert the object to a mutable object without changing its data fields.
• Change the last name of the new object.
• Convert the revised mutable object to an immutable object.

30-8 CHAPTER 30 Mutable, Immutable, and Cloneable Objects

Cloneable Objects

30.12 In Segment 30.4, we created a sorted list of mutable objects. Unfortunately, the client of this list can

VideoNote

modify the objects so that they are no longer sorted. As you saw then, one solution is to always place
immutable objects in a sorted list.

A more involved solution has the sorted list copy the client’s objects. The sorted list then can
control what the client can and cannot do to the copies. This section examines how to make a copy
of an object.

30.13 In Java, a clone is a copy of an object. Typically, we clone only mutable objects. Since sharing an
immutable object is safe, cloning it is usually unnecessary.

The class Object contains a protected method clone that returns a copy of an object. The
method has the following header:

protected Object clone() throws CloneNotSupportedException

Since clone is protected, and since Object is the superclass of all other classes, the implemen-
tation of any method can contain the invocation

super.clone()

But clients of a class cannot invoke clone unless the class overrides it and declares it public. Making
copies of objects can be expensive, so it might be something you do not want a class to do. By making
clone a protected method, the designers of Java force you to think twice about cloning.

30.14 If you want your class to contain a public method clone, the class needs to state this fact by imple-
menting the Java interface Cloneable, which is in the package java.lang of the Java Class Library.
Such a class would begin as follows:

public class MyClass implements Cloneable
{ . . .

The interface Cloneable is simply

public interface Cloneable
{
}

Note: Java’s class String is a read-only class. That is, instances of String are immutable.
Once you create a string, you cannot change it. Frequently, however, string applications
require that you either remove a portion of a string or join two strings together. For such
applications, Java provides the class StringBuilder of mutable strings. StringBuilder pro-
vides several methods that modify a string by adding, removing, or replacing substrings.
Appendix A describes some of the methods that belong to these two classes.

String and StringBuilder are a pair of companion classes. String has a constructor that
takes an instance of StringBuilder as an argument and produces an immutable string with the
same value. StringBuilder has an analogous constructor that creates mutable strings from
immutable ones. StringBuilder also has the methods substring and toString that return
instances of String.

Cloneable objects

Programming Tip: Not all classes should have a public clone method. In fact, most
classes, including read-only classes, do not have one.

Cloneable Objects 30-9

As you can see, the interface is empty. It declares no methods and serves only as a way for a class to indi-
cate that it implements clone. If you forget to write implements Cloneable in your class definition,
instances of your class that invoke clone will cause the exception CloneNotSupportedException.
This result can be confusing at first, particularly if you did implement clone.

30.15 Example: Cloning a Name object. Let’s add a method clone to the class Name of Segment B.16 in
Appendix B and Segment 30.10. Before we begin, we should add implements Cloneable to the
first line of the class definition, as follows:

public class Name implements Cloneable

The public method clone within Name must invoke the method clone of its superclass by exe-
cuting super.clone(). Because Name’s superclass is Object, super.clone() invokes Object’s
protected method clone. Object’s version of clone can throw an exception, so we must enclose
each call to it in a try block and write a catch block to handle the exception. The method’s final
action should return the cloned object.

Thus, Name’s method clone could appear as follows:

public Object clone()
{

Name theCopy = null;

try
{

theCopy = (Name)super.clone(); // Object can throw an exception
}
catch (CloneNotSupportedException e)
{

System.err.println("Name cannot clone: " + e.toString());
}

return theCopy;
} // end clone

Programming Tip: If your program produces the exception CloneNotSupported-
Exception even though you implemented a method clone in your class, you probably forgot
to write implements Cloneable in your class definition.

Note: The Cloneable interface
The empty Cloneable interface is not a typical interface. A class implements it to indicate
that it will provide a public clone method. Since the designers of Java wanted to provide a
default implementation of the method clone, they included it in the class Object and not in
the interface Cloneable. But because the designers did not want every class to automatically
have a public clone method, they made clone a protected method.

Note: Cloning
Cloning is not an operation that every class should be able to do. If you want your class to
have this ability, you must

• Declare that your class implements the Cloneable interface
• Override the protected method clone that your class inherits from the class Object

with a public version

30-10 CHAPTER 30 Mutable, Immutable, and Cloneable Objects

Since super.clone() returns an instance of Object, we must cast this instance to Name. After all,
we are creating a Name object as the clone. The return statement will implicitly cast theCopy to
Object, as required.

The exception that Object’s method clone can throw is CloneNotSupportedException. Since
we are writing a clone method for our class Name, this exception will never occur. Even so, we still
must use try and catch blocks when invoking Object’s clone method. Instead of the println
statement in the catch block, we could write the simpler statement

throw new Error(e.toString());

30.16 Two ways to copy. What does this method clone actually do? You want it to make copies of the data
fields associated with the invoking object. When a data field is an object, you can copy it in one of
two ways:

• You can copy the reference to the object and share the object with the clone, as illustrated in
Figure 30-4a. This copy is called a shallow copy; the clone is a shallow clone.

• You can copy the object itself, as illustrated in Figure 30-4b. This copy is called a deep copy;
the clone is a deep clone.

FIGURE 30-4 (a) A shallow clone; (b) a deep clone

30.17 Name’s clone is shallow. The class Name has the data fields first and last, which are instances of
String. Each field contains a reference to a string. It is these references that are copied when clone
invokes super.clone(). For example, Figure 30-5 illustrates the objects that the following state-
ments create:

Name april = new Name("April", "Jones");
Name twin = (Name)april.clone();

The clone twin is a shallow clone because the strings that are the first and last names are not copied.

Programming Tip: Every public clone method must invoke the method clone of the
base class by executing super.clone. Ultimately, Object’s protected clone method will be
invoked. That invocation must appear in a try block, even though a CloneNotSupported-
Exception will never occur.

Note: Object’s clone method returns a shallow clone.

Data field

Data fieldData field

An object

Data field

An object

(a)

Data
The object’s shallow clone

(b)

Data Cloned data The object’s deep clone

Cloneable Objects 30-11

FIGURE 30-5 An instance of Name and its shallow clone

A shallow clone is good enough for the class Name. Recall that instances of String are immutable.
Having an instance of Name and its clone share the same strings is not a problem because no one can
change the strings. This is good news since, like many classes that Java provides, String has no method
clone. Thus, if we change the clone’s last name by writing

twin.setLast("Smith");

twin’s last name will be Smith, but april’s will still be Jones, as Figure 30-6 shows. That is,
setLast changes twin’s data field last so that it references another string Smith. It does not
change april’s last, so it still references Jones.

FIGURE 30-6 The clone twin, after the statement twin.setLast(“Smith”)
changes one of its data fields

"April"

first last

"Jones"

first last
april, an instance of Name

twin, the shallow clone april.clone()

"April"

first last

"Jones"

first last
april, an instance of Name

twin, the shallow clone april.clone()

"Smith"

Programming Tip: Shallow copies of data fields that reference immutable objects are
typically sufficient for a clone. Sharing an immutable object is usually safe.

30-12 CHAPTER 30 Mutable, Immutable, and Cloneable Objects

30.18 Example: Creating a deep clone of a single field. Sometimes a shallow clone is unsuitable. If a
class has mutable objects as data fields, you must clone the objects and not simply copy their refer-
ences. For example, let’s add a method clone to the class Student that we encountered in Segment C.2
of Appendix C. The class has the following form after we add the required implements clause:

{
private Name fullName;
private String id;

< Constructors and the methods setStudent, setName, setId, getName, getId, and
toString >

. . .
} // end Student

Since the class Name has set methods, the data field fullName is a mutable object. Therefore, we
should be sure to clone fullName within the definition of Student’s clone method. We can do that
because we added a clone method to Name in Segment 30.15. Since String is read only, id is immutable,
and so cloning it is unnecessary. Thus, we can define a clone method for the class Student as follows:

public Object clone()
{

Student theCopy = null;

try
{

theCopy = (Student)super.clone(); // Object can throw an exception
}
catch (CloneNotSupportedException e)
{

throw new Error(e.toString());
}

theCopy.fullName = (Name)fullName.clone();
return theCopy;

} // end clone

After invoking super.clone(), we clone the mutable data field fullName by calling Name’s public
clone method. This latter invocation need not be within a try block. Only Object’s clone method
contains a throws clause.

Figure 30-7 illustrates an instance of Student and the clone that this method returns. As you
can see, the Name object that represents the student’s full name is copied, but the strings that repre-
sent the first and last names, as well as the ID number, are not.

FIGURE 30-7 An instance of Student and its clone, including a deep copy of fullName

public class Student implements Cloneable

fullName

id

An instance s of Student

"Kim"

first last

"Lo"

"1234"

first last

fullName

id

The clone s.clone()

Cloneable Objects 30-13

Had we failed to clone the data field fullName—that is, had we omitted the statement
theCopy.fullName = (Name)fullName.clone();

the student’s full name would be shared by the original instance and its clone. Figure 30-8
illustrates this situation.

FIGURE 30-8 An instance of Student and its clone, including a shallow copy
of fullName

30.19 Example: Cloning a CollegeStudent object. Now let’s add a clone method to a subclass of
Student. Segment C.8 of Appendix C defines such a subclass, namely the class CollegeStudent.
After we add an implements clause to its definition, the class has the following form:

public class CollegeStudent extends Student implements Cloneable
{

private int year; // year of graduation
private String degree; // degree sought

fullName

id

An instance of Student

first last

"Kim" "Lo"

"1234"

fullName

id

The shallow clone

Question 4 Suppose that x is an instance of Student and y is its clone; that is,
Student y = (Student)x.clone();

a. If you change x’s last name by executing

Name xName = x.getName();
xName.setLast("Smith");

does y’s last name change? Explain.

b. If you fail to clone fullName within Student’s clone method, will changing x’s last name
change y’s last name as well? Explain.

Note: Within each public clone method, you typically perform the following tasks:

• Invoke the clone method of the superclass by writing super.clone().
• Enclose this call to clone in a try block, and write a catch block to handle the possible

exception CloneNotSupportedException. You can skip this step if super.clone() invokes
a public clone method.

• Clone the mutable data fields of the object that super.clone() returned, when possible.
• Return the clone.

30-14 CHAPTER 30 Mutable, Immutable, and Cloneable Objects

< Constructors and the methods setStudent, setYear, getYear, setDegree, getDegree,
and toString >

. . .
} // end CollegeStudent

The data fields of a CollegeStudent object are a primitive value and an immutable object, and
so they do not need to be cloned. Thus, the definition of clone that we add to CollegeStudent is as
follows:

public Object clone()
{

CollegeStudent theCopy = (CollegeStudent)super.clone();
return theCopy;

} // end clone

The method must call Student’s clone method, and it does so with the invocation super.clone().
Note that since Student’s clone method does not throw an exception, no try block is necessary
when we call it. Had CollegeStudent defined fields that needed to be cloned, we would clone them
right before the return statement.

Cloning an Array
30.20 The class AList that you saw in Chapter 13 uses an array to implement the ADT list. Suppose that we

want to add a clone method to this class.
While making a copy of the list, clone needs to copy the array and all the objects in it. Thus,

the objects in the list must have a clone method as well. Recall that AList defines a generic type T
for the objects it contains. Beginning AList as

public class AList<T extends Cloneable> . . . // incorrect

will not work correctly, since the interface Cloneable is empty.
Instead, we define a new interface that declares a public method clone to override Object’s

protected method:
public interface Copyable extends Cloneable
{

public Object clone();
} // end Copyable

We then can begin AList with any one of the following statements:

• public class AList<T extends Copyable> implements ListInterface<T>, Cloneable
• public class AList<T extends Copyable> implements ListInterface<T>, Copyable
• public class AList<T extends Copyable> implements CloneableListInterface<T>

where CloneableListInterface is defined as follows:

public interface CloneableListInterface<T>
extends ListInterface<T>, Copyable // or Cloneable

{
} // end CloneableListInterface

The notation
AList<T extends Copyable>

requires the objects in the list to belong to a class that implements our interface Copyable.
Note that CloneableListInterface extends two interfaces, ListInterface and either

Copyable or Cloneable. As noted in Segment D.25 of Appendix D, an interface can extend
more than one interface, even though a class can extend only one other class.

Cloneable Objects 30-15

30.21 Using Copyable as a bound for T requires us to change the implementation of AList’s constructor.
Recall from Listing 13-1 in Chapter 13 that one field of AList is an array of list entries:

private T[] list;

Writing
list = (T[]) new Object[initialCapacity];

in the constructor causes a ClassCastException. Instead, we write
list = (T[]) new Copyable[initialCapacity];

30.22 Now we can implement clone. We will invoke super.clone() within a try block but perform the
rest of the tasks after the catch block. Thus, we have the following outline for AList’s method clone:

public Object clone()
{

AList<T> theCopy = null;

try
{

theCopy = (AList<T>)super.clone(); // not enough by itself
}
catch (CloneNotSupportedException e)
{

throw new Error(e.toString());
}

< For a deep copy, we need to do more here, as you will see. >
. . .
return theCopy;

} // end clone

The method first invokes super.clone and casts the returned object to AList<T>. To perform a
deep copy, we need to clone the data fields that are or could be mutable objects. Thus, we need to
clone the array list.

30.23 Arrays in Java have a public clone method; in other words, they implement Cloneable. So we can
add the following statement to the list’s clone method:

theCopy.list = (T[])list.clone();

No try and catch blocks are necessary here.
An array’s clone method creates a shallow copy of each object in the array. For our deep copy,

we need to clone each array entry. Since we insisted that the list’s entries have a public clone
method, we can write a loop whose body contains the following statement:

theCopy.list[index] = (T)list[index].clone();

We can control the loop by using AList’s data field numberOfEntries, which records the number of
entries in the list.

Thus, we have the following definition of clone for the class AList:

public Object clone()
{

AList<T> theCopy = null;

Programming Tip: When bounding generic types, use an interface that declares a pub-
lic method clone instead of using Cloneable. The new interface must extend Cloneable,
however.

30-16 CHAPTER 30 Mutable, Immutable, and Cloneable Objects

try
{

theCopy = (AList<T>)super.clone();
}
catch (CloneNotSupportedException e)
{

throw new Error(e.toString());
}

theCopy.list = (T[])list.clone();

for (int index = 0; index < numberOfEntries; index++)
theCopy.list[index] = (T)list[index].clone();

return theCopy;
} // end clone

Cloning a Chain
30.24 Now suppose that we want to add a clone method to a linked implementation of the ADT list, such as

the class LList of Chapter 14 or the class LinkedChainBase of Chapter 17. (The clone methods for
these classes are virtually identical.) Given the interface Copyable, we can begin the class in one of
the ways given in Segment 30.20. Ultimately, the class and the objects in the list must implement the
interface Cloneable. Thus, LList, for example, could begin as follows:

public class LList<T extends Copyable> implements CloneableListInterface<T>
{

private Node firstNode; // reference to first node
private int numberOfEntries;
. . .

The first part of the clone method would be like the code that you saw in Segment 30.22,
except that we would replace AList with LList. If we invoked only super.clone(), our method
would produce a shallow copy of the list, as Figure 30-9 illustrates. In other words, both the origi-
nal list and its clone would reference the same chain of nodes, and these nodes would reference one
set of data.

As before, clone needs to do more to perform a deep copy. It needs to clone the chain of nodes
as well as the data that the nodes reference. Figure 30-10 shows a list with its deep clone.

30.25 Cloning a node. To clone the nodes in the chain, we need to add a method clone to the inner class
Node. First, we add implements Cloneable to the declaration of the class Node. Note that Node is
private in LList but protected in LinkedChainBase. Node’s clone method begins like other clone
methods, but then it goes on to clone the data portion of the node. We do not bother cloning the

Note: To make a deep clone of an array a of cloneable objects, you invoke a.clone() and
then clone each object in the array. For example, if myArray is an array of Thing objects, and
Thing implements Cloneable, you would write

Thing[] clonedArray = (Thing[])myArray.clone();

for (int index = 0; index < myArray.length; index++)
clonedArray[index] = (Thing)myArray[index].clone();

Cloneable Objects 30-17

FIGURE 30-9 A list and its shallow clone: linked implementation

FIGURE 30-10 A list and its deep clone: linked implementation

link, since the list’s clone method will set it. With these changes, the revised class Node appears in
LList as follows (changes are highlighted):

{
private T data;
private Node next;

< Constructors >
. . .

< Accessor and mutator methods getData, setData, getNextNode, and setNextNode >
. . .

firstNodenumberOfEntries

A list

Data in the list

Chain of nodes

The list’s shallow clone

3

firstNodenumberOfEntries

3

firstNodenumberOfEntries

A list

Data in the list

Chain of nodes

Cloned chain of nodes

The list’s deep clone

Cloned data in the list

3

firstNodenumberOfEntries

3

public class Node implements Cloneable

30-18 CHAPTER 30 Mutable, Immutable, and Cloneable Objects

protected Object clone()
{

Node theCopy = null;
try
{

theCopy = (Node)super.clone();
}
catch (CloneNotSupportedException e)
{

throw new Error(e.toString());
}

theCopy.data = (T)data.clone();
theCopy.next = null; // don't clone link; it’s set later

return theCopy;
} // end clone

} // end Node

Remember that data invokes a public method clone that does not throw an exception, and so
data.clone() can appear outside of a try block.

30.26 Cloning the chain. LList’s clone method invokes super.clone() in a statement such as

LList<T> theCopy = (LList<T>)super.clone();

The method then must clone the chain of nodes that stores the list’s data. To do so, the method
needs to traverse the chain, clone each node, and link the cloned nodes appropriately. We begin by
cloning the first node so that we can set the data field firstNode correctly:

// make a copy of the first node
theCopy.firstNode = (Node)firstNode.clone();

Next, we traverse the rest of the chain. A reference newRef references the last node that we
have added to the new chain, while the reference oldRef keeps track of where we are in the tra-
versal of the original chain. The statement

newRef.setNextNode((Node)oldRef.clone()); // attach cloned node

clones the current node in the original chain, along with its data, and then links the clone to the end
of the new chain. Recall that Node’s clone method also clones the data that a node references.

The following statements incorporate the previous ideas and clone the rest of the chain:

Node newRef = theCopy.firstNode; // last node in new chain
Node oldRef = firstNode.getNextNode(); // next node in old chain

for (int count = 2; count <= numberOfEntries; count++)
{

newRef.setNextNode((Node)oldRef.clone()); // attach cloned node
newRef = newRef.getNextNode(); // update references
oldRef = oldRef.getNextNode();

} // end for

30.27 The code in the previous segment assumes a nonempty chain of nodes. The complete clone method
that follows checks for an empty chain.

public Object clone()
{

LList<T> theCopy = null;

Cloneable Objects 30-19

try
{

theCopy = (LList<T>) super.clone();
}
catch (CloneNotSupportedException e)
{

throw new Error(e.toString());
}

// copy underlying chain of nodes

if (firstNode == null) // if chain is empty
{

theCopy.firstNode = null;
}
else
{

// make a copy of the first node
theCopy.firstNode = (Node)firstNode.clone();

// make a copy of the rest of chain
Node newRef = theCopy.firstNode;
Node oldRef = firstNode.getNextNode();

for (int count = 2; count <= numberOfEntries; count++)
{

// clone node and its data; link clone to new chain
newRef.setNextNode((Node)oldRef.clone());
newRef = newRef.getNextNode();
oldRef = oldRef.getNextNode();

} // end for
} // end if

return theCopy;
} // end clone

A Sorted List of Clones
30.28 Segment 30.4 talked about the danger of placing mutable objects in a collection such as a sorted list. If

the client retains a reference to any of the objects, it could alter those objects and destroy the integrity
of the collection. In the case of a sorted list, the client could destroy the sorted order of the objects.

Segment 30.5 offered one solution to this problem, namely to place only immutable objects
in the collection. This section offers another solution that enables you to place mutable objects in
the collection.

Suppose that a client adds an object to a collection. Imagine that the collection clones the
object before adding it to its data. The client then would be able to access or change the collection’s
data only by using ADT operations. It would not have a reference to the clone that it could use to
alter the clone. Of course, this scenario requires that the added object be Cloneable. Let’s examine
the details of such an implementation of the ADT sorted list.

Note: To make a deep clone of a chain of linked nodes that reference cloneable objects,
you must clone the nodes as well as the objects.

Question 5 The for statement in Segment 30.27 is controlled by the number of nodes in
the chain. Revise this statement and its associated body so that it is controlled by oldRef.

30-20 CHAPTER 30 Mutable, Immutable, and Cloneable Objects

30.29 Segment 16.1 of Chapter 16 noted that objects in a sorted list must be Comparable—that is, they must
have a compareTo method. In this case, we also want the objects to be Cloneable. Segment 30.20
defined an interface Copyable that declares a public method clone. Using that interface, let’s create
another one:

public interface ComparableAndCopyable<T> extends Comparable<T>, Copyable
{
} // end ComparableAndCopyable

This interface will enable us to bound the generic type of the objects we place into the sorted list, as
the next segment will show.

A class that implements ComparableAndCopyable must define the methods compareTo and
clone. For example, the class Name mentioned in Segment 30.15 could begin as follows:

public class Name implements ComparableAndCopyable<Name>

Name’s method clone is given in Segment 30.15, and you wrote compareTo when you answered
Question 8 in Appendix D.

30.30 Since we want the sorted list to contain only objects that are both Comparable and Copyable, we can
begin the definition of a class SortedList as follows:

public class SortedList<T extends ComparableAndCopyable<? super T>>

We introduced this notation in Segments 8.1 and 8.2 of Chapter 8. The class that T represents must
implement the interface ComparableAndCopyable. The notation ? super T, which means any superclass
of T, affects the interface Comparable—as you can see by looking at ComparableAndCopyable—and
hence the method compareTo.

We can revise our interface for a sorted list by beginning it as follows:

public interface SortedListInterface
<T extends ComparableAndCopyable<? super T>>

and then use it in the definition of SortedList:

public class SortedList<T extends ComparableAndCopyable<? super T>>
implements SortedListInterface<T>

30.31 With these logistics out of the way, we propose the following changes to the implementation of the
ADT sorted list. You can apply these changes to the implementations discussed in Chapters 16
and 17:

• In add, place a clone of the desired entry into the sorted list instead of the entry itself. That is,
place newEntry.clone() into the list instead of newEntry. Thus, the body of the method
could begin with

Node newNode = new Node((T)newEntry.clone());

Since clone returns an Object, the cast to the generic type T is necessary.

• In getEntry, return a clone of the desired entry instead of the entry itself. For example, you
could return (T)result.clone() instead of result.

Let’s examine these changes more closely. Suppose that a client has a reference, newEntry, to
an object, and it adds the object to a collection. The collection clones the object and adds the clone
instead of the original object, as Figure 30-11 illustrates. The client has no reference to the collec-
tion’s data. If the client modifies the object that newEntry references, the collection is not changed.

What if getEntry did not return a clone of the desired entry but instead returned a reference to
the desired entry in the collection? As Figure 30-12 illustrates, the client would be able to change

Cloneable Objects 30-21

the entry within the collection. So even though the collection contains a clone of the client’s origi-
nal object, getEntry would give the client access to the clone. Thus, it is necessary for getEntry to
return a clone of the desired entry. This is a clone of the clone of the client’s original object, as
Figure 30-13 shows.

FIGURE 30-11 A collection and its client after the clone of an object is added to
the collection

FIGURE 30-12 The effect of getEntry if it did not return a clone

FIGURE 30-13 The effect of getEntry when it returns a clone

newEntry

A client of a collection

An object Clone of the object

A collection

newEntry

Reference that
getEntry returns

A client of a collection

An object Clone of the object

A collection

newEntry

Reference that
getEntry returns

A client of a collection

An object Clone of the object

A collection

Clone of the clone

30-22 CHAPTER 30 Mutable, Immutable, and Cloneable Objects

30.32 Realize that some devious programming could defeat the purpose of our sorted list of clones. You
could write a clone method that retains a reference to the clone. Then, knowing when a sorted list
calls clone, you could get and retain the reference to the clone. Restricting the contents of a collection
to immutable objects is a safer way to maintain its integrity.

CHAPTER SUMMARY

PROGRAMMING TIPS

Note: A collection can clone the objects that a client adds to it, but you will have duplicates
of each entry in the collection. For complex objects, the time and memory needed to make
each copy can be substantial.

• An object that belongs to a class having public mutator (set) methods is mutable because the client can use
the methods to change the values of the object’s data fields. If a client cannot change the values of an
object’s data fields, the object’s class is read only, and the object is immutable.

• A read-only class is final, has private data fields that, if mutable, are final, and has no public set methods.

• Companion classes represent the same data in both immutable and mutable forms.

• The class Object includes a protected method clone that makes an identical copy of an object. A class can
override clone and declare it public, thus making it available to a client of the class. Such a class must imple-
ment the Java interface Cloneable. If a class does not override clone, it has no clone method, since clone is
protected in Object.

• A clone method should invoke super.clone() to ensure that all aspects of an object are copied.

• Every array has a clone method that copies the array but not the objects in it. A separate step is necessary to
clone these objects.

• To create a deep clone of a chain of linked nodes, you must clone the nodes, including their data objects.

• Use an immutable object if it will be shared or added to a collection that can be corrupted by changes to the
object. Use a mutable object if its data will change frequently.

• Not all classes should have a public clone method. In fact, most classes, including read-only classes, do not
have one.

• If your program produces the exception CloneNotSupportedException even though you implemented a
method clone in your class, you probably forgot to write implements Cloneable in your class definition.

• Every public clone method must invoke the method clone of the base class by executing super.clone.
Ultimately, Object’s protected clone method will be invoked. That invocation must appear in a try block,
even though a CloneNotSupportedException will never occur.

• Shallow copies of data fields that reference immutable objects are typically sufficient for a clone. Sharing an
immutable object is usually safe.

• When bounding generic types, use an interface that declares a public method clone instead of using
Cloneable. The new interface must extend Cloneable, however.

Exercises 30-23

EXERCISES

1. Is the class Student that is mentioned in Segment 30.18 mutable or immutable? Describe what you would do to
create a companion class for Student.

2. a. Using the method getEntry of the ADT list, describe a client-level method that modifies the entry at a given
position within a list.

b. What must you know about the entries in the list for your method to work?
c. Does the method replace of the ADT list have any advantage over your method?

3. Implement the method compareTo for the class ImmutableName.

4. Consider the following class definition:

public class Friend
{

private Name friendsName;
private String friendsAddress;

public Friend(Name aName, String anAddress)
{

friendsName = aName;
friendsAddress = anAddress;

} // end constructor

public Name getName()
{

return friendsName;
} // end getName

public String getAddress()
{

return friendsAddress;
} // end getAddress

} // end Friend

Is this class read only? Why?

5. Given the class Name, define a companion class ImmutableName by using composition. That is, ImmutableName
should contain an instance of Name as a data field. What are the advantages and disadvantages of using
composition to define companion classes?

6. Given the class ImmutableName, define a companion class Name by using inheritance. What are the advantages and
disadvantages of using inheritance to define companion classes?

7. Define an interface, ImmutableNameInterface, that declares the methods in the class ImmutableName. Define
another interface, MutableNameInterface, that extends ImmutableNameInterface and declares the methods in the
class Name. Then modify the classes ImmutableName and Name so that they implement ImmutableNameInterface
and MutableNameInterface, respectively.

8. A variable of type ImmutableNameInterface can reference objects of what type?

9. A variable of type MutableNameInterface can reference objects of what type?

10. A variable of type Name can reference objects of what type?

11. A variable of type ImmutableName can reference objects of what type?

30-24 CHAPTER 30 Mutable, Immutable, and Cloneable Objects

12. The class NickName given in Segment C.3 of Appendix C has a data field that is an instance of the class Name
and two methods, setNickName and getNickName. Implement a method clone for NickName, assuming that Name
implements the interface Cloneable.

13. Consider a class that implements ListInterface but does not make clones of objects added to the list. Suggest
two ways that we can make a list of clones.

14. Consider a class that implements ListInterface and makes clones of objects added to the list. Suggest two ways
that we can make a list of the original objects.

15. Consider the following class definition:
public class FamilyMember implements Cloneable
{

private Name myName;
private FamilyMember mySpouse;

public FamilyMember(Name aName)
{

myName = aName;
} // end constructor

public Name getName()
{

return myName;
} // end getName

public FamilyMember getSpouse()
{

return mySpouse;
} // end getSpouse

public void setSpouse(FamilyMember spouse)
{

mySpouse = spouse;
} // end setSpouse

public Object clone()
{

FamilyMember theCopy = null;
try
{

theCopy = (FamilyMember)super.clone();
}
catch(CloneNotSupportedException e)
{

System.err.println("FamilyMember cannot clone:" + e.toString());
}
return theCopy;

} // end clone
} // end FamilyMember

Draw a diagram showing the state of the objects after the following code executes.

FamilyMember jack = new FamilyMember(new Name("Jack", "Buck"));
FamilyMember jane = new FamilyMember(new Name("Jane", "Doe"));
jack.setSpouse(jane);
jane.setSpouse(jack);
FamilyMember copy = (FamilyMember)jane.clone();

16. Replace the method copy, as discussed in Segment 24.6 of Chapter 24, with a method clone. That is, make
BinaryNode implement the interface Cloneable. Cloning a node should also clone the node’s data object.

Answers to Self-Test Questions 30-25

PROJECTS

ANSWERS TO SELF-TEST QUESTIONS

1. Define a pair of companion classes modeled after the class Student, as given in Segment C.2 of Appendix C.

2. Project 5 in Chapter 7 asked you to write a class KnapsackItem of items that would be placed in a list. Design
and implement a pair of companion classes for such knapsack items.

3. Project 6 in Chapter 7 asked you to write a class Activity of activities that would be placed in a list. Design and
implement a pair of companion classes for such activities.

4. Chapter 13 describes an implementation of the ADT list that uses an instance of the class Vector to represent the
entries in the list. Write a clone method for this implementation and demonstrate that it works. Note that Vector
implements the interface Cloneable.

5. Revise the linked implementation of the ADT sorted list, as given in Chapter 16, according to the suggestions
about cloning given in Segment 30.31. That is, the method add should place a clone of the desired entry, instead of
the entry itself, into the sorted list. Additionally, the method getEntry should return a clone of the desired entry,
instead of returning the entry itself.

6. Suppose that you wanted to implement a deep copy for the class FamilyMember defined in Exercise 15 in this
chapter.

a. What difficulty will arise?
b. Implement a clone method for FamilyMember that makes a deep copy.

7. Define three classes—A, B, and C—such that C is a subclass of B, and B is a subclass of A . Each class should define
a clone method and have at least one data field that is a mutable, cloneable object.

1. public ImmutableName(Name aName)
{

first = aName.getFirst();
last = aName.getLast();

} // end constructor

2. // Create an object of the class Name
Name derek = new Name("Derek", "Greene");
// Convert the object to an immutable object; don’t change its data fields
ImmutableName derekI = derek.getImmutable();
// Add the immutable object to the sorted list nameList
SortedListInterface<ImmutableName> nameList = new SortedList<ImmutableName>();
nameList.add(derekI);

3. // Create an object of the class ImmutableName
ImmutableName lila = new ImmutableName("Lila", "Bleu");
// Convert the object to a mutable object; don’t change its data fields
Name changer = lila.getMutable();
// Change the last name of the new object
changer.setLast("Greene");
// Convert the revised mutable object to an immutable object
ImmutableName unchanger = changer.getImmutable();

4. a. No. The clone y has a name object that is distinct from x’s name object, because a deep copy was made.
(See Figure 30-7.)

b. Yes. Both objects share one name object. (See Figure 30-8.)

30-26 CHAPTER 30 Mutable, Immutable, and Cloneable Objects

5. Node newRef = theCopy.firstNode;
for (Node oldRef = firstNode.getNextNode(); oldRef != null; oldRef = oldRef.getNextNode())
{

newRef.setNextNode((Node)oldRef.clone());
newRef = newRef.getNextNode();

} // end for

Index

A
arrays, cloning, 14–16

C
chains, cloning, 16–19
classes

companion, 6–8
creating read-only, 4–6
read-only, 4

clone method, 8, 13–14
Cloneable interface, 8–9
clones

described, 8
shallow, 10–12
sorted list of, 19–22

cloning
an array, 14–16
chains, 16–19
name objects, 9–10
nodes, 16–17
operation described, 9

collections, altering objects in, 4
companion classes, examples of, 6–8
copying, and cloning, 10
creating read-only classes, 4–6

D
deep vs. shallow copy, 10–12

I
immmutable objects, 2–8
ImmutableName class, 5–8
interface Cloneable, 8–9

L
list of chains, sorted, 19–22
lists, 2–3
lists, sorted, 3–4
LList class, 16–19

M
mutable and immutable objects, 2–8
mutator (set) methods, 2

N
Name class, 2–4, 6–7, 9–13
name objects, cloning, 9–10
nodes, cloning, 16–17

O
objects

cloneable, 8–22
cloning name, 9–10
mutable and immutable, 2–8

R
read-only classes, creating, 4–6

S
shallow copy, shallow clone, 10–12
sorted list of clones, 19–22
String class, 8
StringBuilder class, 8

Appendix

AJava Essentials
Contents
Introduction

Applications and Applets
Objects and Classes
A First Java Application Program

Java Basics
Identifiers
Reserved Words
Variables
Primitive Types
Constants
Assignment Statements
Assignment Compatibilities
Type Casting
Arithmetic Operators and Expressions
Parentheses and Precedence Rules
Increment and Decrement Operators
Special Assignment Operators
Named Constants
The Class Math

Simple Input and Output Using the Keyboard and Screen
Screen Output
Keyboard Input Using the Class Scanner

The if-else Statement
Boolean Expressions
Nested Statements
Multiway if-else Statements
The Conditional Operator (Optional)

The switch Statement
Enumerations

A-2 APPENDIX A Java Essentials

Scope
Loops

The while Statement
The for Statement
The do-while Statement
Additional Loop Information

The Class String
Characters Within Strings
Concatenation of Strings
String Methods

The Class StringBuilder
Using Scanner to Extract Pieces of a String
Arrays

Array Parameters and Returned Values
Initializing Arrays
Array Index Out of Bounds
Use of = and == with Arrays
Arrays and the For-Each Loop
Multidimensional Arrays

Wrapper Classes

Prerequisite
Knowledge of a programming language

This book assumes that you know how to write programs in Java. If you know some other
programming language, this appendix will help you to learn Java by reviewing the essential
elements of the language. Appendices B, C, and D supplement the coverage of Java that is presented
here by discussing methods, classes, and inheritance. Appendices E, F, and G cover exceptions, file
I/O, and comments.

If you already know Java, note that this book uses applications, not applets. If you know only
about applets, you should read at least the first few pages of this appendix.

Introduction

Applications and Applets
A.1 There are two kinds of Java programs, applications and applets. An application is simply a pro-

gram that runs on your computer like any other program. It is a stand-alone program. In contrast,
an applet is a program that cannot run without the support of a browser or a viewer. Typically, an
applet is sent to another location on the Internet and is run there. The term “applet” is meant to sug-
gest a little application.

Applets and applications are almost identical. Once you know how to design and write one, it
is easy to learn to write the other. This book uses applications rather than applets.

Introduction A-3

Objects and Classes
A.2 An object is a program construct that contains data and can perform certain actions. When a Java

program is run, the objects interact with one another to accomplish a particular task. The actions
performed by objects are defined by methods in the program. When you ask an object to perform
an action, you invoke, or call, a method. Java has two kinds of methods. A valued method uses a
return statement to return a result, but a void method does not.

All objects of the same kind are said to be in the same class. So a class is a category or kind or
type of object. All objects in the same class have the same types of data and the same methods.

You will see some objects and methods in the next section and again when we discuss the
classes Math, Scanner, and String later in this appendix. Appendix B reviews classes, objects,
and methods in more detail. If you are not familiar with these concepts, you should read at least
Segment B.1 in Appendix B now and the rest of Appendix B and Appendix C later.

A First Java Application Program
A.3 To give you a feel for the Java language, let’s take a brief, informal look at the following sample

Java application program:

import java.util.Scanner;
public class FirstProgram
{

public static void main(String[] args)
{

Scanner keyboard = new Scanner(System.in);
System.out.println("Hello out there.");
System.out.println("Want to talk some more?");
System.out.println("Answer yes or no.");

String answer = keyboard.next();
if (answer.equals("yes"))

System.out.println("Nice weather we are having.");
System.out.println("Good-bye.");

} // end main
} // end FirstProgram

The program is stored in the file FirstProgram.java.
Figure A-1 shows two screen displays that might be produced when a user runs and interacts

with this program. The text typed by the user is shown in blue.

FIGURE A-1 Two possible results when running the sample program

A.4 This program uses the class Scanner, which is a part of the Java Class Library. This library con-
tains many standard classes that you can use in your Java programs. The classes in the library are

Hello out there.
Want to talk some more?
Answer yes or no.
yes
Nice weather we are having.
Good-bye.

Hello out there.
Want to talk some more?
Answer yes or no.
no
Good-bye.

A-4 APPENDIX A Java Essentials

organized into groups called packages. The import statement indicates that this program uses the
class Scanner from the package java.util.

The program contains the definition of a class that begins with the lines

public class FirstProgram
{

and ends with
} // end FirstProgram

Within the class definition is a method called main that begins with the statements

public static void main(String[] args)
{

and ends with
} // end main

Statements within this pair of braces are the body of the method main. Generally, a class con-
tains several methods, each defining a specific task and each having a name of our choosing. An
application program, however, must contain a method that is called main.

A.5 The line
Scanner keyboard = new Scanner(System.in);

gets us ready to read data from the keyboard using Java’s class Scanner. It defines the Scanner
object keyboard and associates it with the object System.in. This latter object represents the com-
puter’s keyboard. System.in is in the class System, which is in the package java.lang of the Java
Class Library.

A.6 The next three lines display text for the user of the program:
System.out.println("Hello out there.");
System.out.println("Want to talk some more?");
System.out.println("Answer yes or no.");

Each of these lines causes the quoted characters, or string, given within the parentheses to be dis-
played on the screen. System.out is an object within the class System that can send output to the
screen via its method println. You invoke an object’s method by writing the object name followed
by a period, or dot, followed by the method name and some parentheses that may or may not have
something inside them. The text inside the parentheses is called an argument and provides the
information the method needs to carry out its action. In each of these three lines, the method
println writes the value of its argument—here, the characters inside the quotes—to the screen.

The method println is an example of a void method. It performs an action, but does not return
a value.

A.7 The next line of the program reads the characters that are typed at the keyboard and stores them in
the variable answer as a string:

String answer = keyboard.next();

The Scanner object keyboard invokes its method next to read the word that the user types at the
keyboard. The user presses the Enter key (also called the Return key) after typing the word.
Although the method next has no arguments, the parentheses are required. You will learn more
about the class Scanner later in this appendix.

Programming Tip: No import statement is necessary when you use a class from the
package java.lang of the Java Class Library.

Java Basics A-5

The method next is an example of a valued method. It returns the value read. Its invocation,
keyboard.next(), represents this value.

A.8 The next two lines of the program make a decision to do or not do something based on the value of
the variable answer. The first line asks whether the string stored in answer is the string yes. If it is,
a message is displayed on the screen. Otherwise, the message is not displayed.

Notice that the first sample dialogue in Figure A-1 displays the string Nice weather we are
having, and the second one does not. That is because, in the first run of the program, the string yes
is stored in the variable answer, and in the second run of the program, the string no is stored in
answer.

A.9 Of course, precise rules govern how you write each part of a Java program. For example, a final
semicolon ends each Java statement. These rules form the grammar for the Java language, just as
there are rules for the grammar of the English language. The grammar rules for a programming lan-
guage (or any language) are called the syntax of the language. We now look at the elements of Java
in more detail.

Java Basics
In this section, we examine how to use Java to perform arithmetic computations.

Identifiers
A.10 You use identifiers to name certain parts of a program. An identifier in Java consists entirely of let-

ters, digits, the underscore character _, and the dollar sign $. An identifier cannot start with a digit
and must not contain a space or any other special character such as a period or an asterisk. There is
no official limit to the length of a name, though in practice, there is always a limit. Although Java
allows identifiers to contain a dollar sign, it is reserved for special purposes, and so you should not
use $ in a Java identifier.

Java is case sensitive. This means that it treats uppercase letters and lowercase letters as differ-
ent characters. For example, mystuff, myStuff, and MyStuff are three different identifiers. Having
these identifiers in the same program could be confusing to human readers, and therefore doing so
is a poor programming practice. But the Java compiler would be happy with them.

Java uses a character set, called Unicode, that includes characters from languages other than
English. Java allows you to use these extra characters in identifiers, but you are not likely to find
them on most keyboards. Segment A.68 discusses Unicode further.

A.11 Although it is not required by the Java language, the common practice, and the one followed in this
book, is to start the names of classes with uppercase letters and to start the names of objects, meth-
ods, and variables (which you are about to see) with lowercase letters. These names are usually
spelled using only letters and digits. We separate multiword names by using uppercase letters, since
we cannot use spaces. For example, the following are all legal identifiers that follow this well-
established convention:

inputStream YourClass CarWash hotCar theTimeOfDay

Some people use an underscore to separate the words in an identifier, but typically we will not.
The following are all illegal identifiers in Java, and the compiler will complain if you use any

of them:
.MyClass goTeam- 7eleven

The first two contain an illegal character, either a dot or a dash. The last name is illegal because it
starts with a digit.

A-6 APPENDIX A Java Essentials

Reserved Words
A.12 Some words, such as the word if, have a special predefined meaning in the Java language. You

cannot use these words, called reserved words or keywords, for anything other than their intended
meaning. A full list of reserved words for Java is given on the inside cover of this book. Within a
programming environment, the names of reserved words are often highlighted in some way. In this
book, they will appear in boldface.

Some other words, such as String, name classes that are supplied with Java. They have a pre-
defined meaning but are not reserved words. This means that you can change their meaning, but
doing so could easily confuse you or somebody else reading your program.

Variables
A.13 A variable in a program represents a memory location that stores data such as numbers and letters.

The number, letter, or other data item in a variable is called its value. This value can be changed, so
that at one time the variable contains, say, 6, and at another time after the program has run for a
while, the variable contains a different value, such as 4.

You use an identifier to name a variable. Besides following the rules and conventions for iden-
tifiers, you should choose variable names that suggest their use or the kind of data they will hold.
For example, if a variable is used to count something, you might name the variable count. If the
variable is used to hold the speed of an automobile, you might call the variable speed. You should
almost never use single-letter variable names like x and y.

A.14 A variable’s data type—or simply type—determines what kind of value the variable can hold. If
the type is int, the variable can hold integers. If the type is double, the variable can hold numbers
with a decimal point and a fractional part after the decimal point. If the type is char, the variable
can hold any one character from the computer keyboard.

Java has two kinds of types, reference types and primitive types. A reference type—also called
a class type—is a type that represents a class, that is, a type for objects of a class. For example,
String is a class type. A variable of a reference type is called a reference variable. A primitive type
is a simpler type. Values of a primitive type are not complex items but simple, indecomposable values,
such as a single number or a single letter. The types int, double, and char are primitive types. The
names of primitive types begin with a lowercase letter. By convention, the names of class types begin
with an uppercase letter. Also by convention, variable names of either class types or primitive types
begin with a lowercase letter.

A.15 A variable declaration indicates the type of data the variable will hold. Different types of data are
stored in the computer’s memory in different ways. Variable declarations are necessary so that the
value of a variable can be correctly stored in or retrieved from the computer’s memory. Even though
the mechanisms for storing values in the variables of class types differ from the mechanisms used for
primitive types, you declare variables for class types and primitive types in the same way.

You declare a variable by writing a type name followed by a list of variable names separated
by commas and ending with a semicolon. All the variables named in the list will have the type
given at the start of the declaration. For example:

int numberOfBaskets, eggsPerBasket, totalEggs;
String myName;

Note: Naming conventions help you to distinguish among identifiers when reading a
program.

Java Basics A-7

The first line declares that the three variables numberOfBaskets, eggsPerBasket, and totalEggs
will contain values of type int. The second line declares that myName will store a String object.

You must declare a variable in a Java program before you use it. Normally, you declare a vari-
able either just before it is used or at the start of a method definition.

Primitive Types
A.16 A whole number without a decimal point, such as 0, 1, or −2, is called an integer. A number with a

decimal point, such as 3.14159, −8.63, or 5.0, is called a floating-point number. Notice that 5.0 is
a floating-point number, not an integer. If a number has a fractional part, even if the fractional part
is zero, it is a floating-point number.

All the Java primitive types appear inside the cover of this book. Notice that there are four
types for integers—namely byte, short, int, and long. The only difference among the various
integer types is the range of integers they can store and the amount of computer memory they use.
If you cannot decide which integer type to use, use the type int. It has a large enough range for
most purposes and does not use as much memory as the type long.

Java has two types for floating-point numbers, float and double. If you cannot decide
between the types float and double, use double. It allows a wider range of values and is used as a
default type for floating-point numbers.

You use the primitive type char for single characters, such as letters, digits, or punctuation. For
example, the following declares the variable symbol to be of type char, stores the character for
uppercase A in symbol, and then displays that value—the A—on the screen:

char symbol;
symbol = 'A';
System.out.println(symbol);

Notice that we enclose the character A in single quotes. Again note that uppercase letters and low-
ercase letters are different characters. For example, 'a' and 'A' represent two different characters.

Finally, the primitive type boolean has two values, true and false. You can use a variable of
type boolean to store the answer to a true/false question such as “Is myTime less than yourTime?”

Constants
A.17 A variable can have its value changed; its value varies. A literal number like 2 cannot change. It is

always 2. It is never 3. Values like 2 or 4.8 are called constants, or literals, because their values do
not change.

You write constants of integer types with an optional plus sign or minus sign, but without com-
mas or decimal points. Floating-point constants have an optional plus sign or a minus sign and no
commas. You can write a floating-point constant in one of two ways. One way looks like the everyday
way of writing numbers. For example, 9.8, -3.14, and 5.0 are floating-point constants, because they
contain a decimal point. The second way is to include a multiplier that is a power of 10. You use the
letter e to represent both the multiplication sign and the 10. For example, you would write 8.65 × 108
in Java as 8.65e8 (or in the less convenient form 865000000.0). The two forms, 8.65e8 and
865000000.0, are equivalent in a Java program. Similarly, the number 4.83 × 10-4, which is equal to
0.000483, can be written as 4.83e-4 in Java.

The e stands for “exponent,” since it is followed by a number that is thought of as an exponent
of 10. The number before the e can be a number with or without a decimal point. The number after
the e cannot contain a decimal point.

Other types of literal expressions are also called constants. You write constants of type char by
placing the character in single quotes. For example, 'Y' is a constant of type char. A string constant
is a sequence of characters enclosed in double quotes, as in "Java".

A-8 APPENDIX A Java Essentials

Assignment Statements
A.18 You can use an assignment statement to give a value to a variable. For example, if answer is a

variable of type int and we want to give it the value 42, we could use the following assignment
statement:

answer = 42;

An assignment statement always consists of a single variable on the left-hand side of an equal sign
and an expression on the right-hand side followed by a semicolon. The expression can be another
variable, a constant, or a more complicated expression made up by combining operators, such as +
and *, with variables and constants. The value of the expression is assigned to the variable on the
left of the equal sign.

For example, the following are all examples of assignment statements:

amount = 3.99;
firstInitial = 'B';
score = numberOfCards + handicap;

Here we assume that amount is a variable of type double, firstInitial is of type char, and the
rest of the variables are of type int. If the variable numberOfCards has the value 7 and handicap
has the value 2, the value of the variable score is 9.

The equal sign, =, which is called the assignment operator, does not mean equality. You can
think of the assignment operator as saying, “Make the value of the variable equal to what follows.”
For example, in the statement

eggsPerBasket = eggsPerBasket - 2;

the variable eggsPerBasket occurs on both sides of the assignment operator. This statement sub-
tracts 2 from the present value of eggsPerBasket and assigns the new value to eggsPerBasket. In
effect, the statement decreases the value of eggsPerBasket by 2.

A.19 A variable that has been declared but that has not yet been given a value by the program is uninitialized.
Such a varible might literally have no value, or it might have some default value. For example, an integer
varible might have a default value of zero, and a reference variable might have a default value of null,
which is a predefined constant in Java. However, your program will be clearer if you explicitly give the
variable a value, even if you are simply reassigning it the default value. (The exact details on default values
have been known to change and should not be counted on.)

One easy way to ensure that you do not have an uninitialized variable is to initialize it within
the declaration. Simply combine the declaration and an assignment statement, as in the following
examples:

int count = 0;
double taxRate = 0.075;
char grade = 'A';
int balance = 1000, newBalance;

Note that a single declaration, such as the last statement, can initialize some variables and not others.
Sometimes the compiler may complain that you have failed to initialize a variable. In most cases,

this is indeed true. Occasionally, the compiler is mistaken about this. However, the compiler will not
compile your program until you convince it that the variable in question is initialized. To make the
compiler happy, initialize the variable when it is declared, even if the variable will be given a different
value before you use it for anything. In such cases, you cannot argue with the compiler.

Note: A reference variable that contains null does not reference any object.

Java Basics A-9

Assignment Compatibilities
A.20 You cannot put a square peg in a round hole, and similarly you cannot put a value of one type in a

variable of another type. You cannot put an int value like 42 in a variable of type char. You cannot
put a double value like 3.5 in a variable of type int. You cannot even put the double value 3.0 in a
variable of type int. You cannot store a value of one type in a variable of another type unless the
value is somehow converted to match the type of the variable.

When dealing with numbers, however, this conversion will sometimes—but not always—be
performed for you automatically. For example, you can always assign a value of an integer type to
a variable of a floating-point type, such as when you write either

double interestRate = 7;

or

int wholeRate = 7;
double interestRate = wholeRate;

More generally, you can assign a value of any type on the following list to a variable of any
type that appears further down on the list:

byte → short → int → long → float → double

For example, you can assign a value of type long to a variable whose type is either long, float, or
double. Notice that you can assign a value of any integer type to a variable of any floating-point
type. This is not an arbitrary ordering of the types. As you move down the list from left to right, the
types become more complex, or wider, either because they allow larger values or because they
allow decimal points in the numbers. Thus, you can assign a value of one type to a variable of either
the same type or a wider type.

In addition, you can assign a value of type char to a variable of type int or to any of the numeric
types that follow int in the previous list of types. However, we do not advise doing so, because the
result could be confusing.1

If you want to assign a value of type double to a variable of type int, you must change the
type of the value explicitly by using a type cast, as we explain next.

Type Casting
A.21 A type cast is the changing of the type of a value to some other type, such as changing the type of

2.0 from double to int. The previous segment described when a change in type is done for you
automatically. In all other cases, if you want to assign a value of one type to a variable of another
type, you must perform a type cast. For example, you cannot simply assign a value of type double
to a variable of type int, even if the value of type double happens to have all zeros after the deci-
mal point and so is conceptually a whole number. Thus, the second of the following statements is
illegal:

double distance = 9.0;
int points = distance; // ILLEGAL

1. Readers who have used certain other languages, such as C or C++, may be surprised to learn that we cannot assign a
value of type char to a variable of type byte. This is because Java uses the Unicode character set rather than the ASCII
character set, and so Java reserves two bytes of memory for each value of type char, but naturally reserves only one byte of
memory for values of type byte. This is one of the few cases where we might notice that Java uses the Unicode character
set. Indeed, if we convert from an int to a char or vice versa, we can expect to get the usual correspondence of ASCII num-
bers and characters.

A-10 APPENDIX A Java Essentials

To cast the type of distance to int, you enclose int within parentheses and place it in front of
distance. For example, we would replace the preceding illegal assignment with

int points = (int)distance; // casting from double to int

Note that when you type-cast from any floating-point type to any integer type, the value is not
rounded. The part after the decimal point is simply discarded, or truncated. For example, if the
variable distance contains 25.86, (int)distance has an int value of 25. A type cast does not
really change the value of a variable; distance is still 25.86, but points is 25.

Recall that when you assign an integer value to a variable of a floating-point type, the type cast
is done automatically for you.

Arithmetic Operators and Expressions
A.22 In Java, you perform arithmetic by using the arithmetic operators +, -, *, /, and %. You combine

variables and constants with these operators and parentheses to form an arithmetic expression.
The variables and constants in an expression are called operands. Spaces around the operators,
operands, and parentheses within an expression are ignored.

A unary operator is one that has only one operand, like the operator - in the assignment
statement

bankBalance = -cost;

A binary operator has two operands, like the operators + and * in
total = cost + (tax * discount);

Note that the operators - and + can be used as both unary and binary operators.
The meaning of an expression is basically what you expect it to be, but there are some subtle-

ties about the type of the result and occasionally even about the value of the result. The type of the
value produced when an expression is evaluated depends on the types of the values being com-
bined. Consider an expression with only two operands, such as

amount - adjustment

If both amount and adjustment are of type int, the result of the subtraction has type int. If either
amount or adjustment, or both, is of type double, the result is of type double. If we replace the
operator - with any of the operators +, *, /, or %, the type of the result is determined in the same
way. However, the operator % is typically used with integers, as you will see soon.

Larger expressions using more than two operands are viewed as a series of steps, each of
which involves only two operands. For example, to evaluate the expression

balance + (balance * rate)

we evaluate balance * rate and obtain a number, and then we add that number to balance. Thus, if
balance is int and rate is double, balance * rate is double and so is the entire expression.

Note: When casting, some programmers place a space before the variable, as in (int) sum.
We prefer to treat casting much like a minus sign. Just as we write minus five as −5, we cast sum
to an integer by writing (int)sum.

Note: If all the items in an arithmetic expression have the same type, the result has that
type. If at least one of the items has a floating-point type, the result has a floating-point type.

Java Basics A-11

Knowing whether the value produced has an integer type or a floating-point type is typically
all that you need. However, if you need to know the exact type of the value produced by an arithme-
tic expression, you can use the following rule:

A.23 The division operator / deserves special attention, because the type of its operands can affect the
value produced in a dramatic way. When you combine two numbers with the division operator /
and at least one of the numbers has a floating-point type, the result has a floating-point type. For
example, 9.0 / 2 has one operand of type double, namely 9.0. Hence, the result is the type double
number 4.5. However, when both operands have an integer type, the result can be surprising. For
example 9 / 2 has two operands of type int, and so it yields the result 4 of type int, not 4.5. The
fraction after the decimal point is simply lost. When you divide two integers, the result is truncated,
not rounded. The part after the decimal point is discarded no matter how large it is. So, 11 / 3 is 3,
not 3.6666 If nothing but a zero is after the decimal point, that decimal point and zero are still
lost. Even this seemingly trivial difference can be of some significance. For example, 8.0 / 2 has
the value 4.0 of type double, which technically is only an approximate quantity. However, 8 / 2 has
the int value 4, which is an exact quantity. The approximate nature of 4.0 can affect the accuracy
of any further calculation that is performed with this result.

Often, the % operator has operands only of integer types. You use it to recover the equivalent of
the fraction after the decimal point. When you divide one integer by another, you get a result
(which some call a quotient) and a remainder. For example, 14 divided by 4 yields 3 with a remain-
der of 2 (or with 2 left over). The % operation gives the remainder—that is, the amount left over
after doing the division. So 14 / 4 is 3 and 14 % 4 is 2, because 14 divided by 4 is 3 with 2 left over.
The % operator is called the remainder operator.

The % operator has more applications than you might at first suspect. It allows your program to
count by 2s, 3s, or any other number. For example, if you want to do something to every other inte-
ger, you need to know whether the integer is even or odd. An integer n is even if n % 2 is zero, and it
is odd if n % 2 is not zero. Similarly, if you want your program to do something to every third inte-
ger, you test whether the integer n is divisible by 3. It will be if n % 3 is zero.

Parentheses and Precedence Rules
A.24 You can use parentheses to group portions of an arithmetic expression in the same way that you use

parentheses in algebra and arithmetic. With the aid of parentheses, you can indicate which opera-
tions are performed first, second, and so forth. For example, consider the following two expressions
that differ only in the positioning of their parentheses:

(cost + tax) * discount
cost + (tax * discount)

Note: The data type of an arithmetic expression’s value matches the most complex, or wid-
est, data type among the operands in the expression. In other words, the data type matches the
type that appears rightmost in the following list:

byte → short → int → long → float → double

For example, if sum is float and more is int, sum + more is float.

Programming Tip: To make your arithmetic expressions more readable, place a space
on both sides of each binary operator.

A-12 APPENDIX A Java Essentials

To evaluate the first expression, the computer first adds cost and tax and then multiplies the result
by discount. To evaluate the second expression, it multiplies tax by discount and then adds the
result to cost. If you use some numbers for the values of the variables and carry out the two evalu-
ations, you will see that they produce different results.

 If you omit parentheses, as in the assignment statement
total = cost + tax * discount;

multiplication occurs before addition. Thus, the previous statement is equivalent to
total = cost + (tax * discount);

More generally, when the order of operations is not determined by parentheses, the operations
occur in an order determined by the following precedence rules:

Operators that are listed higher on the list are said to have higher precedence. Operators of
higher precedence execute before operators of lower precedence, unless parentheses override this
order. Operators at the same level have the same precedence. When two operators have equal pre-
cedence, the operations are performed using this convention:

Increment and Decrement Operators
A.25 The increment and decrement operators increase or decrease the value of a variable by 1. The

increment operator is written as two plus signs, ++. For example, the following Java statement
will increase the value of the variable count by 1:

count++;

If the variable count has the value 5 before this statement is executed, it will have the value 6 after
the statement is executed. Thus, this statement is equivalent to

count = count + 1;

You can use the increment operator with variables of any numeric type, but it is used most often
with variables of an integer type such as int.

The decrement operator is similar, except that it subtracts 1 rather than adds 1 to the value of
the variable. The decrement operator is written as two minus signs, --. For example, the following
will decrease the value of the variable count by 1:

count--;

If the variable count has the value 5 before this statement is executed, it will have the value 4 after
the statement is executed. This statement is equivalent to

count = count - 1;

Note: Precedence of arithmetic operators
Arithmetic operators in an expression execute in the following order:
The unary operators +, -
The binary operators *, /, %
The binary operators +, -

Note: Binary operators of equal precedence in an expression are performed in left-to-right order.

Java Basics A-13

A.26 You can use the increment and decrement operators within expressions, but when you do, the increment
operator or the decrement operator changes the value of the variable it is applied to and returns a value.
Although we do not recommend using the increment and decrement operators in expressions, you
should be familiar with them used in this way, because you might see this use in other people’s code.

In expressions, you can place the ++ or -- either before or after a variable, but your choice
affects the result. For example, consider the code

int n = 3;
int m = 4;
int result = n * (++m);

After this code executes, the value of n is unchanged at 3, the value of m is 5, and the value of result
is 15. Thus, ++m changes the value of m and returns that changed value to the multiply operator.

In the previous example, we placed the increment operator before the variable m. If we place it
after the variable m, something slightly different happens. Consider the code

int n = 3;
int m = 4;
int result = n * (m++);

Now, after the code executes, the value of n is 3 and the value of m is 5, just as in the previous exam-
ple. However, the value of result is 12, not 15. What happened?

The two expressions n * (++m) and n * (m++) both increase the value of m by 1, but the first expres-
sion increases the value of m before it does the multiplication, whereas the second expression increases the
value of m after it does the multiplication. Both ++m and m++ have the same effect on the final value of m,
but when we use them as part of an arithmetic expression, they give a different value to the expression.

Similarly, both --m and m-- have the same effect on the final value of m, but when we use them
as part of an arithmetic expression, they give a different value to the expression. If the -- is before
the m, the value of m is decreased before its value is used in the expression. If the -- is after the m,
the value of m is decreased after its value is used in the expression.

The increment and decrement operators can be applied only to variables. They cannot be
applied to constants or to entire, more complicated arithmetic expressions.

Special Assignment Operators
A.27 You can combine the simple assignment operator (=) with an arithmetic operator, such as +, to

produce a kind of special-purpose assignment operator. For example, the following will increase
the value of the variable amount by 5:

amount += 5;

This is really just a shorthand for

amount = amount + 5;

You can do the same thing with any of the other arithmetic operators -, *, /, and %. For exam-
ple, the statement

amount *= 25;

is equivalent to

amount = amount * 25;

Programming Tip: To avoid errors and confusing code, use the operator ++ or -- only
in a statement that involves one variable and no other operators.

A-14 APPENDIX A Java Essentials

Named Constants
A.28 You probably recognize the number 3.14159 as the approximate value of pi, the number that is used

in many circle calculations and that is often written as π. However, when you see 3.14159, you
might not be sure that it is π and not some other number; somebody other than you might have no
idea of where the number 3.14159 came from. To avoid such confusion, you should always give a
name to constants, such as 3.14159, and use the name instead of writing out the number. For exam-
ple, we might give the number 3.14159 the name PI. Then the assignment statement

area = 3.14159 * radius * radius;

could be written more clearly as

area = PI * radius * radius;

How do you give a number, or other constant, a name like PI? You could use a variable named
PI and initialize it to the desired value 3.14159. But then you might inadvertently change the value
of this variable. However, Java provides a mechanism that allows you to define and initialize a vari-
able and moreover fix the variable’s value so it cannot be changed. The syntax is

public static final type name = constant;

For example, the statement

public static final double PI = 3.14159;

gives the name PI to the constant 3.14159. The part

double PI = 3.14159;

simply declares PI as a variable and initializes it to 3.14159. The word public says that there
are no restrictions on where we can use the name PI. The word static defines one copy of PI
that every object of the class can access instead of having its own copy of PI. The word final
means that the value 3.14159 is the final value assigned to PI or, to phrase it another way, it
means that the program cannot change the value of PI. Appendix B provides more details
about static and final.

It is a good practice to place named constants near the beginning of a class and outside of any
method definitions. That way, your named constants are handy in case you need to modify them.
You might, for example, want to change the number of digits you provide for a constant.

Note: The class Math in the Java Class Library defines a static named constant PI just as we
did in this segment, but with more decimal places. The following segment describes this class
and shows how to access PI. You should use Math’s PI instead of defining your own.

Programming Tip: Programmers typically use all uppercase letters when naming con-
stants to distinguish constants from ordinary variables. They use an underscore as a separator
in multiword names. For example, FEET_PER_MILE follows this convention.

Simple Input and Output Using the Keyboard and Screen A-15

The Class Math
A.29 The class Math in the package java.lang of the Java Class Library provides a number of standard

mathematical methods. These methods are static methods. (Segment B.28 of Appendix B discusses
static methods in more detail.) When you invoke a static method, you write the class name—Math,
in this case—a dot, the name of the method, and a pair of parentheses. Using the name of a class to
invoke a method is not typical. Ordinarily, you use the name of an object to invoke a method.

Most Math methods require that you specify items within the pair of parentheses. As we noted
earlier in this appendix, these items are called arguments to the method. Thus, a typical invocation
of a method in this class has the form Math.method_name(arguments).

You can invoke the method in an assignment statement, such as

variable = Math.method_name(arguments);

or embed it within an arithmetic expression. That is, you can use Math.method_name(arguments)
anyplace that you can use a variable of a primitive data type. Figure A-2 describes some of the
available methods in this class.

The class Math also has two predefined named constants. E is the base of the natural logarithm
system—often written e in mathematical formulas—and is approximately 2.72. PI is used in calcu-
lations involving circular geometric figures—often written π in mathematical formulas—and is
approximately 3.14159. Because these constants are defined in the class Math, you use them by
writing Math.E and Math.PI.

Simple Input and Output Using the Keyboard and Screen
The input and output of data is usually referred to as I/O. A Java program can perform I/O in
many different ways. In this section, we present some ways to handle simple text input that we type
at the keyboard and simple text output displayed on the screen.

Screen Output
A.30 Statements like

System.out.println("Enter a whole number from 1 to 99.");

and

System.out.println(quarters + " quarters");

send output to the display screen. As we mentioned near the beginning of this appendix, System.out
is an object within the class System, which is a class in the Java Class Library. This object has
println as one of its methods. So the preceding output statements are calls to the method println of
the object System.out. You simply follow System.out.println with a pair of parentheses that con-
tain what you want to display. You end the statement with a semicolon.

Within the parentheses can be strings of text in double quotes, like "Enter a whole number
from 1 to 99.", variables like quarters, numbers like 5 or 7.3, and almost any other object or
value. To display more than one thing, simply place a plus sign between them. For example,

System.out.println("Lucky number = " + 13 +
"Secret number = " + number);

A-16 APPENDIX A Java Essentials

FIGURE A-2 Some methods in the class Math

If the value of number is 7, the output will be
Lucky number = 13Secret number = 7

Notice also that no spaces are added. If we want a space between the 13 and the word “Secret”
in the preceding output—and we probably do—we should add a space to the beginning of the string
"Secret number = " so that it becomes " Secret number = ".

Notice that you use double quotes, not single quotes, and that the opening and closing quotes
are the same symbol. Finally, notice that you can place the statement on two lines if it is too long.

In each of the following methods, the argument and the return value are double:

Math.cbrt(x) Returns the cube root of x.

Math.ceil(x) Returns the nearest whole number that is � x.

Math.cos(x) Returns the trigonometric cosine of the angle x in radians.

Math.exp(x) Returns ex.

Math.floor(x) Returns the nearest whole number that is � x.

Math.hypot(x, y) Returns the square root of the sum x2 � y2.

Math.log(x) Returns the natural (base e) logarithm of x.

Math.log10(x) Returns the base 10 logarithm of x.

Math.pow(x, y) Returns xy.

Math.random() Returns a random number that is � 0 but � 1.

Math.sin(x) Returns the trigonometric sine of the angle x in radians.

Math.sqrt(x) Returns the square root of x, assuming that x � 0.

Math.tan(x) Returns the trigonometric tangent of the angle x in radians.

Math.toDegrees(x) Returns an angle in degrees equivalent to the angle x in radians.

Math.toRadians(x) Returns an angle in radians equivalent to the angle x in degrees.

In each of the following methods, the argument and the return value have the same type–
either int,long,float, or double:

Math.abs(x) Returns the absolute value of x.

Math.max(x, y) Returns the larger of x and y.

Math.min(x, y) Returns the smaller of x and y.

Math.round(x) Returns the nearest whole number to x. If x is float, returns an
 int; if x is double, returns a long.

Simple Input and Output Using the Keyboard and Screen A-17

However, you should break the line before or after a + sign, not in the middle of a quoted string or a
variable name. You also should indent the second line to make the entire statement easier to read.

Later, in the section about the class String, you will see that the + operator joins, or
concatenates, two strings. In the preceding System.out.println statement, Java converts the
number 13 to the string "13". Likewise, it converts the integer 7 in the variable number to the
string "7". Then the + operator joins the strings and the System.out.println statement dis-
plays the result. You do need to be a bit careful, however. If you write a + between two
numeric values or variables, they will be added rather than concatenated.

You can also use the println method to display the value of a String variable, as illustrated
by the following:

String greeting = "Hello Programmers!";
System.out.println(greeting);

This will cause the following to be written on the screen.
Hello Programmers!

A.31 Every invocation of println ends a line of output. If you want the output from two or more output
statements to appear on a single line, use print instead of println. For example,

System.out.print("One, two,");
System.out.print(" buckle my shoe.");
System.out.println(" Three, four,");
System.out.println("shut the door.");

will produce the following output:

One, two, buckle my shoe. Three, four,
shut the door.

Notice that a new line is not started until you use println, rather than print. Also notice that
the new line starts after displaying the items specified in the println statement. This is the only
difference between print and println.

Keyboard Input Using the Class Scanner
A.32 A Java program can read data from either the keyboard or another source such as a disk, and

place it into memory. The Java Class Library provides the class Scanner for this purpose. Here,
we will use the methods in Scanner to read data typed at the keyboard and place it into variables
that we specify.

As we noted earlier, the class Scanner is in the package java.util. To use Scanner in your
program, you must import it from this package by writing the following import statement before
the rest of your program:

import java.util.Scanner;

Before you can use any of the methods in Scanner, you must create a Scanner object by writ-
ing a statement such as

Scanner keyboard = new Scanner(System.in);

The variable keyboard—which could be any variable of your choosing—is assigned a Scanner
object that is associated with the input device that System.in represents. This device by convention
is the keyboard. The variable keyboard has a class type.

A-18 APPENDIX A Java Essentials

A.33 Scanner provides several methods that read input data. You can use any of these methods by writ-
ing a statement that has the following form, where keyboard is the Scanner object that we defined
previously:

variable = keyboard.method_name();

The named method reads a value from the keyboard and returns it. That is, the expression
keyboard.method_name() represents the value that was read. The previous statement then
assigns this value to the indicated variable.

You can read integers and real numbers by using the following expressions:
keyboard.nextInt()— Returns the next integer encountered in the input data.

keyboard.nextDouble()— Returns the next real number encountered in the input data.

Each of these expressions ignores any white space that might precede or follow the number typed at
the keyboard. Whitespace characters are the characters that appear as spaces when printed on paper or
displayed on the screen. The blank-space character is likely the only white space character that will
concern us at first, but the start of a new line and the tab symbol are also white space characters.

A.34 Example. To read an integer from the keyboard, you can write a statement such as
size = keyboard.nextInt();

where size has been declared previously as an int variable. The user of your program would type
an integer and press the Enter, or Return, key. The value is read by the method nextInt, returned,
and assigned to the variable size.

Typically, you should display a message, or prompt, for the user to enter data. For example,
your program might contain the following statements:

System.out.println("What is your age?");
int age = keyboard.nextInt();

Whatever the user types appears in the same window as the prompt. Here, the prompt would appear
on one line and the user would type his or her age on the next.

A.35 Example. To read a real number from the keyboard, you can write statements such as
System.out.print("Enter the area of your room in square feet: ");
double area = keyboard.nextDouble();

After the user types a real number at the keyboard and presses the Enter key, the value of the num-
ber is assigned to the variable area. Since we have used print instead of println, both the prompt
and the input data appear on the same line on the display.

A.36 Example. You can read more than one value per line of input. For example,
System.out.println("Please enter your height in feet and inches:");
int feet = keyboard.nextInt();
int inches = keyboard.nextInt();

The user could type either

6 2

The if-else Statement A-19

on one line or

6
2

on two lines. In either case, feet is 6 and inches is 2.

A.37 More input methods. The class Scanner includes the following method to read a string:
nextLine()— Returns the string that appears next in the input data.

For example, if keyboard is defined as shown earlier, the statement
String message = keyboard.nextLine();

reads the entire string that the user types before pressing the Enter key—including any spaces—and
assigns it to the variable message.

The method next in the class Scanner reads the next group of contiguous characters that are
not white space and returns it as a string. For example, you can use this method to read the next
word that appears in the input data, as follows:

String word = keyboard.next();

We used next in Segment A.3 to read the user’s yes or no response.
The Scanner methods we’ve looked at—nextInt, nextDouble, nextLine, and next—often

are invoked in simple assignment statements, although that is not necessary. Since each method
returns a value, you can call it within an arithmetic expression, for example.

The if-else Statement

A.38 In programs, as in everyday life, things can sometimes go in one of two different ways. If you have
money in your checking account, some banks will pay you a little interest. On the other hand, if you
have overdrawn your checking account, you will be charged a penalty. This might be reflected in
the bank’s accounting program by the following Java statement, known as an if-else statement:

if (balance >= 0)
balance = balance + (INTEREST_RATE * balance) / 12;

else
balance = balance - OVERDRAWN_PENALTY;

The two-symbol operator >= means “greater than or equal to” in Java. We use two symbols
because the one-character symbol ≥ is not on the keyboard.

The meaning of an if-else statement is really just the meaning it would have if read as an
English sentence. When your program executes an if-else statement, it first checks the expression
in parentheses after the if. This expression must evaluate to either true or false. If it is true, the

Note: Streams
The characters that a user types at the keyboard are directed into the memory assigned to your
program by an object known as an input stream. The name of the input stream associated
with the keyboard is System.in. Likewise, an output stream is an object that directs data
from your program to an output device. System.out is such an object, directing characters to
a display.

A-20 APPENDIX A Java Essentials

statement after the if is executed. If the expression is false, the statement after the else is exe-
cuted. In the preceding example, if balance is positive or zero, the following action occurs:

balance = balance + (INTEREST_RATE * balance) / 12;

(We divide by 12 because the interest is for only 1 of 12 months.) On the other hand, if the value of
balance is negative, the following is executed instead:

balance = balance - OVERDRAWN_PENALTY;

The indentation in the if-else statement is conventional as an aid in reading the statement; it does
not affect the statement’s meaning.

A.39 If you want to include more than one statement in either of the two portions of the if-else state-
ment, you simply enclose the statements in braces, as in the following example:

if (balance >= 0)
{

System.out.println("Good for you. You earned interest.");
balance = balance + (INTEREST_RATE * balance) / 12;

}
else
{

System.out.println("You will be charged a penalty.");
balance = balance - OVERDRAWN_PENALTY;

} // end if

When you enclose several statements within braces, you get one larger statement called a
compound statement. Compound statements are seldom used by themselves but often are
used as substatements of a larger statement such as an if-else statement.

A.40 You can omit the else part. If you do, nothing happens when the tested expression is false. For
example, if your bank does not charge an overdraft penalty, the statement would be the following,
instead of the previous one:

if (balance >= 0)
{

System.out.println("Good for you. You earned interest.");
balance = balance + (INTEREST_RATE * balance) / 12;

} // end if

If balance is negative, the statement after the closing brace executes next.

Boolean Expressions
A.41 A boolean expression is an expression that is either true or false. The expression

balance >= 0

that we used in the previous if-else statement is an example of a simple boolean expression. Such
expressions compare two things, like numbers, variables, or other expressions. Figure A-3 shows
the various Java comparison operators you can use to compare two expressions.

Programming Tip: Some programmers always use compound statements within other
statements such as if-else, even when only a single statement appears between the braces.
Doing so makes it easier to add another statement to the compound statement, but more
importantly, it avoids the error that would occur if you forgot to add the braces. We encourage
you to follow this convention, even though we do not always do so in this book to save space.

The if-else Statement A-21

FIGURE A-3 Java comparison operators

A.42 Logical operators. Often, when you write an if-else statement, you will want to use a boolean
expression that is more complicated than a simple comparison. You can form more-complicated
boolean expressions from simpler ones by joining expressions with either the Java version of
“and,” which is &&, or the Java version of “or,” which is ||. For example, consider the following:

if ((pressure > min) && (pressure < max))
System.out.println("Pressure is OK.");

else
System.out.println("Warning: Pressure is out of range.");

If the value of pressure is greater than min, and the value of pressure is less than max, the output
will be

Pressure is OK.

Otherwise, the output is
Warning: Pressure is out of range.

Note that you cannot use a string of inequalities in Java, like the following:

min < pressure < max

Instead, you must express each inequality separately and connect them with &&, as follows:
(pressure > min) && (pressure < max)

The parentheses in the previous expression are not necessary, but we typically include them. The
parentheses that surround the entire expression in an if-else statement are required, however.

The binary operators && and || together with the unary operator ! are logical operators. We
look at each of them next.

A.43 The operator &&. When you form a larger boolean expression by connecting two smaller expres-
sions with &&, the entire larger expression is true provided that both of the smaller expressions are
true. Thus, if at least one of pressure > min and pressure < max is false, the larger expression is
false. Moreover, if the first part of the larger expression is false, the second part is ignored, since the
larger expression must be false regardless of the value of the second part. For example, if pressure
is less than min, we know that

(pressure > min) && (pressure < max)

is false without looking at pressure < max.

� Greater than or equal to �� points �� 60

� Less than or equal to �� expenses �� income

� Greater than � expenses � income

� Less than � pressure � max

� Equal to �� balance �� 0
 answer �� 'y'

� Not equal to !� income !� tax
 answer !� 'y'

Math
Notation

Name Java
Operator

Java Examples

Illegal!

A-22 APPENDIX A Java Essentials

A.44 The operator ||. You also can use || to form a larger boolean expression from smaller ones in the
same way that you use &&, but with different results. The meaning is essentially the same as the
English word “or.” For example, consider

if ((salary > expenses) || (salary + savings > expenses))
System.out.println("Solvent");

else
System.out.println("Bankrupt");

If the value of salary is greater than the value of expenses or the value of salary + savings is
greater than the value of expenses—or both—the output will be

Solvent

Otherwise, the output will be
Bankrupt

The entire larger expression is true if either of the smaller expressions is true. Moreover, if the
first part of the larger expression is true, the second part is ignored, since the larger expression must
be true regardless of the value of the second part. For example, if salary is greater than expenses,
we know that

(salary > expenses) || (salary + savings > expenses)

is true without looking at salary + savings > expenses.
You use parentheses in expressions containing the || operator in the same way that you use

them with &&.

A.45 The operator !. You can negate a boolean expression by preceding it with the operator !. For
example, the expression

!(number >= min)

has the same meaning as the expression
number < min

In this case, you can and should avoid using !.
Sometimes, however, the use of ! makes perfect sense. For example, if you have two strings

that should be the same for normal processing to continue, you would compare them and issue a
warning if they are not equal. Later, in the section about the class String, you will see that you use
the equals method to compare two strings. For example,

stringOne.equals(stringTwo)

is true if the strings stringOne and stringTwo are equal. But if we want to know whether these
strings are not equal, we could write

if (!stringOne.equals(stringTwo))
System.out.println("Warning: The strings are not the same.");

Note: Short-circuit evaluation
When two boolean expressions are joined by either && or ||, the second expression is not
evaluated if the value of the first expression implies the value of the entire expression. Such
is the case if the first expression is false when the operator is && or true when the operator is
||. This behavior is known as the short-circuit evaluation of a boolean expression.

Besides saving execution time, short-circuit evaluation can prevent execution errors. For
example, the following statement prevents a division by zero:

if ((count != 0) && (sum / count > minimum))

If count is zero, the expression count != 0 is false. Thus, the expression sum / count > minimum
is not evaluated, thereby avoiding the erroneous division.

The if-else Statement A-23

The precedence of the boolean operators in relation to each other and to the arithmetic opera-
tors follows:

Nested Statements
A.46 Notice that an if-else statement contains smaller statements within it. These smaller statements

can be any sort of Java statements. In particular, you can use one if-else statement within another
if-else statement to get nested if-else statements, as illustrated by the following:

if (balance >= 0)
if (INTEREST_RATE >= 0)

balance = balance + (INTEREST_RATE * balance) / 12;
else

System.out.println("Cannot have a negative interest.");
else

balance = balance - OVERDRAWN_PENALTY;

If the value of balance is greater than or equal to zero, the entire following if-else statement is
executed:

if (INTEREST_RATE >= 0)
balance = balance + (INTEREST_RATE * balance) / 12;

else
System.out.println("Cannot have a negative interest.");

When writing nested if-else statements, you may sometimes become confused about which
if goes with which else. To eliminate this confusion, you can add braces as follows:

if (balance >= 0)
{

if (INTEREST_RATE >= 0)
balance = balance + (INTEREST_RATE * balance) / 12;

else
System.out.println("Cannot have a negative interest.");

}
else

balance = balance - OVERDRAWN_PENALTY;

Here, the braces are an aid to clarity but are not, strictly speaking, needed. In other cases, they are
needed. While you should use indentation to indicate your intentions, remember that it is ignored
by the compiler.

A.47 If you omit an else, things get a bit trickier. The following two if-else statements differ only in
that one has a pair of braces, but they do not have the same meaning:

Note: Precedence of a selection of Java operators
Operators in the same expression execute in the following order:
The unary operators +, -, !
The binary arithmetic operators *, /, %
The binary arithmetic operators +, -
The comparison operators <, >, <=, >=
The comparison operators ==, !=
The logical operator &&
The logical operator ||

A-24 APPENDIX A Java Essentials

// First Version
if (balance >= 0)
{

if (INTEREST_RATE >= 0)
balance = balance + (INTEREST_RATE * balance) / 12;

}
else

balance = balance - OVERDRAWN_PENALTY;

// Second Version
if (balance >= 0)

if (INTEREST_RATE >= 0)
balance = balance + (INTEREST_RATE * balance) / 12;

else
balance = balance - OVERDRAWN_PENALTY;

In the second version, without braces, the else is paired with the second if, not the first one, as the
indentation leads us to believe. Thus, the meaning is

// Equivalent to Second Version
if (balance >= 0)
{

if (INTEREST_RATE >= 0)
balance = balance + (INTEREST_RATE * balance) / 12;

else
balance = balance - OVERDRAWN_PENALTY;

}

To clarify the difference a bit more, consider what happens when balance is less than zero.
The first version causes the following action:

balance = balance - OVERDRAWN_PENALTY;

However, the second version takes no action.

Multiway if-else Statements
A.48 Since an if-else statement has two outcomes, and each of these two outcomes can have an if-else

statement with two outcomes, you can use nested if-else statements to produce any number of pos-
sible effects. Convention provides a standard way of doing this. Let’s start with an example.

Suppose balance is a variable that holds your checking account balance and you want to
know whether your balance is positive, negative (overdrawn), or zero. To avoid any questions
about accuracy, let’s assume that balance is of type int—that is, balance is the number of
dollars in your account, with the cents ignored. To find out if your balance is positive, nega-
tive, or zero, you could use the following nested if-else statement:

if (balance > 0)
System.out.println("Positive balance");

else if (balance < 0)

Note: In an if-else statement, each else is paired with the nearest previous unmatched if.

Programming Tip: Indentation within an if-else statement does not affect the action of
the statement. For clarity, you should use indentation that matches the logic of the statement.

The if-else Statement A-25

System.out.println("Negative balance");
else if (balance == 0)

System.out.println("Zero balance");

This is really an ordinary nested if-else statement, but it is indented differently than before. The
indentation reflects the logic more clearly and is preferred. Although this is not a separate kind of
if-else statement, we call this nested construction a multiway if-else statement.

When a multiway if-else statement is executed, the computer tests the boolean expressions
one after the other, starting from the top. When it finds the first true boolean expression, it executes
the statement after the expression. The rest of the if-else statement is ignored. For example, if
balance is greater than zero, the preceding statements will display

Positive balance

Exactly one of the three possible messages will be displayed, depending on the value of the
variable balance.

A.49 The previous example has three possibilities, but you can have any number of possibilities by adding
more else-if parts. In this example, the possibilities are mutually exclusive. That is, only one of the
three possibilities can actually occur for any given value of balance. However, you can use any bool-
ean expressions, even if they are not mutually exclusive. If more than one boolean expression is true,
only the action associated with the first true boolean expression is executed. A multiway if-else
statement never performs more than one action.

If none of the boolean expressions is true, nothing happens. However, it is a good practice to add
an else clause—without any if—at the end, to be executed in case none of the boolean expressions
is true. In fact, we can rewrite our previous example in this way. We know that if balance is neither
positive nor negative, it must be zero. So we do not need the test

if (balance == 0)

Thus, we can and should write the previous if-else statement as

if (balance > 0)
System.out.println("Positive balance");

else if (balance < 0)
System.out.println("Negative balance");

else
System.out.println("Zero balance");

The Conditional Operator (Optional)
A.50 To allow compatibility with older programming styles, Java includes an operator that is a notational

variant on certain forms of the if-else statement. A conditional operator expression consists of a
boolean expression followed by a question mark and two expressions separated by a colon. For
example, the expression on the right side of the assignment operator in the following statement is a
conditional operator expression:

max = (n1 > n2) ? n1 : n2;

The ? and : together form a ternary operator that has three operands and is known as the
conditional operator. If the boolean expression is true, the value of the first of the two
expressions is returned; otherwise, the value of the second of the two expression is returned.
Thus, the logic of this example is equivalent to

if (n1 > n2)
max = n1;

else
max = n2;

A-26 APPENDIX A Java Essentials

This book will not use conditional operator expressions, as they are less clear than equivalent
if-else statements. If you decide to use them in your program, realize that not everyone will know
their meaning.

The switch Statement

A.51 Multiway if-else statements can become unwieldy when you must choose from among many
possible courses of action. If the choice is based on the value of an integer or character expression,
the switch statement can make your code easier to read.

The switch statement begins with the word switch followed by an expression in parentheses.
This expression is called the controlling expression. Its value must be of type int, char, byte,
short or, as of Java 7, String. The switch statement in the following example determines the price
of a ticket according to the location of the seat in a theater. An integer code that indicates the seat
location is the controlling expression:

int seatLocationCode;
< Code here assigns a value to seatLocationCode >
. . .
double price = −0.01;
switch (seatLocationCode)
{

case 1:
System.out.println("Balcony.");
price = 15.00;
break;

case 2:
System.out.println("Mezzanine.");
price = 30.00;
break;

case 3:
System.out.println("Orchestra.");
price = 40.00;
break;

default:
System.out.println("Unknown ticket code.");
break;

} // end switch

The switch statement contains a list of cases, each consisting of the reserved word case, a
constant, a colon, and a list of statements that are the actions for the case. The constant after
the word case is called a case label. When the switch statement executes, the controlling
expression—in this example, seatLocationCode—is evaluated. The list of alternative cases is
searched until a case label that matches the current value of the controlling expression is
found. Then the action associated with that label is executed. You are not allowed to have
duplicate case labels, as that would be ambiguous.

If no match is found, the case labeled default is executed. The default case is optional. If
there is no default case, and no match is found to any of the cases, no action takes place. Although
the default case is optional, we encourage you to always use it. If you think your cases cover all
the possibilities without a default case, you can insert an error message or an assertion as the
default case. You never know when you might have missed some obscure case.

Notice that the action for each case in the previous example ends with a break statement. If
you omit the break statement, the action just continues with the statements in the next case until it
reaches either a break statement or the end of the switch statement. Sometimes this feature is
desirable, but sometimes omitting the break statement causes unwanted results.

The switch Statement A-27

A.52 At times, you will want to take the same action in more than one case. You can list cases one after
the other so that they all apply to the same action. In the following example, we have changed the
seat location code to a character instead of an integer. A code of B or b, for example, indicates a
balcony seat:

char seatLocationCode;
< Code here assigns a value to seatLocationCode >
. . .
double price = −0.01;
switch (seatLocationCode)
{

case 'B':
case 'b':

System.out.println("Balcony.");
price = 15.00;
break;

case 'M': case 'm':
System.out.println("Mezzanine.");
price = 30.00;
break;

case 'O': case 'o':
System.out.println("Orchestra.");
price = 40.00;
break;

default:
System.out.println("Unknown ticket code.");
break;

} // end switch

The first case, B, has no break statement; in fact, the case has no action statements at all. Execution
continues with the case for b, as desired. Note that we have written the cases in two ways to show
two common programming styles.

The controlling expression in a switch statement need not be a single variable. It can be a
more complicated expression, but it must evaluate to a single value. The expression cannot indi-
cate a range of values. That is, the expression cannot be a boolean expression like the ones you
use in an if-else statement. Thus, if you want to take one action when the controlling expres-
sion has values from 1 to 10 and a second action for values from 11 to 20, you would need a case
label for each value. In situations like this, a switch statement would be harder to write than an
if-else statement.

A.53 Our last example of a switch statement revises the previous ones to use strings as the case labels:
String seatLocationCode;

Note: The controlling expression in a switch statement provides an entry point to a case
within the statement. Execution continues from this point until it reaches either a break state-
ment or the end of the switch.

Programming Tip: Omitting a break statement
If you test a program that contains a switch statement and it executes two cases when you
expect it to execute only one case, you probably have forgotten to include a break statement
where one is needed.

A-28 APPENDIX A Java Essentials

< Code here assigns a value to seatLocationCode >
. . .
double price = -0.01;
if (seatLocationCode != null)
{

switch (seatLocationCode)
{

case "balcony":
System.out.println("Balcony.");
price = 15.00;
break;

case "mezzanine":
System.out.println("Mezzanine.");
price = 30.00;
break;

case "orchestra":
System.out.println("Orchestra.");
price = 40.00;
break;

default:
System.out.println("Unknown ticket code.");
break;

} // end switch
} // end if

Because strings are objects, you must be careful that the value of the controlling expression is
not null, as we have done here. You should also take care that the possible strings assigned to
seatLocationCode match the case labels exactly. In this example, the labels use lowercase letters.
To ensure that the value of the controlling expression uses lowercase letters, we can replace the
beginning of the switch statement with

switch (seatLocationCode.toLowercase())

Segment A.76 later in this appendix will describe the String method toLowercase further.

Enumerations

A.54 To compute a student’s quality-point average—also known as a grade-point average—a program could
assign the number of quality points for a given letter grade to the double variable qualityPoints. You
could use a char variable grade for the letter grade, but then it could contain any character, not just the
letters A, B, C, D, and F. Instead, to restrict the contents of grade to the values you specify, you could
declare it as an enumerated data type, or enumeration. An enumeration itemizes the values that a
variable can have.

For example, the following statement defines LetterGrade as an enumeration:
enum LetterGrade {A, B, C, D, F}

LetterGrade behaves as a class type, so we can declare grade to have this type, as follows:
LetterGrade grade;

The items listed between the braces in the definition of LetterGrade are objects that grade can ref-
erence. For example, you can write

grade = LetterGrade.A;

to assign A to grade. Assigning a value other than A, B, C, D, or F to grade will cause a syntax error.
These values behave as static constants. You qualify each of them with the name of the enumera-
tion just as you qualify the constant PI with the name of its class Math.

Enumerations A-29

A.55 Example. You can use a switch statement with a variable whose data type is an enumeration. For
example, if we define LetterGrade and grade as in the previous segment, the following switch
statement assigns the correct number of quality points to the double variable qualityPoints:

switch (grade)
{

case A:
qualityPoints = 4.0;
break;

case B:
qualityPoints = 3.0;
break;

case C:
qualityPoints = 2.0;
break;

case D:
qualityPoints = 1.0;
break;

case F:
qualityPoints = 0.0;
break;

default:
qualityPoints = -9.0;

} // end switch

Since the data type of the expression in the switch statement is an enumeration, the case labels are
assumed to belong to that enumeration without qualification. In fact, writing case LetterGrade.A,
for example, is a syntax error. However, if you need to reference one of the enumerated values else-
where within the switch statement, you must qualify it.

Since we know that grade cannot have values other than those in the enumeration, a
default case is unnecessary. However, if you choose to omit the default case, you must assign a
value to qualityPoints prior to the switch statement to avoid a syntax error. Without this ini-
tialization, the compiler would think it possible for qualityPoints to remain uninitialized after
the switch statement.

A.56 When the compiler encounters an enumeration, it creates a class that has several methods. Among
them is the method ordinal, which you can use to access the ordinal value of an object within an
enumeration. These values begin at zero. Thus, in LetterGrade, the ordinal values of A and F are 0
and 4, respectively. For example, if you have the following assignment:

LetterGrade yourGrade = LetterGrade.A;

the expression
yourGrade.ordinal()

returns 0. Likewise, the expression
LetterGrade.B.ordinal()

returns 1.

Note: An enumeration is actually a class. Therefore, you cannot define an enumeration
within a method. Instead, define enumerations outside of any method definitions, preferably
near the beginning of your class. Also, note that no semicolon follows an enumeration’s defi-
nition. Writing one, however, will not cause a syntax error; the semicolon will simply be
ignored.

A-30 APPENDIX A Java Essentials

The method equals tests whether yourGrade is equal to a given object within the enumeration.
For example, you might write

if (yourGrade.equals(LetterGrade.A))
System.out.println("Congratulations, your grade is A!");

Finally, the static method valueOf takes a string and returns a matching object in a given enu-
meration. For example, the expression

LetterGrade.valueOf("A")

returns LetterGrade.A. The string passed to valueOf must match the name of the constant exactly.
Appendix B discusses enumerations further, beginning at Segment B.30.

Scope

A.57 The scope of a variable (or a named constant) is the portion of a program in which the variable is
available. That is, a variable does not exist outside of its scope. A variable’s scope begins at its dec-
laration and ends at the closing brace of the pair of braces that enclose the variable’s declaration.

For example, consider the following statements that involve two variables, counter and
greeting:

{
// counter and greeting are not available here
. . .
int counter = 1;
// counter is available here
. . .
{

String greeting = "Hello!";
// both greeting and counter are available here
. . .

} // end scope of greeting
. . .
// only counter is available here
. . .

} // end scope of counter

The variable counter is available anywhere after its declaration. The variable greeting is available
only within the inner pair of braces.

The concept of scope applies to every pair of braces within a Java program, regardless of
whether they delineate the definition of a class or a method, appear within an if-else statement or
switch statement, or appear within the loops described in the next section.

Loops

A.58 Programs often need to repeat some action. For example, a grading program would contain some
code that assigns a letter grade to a student based on the student’s scores on assignments and
exams. To assign grades to the entire class, the program would repeat this action for each student in
the class. A portion of a program that repeats a statement or group of statements is called a loop.
The statement (or group of statements) to be repeated in a loop is called the body of the loop. Each
repetition of the loop body is called an iteration of the loop.

When you design a loop, you need to decide what action the body of the loop should take and
when the loop should stop repeating this action. Once you have made these choices, you can pick
one of three Java statements to implement the loop: the while statement, the for statement, or the
do-while statement.

Loops A-31

The while Statement
A.59 One way to construct a loop in Java is with a while statement, which is also known as a while

loop. A while statement repeats its action again and again until a controlling boolean expression
becomes false. That is, the loop is repeated while the controlling boolean expression is true. The
general form of a while statement is

while (expression)
statement;

The while loop starts with the reserved word while followed by a boolean expression in
parentheses. The loop body is a statement, typically a compound statement enclosed in braces
{}. The loop body is repeated while the boolean expression is true. The loop body normally
contains some action that can change the value of the boolean expression from true to false and
so end the loop.

For example, the following while statement displays the integers from 1 to a given integer
number:

int number;
. . . // assign a value to number here
int count = 1;
while (count <= number)
{

System.out.println(count);
count++;

} // end while

Let’s suppose that number is 2. The variable count begins at 1. Since the boolean expression count
<= number is true at this point, the body of the loop executes. Thus, 1 is displayed and then count
becomes 2. The expression count <= number is still true, so the loop’s body executes a second time,
displaying 2 and incrementing count to 3. Now count <= number is false, so the while loop ends.
Execution continues with the statement, if any, that follows the loop.

Notice that if number is zero or negative in the previous example, nothing is displayed. The
body of the loop would not execute at all, since count, which is 1, would be greater than number.

A.60 Infinite loops. A common program bug is a loop that does not end but simply repeats its loop body
again and again. A loop that iterates its body repeatedly without ever ending is called an infinite
loop. Normally, a statement in the body of the loop will change some variables so that the control-
ling boolean expression becomes false. If this variable does not change in the right way, you can get
an infinite loop.

For instance, let’s consider a slight variation to the previous example of a while loop. If we
forget to increment count, the boolean expression will never change and the loop will be infinite:

int count = 1;
while (count <= number)
{

System.out.println(count);
} // end while

Programming Tip: A while loop can perform zero iterations
The body of a while loop can execute zero times. When a while loop executes, its first action is
to check the value of the boolean expression. If the boolean expression is false, the loop body is
not executed even one time. Perhaps the loop adds up the sum of all your expenses for the day.
If you did not go shopping on a given day, you do not want the loop body to execute at all.

A-32 APPENDIX A Java Essentials

Some infinite loops will not really run forever but will instead end your program abnormally
when a system resource is exhausted. However, some infinite loops will run forever if left alone. To
end a program that is in an infinite loop, you should learn how to force a program to stop running.
The way to do this depends on your particular operating system. For example, in a Unix operating
system, you would press the key combination Control-C.

Sometimes a programmer might intentionally write an infinite loop. For example, an ATM machine
would typically be controlled by a program with an infinite loop that handles deposits and withdrawals
indefinitely. However, at this point in your programming, an infinite loop is likely to be an error.

The for Statement
A.61 When a counter controls the number of iterations in a while loop, you can replace the while state-

ment with a for statement, or for loop. The for statement has the following general form:
for (initialize; test; update)

statement;
Here initialize is an optional assignment of a value to a variable, test is a boolean expression, and
update is an optional assignment that can change the value of test.

For example, the following for statement is exactly equivalent to the while statement in
Segment A.59:

int count, number;
. . . // assign a value to number here
for (count = 1; count <= number; count++)

System.out.println(count);

The first of the three expressions in parentheses, count = 1, initializes the counter before the loop
body is executed for the first time. The second expression, count <= number, is a boolean expres-
sion that determines whether the loop should continue execution. This boolean expression is tested
immediately after the first expression executes and again after each execution of the third expres-
sion. The third expression, count++, executes after each iteration of the loop body. Thus, the loop
body is executed while count <= number is true.

In the previous example, we declared count before the for statement. After the loop completes
its execution, count is still available as a variable. We could instead declare count within the for
statement, as follows:

int number;
. . . // assign a value to number here
for (int count = 1; count <= number; count++)

System.out.println(count);

In this case, count is defined only within the for loop and is not available after the loop completes
its execution.

The counter in a for statement is not restricted to an integer type. It can have any primitive
type. You can omit any of the expressions initialize, test, and update from a for statement, but you
cannot omit their semicolons. Sometimes it is more convenient to write the initialize part before the

Programming Tip: Although declaring a variable within a for statement is convenient,
realize that the variable’s scope is then the for loop. The variable is not available after the
loop completes its execution.

Loops A-33

for statement or to place the update part within the body of the loop. This is especially true when
these parts are lengthy. Although you technically can omit the test from a for loop, you will get an
infinite loop if you do.

Some Java programmers tend to favor the for statement over the while statement because in
the for statement the initialization, testing, and incrementing of the counter all appear at the begin-
ning of the loop.

A.62 The comma in for statements. A for loop can perform more than one initialization. To use a list
of initialization actions, separate the actions with commas, as in the following example:

int n, product;
for (n = 1, product = 1; n <= 10; n++)

product = product * n;

This for loop initializes n to 1 and product to 1. Note that you use a comma, not a semicolon, to
separate the initialization actions.

You can have multiple update actions that are separated by commas. This can sometimes lead
to a situation in which the for statement has an empty body and still does something useful. For
example, we can rewrite the previous for statement in the following equivalent way:

for (n = 1, product = 1; n <= 10; product = product * n, n++);

In effect, we have made the loop body part of the update action. Notice the semicolon at the end of
the statement. Since a semicolon at the end of a for statement is often the result of a programming
error, a clearer way to write this loop makes the empty body explicit:

for (n = 1, product = 1; n <= 10; product = product * n, n++)
{
} // end for

However, the most readable style uses the update action only for variables that control the loop, as
in the original version of this for loop.

Finally, you cannot have multiple boolean expressions to test for ending a for loop. However,
you can string together multiple tests by using the && and || operators to form one larger boolean
expression.

A.63 Using an enumeration with a for statement. The for statement has another form when you want
to repeat statements for each object in an enumeration. For example, if you define

enum Suit {CLUBS, DIAMONDS, HEARTS, SPADES}

the for loop
for (Suit nextSuit : Suit.values())

System.out.println(nextSuit);

Note: A for statement is basically another notation for a kind of while loop. Thus, like a
while loop, a for statement might not execute its loop body at all.

Programming Tip: If you have used other programming languages that have a
general-purpose comma operator, be warned that the comma operator in Java can
appear only in for statements.

A-34 APPENDIX A Java Essentials

displays
CLUBS
DIAMONDS
HEARTS
SPADES

You declare a variable to the left of a colon in the for statement. To the right of the colon, you
represent the values that the variable will have. For the enumeration Suit, the expression
Suit.values() represents the four possible values CLUBS, DIAMONDS, HEARTS, and SPADES. As the
loop executes, nextSuit takes on each of these values.

This kind of loop—called a for-each loop—can be used with other collections of data, as you
will see.

The do-while Statement
A.64 The do-while statement, or do-while loop, is similar to the while statement, but the body of a

do-while statement always executes at least once. As you saw earlier, the body of a while loop
might not execute at all.

The general form of a do-while statement is
do

statement;
while (expression);
The do-while loop starts with the reserved word do. The loop body is a statement, typically a

compound statement enclosed in braces {}. The loop ends with the reserved word while followed
by a boolean expression in parentheses and a semicolon.

The loop body executes and is repeated while the boolean expression is true. The loop body nor-
mally contains some action that can change the value of the boolean expression from true to false
and so end the loop. The boolean expression is tested at the end of the loop, not at its beginning, as it
is in a while statement. Thus, the loop body executes at least once even if the boolean expression
starts out false.

The following do-while statement displays the integers from 1 to a given integer number:
int number;
. . . // assign a value to number here
int count = 1;
do
{

System.out.println(count);
count++;

} while (count <= number);

Again, let’s suppose that number is 2. The variable count begins at 1 and is displayed. Next,
count is incremented to 2. Since the expression count <= number is true at this point, the body of
the loop executes again. The value of count (2) is displayed, and then count becomes 3. The
expression count <= number is now false, so the do-while loop ends. Execution continues with the
statement that follows the loop.

If number is zero or negative in the previous example, 1 is displayed, since the body of the loop
executes at least once. If number can possibly be zero or negative, we should use either a while
loop or a for loop here instead of a do-while loop.

Programming Tip: Be sure to include a semicolon at the end of a do-while statement.

Loops A-35

Notice that we placed the ending brace and the while on the same line. Some programmers
prefer to place them on different lines. Either form is fine, but be consistent.

To better understand a do-while loop, let’s rewrite the previous example in the following way:
int number;
. . . // assign a value to number here
int count = 1;
{

System.out.println(count);
count++;

}
while (count <= number)
{

System.out.println(count);
count++;

}

When you compare the two versions, it is obvious that a do-while loop differs from a while loop in
only one detail. With a do-while loop, the loop body is always executed at least once. With a while
loop, the loop body might not execute at all.

Additional Loop Information
A.65 Choosing a loop statement. Suppose you decide that your program needs a loop. How do you

decide whether to use a while statement, a for statement, or a do-while statement? You cannot use
a do-while statement unless you are certain that the loop body should execute at least one time. If
you are certain of this, a do-while statement is likely to be a good choice. However, more often than you
might think, a loop requires the possibility that the body will not execute at all. In those cases, you must
use either a while statement or a for statement. If it is a computation that changes some numeric quan-
tity by some equal amount on each iteration, consider a for statement. If the for statement does not
work well, use a while statement. The while statement is always a safe choice, since you can use it for
any sort of loop. But sometimes one of the other alternatives is easier or clearer.

A.66 The break and continue statements in loops. You can use the break statement in a switch state-
ment or in any kind of loop statement. When the break statement executes in a loop, the immedi-
ately enclosing loop ends, and the remainder of the loop body is not executed. Execution continues
with the statement after the loop.

Adding a break statement to a loop can make the loop more difficult to understand. Without
a break statement, a loop has a simple, easy-to-understand structure. There is a test for ending
the loop at the top (or bottom) of the loop, and every iteration will go to the end of the loop body.
When you add a break statement, the loop might end because either the condition given at the
top (or bottom) of the loop is false or the break statement has executed. Some loop iterations
may go to the end of the loop body, but one loop iteration might end prematurely. Because of the
complications they introduce, you should avoid break statements in loops. Some authorities con-
tend that a break statement should never be used to end a loop, but virtually all programming
authorities agree that they should be used at most sparingly.

The continue statement ends the current iteration of a loop. The loop continues with the next
iteration. Using a continue statement in this way has the same problems as using a break statement.

Programming Tip: A while loop can do anything that another loop can do.

A-36 APPENDIX A Java Essentials

However, replacing an empty loop body with a continue statement is acceptable. For example, you
can revise the loop at the end of Segment A.62, as follows:

for (n = 1, product = 1; n <= 10; product = product * n, n++)
continue;

The Class String

A.67 Strings of characters, such as "Enter the amount:", do not have a primitive type in Java. How-
ever, Java does provide a class, called String, that you use to create and process strings of charac-
ters. The string constant "Enter the amount:", in fact, is a value of type String. The class String
is part of the package java.lang in the Java Class Library.

A variable of type String can name one of these string values. The statement
String greeting;

declares greeting to be the name of a String variable, and the following statement sets the value
of greeting to the String value "Hello!":

greeting = "Hello!";

These two statements are often combined into one, as follows:
String greeting = "Hello!";

We now can display greeting on the screen by writing
System.out.println(greeting);

The screen will show
Hello!

Characters Within Strings
A.68 Most programming languages use the ASCII character set, which assigns a standard number to

each of the characters normally used on an English-language keyboard. Java, however, uses the
Unicode character set instead. The Unicode character set includes all the ASCII characters plus
many of the characters used in languages that have an alphabet different from English. As it turns
out, this is not likely to be a big issue if you are using an English-language keyboard. Normally, you
can just program as if Java were using the ASCII character set, since the codes for the ASCII char-
acters are the same in Unicode. The advantage of the Unicode character set is that it allows you to
easily handle languages other than English. The disadvantage of the Unicode character set is that it
requires two bytes to store each character, whereas the ASCII character set requires one.

A.69 Escape characters. Suppose we want to display the following line on the screen:
The word “Java” names a language and a drink!

This string contains quotes, so the statement
System.out.println("The word "Java" names a language and a drink!");

will not work: It produces a compiler error message. The problem is that the compiler sees
"The word "

as a perfectly valid quoted string. Then the compiler sees
Java"

Programming Tip: In general, do not use break or continue statements within the
body of a loop.

The Class String A-37

which is not valid in the Java language. The compiler does not know that we mean to include the
quote character as part of the string unless we tell it that we want to do so. We tell the compiler this
by placing a backslash \ before the troublesome character, like so:

System.out.println("The word \"Java\" names a language and a drink!");

Some other special characters also need a backslash in order to be included in strings. They are
listed in Figure A-4. These are often called escape characters because they escape from the usual
meaning of a character in Java, such as the usual meaning of the double-quote character.

It is important to note that each escape sequence is a single character, even though it is spelled
with two symbols. So the string "Say \"Hi\"!" contains 9 characters, not 11.

To include a backslash in a string, you must write two backslashes. Displaying the string
"abc\\def" on the screen would produce

abc\def

FIGURE A-4 Escape characters

Writing the string with only one backslash, as in "abc\def", is likely to produce the error message
“Invalid escape character,” because \d is invalid.

The escape sequence \n indicates that the string starts a new line at the \n. For example, the
statement

System.out.println("The motto is\nGo for it!");

will write the following to the screen
The motto is
Go for it!

You can include a single quote (apostrophe) inside a quoted string, such as "How's this?", but
you cannot write a single quote within single quotes. Thus, to define a single-quote character, you
use the escape sequence \', as follows:

char singleQuote = '\'';

Concatenation of Strings
A.70 You can join two strings by using the + operator. Joining two strings together, end to end, to obtain

a larger string is called concatenation. When + is used with strings, it is sometimes called the
concatenation operator. For example, the statements

String greeting = "Hello";
String sentence = greeting + "my friend.";
System.out.println(sentence);

set the variable sentence to "Hellomy friend." and will write the following on the screen:
Hellomy friend.

\" Double quote.
\' Single quote (apostrophe).
\\ Backslash.
\n New line. (Go to the beginning of the next line.)
\r Carriage return. (Go to the beginning of the current line.)
\t Tab. (Insert whitespace up to the next tab stop.)

A-38 APPENDIX A Java Essentials

No space separates the first two words, because no spaces are added when you concatenate two
strings. If we want sentence to contain "Hello my friend.", we could change the assignment
statement to

sentence = greeting + " my friend.";

Notice the space before the word “my.”
You can concatenate any number of String objects by using the + operator. You can even con-

catenate a String object to any other type of object and get a String object as a result. Java can
express any object as a string when you concatenate it to a string. For primitives like numbers, Java
does the obvious thing. For example,

String solution = "The answer is " + 42;

will set the String variable solution to "The answer is 42". This is so natural that it may seem
as though nothing special is happening, but it does require a real conversion from one type to
another. The Java literal 42 is an integer, whereas "42" is a string consisting of the two characters 4
and 2. Java converts the integer constant 42 to the string constant "42" and then concatenates the
two strings "The answer is " and "42" to obtain the longer string "The answer is 42".

You can also concatenate a single character to a string by using +. For example,

String label = "mile";
String pluralLabel = label + 's';

sets pluralLabel to the string "miles".
Segment A.73 will show you another way to concatenate strings.

String Methods
Readers who need to review Java methods should consult Appendix B before reading this section.

A.71 A String object has methods as well as a value. You use these methods to manipulate string values.
A few of these String methods are described here. You invoke, or call, a method for a String
object by writing the object name, a dot, and the name of the method, followed by a pair of paren-
theses. Some methods require nothing within the parentheses, while others require that you specify
arguments. Let’s look at some examples.

A.72 The method length. The method length gets the number of characters in a string. For example,
suppose we declare two String variables as follows:

String command = "Sit Fido!"; // 9 characters
String answer = "bow-wow"; // 7 characters

Now command.length() has the value 9 (it returns 9), and answer.length() returns 7. Notice that
you must include a pair of parentheses, even though there are no arguments to the method length.
Also notice that spaces, special symbols, and repeated characters are all counted in computing the
length of a string. All characters except the double quotes that enclose the string are counted.

Note: Every class has a method toString that Java uses to get a string representation of
any object. If you do not define toString for a class that you write, the default toString will
return a representation of an object’s location in memory. Thus, you generally should provide
your own toString method when you define a class. Appendices B and C discuss this
method in more detail.

The Class String A-39

You can use a call to the method length anywhere that you can use a value of type int. For
example, all of the following are legal Java statements:

int count = command.length();
System.out.println("Length is " + command.length());
count = answer.length() + 3;

A.73 The method concat. You can use the method concat instead of the + operator to concatenate two
strings. For example, if we declare the String variables

String one = "sail";
String two = "boat";

the expressions
one + two

and
one.concat(two);

are the same string, sailboat.

A.74 Indices. Some of the methods in the class String refer to the positions of the characters in the
string. Positions in a string start with 0, not with 1. Thus, in the string "Hi Mom", H is in position 0,
i is in position 1, the blank character is in position 2, and so forth. A position is usually referred to
as an index. So it would be more normal to say that H is at index 0, i is at index 1, and so on.
Figure A-5 illustrates how index positions are numbered in a string.

FIGURE A-5 Indices 0 through 11 for the string "Java is fun."

A.75 The methods charAt and indexOf. The method charAt returns the character at the index given as
its one argument. For example, the statements

String phrase = "Time flies like an arrow.";
char sixthCharacter = phrase.charAt(5);

assign the character f to the variable sixthCharacter, since the f in flies is at index 5. (Remember,
the first index is 0, not 1.)

The method indexOf tests whether a string contains a given substring and, if it does, returns
the index at which the substring begins. Thus, phrase.indexOf("flies") will return 5 because the
substring flies begins at index 5 within phrase.

A.76 Changing case. The method toLowerCase returns a string obtained from its argument string by
replacing any uppercase letters with their lowercase counterparts. Thus, if greeting is defined by

String greeting = "Hi Mary!";

0 1 2 3 4 5 6 7 8 9 10 11

J a v a i s f u n .

Note: Out-of-bounds index
String methods such as charAt that take an index as an argument will cause an error during
execution if the index is negative or too large. Such an index is said to be out of bounds. The
error causes a StringIndexOutOfBoundsException. Appendix E discusses exceptions.

A-40 APPENDIX A Java Essentials

the expression
greeting.toLowerCase()

returns the string "hi mary!". An analogous method, toUpperCase, converts any lowercase letters
in a string to uppercase.

A.77 The method trim. The method trim trims off any leading and trailing white space, such as blanks.
So the statements

String command = " Sit Fido! ";
String trimmedCommand = command.trim();

set trimmedCommand to the string "Sit Fido!". The blanks between words are not affected.

A.78 Comparing strings. You use the method compareTo to compare two strings. Strings are ordered
according to the Unicode values of their characters. This ordering—called lexicographic ordering—is
analogous to alphabetic ordering. The expression

stringOne.compareTo(stringTwo)

returns a negative integer or a positive integer, depending on whether stringOne occurs before or
after stringTwo. The expression returns zero if the two strings are equal.

The method compareToIgnoreCase behaves similarly to compareTo, except that the uppercase and
lowercase versions of the same letter are considered to be equal. For example, the method compareTo
places the string "Hello" before the string "hello", but the method compareToIgnoreCase finds these
strings to be equal.

If you want only to see whether two strings are equal—that is, contain the same values—you
can use the method equals. Thus,

stringOne.equals(stringTwo)

is true if stringOne equals stringTwo and is false if they are not equal. The method equals-
IgnoreCase behaves similarly to equals, except that the uppercase and lowercase versions of the same
letter are equal. For example, the method equals finds the strings "Hello" and "hello" unequal, but
the method equalsIgnoreCase finds them equal.

The Class StringBuilder

A.79 Once you create a string object of the class String, you cannot alter it. But sometimes you would
like to. For example, we might define the string

String name = "rover";

and then decide that we want to capitalize its first letter. We cannot. We could, of course, write
name = "Rover";

but this statement creates a new string Rover and discards rover.

Programming Tip: Do not use the operators ==, !=, <, <=, >, or >= to compare the con-
tents of two strings.

Programming Tip: When applied to two strings (or to any two objects), the operator ==
tests whether they are stored in the same memory location. Sometimes that is sufficient, but if
you want to know whether two strings that are in different memory locations contain the same
sequence of characters, use the method equals.

The Class StringBuilder A-41

The class String has no method that modifies a String object. However, the class StringBuilder
in the package java.lang has methods such as the following:

public StringBuilder append(String s)

Concatenates the string s to the end of this string and returns a reference to the result.
public StringBuilder delete(int start, int after)

Removes the substring of this string beginning at the index start and ending at either the
index after - 1 or the end of the string, whichever occurs first, and returns a reference to
the result. Throws StringIndexOutOfBoundsException if start is invalid.
public StringBuilder insert(int index, String s)

Inserts the string s into this string at the given index and returns a reference to the result.
Throws StringIndexOutOfBoundsException if the index is invalid.
public StringBuilder replace(int start, int after, String s)

Replaces a substring of this string with the string s. The substring to be replaced begins at
the index start and ends at either the index after - 1 or the end of the string, whichever
occurs first. Returns a reference to the result. Throws StringIndexOutOfBoundsException
if start is invalid.
public void setCharAt(int index, char character)

Sets the character at the given index of this string to a given character. Throws IndexOut-
OfBoundsException if the index is invalid.

If you are not familiar with exceptions, think of them as error messages for now. Appendix E will
explain them to you.

 StringBuilder has other versions of the methods append and insert that take data of any
type as arguments. While the classes StringBuilder and String have some methods in common,
several methods in String are not in StringBuilder.

A.80 Examples. If we have the following instance of StringBuilder
StringBuilder message = new StringBuilder("rover");

we can capitalize its first letter by writing
message.setCharAt(0, 'R');

Now the statement

message.append(", roll over!");

changes message to the string Rover, roll over!, and

message.insert(7, "Rover, ");

changes it to Rover, Rover, roll over! Next,

message.delete(0, 7);

changes message to Rover, roll over!, and

message.replace(7, 16, "come here");

changes message to Rover, come here!
Each of the previous methods except setCharAt returns the result of the operation. So, for

example, if we write

newMessage = message.append(", roll over!");

both newMessage and message reference the same sequence of characters.

A-42 APPENDIX A Java Essentials

Using Scanner to Extract Pieces of a String

A.81 Segments A.32 through A.37 show how the class Scanner is used to read data that a user types at the
keyboard. Methods in Scanner—such as nextInt, nextDouble, and next—read a group of contigu-
ous characters, or token, as an integer, a real number, or a string, respectively. When more than one
token appears in the input data, they are separated by one or more characters known as delimiters. By
default, Scanner uses white space as the delimiter.

In addition to reading data from the keyboard, you can use Scanner to process a string that
you define within your program. You simply use the string instead of System.in when creating a
Scanner object.

For example, the statements

String phrase = "one potato two potato three potato four";
Scanner scan = new Scanner(phrase);
System.out.println(scan.next());
System.out.println(scan.next());
System.out.println(scan.next());
System.out.println(scan.next());

display the words

one
potato
two
potato

We essentially have read tokens from a string instead of from the keyboard. The tokens here are
separated by white space, the default delimiter.

A.82 Specifying delimiters. Whether you read characters from an input device such as a keyboard or
from a string defined in your program, you can specify the delimiters that Scanner will use. The
Scanner method useDelimiter sets the delimiters to those indicated in its string argument. For
example, to use a comma as a delimiter, you would write

scan.useDelimiter(",");

where scan is a Scanner object. Thus, the statements

String data = "one,potato,two,potato";
Scanner scan = new Scanner(data);
scan.useDelimiter(",");
System.out.println(scan.next());
System.out.println(scan.next());
System.out.println(scan.next());
System.out.println(scan.next());

display the words

one
potato
two
potato

A.83 Example. To extract the words one, two, three, and four from the string phrase that we defined in
Segment A.81, you would describe the delimiter as one or more blanks, the word potato, and one or
more blanks. You use the notation in Figure A-6 to describe the delimiters. For example, \s+
denotes one or more white-space characters. You must duplicate each backslash character in this

Using Scanner to Extract Pieces of a String A-43

notation when it appears between the quotes of a string literal to distinguish it from escape charac-
ters such as \n.

FIGURE A-6 Some notation used to define the delimiters that Scanner uses

The following statement sets the delimiter of the Scanner object scan to the word potato with
leading and trailing white-space characters:

scan.useDelimiter("\\s+potato\\s+");

Thus, the statements
String phrase = "one potato two potato three potato four";
Scanner scan = new Scanner(phrase);
scan.useDelimiter("\\s+potato\\s+");
System.out.println(scan.next());
System.out.println(scan.next());
System.out.println(scan.next());
System.out.println(scan.next());

display the words
one
two
three
four

A.84 Example. The statements
String phrase = "5 potato 6potato 7 potato more";
Scanner scan = new Scanner(phrase);
scan.useDelimiter("\\s*\\d\\s*");
System.out.println(scan.next());
System.out.println(scan.next());
System.out.println(scan.next());

display the words
potato
potato
potato more

\d Any digit 0 through 9
\D Any character other than a digit
\s Any white-space character
\S Any character other than white space
\w Any letter, digit, or underscore
\W Any character other than a letter,
 digit, or underscore
- Any character
X One occurrence of X
X? Zero or one occurrence of X
X* Zero or more occurrences of X
X+ One or more occurrences of X
X{n} Exactly n occurrences of X
X{n,} At least n occurrences of X

A-44 APPENDIX A Java Essentials

The delimiter is a digit with optional leading and trailing white space.
If you now write

scan = new Scanner(phrase);
scan.useDelimiter("\\s*potato\\s*");
System.out.println(scan.nextInt());
System.out.println(scan.nextInt());
System.out.println(scan.next());
System.out.println(scan.next());

you will get the following output
5
6
7
more

Here the delimiter is the word potato with optional leading and trailing white space.

A.85 Example. The statements
String phrase = "one - two - three four";
Scanner scan = new Scanner(phrase);
scan.useDelimiter("\\s+-?\\s*");
System.out.println(scan.next());
System.out.println(scan.next());
System.out.println(scan.next());
System.out.println(scan.next());

display the words
one
two
three
four

The delimiter is at least one white space character optionally followed by a dash and more white space.

Arrays

A.86 In Java, an array is a special kind of object that stores a finite collection of items having the same
data type. For example, you can create an array of seven numbers of type double as follows:

double[] temperature = new double[7];

The left side of the assignment operator declares temperature as an array whose contents are of
type double. The right side uses the new operator to request seven memory locations for the array.
This is like declaring the following strangely named variables to have type double:

temperature[0], temperature[1], temperature[2], temperature[3],
temperature[4], temperature[5], temperature[6]

Note that the numbering starts with 0, not 1. Each of these seven variables can be used just like any
other variable of type double. For example, we can write

temperature[3] = 32;
temperature[6] = temperature[3] + 5;
System.out.println(temperature[6]);

But these seven variables are more than just seven plain old variables of type double. The number
in square brackets—called an index, or subscript—can be any arithmetic expression whose value is an
integer. In this example, the index value must be between 0 and 6, because we declared that the array

Arrays A-45

temperature should have seven memory locations. A variable such as temperature[3] is called either
an indexed variable, a subscripted variable, or simply an element of the array. The value in an
indexed variable is called an entry, and its data type is the array’s entry type.

For example, the following statements read seven temperatures into an array and compare
them with their average:

public static final int DAYS_PER_WEEK = 7;
Scanner keyboard = new Scanner(System.in);
. . .

double[] temperature = new double[DAYS_PER_WEEK];

System.out.println("Enter " + DAYS_PER_WEEK + " temperatures:");
double sum = 0;
for (int index = 0; index < DAYS_PER_WEEK; index++)
{

temperature[index] = keyboard.nextDouble();
sum = sum + temperature[index];

} // end for

double average = sum / DAYS_PER_WEEK;

System.out.println("The average temperature is " + average);
System.out.println("The temperatures are");
for (int index = 0; index < DAYS_PER_WEEK; index++)
{

if (temperature[index] < average)
System.out.println(temperature[index] + " below average.");

else if (temperature[index] > average)
System.out.println(temperature[index] + " above average.");

else // temperature[index] == average
System.out.println(temperature[index] + " average.");

} // end for

Figure A-7 illustrates the array temperature after seven values have been read into it.

FIGURE A-7 An array of seven temperatures

Each location in the array temperature contains a temperature. That is, the array is full. But
arrays are not always full. You need to distinguish between the number of locations in an array—its
length—and the number of items currently stored in the array.

An array has a data field length that contains the declared number of elements in the array. For
example, if we create an array by writing

int[] age = new int[50];

then age.length is 50. Notice that length is not a method, so no parentheses follow it. If we place
only 10 values into the first 10 locations of this array, age.length is still 50. If we need to know
how many values we place into an array, we will need to keep track of that ourselves.

temperature[5]

The array temperature

Indices 0 1 2 3 4 5 6

32 30 25.7 26 34 31.5 29

A-46 APPENDIX A Java Essentials

Array Parameters and Returned Values
Readers who need to review Java methods should consult Appendix B before reading this section.

A.87 Array parameters. You can pass an indexed variable as an argument to a method anyplace that
you can pass an ordinary variable of the array’s entry type. For example, if a method has the header

public double compute(double value)

and temperature is the array of double values that we defined earlier, we can invoke the method
by writing

double result = compute(temperature[3])

An entire array can also be a single argument to a method. For example, the following method

public static void incrementArrayBy2(double[] array)
{

for (int index = 0; index < array.length; index++)
array[index] = array[index] + 2;

} // end incrementArrayBy2

will accept any array of double values as its single argument. We declare the parameter array in
the method’s header just as we would declare any other array: by specifying the type of the array
entries followed by square brackets. We do not specify the length of the array.

The following statement is an example of how we would invoke this method:
incrementArrayBy2(temperature);

You use no square brackets when you pass an entire array as an argument to a method. Notice that
the method can take any length array as an argument. The method incrementArrayBy2 adds 2 to
each entry in the argument array temperature. That is, the method actually changes the values in
the argument array.

A.88 Arrays as return values. In Java, a method can return an array. For example, rather than modify-
ing its array argument, the previous method incrementArrayBy2 could return an array whose val-
ues are 2 more than the corresponding values in the array argument. You specify the method’s
return type in the same way that you specify a type for an array parameter. The method would then
look like this:

public static double[] incrementArrayBy2(double[] array)
{

double[] result = new double[array.length];
for (int index = 0; index < array.length; index++)

result[index] = array[index] + 2;
return result;

} // end incrementArrayBy2

The following statements invoke this method:

double[] originalArray = new double[10];
< Statements that place values into originalArray >
. . .

Note: An array has a data type and an entry type
The data type of the previously defined array age is int[], but its entry type is int.

Note: A method can change the values in an argument array.

Arrays A-47

double[] revisedArray = incrementArrayBy2(originalArray);
< At this point, originalArray is unchanged. >

Initializing Arrays
A.89 You can provide initial values for the elements in an array when you declare it. To do this, you

enclose the values for the array in braces and place them after the assignment operator, as in the fol-
lowing example:

double[] reading = {3.3, 15.8, 9.7};

You do not explicitly state the array’s length. Instead the length is the minimum number of loca-
tions that will hold the given values. This initializing declaration is equivalent to the following
statements:

double[] reading = new double[3];
reading[0] = 3.3;
reading[1] = 15.8;
reading[2] = 9.7;

If you do not initialize the elements of an array, they are given initial default values according
to their type. For example, if you do not initialize an array of integers, each element of the array
will be initialized to zero. In an array of objects, each element is initialized to null. However, it is
usually clearer to do your own explicit initialization, either when you declare the array or later by
using a loop and assignment statements.

Array Index Out of Bounds
A.90 When programming with arrays, making a mistake with an index is easy. This is especially true if

that index is an expression. If the array temperature has seven elements, but an index is some inte-
ger other than 0 through 6, the index is said to be out of bounds. An out-of-bounds index expression
will compile without any error message, but will cause an error when you run your program. In par-
ticular, you will get an IndexOutOfBoundsException. As we mentioned in Segment A.75, a similar
situation can occur when you work with strings. (See Appendix E for a discussion of exceptions.)

Use of = and == with Arrays
A.91 The operator =. Recall that a variable for an object really contains the memory address of the

object. The same is true of arrays. All array locations are together in one section of memory so
that one memory address can specify the location of the entire array. The assignment operator
copies this memory address. For example, if a and b are arrays of the same size, the assignment
b = a gives the array variable b the same memory address as the array variable a. In other words,
a and b are two different names for the same array. These variables are aliases. Thus, when you
change the value of a[2], you are also changing the value of b[2]. Appendix B talks more about
aliases and references.

Programming Tip: When a method returns an array that you want to assign to an array
variable, you should declare the variable but not allocate memory for an array. For example,
to invoke the method in the previous example, you do not write

double[] revisedArray = new double[10]; // WRONG!
revisedArray = incrementArrayBy2(originalArray);

The first statement allocates 10 locations for a new array, but these locations are discarded
when the second statement executes.

A-48 APPENDIX A Java Essentials

If you want the array b to have the same values as the array a, but in separate memory loca-
tions, then instead of one assignment statement you must use something like the following:

for (int index = 0; index < a.length; index++)
b[index] = a[index];

A.92 The operator ==. The equality operator == tests two arrays to see if they are stored in the same
place in the computer’s memory. It does not test whether the arrays contain the same values. To do
so, you must compare the two arrays entry by entry. For example, if the arrays a and b contain
primitive values and have the same length, the following code could be used:

boolean match = true;
int index = 0;
while (match && (index < a.length))
{

if (a[index] != b[index])
match = false;

else
index++;

} // end while

if (match)
System.out.println("Arrays have the same contents");

else
System.out.println("Arrays have different contents");

If the arrays contained objects instead of primitive values, we would use the boolean expression
!a[index].equals(b[index]) instead of a[index] != b[index].

Arrays and the For-Each Loop
A.93 Earlier we used a for-each loop to process all the values in an enumeration. We can use a similar

for-each loop to process all the values in an array. For example, the following statements compute
the sum of the integers in an array:

int[] anArray = {1, 2, 3, 4, 5};
int sum = 0;

Note: Are arrays really objects?
Arrays behave very much like objects. On the other hand, arrays do not belong to any class.
Because arrays were used by programmers for many years before classes and objects (as we
have used them) were invented, arrays use a special notation of their own. Other features of
objects do not apply to arrays, such as inheritance (which we discuss in Appendix C). So
whether or not arrays should be considered objects is primarily an academic debate. When-
ever Java documentation says that something applies to all objects, it also applies to arrays.

Note: Array types are reference types
A variable of an array type holds only the address where the array is stored in memory. This mem-
ory address is often called a reference to the array object in memory. For this reason, an array
type is a reference type. A reference type is any type whose variables hold references—that is,
memory addresses—as opposed to the actual item named by the variable. Array types and class
types are both reference types. Primitive types are not reference types.

Arrays A-49

for (int integer : anArray)
sum = sum + integer;

System.out.println(sum);

Similarly, the following statements display all the strings in an array:

String[] friends = {"Gavin", "Gail", "Jared", "Jessie"};
for (String name : friends)

System.out.println(name);

Multidimensional Arrays
A.94 You can have an array with more than one index. For example, suppose we wanted to store the dol-

lar amounts shown in Figure A-8 in some sort of array. The bold items are just labeling. There are
60 entries. If we use an array with one index, the array will have a length of 60, and keeping track
of which entry goes with which index would be almost impossible. On the other hand, if we allow
ourselves two indices, we can use one index for the row and one index for the column. This
arrangement is illustrated in Figure A-9.

FIGURE A-8 A table of values

Note that, as was true for the simple arrays you have already seen, you begin numbering indi-
ces with 0 rather than 1. If the array is named table and it has two indices, the Java notation
table[3][2] specifies the entry in the fourth row and third column. By convention, we think of the
first index as denoting the row and the second as denoting the column. Arrays that have exactly two
indices can be displayed on paper as a two-dimensional table and are called two-dimensional
arrays. More generally, an array is said to be an n-dimensional array if it has n indices. Thus, the
ordinary one-index arrays that we have used up to now are one-dimensional arrays.

The effect of various interest rates on $1000 when
compounded annually (rounded to whole dollars)

Year 5.00% 5.50% 6.00% 6.50% 7.00% 7.50%

1 $1050 $1055 $1060 $1065 $1070 $1075

2 $1103 $1113 $1124 $1134 $1145 $1156

3 $1158 $1174 $1191 $1208 $1225 $1242

4 $1216 $1239 $1262 $1286 $1311 $1335

5 $1276 $1307 $1338 $1370 $1403 $1436

6 $1340 $1379 $1419 $1459 $1501 $1543

7 $1407 $1455 $1504 $1554 $1606 $1659

8 $1477 $1535 $1594 $1655 $1718 $1783

9 $1551 $1619 $1689 $1763 $1838 $1917

10 $1629 $1708 $1791 $1877 $1967 $2061

A-50 APPENDIX A Java Essentials

FIGURE A-9 Row and column indices for an array named table; table[3][2] is
the element in the fourth row and third column

A.95 Arrays with multiple indices are handled much like arrays with one index. To declare and create the
array table with 10 rows and 6 columns, we write

int[][] table = new int[10][6];

You can have arrays with any number of indices. To get more indices, you just use more square
brackets in the declaration.

Indexed variables for multidimensional arrays are just like indexed variables for one-dimensional
arrays, except that they have multiple indices, each enclosed in a pair of square brackets. For example,
the following statements set all the elements in table to zero:

for (int row = 0; row < 10; row++)
for (int column = 0; column < 6; column++)

table[row][column] = 0;

Note that we used two for loops, one nested within the other. This is a common way of stepping
through the indexed variables in a two-dimensional array. If we had three indices, we would use
three nested for loops, and so forth for higher numbers of indices.

As was true of the indexed variables for one-dimensional arrays, indexed variables for multi-
dimensional arrays are variables of the array’s entry type and can be used anywhere that a variable
of the entry type is allowed. For example, for the two-dimensional array table, an indexed variable
such as table[3][2] is a variable of type int and can be used anyplace that an ordinary int vari-
able can be used.

A multidimensional array can be a parameter of a method. For example, the following method
header has a two-dimensional array as a parameter:

public static void clearArray(double[][] array)

A.96 Java implements multidimensional arrays as one-dimensional arrays. For example, consider the array
int[][] table = new int[10][6];

The array table is in fact a one-dimensional array of length 10, and its entry type is int[]. Thus,
each entry in the array table is a one-dimensional array of length 6. In other words, a multidimen-
sional array is an array of arrays.

Normally, you do not need to be concerned with this fact, since this detail is handled automati-
cally by the compiler. However, sometimes you can profit from this knowledge. For example, con-
sider the previous nested for loops that filled the two-dimensional array table with zeros. We used
the constants 6 and 10 to control the for loops, but it would be better style to use the data field

Row index 3 table[3][2] Column index 2

0
1
2
3
4
5

0 1 2 3 4 5

6
7
8
9

Indices

1050 1055 1060 1065 1070 1075
1103 1113 1124 1134 1145 1156
1158 1174 1191 1208 1225 1242
1216 1239 1262 1286 1311 1335
1276 1307 1338 1370 1403 1436
1340 1379 1419 1459 1501 1543
1407 1455 1504 1554 1606 1659
1477 1535 1594 1655 1718 1783
1551 1619 1689 1763 1838 1917
1629 1708 1791 1877 1967 2061

Wrapper Classes A-51

length instead. To do so, we need to think in terms of an array of arrays. For example, the follow-
ing is a rewrite of the nested for loops:

for (int row = 0; row < table.length; row++)
for (int column = 0; column < table[row].length; column++)

table[row][column] = 0;

Here, table.length is the number of rows in table, and table[row].length is the number of columns.

Wrapper Classes

A.97 Java makes a distinction between the primitive types, such as int, double, and char, and the class
types, such as String and the classes that you write. Java sometimes treats primitive types and class
types differently. For example, an argument to a method and the assignment operator = behave differ-
ently for primitive types and class types. To make things uniform, Java provides a wrapper class for
each of the primitive types that enables us to convert a value of a primitive type to an object of a cor-
responding class type.

For example, the wrapper class for the primitive type int is the predefined class Integer. If we
want to convert an int value, such as 10, to an object of type Integer, we can do so in one of three
ways, as the following statements demonstrate:

Integer ten = new Integer(10);
Integer fiftyTwo = new Integer("52");
Integer eighty = 80;

In the first way, you supply an int value as a literal, a variable, or an expression. In the second, you
provide a string that contains an int value. The third way allows you to simply assign an int value
without using the new operator.

A.98 Once you have defined Integer objects, you can compare them by using the methods compareTo
and equals, much as you compare strings or the other objects we have discussed in this appendix.
Do not use operators such as ==. Just as for strings and other objects, operators like == compare the
memory addresses of objects, not their values.

If you need the value of an Integer object as a primitive, you can use methods such as intValue
or doubleValue. For example, if ten is defined as in the previous segment, the expression

ten.intValue()

returns the int value 10, whereas
ten.doubleValue()

returns the double value 10.0. You also can simply assign the Integer object to an int variable, as in
int primitive10 = ten;

No type cast is necessary; however, using one is not an error.

A.99 Boxing and unboxing. When performing arithmetic with Integer objects, you can use the same
operators that you use for arithmetic with primitives. You can also intermix primitive integers with
Integer objects. Thus, you can write statements such as the following:

Scanner keyboard = new Scanner(System.in);
System.out.print("What is his age? ");
int hisAge = keyboard.nextInt();
System.out.print("What is her age? ");
Integer herAge = keyboard.nextInt();

Integer ageDifference = Math.abs(hisAge - herAge);
System.out.println("He is " + hisAge + ", she is " + herAge +

": a difference of " + ageDifference + ".");

A-52 APPENDIX A Java Essentials

Java converts between int and Integer as necessary. The process of converting from a primitive type
to a corresponding wrapper class is called boxing. Unboxing is the process used to convert in the
other direction. Since these conversions happen automatically, they are often called auto-boxing and
auto-unboxing. Realize that the previous statements are just a demonstration of what is possible.
Using only primitive integers for this simple computation is certainly adequate.

A.100 The wrapper classes for the primitive types double, float, long, and char are Double, Float,
Long, and Character, respectively. You create objects of these classes in a way analogous to how
you create Integer objects. Except for Character, each wrapper class has methods that return a
value in a variety of types. Integer has the methods doubleValue, floatValue, intValue, and
longValue. Double, Float, and Long also have these same methods. The class Character has only
the analogous method charValue.

Many of the classes that we study in this book represent collections of objects. If your data has
a primitive type, an appropriate wrapper class enables you to represent the data as objects so that
you can use these classes.

A.101 Wrapper classes also contain some useful static constants. For example, you can find the largest
and smallest values of any of the primitive number types by using the associated wrapper class. The
largest and smallest values of type int are

Integer.MAX_VALUE and Integer.MIN_VALUE

The largest and smallest values of type double are
Double.MAX_VALUE and Double.MIN_VALUE

A.102 Wrapper classes have static methods that can be used to convert a string to the corresponding num-
ber of type int, double, long, or float. For example, suppose your program needs to convert the
string "199.98" to a double value (which will turn out to be 199.98, of course). The static method
parseDouble of the wrapper class Double will convert a string to a value of type double. So if
theString is a variable of type String whose value is "199.98",

Double.parseDouble(theString)

returns the double value 199.98. The other wrapper classes Integer, Long, and Float have the
analogous methods parseInt, parseLong, and parseFloat.

If there is any possibility that the string named by theString has extra leading or trailing
blanks, you should instead use

Double.parseDouble(theString.trim())

As we discussed in Segment A.77, the method trim, included in the class String, trims off lead-
ing or trailing white space, such as blanks. If the string is not a correctly formed number, the
invocation of Double.parseDouble will cause an exception. The use of trim helps some in
avoiding this problem.

A.103 Each of the numeric wrapper classes also has a static method called toString that will convert in
the other direction—that is, it will convert from a primitive numeric value to a string representation
of the numeric value. For example,

Integer.toString(42)

returns the string value "42", and
Double.toString(199.98)

returns the string value "199.98". Additionally, each wrapper class, like all other classes, has a
nonstatic version of toString. For example, if we define n as follows:

Integer n = new Integer(198);

then n.toString() returns the string "198".

Wrapper Classes A-53

A.104 Character is the wrapper class for the primitive type char. The following piece of code illustrates
some of the basic methods for this class:

Character c1 = new Character('a');
Character c2 = new Character('A');
if (c1.equals(c2))

System.out.println(c1.charValue() + " is the same as " + c2.charValue());

else
System.out.println(c1.charValue() + " is not the same as " + c2.charValue());

This code displays
a is not the same as A

The equals method checks for equality of characters, so uppercase and lowercase letters are con-
sidered different.

Some of the static methods in the class Character follow:

public static char toLowerCase(char ch)

Returns the lowercase equivalent of ch, if ch is a letter; otherwise returns ch.

Examples:

Character.toLowerCase('a') returns 'a'
Character.toLowerCase('A') returns 'a'
Character.toLowerCase('5') returns '5'
public static char toUpperCase(char ch)

Returns the uppercase equivalent of ch, if ch is a letter; otherwise returns ch.

Examples:

Character.toUpperCase('a') returns 'A'
Character.toUpperCase('A') returns 'A'
Character.toUpperCase('5') returns '5'
public static boolean isLowerCase(char ch)

Returns true if ch is a lowercase letter.

Examples:

Character.isLowerCase('a') returns true
Character.isLowerCase('A') returns false
Character.isLowerCase('5') returns false
public static boolean isUpperCase(char ch)

Returns true if ch is an uppercase letter.

Examples:

Character.isUpperCase('a') returns false
Character.isUpperCase('A') returns true
Character.isUpperCase('5') returns false
public static boolean isLetter(char ch)

Returns true if ch is a letter.

Note: Wrapper classes
Every primitive type has a wrapper class. Wrapper classes allow you to represent values of
a primitive type as a class type. They also contain a number of useful predefined constants
and methods.

A-54 APPENDIX A Java Essentials

Examples:

Character.isLetter('a') returns true
Character.isLetter('A') returns true
Character.isLetter('5') returns false
public static boolean isDigit(char ch)

Returns true if ch is a digit.
Examples:

Character.isDigit('a') returns false
Character.isDigit('A') returns false
Character.isDigit('5') returns true
public static boolean isLetterOrDigit(char ch)

Returns true if ch is either a letter or a digit.
Examples:

Character.isLetterOrDigit('a') returns true
Character.isLetterOrDigit('A') returns true
Character.isLetterOrDigit('5') returns true
Character.isLetterOrDigit('%') returns false
public static boolean isWhitespace(char ch)

Returns true if ch is a white-space character.
Examples:

Character.isWhitespace('a') returns false
Character.isWhitespace(' ') returns true

A.105 Java also has a wrapper class Boolean. This class has the two constants Boolean.TRUE and
Boolean.FALSE. However, the Java reserved words true and false are much easier to use for
these constants. So the constants in the class Boolean will not be of much help to us. The meth-
ods of the class Boolean are also not used very often. Although the class Boolean is not useless,
it will be of little use to us in this text and we will discuss it no further.

Appendix

B Java Classes
Contents
Objects and Classes
Using the Methods in a Java Class

References and Aliases
Defining a Java Class

Method Definitions
Arguments and Parameters
Passing Arguments
A Definition of the Class Name
Constructors
The Method toString
Methods That Call Other Methods
Methods That Return an Instance of Their Class
Static Fields and Methods
Overloading Methods

Enumeration as a Class
Packages

The Java Class Library
Generic Data Types

Prerequisites
Appendix A Java Essentials

This appendix reviews the use and creation of Java classes, methods, and packages.
Even if you are familiar with this material, you should at least skim it to learn our
terminology.

Objects and Classes

B.1 Appendix A introduced the basics of classes and objects. Recall that an object con-
tains data and can perform certain actions. An object belongs to a class, which defines
its data type. A class specifies the kind of data the objects of that class have. A class
also specifies what actions the objects can take and how they accomplish those
actions. Object-oriented programming, or OOP, views a program as a sort of world

B-2 APPENDIX B Java Classes

consisting of objects that interact with one another by means of actions. For example, in a program
that simulates automobiles, each automobile is an object.

When you define a class in Java, the class is like a plan or a blueprint for constructing specific
objects. As an example, Figure B-1 describes a class called Automobile and shows three Automobile
objects. The class is a general description of what an automobile is and what it can do.

Each instance, or object, of the class Automobile is a particular automobile. You can name
each object that you create, or instantiate. In Figure B-1, the names are bobsCar, suesCar, and
jakesTruck. In a Java program, bobsCar, suesCar, and jakesTruck would be variables of type
Automobile.

The definition of the Automobile class says that an Automobile object has data such as its
model, its year, and how much fuel is in its tank. The class definition contains no actual data—no
string and no numbers. The individual objects have the data, and the class simply specifies what
kind of data they have.

The Automobile class also defines methods such as goForward and goBackward. In a program
that uses the class Automobile, the only actions an Automobile object can take are defined by those
methods. All objects of a given class have exactly the same actions. The implementations of the
methods indicate how the actions are performed and are included in the class definition. The
objects themselves actually perform the method’s actions, however.

The objects in a single class can have different characteristics. Even though these objects
have the same types of data and the same actions, the individual objects can differ in the values
of their data.

FIGURE B-1 An outline of a class and three of its instances

Note: An object is a program construct that contains data and performs actions. The objects
in a Java program interact, and this interaction forms the solution to a given problem. The
actions performed by objects are defined by methods.

Note: A class is a type or kind of object. All objects in the same class have the same kinds
of data and the same actions. A class definition is a general description of what that object is
and what it can do.

The Class Automobile

Class Name: Automobile

Data:
 model_____________
 year______________
 fuelLevel_________
 speed_____________
 mileage___________

Methods (actions):
 goForward
 goBackward
 accelerate
 decelerate
 getFuelLevel
 getSpeed
 getMileage

Using the Methods in a Java Class B-3

(Figure B-1 continued)

Using the Methods in a Java Class

B.2 Let’s assume that someone has written a Java class called Name to represent a person’s name. We
will describe how to use this class and, in doing so, we will show you how to use a class’s methods.
A program component that uses a class is called a client of the class.We will reserve the term
“user” to mean a person who uses a program.

To declare a variable of data type Name, you would write, for example,

Name joe;

At this point, the variable joe contains nothing in particular; it is uninitialized. To create a specific
object of data type Name—that is, to create an instance of Name—called joe, you write

joe = new Name();

The new operator creates an instance of Name by invoking a special method within the class, known
as a constructor. The memory address of the new object is assigned to joe, as Figure B-2 illus-
trates. We will show you how to define constructors a bit later, in Segment B.17. Note that you can
combine the previous two Java statements into one:

Name joe = new Name();

FIGURE B-2 A variable that references an object

Objects (Instantiations) of the Class Automobile

bobsCar suesCar jakesTruck

Data:
 model: Sedan
 year: 2005
 fuelLevel: 90%
 speed: 55 MPH
 mileage: 21,405

Data:
 model: SUV
 year: 2007
 fuelLevel: 45%
 speed: 35 MPH
 mileage: 9,864

Data:
 model: Truck
 year: 2004
 fuelLevel: 20%
 speed: 20 MPH
 mileage: 38,631

Note: You can view a class in several different ways when programming. When you instantiate an
object of a class, you view the class as a data type. When you implement a class, you can view it as a
plan or a blueprint for constructing objects—that is, as a definition of the objects’ data and actions.
At other times, you can think of a class as a collection of objects that have the same type.

Object of type Namejoe

B-4 APPENDIX B Java Classes

B.3 Suppose that a person’s name has only two parts: a first name and a last name. The data associated
with the object joe then consists of two strings that represent the first and last names. Since you
want to be able to set—that is, initialize or change—a person’s name, the Name class should have
methods that give you this capability. To set joe’s first and last names, you can use two methods
from the class Name—setFirst and setLast—as follows:

joe.setFirst("Joseph");
joe.setLast("Brown");

You usually invoke a method by writing the name of the receiving object first, followed by a dot,
the name of the method to be invoked, and finally a set of parentheses that contain arguments. In
this example, joe is the receiving object, as it receives the call to perform an action, and the argu-
ments are strings that represent inputs to the methods. The methods set the object’s data fields to
the specific values given as arguments.

The methods setFirst and setLast are examples of void methods, in that they do not return a
value. As we mentioned in Segment A.2 of Appendix A, a second kind of method—the valued
method—returns a single value. For example, the method getFirst returns a string that is the first
name of the object that received the method call. Similarly, the method getLast returns the last name.

You can invoke a valued method anywhere that you can use a value of the type returned by the
method. For example, getFirst returns a value of type String, and so you can use a method invo-
cation such as joe.getFirst() anywhere that it is legal to use a value of type String. Such places
could be in an assignment statement, like

String hisName = joe.getFirst();

or within a println statement, like

System.out.println("Joe's first name is " + joe.getFirst());

Notice that the methods getFirst and getLast have no arguments in their parentheses. Any
method—valued or void—can require zero or more arguments.

References and Aliases
B.4 Java has eight primitive data types: byte, short, int, long, float, double, char, and boolean.

A variable of a primitive type actually contains the primitive value. All other data types are
reference, or class, types. The String variable greeting in

String greeting = "Hello";

Note: Valued methods return a single value; void methods do not return a value. For exam-
ple, the valued method getFirst returns the string that represents the first name. The void
method setFirst sets the first name to a given string but does not return a value. For now,
you will distinguish valued methods and void methods by the description of what they do.
Later, in Segments B.7 through B.9, you will see that their Java definitions distinguish one
kind of method from another.

Question 1 Write Java statements that create an object of type Name to represent your name.

Question 2 Write a Java statement that uses the object you created in Question 1 to dis-
play your name in the form last name, comma, first name.

Question 3 Which methods of the class Automobile, as given in Figure B-1, are most
likely valued methods, and which are most likely void methods?

Defining a Java Class B-5

is a reference variable. A reference variable contains the address in memory of an actual object.
This address is called a reference. It is not important here to know that greeting contains a refer-
ence to the string "Hello" instead of the actual string. In such cases, it is easier to talk about the
string greeting, when in fact this is not an accurate description of that variable. This book makes
the distinction between an object and a reference to an object when it is important to do so.

Now suppose that you write

Name jamie = new Name();
jamie.setFirst("Jamie");
jamie.setLast("Jones");
Name friend = jamie;

The two variables jamie and friend reference the same instance of Name, as Figure B-3 shows. We
say that jamie and friend are aliases, because they are two different names for the same object.
You can use jamie and friend interchangeably when referencing the object.

For example, if you use the variable jamie to change Jamie Jones’s last name, you can use the
variable friend to access it. Thus, the statements

jamie.setLast("Smith");
System.out.println(friend.getLast());

FIGURE B-3 Aliases of an object

display Smith. Also note that the boolean expression jamie == friend is true, since both variables
contain the same address.

Defining a Java Class

B.5 We now show you how to write the Java class Name that represents a person’s name. You store a
class definition in a file whose name is the name of the class followed by .java. Thus, the class
Name should be in the file Name.java. Typically, you store only one class per file.

The data in a Name object consists of the person’s first and last names as strings. The methods
in the class will enable you to set and look at these strings. The class has the following form:

public class Name
{

private String first; // first name
private String last; // last name

< Definitions of methods are here >
. . .

} // end Name

friend

jamie
"Jamie" "Jones"

B-6 APPENDIX B Java Classes

The word public simply means that there are no restrictions on where the class is used. That
is, the class Name is available for use in any other Java class. The two strings first and last are
called the class’s data fields or instance variables or data members. Each object of this class will
have these two data fields inside of it. The word private that precedes the declaration of each data
field means that only the methods within the class can refer to the data fields by their names first
and last. No other class will be able to do this. The words public and private are examples of an
access modifier or visibility modifier, which specifies where a class, data field, or method can be
used. A third access modifier, protected, is possible, as you will see in Appendix C.

B.6 Since the data fields are private, how will a class that uses the class Name be able to change or look
at their values? You can define methods in a class that look at or change the values of its data fields.
You declare such methods to be public, so that anyone can use them. A method that enables you to
look at the value of a data field is called an accessor method or query method. A method that
changes the value of a data field is called a mutator method. Java programmers typically begin the
names of accessor methods with get and the names of mutator methods with set. Because of this
convention, accessor methods are sometimes called get methods or getters, and mutator methods
are called set methods or setters. For example, the class Name will have methods that include
getFirst, getLast, setFirst, and setLast.

You may think that accessor methods and mutator methods defeat the purpose of making data
fields private. On the contrary, they give the class control over its data fields. For example, a muta-
tor method can check that any change to a data field is appropriate and warn you if there is a prob-
lem. The class would be unable to make this check if its data fields were public, since anyone could
alter the fields.

Note: Access (visibility) modifiers
The words public and private are examples of access modifiers that specify where a class,
method, or data field can be used. Any class can use a public method, but a private method can
be used only by the class that defines it. Appendix C discusses the access modifier protected,
and the section “Packages” of this appendix shows when you can omit the access modifier.

Note: An accessor (query) method enables you to look at the value of a data field. A muta-
tor method changes the value of a data field. Typically, you begin the names of accessor
methods with get and the names of mutator methods with set.

Programming Tip: You should make each data field in a class private by beginning its
declaration with the access modifier private. You cannot make any direct reference to a pri-
vate data field’s name outside of the class definition. The programmer who uses the class is
forced to manipulate the data fields only via methods in the class. The class then can control
how a programmer accesses or changes the data fields. Within any of the class’s method def-
initions, however, you can use the name of the data field in any way you wish. In particular,
you can directly change the value of the data field.

Defining a Java Class B-7

Method Definitions
B.7 The definition of a method has the following general form:

access-modifier use-modifier return-type method-name(parameter-list)
{

method-body
}

The use modifier is optional and in most cases is omitted. When used, it can be either abstract,
final, or static. Briefly, an abstract method has no definition and must be overridden in a derived
class. A final method cannot be overridden in a derived class. A static method is shared by all
instances of the class. You will encounter these use modifiers later.

Next comes the return type, which for a valued method is the data type of the value that the
method returns. For a void method, the return type is void. You then write the name of the method
and a pair of parentheses that contain an optional list of formal parameters and their data types.
The formal parameters, or simply parameters, specify values or objects that are inputs to the
method.

So far, we have described the first line of the method definition, which is called the method’s
header or declaration. After the header is the method’s body—which is simply a sequence of Java
statements—enclosed in curly braces.

B.8 As an example of a valued method, here is the definition of the method getFirst:
public String getFirst()
{

return first;
} // end getFirst

This method returns the string in the data field first. The return type of this method is, therefore,
String. A valued method must always execute a return statement as its last action. The data type
of the value returned must match the data type declared as the return type in the method’s header.
Notice that this particular method does not have formal parameters.

B.9 Now let’s look at an example of a void method. The void method setFirst sets the data field first
to a string that represents a first name. The method definition is as follows:

public void setFirst(String firstName)
{

first = firstName;
} // end setFirst

This method does not return a value, so its return type is void. The method has one formal parameter,
firstName, that has the data type String. It represents the string that the method should assign to the
data field first. The declaration of a formal parameter always consists of a data type and a parameter
name. If you have more than one formal parameter, you separate their declarations with commas.

Question 4 Is the method setFirst an accessor method or a mutator method?

Question 5 Should a typical accessor method be valued or void?

Question 6 Should a typical mutator method be valued or void?

Question 7 What is a disadvantage of making a data field in a class public?

Header

Body}

B-8 APPENDIX B Java Classes

B.10 The object this. Notice that the bodies of the previous two method definitions refer to the data
field first by name. This is perfectly legal. Exactly whose data field is involved here? Remember
that each object of this class contains a data field first. The data field first that belongs to the
object receiving the call to the method is the one involved. Java has a name for this object when
you want to refer to it within the body of a method definition. It is simply this. For example, in the
method setFirst you could write the statement

first = firstName;

as
this.first = firstName;

Some programmers use this in this way either for clarity or when they want to give the parameter
the same name as the data field. For example, you could name setFirst’s parameter first instead
of firstName. Clearly, the statement

first = first;

in the method’s body would not work correctly, so instead you would write
this.first = first;

We typically will not use this for these reasons. Another situation, however, will occur where
the use of this is essential, as you will see in Segment B.26.

B.11 Methods should be self-contained units. You should design methods separately from the incidental
details of other methods of the class and separately from any program that uses the class. One inci-
dental detail is the name of the formal parameters. Fortunately, formal parameters behave like local
variables, and so their meanings are confined to their respective method definitions. Thus, you can
choose the formal parameter names without any concern that they will be the same as some other
identifier used in some other method. For team programming projects, one programmer can write a
method definition while another programmer writes another part of the program that uses that
method. The two programmers need not agree on the names they use for formal parameters or local

Note: Members
Both the data fields and the methods of an object are sometimes called members of the
object, because they belong to the object.

Note: Naming classes and methods
The normal convention when naming classes and methods is to start all class names with an
uppercase letter and to start all method names with a lowercase letter. Use a noun or descrip-
tive phrase to name a class. Use a verb or action phrase to name a method.

Note: Local variables
A variable declared within a method definition is called a local variable. The value of a local
variable is not available outside of the method definition. If two methods each have a local
variable of the same name, the variables are different, even though they have the same name.

Defining a Java Class B-9

variables. They can choose their identifier names completely independently, without any concern
that some, all, or none of their identifiers might be the same.

Arguments and Parameters
B.12 Earlier you saw that an object of a class usually receives a call to a method defined within that

class. For example, you saw that the statements
Name joe = new Name();
joe.setFirst("Joseph");
joe.setLast("Brown");

set the first and last names for the object joe. The strings "Joseph" and "Brown" are the arguments.
These arguments must correspond to the formal parameters of the method definition. In the case of
setFirst, for example, the formal parameter is the string firstName. The argument is the string
"Joseph". The argument is plugged in for the corresponding formal parameter. Thus, in the body of
the method, firstName represents the string "Joseph" and behaves like a local variable.

A method invocation must provide exactly as many arguments as there are formal parameters
in the corresponding method definition. In addition, the arguments in the invocation must corre-
spond to the formal parameters in the method’s definition with respect to both the order in which
they occur and their data types. In some cases, however, Java will perform an automatic type con-
version when the data types do not match.

Java does have a notation for formal parameters that allows a variable number of arguments.
Since we really do not need this feature, we will not cover it.

Passing Arguments
B.13 When a formal parameter has a primitive type, such as int or char, the parameter is initialized to

the value of the corresponding argument in the method invocation. The argument in a method invo-
cation can be a literal constant—like 2 or 'A'—or it can be a variable or any expression that yields
a value of the appropriate type. Note that the method cannot change the value of an argument that
has a primitive data type. Such an argument serves as an input value only. This mechanism is
described as call-by-value.

Note: The arguments in the invocation of a method must correspond to the formal parame-
ters in the method’s definition with respect to number, order, and data type.

Aside: Use of the terms “parameter” and “argument”

The use of the terms “formal parameter” and “argument” in this book is consistent with common
usage, but some people use the terms “parameter” and “argument” interchangeably. Some people
use the term “parameter” for both what we call (formal) parameters and what we call arguments.
Other people use the term “argument” for both what we call (formal) parameters and what we call
arguments.

B-10 APPENDIX B Java Classes

For example, suppose that the class Name provided for a middle initial by defining another data
field and the method setMiddleInitial. Thus, the class might appear as follows:

public class Name
{

private String first;
private char initial;
private String last;
. . .

public void setMiddleInitial(char middleInitial)
{

initial = middleInitial;
} // end setMiddleInitial
. . .

A client of this class could contain the following statements:
char joesMI = 'T';
Name joe = new Name();
. . .
joe.setMiddleInitial(joesMI);
. . .

Figure B-4 shows the argument joesMI, the parameter middleInitial, and the data field initial
as the method setMiddleInitial executes. (Although the data field has an initial value, it is not
relevant, so the figure shows it as a question mark.)

If a method changes the value of its parameter, the corresponding argument will be unaffected.
So if, for example, setMiddleInitial contained the statements

initial = middleInitial;
middleInitial = 'X'

the value of middleInitial in Figure B-4c would be X, but the rest of the figure would not change.
In particular, the value of joesMI would not change.

FIGURE B-4 The effect of executing the method setMiddleInitial on its
argument joesMI, its parameter middleInitial, and the data
field initial

??T

?TT

TTT

T?T

(a) Before calling setMiddleInitial

joesMI

joesMI

joesMI

joesMI

middleInitial

middleInitial

middleInitial

middleInitial

initial

initial

initial

initial

(b) After passing joesMI to the method

(c) Just before the method finishes execution

(d) After the method executes

Defining a Java Class B-11

B.14 When a formal parameter has a class type, the corresponding argument in the method invocation
must be an object of that class type. The formal parameter is initialized to the memory address of
that object.1 Thus, the formal parameter will serve as an alternative name for the object. This
implies that the method can change the data in the object, if the class has mutator methods. The
method, however, cannot replace an object that is an argument with another object.

For example, if you adopt a child, you might give that child your last name. Suppose that you
add the following method giveLastNameTo to the class Name that makes this change of name:

public void giveLastNameTo(Name child)
{

child.setLast(last);
} // end giveLastNameTo

Notice that the formal parameter of this method has the type Name.
Now if Jamie Jones adopts Jane Doe, the following statements would change Jane’s last name

to Jones:
public static void main(String[] args)2
{

Name jamie = new Name();
jamie.setFirst("Jamie");
jamie.setLast("Jones");

Name jane = new Name();
jane.setFirst("Jane");
jane.setLast("Doe");

jamie.giveLastNameTo(jane);
. . .

} // end main

Figure B-5 shows the argument jane and the parameter child as the method giveLastNameTo
executes.

B.15 What happens if you change the method definition to allocate a new name, as follows?
public void giveLastNameTo2(Name child)
{

String firstName = child.getFirst();
child = new Name();
child.setFirst(firstName);
child.setLast(last);

} // end giveLastNameTo2

With this change, the invoking statement
jamie.giveLastNameTo2(jane);

has no effect on jane, as Figure B-6 illustrates. The parameter child behaves like a local variable,
so its value is not available outside of the method definition.

1. The parameter mechanism for parameters of a class type is similar to call-by-reference parameter passing. If you are
familiar with this terminology, be aware that parameters of a class type in Java behave a bit differently from call-by-reference
parameters in other languages.
2. If you are not familiar with main methods and application programs, consult the beginning of Appendix A.

B-12 APPENDIX B Java Classes

FIGURE B-5 The method giveLastNameTo modifies the object passed to it as
an argument

(a) Before calling the method giveLastNameTo

(b) After passing the object jane to the method

(c) Just before the method ends

(d) After the method completes execution"Jane" "Jones"

"Jane" "Jones"

"Jane" "Doe"

"Jane" "Doe"

child

jane

child

jane

child

jane

child

jane

?

?

Question 8 Consider a method definition that begins with the statement
public void process(int number, Name aName)

If jamie is defined as in Segment B.14 and you invoke this method with the statement

someObject.process(5, jamie);

what values are given to the parameters within the definition of the method?

Question 9 In Question 8, can the method process change the data fields in jamie?

Question 10 In Question 8, can the method process assign a new object to jamie?

Defining a Java Class B-13

FIGURE B-6 A method cannot replace an object passed to it as an argument

A Definition of the Class Name
B.16 A complete definition for the class Name appears in Listing B-1. We typically place data field decla-

rations at the beginning of the class, but some people place them last. Although Java allows you to
intermix method definitions and data field declarations, we prefer that you do not.

The sections that follow examine some other details of this class definition.

(a) Before calling the method

(b) After passing the object jane to the method

(c) Just before the method ends

(d) After the method completes execution

child

jane

child

jane

child

jane

child

jane

"Jane" "Doe"

"Jane" "Doe"

"Jane" "Doe"

"Jane" "Jones"

"Jane" "Doe"

?

?

LISTING B-1 The class Name

public class Name
{

private String first; // first name
private String last; // last name

B-14 APPENDIX B Java Classes

public Name()
{
} // end default constructor

public Name(String firstName, String lastName)
{

first = firstName;
last = lastName;

} // end constructor

public void setName(String firstName, String lastName)
{

setFirst(firstName);
setLast(lastName);

} // end setName

public String getName()
{

return toString();
} // end getName

public void setFirst(String firstName)
{

first = firstName;
} // end setFirst

public String getFirst()
{

return first;
} // end getFirst

public void setLast(String lastName)
{

last = lastName;
} // end setLast

public String getLast()
{

return last;
} // end getLast

public void giveLastNameTo(Name aName)
{

aName.setLast(last);
} // end giveLastNameTo

public String toString()
{

return first + " " + last;
} // end toString

} // end Name

Defining a Java Class B-15

Constructors
B.17 Segment B.2 mentioned that you create an object by using the new operator to invoke a special

method called a constructor. A constructor allocates memory for the object and initializes the data
fields. The method definition of a constructor has certain special properties. A constructor

• Has the same name as the class
• Has no return type, not even void
• Has any number of formal parameters, including no parameters

A class can have several constructors that differ in the number or type of parameters.
A constructor without parameters is called the default constructor. A class can have only one

default constructor. The definition of the default constructor for Name is

public Name()
{
} // end default constructor

This particular default constructor has an empty body, but it need not be empty. It could explicitly
initialize the data fields first and last to values other than the ones Java assigns by default.

For example, we could have defined the constructor as follows:

public Name()
{

first = "";
last = "";

} // end default constructor

Here we initialize the fields first and last to an empty string. If the constructor had an empty
body, it would initialize these fields to null by default.

.

B.18 If you do not define any constructors for a class, Java will automatically provide a default constructor—that
is, a constructor with no parameters. If you define a constructor that has parameters but you do not define a
default constructor—one without parameters—Java will not provide a default constructor for you. Because
classes are often reused again and again, and because eventually you might want to create a new object
without specifying parameters, your classes typically should include a default constructor.

Note: In the absence of any explicit initialization within a constructor, data fields are set to
default values: Reference types are null, primitive numeric types are zero, and boolean types
are false.

Programming Tip: If a class depends on a data field’s initial value, its constructor
should set these values explicitly. Standard default values have been known to change.

Programming Tip: If a data field references a receiving object, initialize it to
something other than null. Failure to do so can result in an execution-time error.

Note: Once you start defining constructors, Java will not define any other constructors for
you. Most of the classes you define should include a default constructor.

B-16 APPENDIX B Java Classes

B.19 The class Name contains a second constructor, one that initializes the data fields to values given as
arguments when the client invokes the constructor:

public Name(String firstName, String lastName)
{

first = firstName;
last = lastName;

} // end constructor

This constructor has two parameters, firstName and lastName. You invoke it with a statement such as
Name jill = new Name("Jill", "Jones");

that passes first and last names as arguments.

B.20 After creating the object jill, you can change the values of its data fields by using the class’s set
(mutator) methods. You saw that this step was in fact necessary for the object joe in Segments B.2
and B.3, since joe was created by the default constructor and had default values—probably null—
as its first and last names.

Let’s see what would happen in the case of jill if you tried to use the constructor to change
the values of jill’s data fields. After you created the object, the variable jill contained the mem-
ory address of that object, as Figure B-7a illustrates. If you now write the statement

jill = new Name("Jill", "Smith");

a new object is created, and jill contains its memory address. The original object is lost, because
no program variable has its address, as shown in Figure B-7b.

What happens to a memory location when the variables in your program no longer reference
it? Periodically, the Java run-time environment deallocates such memory locations by returning
them to the operating system so that they can be used again. In effect, the memory is recycled. This
process is called automatic garbage collection.

FIGURE B-7 An object (a) after its initial creation; (b) after its reference is lost

"Jill" "Jones"

jill jill
"Jill" "Smith"

"Jill" "Jones"

(b)(a)

Note: Memory leak
If the Java run-time environment did not track and recycle memory that a program no longer
references, a program could use all the memory available to it and subsequently fail. If you
use another programming language—C++, for example—you would be responsible for
returning unneeded memory to the operating system for reuse. A program that failed to return
such memory would have what is known as a memory leak. Java programs do not have this
problem.

Defining a Java Class B-17

The Method toString
B.21 The method toString in the class Name returns a string that is the person’s full name. You can use

this method, for example, to display the name that the object jill represents by writing
System.out.println(jill.toString());

What is remarkable about toString is that Java will invoke it automatically when you write
System.out.println(jill);

For this reason, providing a class with a method toString is a good idea in general. If you fail to do
so, Java will provide its own toString method, which produces a string that will have little mean-
ing to you. Appendix C provides more detail about the toString method.

Methods That Call Other Methods
B.22 Notice the method setName in the class definition for Name. Although setName could use assignment

statements to initialize first and last, it instead invokes the methods setFirst and setLast. Since
these methods are members of the class, setName can invoke them without preceding the name with
an object variable and a dot. If you prefer, you can use this, and write the invocation as

this.setFirst(firstName);

When the logic of a method’s definition is complex, you should divide the logic into smaller
pieces and implement each piece as a separate method. Your method can then invoke these other
methods. Such helping methods, however, might be inappropriate for a client to use. If so, declare
them as private instead of public so that only your class can invoke them.

Note: Classes without mutator methods
After you create an object of a class that has no set methods, you cannot change the values of
its data fields. If they require change, you must use the constructor to create a new object.
Chapter 30 discusses these classes further.

Question 11 What is a default constructor?

Question 12 How do you invoke a constructor?

Question 13 What happens if you do not define constructors for a class?

Question 14 What happens if you do not define a default constructor but you do define a
constructor that has parameters?

Question 15 What happens when an object no longer has a variable that references it?

Programming Tip: If a helping method is not appropriate for public use, declare it as
private.

B-18 APPENDIX B Java Classes

B.23 The method getName in the class Name also invokes another of Name’s methods, namely toString.
Here, we want both getName and toString to return the same string. Rather than writing the same
statements in both methods, we have one method call the other. This ensures that both methods will
always return the same values. If you later revise the definition of toString, you will automatically
revise the string that getName returns.

B.24 Although it generally is a good idea for methods to call other methods to avoid repeating code, you
need to be careful if you call public methods from the body of a constructor. For example, it is
tempting to have the constructor mentioned in Segment B.19 call setName. But another class
derived from your class could change the effect of setName and hence of your constructor. One
solution is to define a private method that both the constructor and setName call. Another approach
is given in Segment C.19 of the next appendix.

B.25 Using this to invoke a constructor. You can use the reserved word this to call a constructor from
within the body of another constructor. For example, the class Name has two constructors. The
default constructor, as given in Segment B.16, has an empty body. Segment B.17 suggested that it
is a good idea to have the default constructor initialize the class’s data fields explicitly, so we
rewrote it, as follows:

public Name()
{

first = "";
last = "";

} // end default constructor

We could accomplish the same thing by revising the default constructor so that it initializes
first and last by calling the second constructor, as follows:

public Name()
{

this("", "");
} // end default constructor

The statement
this("", "");

calls the constructor that has two parameters. In this way, the initialization occurs in one place.

Programming Tip: If you want two methods to have the same behavior, one of them
should call the other.

Programming Tip: Link the definitions of several constructors by using this to invoke
one of them. Any use of this must be first in the body of the constructor’s definition.

Question 16 A third constructor for the class Name could have the following header:
public Name(Name aName)

This constructor creates a Name object whose data fields match those of the object aName.
Implement this new constructor by invoking one of the existing constructors.

Defining a Java Class B-19

Methods That Return an Instance of Their Class
B.26 The method setName in the class Name is a void method that sets both the first and last names of a

Name object. We might use this method as follows:

Name jill = new Name();
jill.setName("Jill", "Greene");

Here, setName sets the first and last names of the invoking object jill.
Instead of defining setName as a void method, we could have it return a reference to the

revised instance of Name, as follows:

public Name setName(String firstName, String lastName)
{

setFirst(firstName);
setLast(lastName);

return this;
} // end setName

Here this represents the receiving object, whose first and last names were just set.
We can call this definition of setName just as we called its void version, or we could invoke it

as follows:

Name jill = new Name();
Name myFriend = jill.setName("Jill", "Greene");

As before, setName sets the first and last names of the receiving object jill. But then it returns a
reference to the receiving object. Here we used an assignment statement to retain this reference as
an alias for jill. However, the invocation of setName could appear as an argument to another
method.

Methods that return an instance of their class are not unusual within the classes of the Java
Class Library.

Static Fields and Methods
B.27 Static fields. Sometimes you need a data field that does not belong to any one object. For example,

a class could track how many invocations of the class’s methods are made by all objects of the
class. Such a data field is called a static field, static variable, or class variable. You declare a
static field by adding the reserved word static. For example, the declaration

private static int numberOfInvocations = 0;

defines one copy of numberOfInvocations that every object of the class can access. Objects can
use a static field to communicate with each other or to perform some joint action. In this example,
each method increments numberOfInvocations. Such static fields normally should be private to
ensure that access occurs only through appropriate accessor and mutator methods.

The definition of a named constant provides another example of a static field. The statement
public static final double YARDS_PER_METER = 1.0936;

defines a static field YARDS_PER_METER. The class has one copy of YARDS_PER_METER, rather than
each object of the class having its own copy, as Figure B-8 illustrates. Since YARDS_PER_METER is
also declared as final, its value cannot change, so we can safely make it public. But static fields in
general can change value if you omit the modifier final.

B-20 APPENDIX B Java Classes

FIGURE B-8 A static field YARDS_PER_METER versus a nonstatic field value

B.28 Static methods. Sometimes you need a method that does not belong to an object of any kind. For
example, you might need a method to compute the maximum of two integers or a method to com-
pute the square root of a number. These methods have no obvious object to which they should
belong. In these cases, you can define the method as static by adding the reserved word static to
the header of the method.

A static method or class method is still a member of a class. However, you use the class name
instead of an object name to invoke the method. For example, Java’s predefined class Math contains
several standard mathematical methods, such as max and sqrt. All of these methods are static, so
you do not need—and in fact have no real use for—an object of the class Math. You call these meth-
ods by using the class name in place of an object name. Thus, you write statements such as

int maximum = Math.max(2, 3);
double root = Math.sqrt(4.2);

The definition of a static method cannot reference any data field in its class that is not static. It
can, however, reference its class’s static fields. Likewise, it cannot invoke a nonstatic method of the
class, unless it creates a local object of the class and uses it to invoke the nonstatic method. How-
ever, a static method can call other static methods within its class. Since every application pro-
gram’s main method is static, these restrictions apply to main methods.

public class Measure
{
 public static final double YARDS_PER_METER = 1.0936;
 private double value;
 . . .

} // end Measure

Objects of the class
Measure all reference
the same static field
but have their own
copy of value

Instances (objects)
of the classClass definition

value

value

Note: Static does not mean constant
A static field is shared by all objects of its class, but its value can change. If you want a field’s
value to remain constant, you must declare it as final. Although they often appear together,
the modifiers static and final are not related. Thus, a field can be static, final, or both static
and final.

Programming Tip: Every class can have a main method
You can include a test of a class as a main method in the class’s definition. Anytime you sus-
pect something is wrong, you can easily test the class definition. Since you—and others—can
see what tests you performed, flaws in your testing will become apparent. If you use the class
as a program, the main method is invoked. When you use the class to create objects in another
class or program, the main method is ignored.

Defining a Java Class B-21

Overloading Methods
B.29 Several methods within the same class can have the same name, as long as the methods do not have

identical parameters. Java is able to distinguish among these methods since their parameters differ
in number or data type. We say that these methods are overloaded.

For example, the class Name has the method setName whose header is
public void setName(String firstName, String lastName)

Imagine that we want another method that gives a Name object the same name as another Name
object. The header for this method could be, for example,

public void setName(Name otherName)

The two versions of setName are not exactly the same, as they have different numbers of parameters.
We could then overload setName with a third method whose header is
public void setName(String firstName, Name otherName)

Imagine that this method sets the first name to the string firstName and the last name to otherName’s
last name. Although two of the three versions of setName have two parameters each, the data types of
the parameters are not exactly the same. The data types of the first parameter in each method match,
but the data types of the second parameters do not.

Simply changing the names of the parameters is not enough to overload a method. The param-
eter names are not relevant. When two methods have the same name and the same number of
parameters, at least one pair of corresponding parameters must differ in data type. Also, changing
only the return type is insufficient. The compiler cannot distinguish between two methods that dif-
fer only in their return types.

Finally, note that by defining more than one constructor for a class, you are actually overload-
ing them. Thus, their parameters must differ in either number or data type.

Note: Constructors cannot be static
A constructor creates an object of its class, so it makes no sense to disassociate a constructor
from such objects.

Question 17 What happens if you do not declare a constant data field as static?

Note: Overloading a method definition
A method in a class overloads another method in the same class when both methods have the
same name but differ in the number or types of parameters.

Note: The signature of a method
A method’s signature consists of its name and the number, types, and order of its parameters.
Thus, overloaded methods have the same name but different signatures.

Question 18 If a method overloads another method, can the two methods have different
return types?

B-22 APPENDIX B Java Classes

Enumeration as a Class
Appendix A introduced enumerations. As Segments A.54 and A.56 mentioned, the compiler cre-
ates a class when it encounters an enumeration. This section expands that discussion. Although you
should consider using enumerations in your programs, they are not central to the presentation in
this book.

B.30 When you define an enumeration, the class created has methods such as toString, equals, ordinal,
and valueOf. For example, let’s define a simple enumeration for the suits of playing cards, as follows:

enum Suit {CLUBS, DIAMONDS, HEARTS, SPADES}

We then can use these methods in the following ways:

• Suit.CLUBS.toString() returns the string CLUBS. That is, toString returns the name of its
receiving object.

• System.out.println(Suit.CLUBS) calls toString implicitly, and so it displays CLUBS.
• s.equals(Suit.DIAMONDS) tests whether s, an instance of Suit, equals DIAMONDS.
• Suit.HEARTS.ordinal() returns 2, the ordinal position of HEARTS in the enumeration.
• Suit.valueOf("HEARTS") returns Suit.HEARTS.

B.31 You can define additional methods—including constructors—for any enumeration. By defining a
private data field, you can assign values to each of the objects in the enumeration. Adding a get
method will provide a way for the client to access these values. Listing B-2 contains a new defini-
tion for the enumeration Suit that shows how these ideas are realized.

 We have chosen strings as the values for the enumerated objects. Notation such as
CLUBS("black") invokes the constructor that we have provided and sets the value of CLUBS’s private
data field color to the string black. Note that color’s value cannot change, since it is declared as
final. Also observe that the constructor is private, so it is not available to the client. It is called only
within the definition of Suit. The method getColor provides public access to the value of color.

LISTING B-2 The enumeration Suit

/** An enumeration of card suits. */
enum Suit
{

CLUBS("black"), DIAMONDS("red"), HEARTS("red"), SPADES("black");

private final String color;

private Suit(String suitColor)
{

color = suitColor;
} // end constructor

public String getColor()
{

return color;
} // end getColor

} // end Suit

Enumeration as a Class B-23

B.32 The class in Listing B-3 provides a simple demonstration of the enumeration Suit that appears in the
previous segment. We use a for-each loop, described in Segment A.63 of Appendix A. In addition to
the methods that we defined in Suit, the enumeration also has the methods equals, ordinal, and
valueOf described in Segment B.30 of this appendix and Segment A.56 of Appendix A.

B.33 Example. Segment A.54 in Appendix A defined an enumeration for the letter grades A, B, C, D,
and F. Here we expand that definition to include plus and minus grades as well as the quality-point
values associated with each grade. As in the previous definition of Suit, we provide private data
fields and a private constructor to represent and initialize the string representation and numeric

Note: Constructors within enumerations must be private.

LISTING B-3 A class that demonstrates the enumeration Suit given in
Listing B-2 of Segment B.31

/** A demonstration of the enumeration Suit. */
public class SuitDemo
{

private enum Suit
{
. . . < See Listing B-2 >

} // end Suit

public static void main(String[] args)
{

for (Suit nextSuit : Suit.values())
{

System.out.println(nextSuit + " are " + nextSuit.getColor() +
" and have an ordinal value of " +
nextSuit.ordinal());

} // end for
} // end main

} // end SuitDemo

Output

CLUBS are black and have an ordinal value of 0

DIAMONDS are red and have an ordinal value of 1

HEARTS are red and have an ordinal value of 2

SPADES are black and have an ordinal value of 3

Note: Enumerations can have an access modifier such as public or private. If you omit
the access modifier, the enumeration is private. You can define a public enumeration within
its own file, just as you would define any other public class.

B-24 APPENDIX B Java Classes

value for each grade. We also provide accessor methods for the data fields and override the method
toString.

Listing B-4 shows our new definition of the enumeration LetterGrade. We have made it pub-
lic and will store it in the file LetterGrade.java.

If we define
LetterGrade myGrade = LetterGrade.B_PLUS;

then

• myGrade.toString() returns the string B+.
• System.out.println(myGrade) displays B+, since it calls toString implicitly.
• myGrade.getGrade() returns the string B+.
• myGrade.getQualityPoints() returns 3.3.

If we had not overriden the method toString with our own definition, myGrade.toString() would
return the string B_PLUS.

LISTING B-4 The enumeration LetterGrade

public enum LetterGrade
{

A("A", 4.0), A_MINUS("A-", 3.7), B_PLUS("B+", 3.3), B("B", 3.0),
B_MINUS("B-", 2.7), C_PLUS("C+", 2.3), C("C", 2.0), C_MINUS("C-", 1.7),
D_PLUS("D+", 1.3), D("D", 1.0), F("F", 0.0);

private final String grade;
private final double points;

private LetterGrade(String letterGrade, double qualityPoints)
{

grade = letterGrade;
points = qualityPoints;

} // end constructor

public String getGrade()
{

return grade;
} // end getGrade

public double getQualityPoints()
{

return points;
} // end getQualityPoints

public String toString()
{

return getGrade();
} // end toString

} // end LetterGrade

Packages B-25

Like the enumeration Suit given in Segment B.31, LetterGrade has the methods equals,
ordinal, and valueOf.

Packages

B.34 Using several related classes is more convenient if you group them together within a Java package.
To identify a class as part of a particular package, you begin the file that contains the class with a
statement like

package myStuff;

You then place all of the files within one directory or folder and give it the same name as the
package.

To use a package in your program, you begin the program with a statement such as
import myStuff.*;

The asterisk makes all public classes within the package available to the program. You could, how-
ever, replace the asterisk with the name of a particular class in the package that you want to use.
You probably have already used packages provided by Java, such as the package java.util.

Why did we just say “public classes”? What other kind of class is there? You can use an access
modifier to control access to a class just as you can to control access to a data field or method. A
public class—whether it is within a package or not—is available to any other class. If you omit the
class’s access modifier entirely, the class is available only to other classes within the same package.
This kind of class is said to have package access. Similarly, if you omit the access modifier on data
fields or methods, they are available by name inside the definition of any class within the same
package but not outside of the package. You can use package access in situations where you have a
package of cooperating classes that act as a single encapsulated unit. If you control the package
directory, you control who is allowed to access the package.

The Java Class Library
B.35 Java comes with a collection of many classes that you can use in your programs. For example,

Segment B.28 mentioned the class Math, which contains several standard mathematical methods
such as sqrt. This collection of classes is known as the Java Class Library, and sometimes as the
Java Application Programming Interface, or API. The classes in this library are organized into
several standard packages. For example, the class Math is a part of the package java.lang. Note
that no import statement is needed when you use a class from this particular package.

You should become familiar with the documentation provided for the Java Class Library at
download.oracle.com/javase/7/docs/api/.

Question 19 If myGrade is an instance of LetterGrade and is assigned the value
LetterGrade.B_PLUS, what is returned by each of the following expressions?

a. myGrade.ordinal()
b. myGrade.equals(LetterGrade.A_MINUS)
c. LetterGrade.valueOf("A_MINUS")

Question 20 What does the following statement display?
System.out.println(LetterGrade.valueOf("A_MINUS"));

B-26 APPENDIX B Java Classes

Generic Data Types

B.36 Generics are a feature of Java that enables you to write a place holder instead of an actual class
type within the definition of a class or interface. The place holder is a generic data type, or simply
a generic type or a type parameter.

As you saw earlier in this appendix, the class Object is the ultimate ancestor of all other
classes. Given a reference to an object of any type, you can assign the reference to a variable whose
type is Object. Although you might be tempted to use Object as a generic class, you should not do
so. Instead, you should use a generic data type to represent any one class type.

Imagine an array A of objects. If the data type of A was declared as Object[], you could place
strings, for example, into the array. Nothing, however, would stop you from placing objects of sev-
eral other classes into the array along with the strings. While this might sound attractive, you likely
would have a problem using such an array. For example, if you removed an object from the array,
you would not know its dynamic type. Is it a string or some other object? Methods are available to
retrieve an object’s dynamic type, however, so such an array can have a use.

In contrast, an array or any other group whose entries are referenced by variables of a generic
type can contain only objects of classes related by inheritance. Thus, generics enable you to restrict
the types of entries in your collections. This restriction is not unusual, as it makes these collections
easier to use.

B.37 To establish a generic type when you define a class, you write an identifier enclosed in angle brack-
ets after the class name in the class’s header. For example, a class could begin as follows:

public class MyClass<T>

The identifier T—which can be any identifier but usually is a single capital letter—represents a
class type within the definition of MyClass. When you use MyClass, you supply an actual class type
to replace T.

For example, to create an instance of MyClass by invoking its default constructor, you could
write a statement such as

MyClass<String> item = new MyClass<String>();

Now, wherever T appears as a data type in the definition of MyClass, String is used. A generic type
must be a reference type, not a primitive type.

B.38 Example: Defining a generic class. In mathematics, an ordered pair is a pair of values, a and b,
denoted as (a, b). We say that the values in (a, b) are ordered because (a, b) does not equal (b, a)
unless a equals b. For example, a point in a two-dimensional space is described by its x-coordinate
and y-coordinate, that is, the ordered pair (x, y).

Let’s create a class to represent ordered pairs of objects of the same class type. The class
OrderedPair, given in Listing B-5, assumes that we care about the order in which the objects
appear in the pair. The notation <T> follows the identifier name in the class’s header. Within the def-
inition, T represents the data type of the two private data fields, the data type of the two parameters
of the constructor, the return type of the methods getFirst and getSecond, and the data type of the
local variable temp in the method changeOrder.

LISTING B-5 The class OrderedPair

/**
A class of ordered pairs of objects having the same data type.
@author Frank M. Carrano

*/

Generic Data Types B-27

public class OrderedPair<T>
{

private T first, second;

public OrderedPair(T firstItem, T secondItem) // NOTE: no <T> after
{ // constructor name

first = firstItem;
second = secondItem;

} // end constructor

/** Returns the first object in this pair. */
public T getFirst()
{

return first;
} // end getFirst

/** Returns the second object in this pair. */
public T getSecond()
{

return second;
} // end getSecond

/** Returns a string representation of this pair. */
public String toString()
{

return "(" + first + ", " + second + ")";
} // end toString

/** Interchanges the objects in this pair. */
public void changeOrder()
{

T temp = first;
first = second;
second = temp;

} // changeOrder
} // end OrderedPair

Note: Within the definition of a class name<T>, where T is a generic type parameter,

• <T> follows the identifier name in the class’s header
• <T> does not follow the names of the constructors in their definitions
• T—not <T>—can be a data type of data fields, method parameters, and local vari-

ables, and it can be a return type of methods.

Note: A generic data type represents a class type, not a primitive type.

B-28 APPENDIX B Java Classes

B.39 Example: Creating objects of a generic class. The type parameter T for the previous class
OrderedPair represents the data type of the two objects in a pair. The actual class type associated
with these objects is given when a specific instance of OrderedPair is instantiated. For example,
you can use the class OrderedPair<String> to create a pair of String objects and the class
OrderedPair<Name> to create a pair of Name objects, as shown in the following statements:

OrderedPair<String> fruit = new OrderedPair<String>("apples", "oranges");
System.out.println(fruit);
fruit.changeOrder();
System.out.println(fruit);

Name tweedleDee = new Name("Tweedle", "Dee");
Name tweedleDum = new Name("Tweedle", "Dum");
OrderedPair<Name> namePair = new OrderedPair<Name>(tweedleDee, tweedleDum);
System.out.println(namePair);
namePair.changeOrder();
System.out.println(namePair);

These statements produce the following output:

(apples, oranges)
(oranges, apples)
(Tweedle Dee, Tweedle Dum)
(Tweedle Dum, Tweedle Dee)

You also can create pairs of objects of any class that uses inheritance3 to extend Name. For
example, if the class FormalName extends Name and adds a title, such as Mr. or Ms., namePair could
contain objects of both Name and FormalName.

B.40 More than one generic type. In the previous example, the objects in a pair have either the same
data type or data types related by inheritance. You can define more than one generic type within a
class definition by writing their identifiers, separated by commas, within the angle brackets after
the class’s name, as in the class Pair shown in Listing B-6.

3. Appendix C discusses inheritance.

Note: Within the client of a generic class name<class-type>,

• An expression of the form
new name<class-type>(...)

creates an object of the class

• The data type of objects of the class is name<class-type>, not name

Question 21 What method must a class such as String or Name define so that OrderedPair’s
method toString works correctly?

Question 22 Consider the class OrderedPair, as given in Listing B-5. Suppose that we did
not use a generic type, but instead omitted <T> and declared the data types of the private
fields, method parameters, and local variable to be Object instead of T. What would the
effect of these changes be on the use of the class?

Exercises and Projects B-29

You can use this class to pair a name and a telephone number, for example, by writing the fol-
lowing statements:

Name joe = new Name("Joe", "Java");
String joePhone = "(401) 555-1234";
Pair<Name, String> joeEntry = new Pair<Name, String>(joe, joePhone);
System.out.println(joeEntry);

The output displayed is

(Joe Java, (401) 555-1234)

EXERCISES AND PROJECTS

LISTING B-6 The class Pair

public class Pair<S, T>
{

private S first;
private T second;

public Pair(S firstItem, T secondItem)
{

first = firstItem;
second = secondItem;

} // end constructor

public String toString()
{

return "(" + first + ", " + second + ")";
} // end toString

} // end Pair

Question 23 Can you use the class OrderedPair, as defined in Listing B-5, to pair two
objects having different and unrelated data types? Why or why not?

Question 24 Can you use the class Pair, as defined in the previous segment, to pair two
objects having the same data type? Why or why not?

Question 25 Using the class Name, as defined previously in this appendix, write statements
that pair two students as lab partners.

Question 26 Using the class Name, as defined previously in this appendix, write statements
that pair your name with the random sequence number given in the int variable number.

A collection of exercises and projects for this appendix are available online at pearsonhighered.com/carrano.

B-30 APPENDIX B Java Classes

ANSWERS TO SELF-TEST QUESTIONS

1. Name myName = new Name();
myName.setFirst("Joseph");
myName.setLast("Brown");

2. System.out.println(myName.getLast() + ", " + myName.getFirst());

3. Valued: getFuelLevel, getSpeed, getMileage.
Void: goForward, goBackward, accelerate, decelerate.

4. Mutator.

5. Valued.

6. Void.

7. A client could set the data field to an illegal value.

8. number is 5 and aName references jamie.

9. Yes, by using Name’s set methods.

10. No.

11. A default constructor is a constructor that has no parameters.

12. You invoke a constructor by using the new operator.

13. If you do not define a constructor, the compiler defines a default constructor.

14. The compiler does not define additional constructors. Thus, the class will not have a default constructor.

15. An object that is not referenced is marked for garbage collection. Eventually, the Java run-time environment
deallocates the object by returning its memory locations to the operating system so that they can be used again.

16. public Name(Name aName)
{

this(aName.getFirst(), aName.getLast());
} // end constructor

17. Each instance (object) of a class will have a copy of a constant data field that is not static.

18. Yes, as long as the methods also have different parameters. Return type alone is not sufficient to distinguish the
methods.

19. a. 2
b. false
c. LetterGrade.A_MINUS

20. A-, because the method toString is called implicitly.

21. toString

Answers to Self-Test Questions B-31

22. The statements given in Segment B.39, for example, would begin with
OrderedPair fruit = new OrderedPair("apples", "oranges");

The disadvantage to this version of OrderedPair is that the compiler cannot warn you if you pair objects of
different and unrelated types. Thus, you would be able to write

Name joe = new Name("Joe", "Java");
String joePhone = "(401) 555-1234";
OrderedPair joeEntry = new OrderedPair();
joeEntry.setPair(joe, joePhone);

23. No. The class defines only one generic type.

24. Yes. You can write the same data type twice to correspond to both S and T.

25. Name kristen = new Name("Kristen", "Doe");
Name luci = new Name("Luci", "Lei");
OrderedPair<Name> labPartners = new OrderedPair<Name>(kristen, luci);

26. Name kristen = new Name("Kristen", "Doe");
Integer seqN = number;
Pair<Name, Integer> aPair = new Pair<Name, Integer>(kristen, seqN);

Appendix

C Creating Classes from Other Classes
Contents
Composition

Adapters
Inheritance

Invoking Constructors from Within Constructors
Private Fields and Methods of the Superclass
Protected Access
Overriding and Overloading Methods
Multiple Inheritance

Type Compatibility and Superclasses
The Class Object
Abstract Classes and Methods

Polymorphism

Prerequisites
Appendix B Java Classes

A major advantage of object-oriented programming is the ability to use existing
classes when defining new classes. That is, you use classes that you or someone else
has written to create new classes, rather than reinventing everything yourself. We
begin this appendix with two ways to accomplish this feat.

In the first way, you simply declare an instance of an existing class as a data field
of your new class. In fact, you have done this already if you have ever defined a class
that had a string as a data field. Since your class is composed of objects, this tech-
nique is called composition.

The second way is to use inheritance, whereby your new class inherits properties
and behaviors from an existing class, augmenting or modifying them as desired. This
technique is more complicated than composition, so we will devote more time to it.
As important as inheritance is in Java, you should not ignore composition as a valid
and desirable technique in many situations.

Composition C-2

Both composition and inheritance define a relationship between two classes. These relation-
ships are often called, respectively, has a and is a relationships. You will see why when we discuss
them in this appendix.

Polymorphism is another key feature of object-oriented programming. In fact, object-oriented
programming is usually described in terms of its main features: encapsulation, inheritance, and
polymorphism. Used in conjunction with inheritance, polymorphism enables different objects that
call methods having the same name to act appropriately.

Composition

C.1 Appendix B introduced you to the class Name to represent a person’s name. It defined constructors,
accessor methods, and mutator methods that involved the person’s first and last names. The data
fields in Name are instances of the class String. A class uses composition when it has a data field
that is an instance of another class. And since the class Name has an instance of the class String as
a data field, the relationship between Name and String is called a has a relationship.

Let’s create another class that uses composition. Consider a class of students, each of whom
has a name and an identification number. Thus, the class Student contains two objects as data
fields: an instance of the class Name and an instance of the class String:

private Name fullName;
private String id;

Figure C-1 shows an object of type Student and its data fields. Notice that the Name object has two
String objects as its data fields. It is important to realize that these data fields actually contain ref-
erences to objects, not the objects themselves.

For methods, we give the class Student constructors, accessors, mutators, and toString.
Recall that toString is invoked when you use System.out.println to display an object, so it is a
handy method to include in your class definitions.

FIGURE C-1 A Student object is composed of other objects

Note: Composition (has a)
A class uses composition when it has objects as data fields. The class’s implementation has
no special access to such objects and must behave as a client would. That is, the class must
use an object’s methods to manipulate the object’s data. Since the class “has a,” or contains,
an instance (object) of another class, the classes are said to have a has a relationship.

A Student object

A String object A String object

A String object
(id)

A Name object
(fullName)

C-3 APPENDIX C Creating Classes from Other Classes

C.2 Look at the definition of the class Student in Listing C-1, and then we will make a few more
observations.

LISTING C-1 The class Student

public class Student
{

private Name fullName;
private String id; // identification number

public Student()
{

fullName = new Name();
id = "";

} // end default constructor

public Student(Name studentName, String studentId)
{

fullName = studentName;
id = studentId;

} // end constructor

public void setStudent(Name studentName, String studentId)
{

setName(studentName); // or fullName = studentName;
setId(studentId); // or id = studentId;

} // end setStudent

public void setName(Name studentName)
{

fullName = studentName;
} // end setName

public Name getName()
{

return fullName;
} // end getName

public void setId(String studentId)
{

id = studentId;
} // end setId

public String getId()
{

return id;
} // end getId

public String toString()
{

return id + " " + fullName.toString();

Composition C-4

The method setStudent is useful when we create a student object by using the default constructor
or if we want to change both the name and identification number that we gave to a student object earlier.
Notice that the method invokes the other set methods from this class to initialize the data fields. For
example, to set the field fullName to the parameter studentName, setStudent uses the statement

setName(studentName);

 We could also write this statement as

this.setName(studentName);

where this refers to the instance of Student that receives the call to the method setStudent. Or
we could write the assignment statement

fullName = studentName;

Implementing methods in terms of other methods is usually desirable. It might not be desirable
when implementing constructors, however, as you will see later in this appendix.

Suppose that we want toString to return a string composed of the student’s identification
number and name. It must use methods in the class Name to access the name as a string. For exam-
ple, toString could return the desired string by using either

return id + " " + fullName.getFirst() + " " + fullName.getLast();

or, more simply,

return id + " " + fullName.toString();

The data field fullName references a Name object whose private fields are not accessible by name in
the implementation of the class Student. We can access them indirectly via the accessor methods
getFirst and getLast or by invoking Name’s toString method.

Adapters
C.3 Suppose that you have a class, but the names of its methods do not suit your application. Or maybe

you want to simplify some methods or eliminate others. You can use composition to write a new
class that has an instance of your existing class as a data field and defines the methods that you
want. Such a new class is called an adapter class.

} // end toString
} // end Student

Question 1 What data fields would you use in the definition of a class Address to repre-
sent a student’s address?

Question 2 Add a data field to the class Student to represent a student’s address. What
new methods should you define?

Question 3 What existing methods need to be changed in the class Student as a result of
the added field that Question 2 described?

Question 4 What is another implementation for the default constructor that uses this, as
described in Segment B.25 of Appendix B?

C-5 APPENDIX C Creating Classes from Other Classes

For example, suppose that instead of using objects of the class Name to name people, we want
to use simple nicknames. We could use strings for nicknames, but like Name, the class String has
more methods than we need. The class NickName in Listing C-2 has an instance of the class Name as
a data field, a default constructor, and set and get methods. Arbitrarily, we use the first-name field
of the class Name to store the nickname.

Notice how this class uses the methods of the class Name to implement its methods. A
NickName object now has only NickName’s methods, and not the methods of Name.

Inheritance

C.4 Inheritance is a major aspect of object-oriented programming that enables you to organize classes.
The name comes from the notion of inherited traits like eye color, hair color, and so forth, but it is
perhaps clearer to think of inheritance as a classification system. Inheritance allows you to define a
general class and then later to define more specialized classes that add to or revise the details of the
older, more general class definition. This saves work, because the specialized class inherits all the
properties of the general class and you need only program the new or revised features.

For example, you might define a class for vehicles and then define more specific classes for
particular types of vehicles, such as automobiles, wagons, and boats. Similarly, the class of automo-
biles includes the classes of cars and trucks. Figure C-2 illustrates this hierarchy of classes. The
Vehicle class is the superclass for the subclasses, such as Automobile. The Automobile class is the
superclass for the subclasses Car and Truck. Another term for superclass is base class, and another
term for subclass is derived class.

LISTING C-2 The class NickName

public class NickName
{

private Name nick;

public NickName()
{

nick = new Name();
} // end default constructor

public void setNickName(String nickName)
{

nick.setFirst(nickName);
} // end setNickName

public String getNickName()
{

return nick.getFirst();
} // end getNickName

} // end NickName

Question 5 Write statements that define bob as an instance of NickName to represent the
nickname Bob. Then, using bob, write a statement that displays Bob.

Inheritance C-6

FIGURE C-2 A hierarchy of classes

As you move up in the diagram, the classes are more general. A car is an automobile and there-
fore is also a vehicle. However, a vehicle is not necessarily a car. A sailboat is a boat and is also a
vehicle, but a vehicle is not necessarily a sailboat.

C.5 Java and other programming languages use inheritance to organize classes in this hierarchical way. A
programmer can then use an existing class to write a new one that has more features. For example, the
class of vehicles has certain properties—like miles traveled—that its data fields record. The class also
has certain behaviors—like going forward—that its methods define. The classes Automobile, Wagon,
and Boat have these properties and behaviors as well. Everything that is true of all Vehicle objects,
such as the ability to go forward, is described only once and inherited by the classes Automobile,
Wagon, and Boat. The subclasses then add to or revise the properties and behaviors that they inherit.
Without inheritance, descriptions of behaviors like going forward would have to be repeated for each
of the subclasses Automobile, Wagon, Boat, Car, Truck, and so on.

Since the Automobile class is derived from the Vehicle class, it inherits all the data fields and
public methods of that class. The Automobile class would have additional fields for such things as
the amount of fuel in the fuel tank, and it would also have some added methods. Such fields and
methods are not in the Vehicle class, because they do not apply to all vehicles. For example, wag-
ons have no fuel tank.

Inheritance gives an instance of a subclass all the behaviors of the superclass. For example, an
automobile will be able to do everything that a vehicle can do; after all, an automobile is a vehicle.
In fact, inheritance is known as an is a relationship between classes. Since the subclass and the
superclass share properties, you should use inheritance only when it makes sense to think of an
instance of the subclass as also being an instance of the superclass.

Vehicle

WagonAutomobile Boat

Car Truck SailBoat PowerBoat

Note: Inheritance
Inheritance is a way of organizing classes so that common properties and behaviors can be
defined only once for all the classes involved. Using inheritance, you can define a general
class and then later define more specialized classes that add to or revise the details of the
older, more general class definition.

Note: An is a relationship
With inheritance, an instance of a subclass is also an instance of the superclass. Thus, you
should use inheritance only when this is a relationship between classes is meaningful.

C-7 APPENDIX C Creating Classes from Other Classes

C.6 Example. Let’s construct an example of inheritance within Java. Suppose we are designing a pro-
gram that maintains records about students, including those in grade school, high school, and col-
lege. We can organize the records for the various kinds of students by using a natural hierarchy that
begins with students. College students are then one subclass of students. College students divide into
two smaller subclasses: undergraduate students and graduate students. These subclasses might fur-
ther subdivide into still smaller subclasses. Figure C-3 diagrams this hierarchical arrangement.

 A common way to describe subclasses is in terms of family relationships. For example, the
class of students is said to be an ancestor of the class of undergraduate students. Conversely, the
class of undergraduate students is a descendant of the class of students.

Although our program may not need any class corresponding to students in general, thinking
in terms of such classes can be useful. For example, all students have names, and the methods of
initializing, changing, and displaying a name will be the same for all students. In Java, we can
define a class that includes data fields for the properties that belong to all subclasses of students.
The class likewise will have methods for the behaviors of all students, including methods that
manipulate the class’s data fields. In fact, we have already defined such a class—Student—in
Segment C.2.

FIGURE C-3 A hierarchy of student classes

C.7 Now consider a class for college students. A college student is a student, so we use inheritance to
derive the class CollegeStudent from the class Student. Here, Student is the existing superclass
and CollegeStudent is the new subclass. The subclass inherits—and therefore has—all the data
fields and methods of the superclass. In addition, the subclass defines whatever data fields and
methods we wish to add.

To indicate that CollegeStudent is a subclass of Student, we write the phrase extends Student
on the first line of the class definition. Thus, the class definition of CollegeStudent begins

public class CollegeStudent extends Student

When we create a subclass, we define only the added data fields and the added methods. For
example, the class CollegeStudent has all the data fields and methods of the class Student, but we
do not mention them in the definition of CollegeStudent. In particular, every object of the class
CollegeStudent has a data field called fullName, but we do not declare the data field fullName in
the definition of the class CollegeStudent. The data field is there, however. But because fullName

Question 6 Some vehicles have wheels and some do not. Revise Figure C-2 to organize
vehicles according to whether they have wheels.

ElementaryStudent MiddleSchoolStudent HighSchoolStudent UndergradStudent GradStudent

CollegeStudentSchoolStudent

Student

Inheritance C-8

is a private data field of the class Student, we cannot reference fullName directly by name within
CollegeStudent. We can, however, access and change this data field by using Student’s methods,
since the class CollegeStudent inherits all of the public methods in the superclass Student.

For example, if cs is an instance of CollegeStudent, we can write
cs.setName(new Name("Joe", "Java"));

even though setName is a method of the superclass Student. Since we have used inheritance to
construct CollegeStudent from the class Student, every college student is a student. That is, a
CollegeStudent object “knows” how to perform Student behaviors.

C.8 A subclass, like CollegeStudent, can also add some data fields and/or methods to those it inherits
from its superclass. For example, CollegeStudent adds the data field year and the methods setYear
and getYear. We can set the graduation year of the object cs by writing

cs.setYear(2016);

Suppose that we also add a data field that represents the degree sought and the methods to
access and change it. We could also add fields for an address and grades, but to keep it simple, we
will not. Let’s look at the class as given in Listing C-3 and focus on the constructors first.

LISTING C-3 The class CollegeStudent

public class CollegeStudent extends Student
{

private int year; // year of graduation
private String degree; // degree sought

public CollegeStudent()
{

super(); // must be first
year = 0;
degree = "";

} // end default constructor

public CollegeStudent(Name studentName, String studentId,
int graduationYear, String degreeSought)

{
super(studentName, studentId); // must be first
year = graduationYear;
degree = degreeSought;

} // end constructor

public void setStudent(Name studentName, String studentId,
int graduationYear, String degreeSought)

{
setName(studentName); // NOT fullName = studentName;
setId(studentId); // NOT id = studentId;

// or setStudent(studentName, studentId); (see Segment C.17)

year = graduationYear;
degree = degreeSought;

} // end setStudent

C-9 APPENDIX C Creating Classes from Other Classes

Invoking Constructors from Within Constructors
C.9 Calling the superclass’s constructor. Constructors typically initialize a class’s data fields. In a

subclass, how can the constructor initialize data fields inherited from the superclass? One way is to
call the superclass’s constructor. The subclass’s constructor can use the reserved word super as a
name for the constructor of the superclass.

Notice that the default constructor in the class CollegeStudent begins with the statement
super();

This statement invokes the default constructor of the superclass. Our new default constructor must
invoke the superclass’s default constructor to properly initialize the data fields that are inherited
from the superclass. Actually, if you do not invoke super, Java will do it for you. In this book, we
will always invoke super explicitly, to make the action a bit clearer. Note that the call to super
must occur first in the constructor. You can use super to invoke a constructor only from within
another constructor.

In like fashion, the second constructor invokes a corresponding constructor in the superclass
by executing the statement

super(studentName, studentId);

If you omit this statement, Java will invoke the default constructor, which is not what you want.

< The methods setYear, getYear, setDegree, and getDegree go here. >

. . .

public String toString()
{

return super.toString() + ", " + degree + ", " + year;
} // end toString

} // end CollegeStudent

Note: Calling the constructor of the superclass
You can use super within the definition of a constructor of a subclass to call a constructor of
the superclass explicitly. When you do, super always must be the first action taken in the
constructor definition. You cannot use the name of the constructor instead of super. If you
omit super, each constructor of a subclass automatically calls the default constructor of the
superclass. Sometimes this action is what you want, but sometimes it is not.

Note: Constructors are not inherited
A constructor of a class C creates an object whose type is C. It wouldn’t make sense for this
class to have a constructor named anything other than C. But that is what would happen if a
class like CollegeStudent inherited Student’s constructors: CollegeStudent would have a
constructor named Student.

Even though CollegeStudent does not inherit Student’s constructors, its constructors
do call Student’s constructors, as you have just seen.

Inheritance C-10

C.10 Reprise: Using this to invoke a constructor. As you saw in Segment B.25, you use the reserved
word this much as we used super here, except that it calls a constructor of the same class instead
of a constructor of the superclass. For example, consider the following definition of a constructor
that we might add to the class CollegeStudent in Segment C.8:

public CollegeStudent(Name studentName, String studentId)
{

this(studentName, studentId, 0, "");
} // end constructor

The one statement in the body of this constructor definition is a call to the constructor whose defi-
nition begins

public CollegeStudent(Name studentName, String studentId,
int graduationYear, String degreeSought)

As with super, any use of this must be the first action in a constructor definition. Thus, a con-
structor definition cannot contain both a call using super and a call using this. What if you want
both a call with super and a call with this? In that case, you would use this to call a constructor
that has super as its first action.

Private Fields and Methods of the Superclass
C.11 Accessing inherited data fields. The class CollegeStudent has a setStudent method with four

parameters, studentName, studentId, graduationYear, and degreeSought. To initialize the inher-
ited data fields fullName and id, the method invokes the inherited methods setName and setId:

setName(studentName); // NOT fullName = studentName
setId(studentId); // NOT id = studentId

Recall that fullName and id are private data fields defined in the superclass Student. Only a
method in the class Student can access fullName and id directly by name from within its defini-
tion. Although the class CollegeStudent inherits these data fields, none of its methods can access
them by name. Thus, setStudent cannot use an assignment statement such as

id = studentId; // ILLEGAL in setStudent

to initialize the data field id. Instead it must use some public mutator method such as setId.

The fact that you cannot access a private data field of a superclass from within the definition of
a method of a subclass seems wrong to people. To do otherwise, however, would make the access
modifier private pointless: Anytime you wanted to access a private data field, you could simply
create a subclass and access it in a method of that class. Thus, all private data fields would be acces-
sible to anybody who was willing to put in a little extra effort.

C.12 Private methods of the superclass. A subclass cannot invoke a superclass’s private methods
directly. This should not be a problem, since you should use private methods only as helpers within
the class in which they are defined. That is, a class’s private methods do not define behaviors. Thus,
we say that a subclass does not inherit the private methods of its superclass. If you want to use a
superclass’s method in a subclass, you should make the method either protected or public. We dis-
cuss protected methods in the next segment.

Note: A data field that is private in a superclass is not accessible by name within the defini-
tion of a method for any other class, including a subclass. Even so, a subclass inherits the data
fields of its superclass.

C-11 APPENDIX C Creating Classes from Other Classes

Suppose that superclass B has a public method m that calls a private method p. A class D derived
from B inherits the public method m, but not p. Even so, when a client of D invokes m, m calls p. Thus,
a private method in a superclass still exists and is available for use, but a subclass cannot call it
directly by name.

Protected Access
C.13 You know that you control access to a class’s data fields and methods by using an access modifier

like public or private. As you saw in Appendix B, you can omit the access modifier entirely
when the class is within a package and you want the class to be available only to other classes in the
package. You also have one other choice for controlling access: You can use the access modifier
protected for methods and data fields.

A method or data field that is modified by protected can be accessed by name only within

• Its own class definition C
• Any class derived from C
• Any class within the same package as C

That is, if a method is marked protected in class C, you can invoke it from within any method def-
inition in a class derived from class C. However, with classes that are not derived from C or that are
not in the same package as C, a protected method behaves as if it were private.

You should continue to declare all data fields as private. If you want a subclass to have access
to a data field in the superclass, define protected accessor or mutator methods within the superclass.

Note that package access is more restricted than protected access and gives more control to the
programmer defining the classes. If you control the package directory, you control who is allowed
package access.

Figure C-4 illustrates the various kinds of access modifiers.

FIGURE C-4 Public, private, protected, and package access of the data fields
and methods of class C

Overriding and Overloading Methods
C.14 The set and get methods of the class CollegeStudent are straightforward, so we will not bother to

look at them. However, we have provided the class with a method toString. Why did we do this,

Note: A subclass does not inherit and cannot invoke by name a private method of the
superclass.

A client of C outside
of the package
containing C A subclass of C outside of

the package containing C

A class C

Any class within the
package containing C

PrivatePublic Protected Package

Inheritance C-12

when our new class inherits a toString method from its superclass Student? Clearly, the string
that the superclass’s toString method returns can include the student’s name and identification
number, but it cannot include the year and degree that are associated with the subclass. Thus, we
need to write a new method toString.

But why not have the new method invoke the inherited method? We can do this, but we’ll need
to distinguish between the method that we are defining for CollegeStudent and the method inher-
ited from Student. As you can see from the class definition in Segment C.8, the new method
toString contains the statement

return super.toString() + ", " + degree + ", " + year;

Since Student is the superclass, we write
super.toString()

to indicate that we are invoking the superclass’s toString. If we omitted super, our new version of
toString would invoke itself. Here we are using super as if it were an object. In contrast, we used
super with parentheses as if it were a method within the constructor definitions.

If you glance back at Segment C.2, you will see that Student’s toString method appears as
follows:

public String toString()
{

return id + " " + fullName.toString();
} // end toString

This method calls the toString method defined in the class Name, since the object fullName is an
instance of the class Name.

C.15 Overriding a method. In the previous segment, you saw that the class CollegeStudent defines a
method toString and also inherits a method toString from its superclass Student. Both of these
methods have no parameters. The class, then, has two methods with the same name, the same
parameters, and the same return type.

When a subclass defines a method with the same name, the same number and types of parame-
ters, and the same return type as a method in the superclass, the definition in the subclass is said to
override the definition in the superclass. Objects of the subclass that invoke the method will use
the definition in the subclass. For example, if cs is an instance of the class CollegeStudent,

cs.toString()

uses the definition of the method toString in the class CollegeStudent, not the definition of
toString in the class Student, as Figure C-5 illustrates. As you’ve already seen, however, the defini-
tion of toString in the subclass can invoke the definition of toString in the superclass by using super.

FIGURE C-5 The method toString in CollegeStudent overrides the method
toString in Student

public String toString()
{ . . .

public String toString()
{ . . .

 super.toString()

CollegeStudent cs;
. . .
cs.toString()

The client classThe class CollegeStudentThe class Student

C-13 APPENDIX C Creating Classes from Other Classes

C.16 Covariant return types (Optional). A class cannot define two methods that have different return
types but the same signatures—that is, the same name and parameters. However, if the two meth-
ods are in different classes, and one class is a subclass of the other, this can be possible. In particu-
lar, when a method in a subclass overrides a method in the superclass, their signatures are the same.
But the return type of the method in the subclass can be a subclass of the return type of the method
in the superclass. Such return types are said to be covariant.

For example, in Segment C.8 the class CollegeStudent was derived from the class Student
defined in Segment C.2. Now imagine a class School that maintains a collection of Student objects.
(This book will give you the tools to actually do this.) The class has a method getStudent that returns
a student given his or her ID number. The class might appear as follows:

public class School
{

. . .

public Student getStudent(String studentId)
{

. . .
} // end getStudent

} // end School

Note: Overriding a method definition
A method in a subclass overrides a method in the superclass when both methods have the
same name, the same number and types of parameters, and the same return type. Since a
method’s signature is its name and parameters, a method in a subclass overrides a method in
the superclass when both methods have the same signature and return type.

Note: Overriding and access
An overriding method in a subclass can have either public, protected, or package access
according to the access of the overridden method in the superclass, as follows:

Access of the overridden Access of the overriding
method in the superclass method in the subclass
public public
protected protected or public
package package, protected, or public

A private method in a superclass cannot be overridden by a method in a subclass.

Note: You can use super in a subclass to call an overridden method of the superclass.

Question 7 Question 5 asked you to create an instance of NickName to represent the nickname
Bob. If that object is named bob, do the following statements produce the same output? Explain.

System.out.println(bob.getNickName());
System.out.println(bob);

Inheritance C-14

Now, consider a class College that has a collection of college students. We can derive College
from School and override the method getStudent, as follows:

public class College extends School
{

. . .

public CollegeStudent getStudent(String studentId)
{

. . .
} // end getStudent

} // end College

The method getStudent has the same signature as getStudent in School, but the return types of
the two methods differ. In fact, the return types are covariant—and therefore legal—because
CollegeStudent is a subclass of Student.

C.17 Reprise: Overloading a method. Segment B.29 of Appendix B discussed overloaded methods
within the same class. Such methods have the same name but different signatures. Java is able to
distinguish between these methods since their parameters are not identical.

Suppose that a subclass has a method with the same name as a method in its superclass, but the
methods’ parameters differ in number or data type. The subclass would have both methods—the one
it defines and the one it inherits from the superclass. The method in the subclass overloads the method
in the superclass.

For example, the superclass Student and the subclass CollegeStudent each have a method
named setStudent. The methods are not exactly the same, however, as they have a different num-
ber of parameters. In Student, the method’s header is

public void setStudent(Name studentName, String studentId)

whereas in CollegeStudent it is

public void setStudent(Name studentName, String studentId,
int graduationYear, String degreeSought)

An instance of the class Student can invoke only Student’s version of the method, but an instance
of CollegeStudent can invoke either method. Again, Java can distinguish between the two meth-
ods because they have different parameters.

Within the class CollegeStudent, the implementation of setStudent can invoke Student’s
setStudent to initialize the fields fullName and id by including the statement

setStudent(studentName, studentId);

instead of making calls to the methods setName and setId, as we did in Segment C.8. Since the two
versions of setStudent have different parameter lists, we do not need to preface the call with
super to distinguish the two methods. However, we are free to do so by writing

super.setStudent(studentName, studentId);

Although the terms “overloading” and “overriding” are easy to confuse, you should distinguish
between the concepts, as they both are important.

Note: Overloading a method definition
A method in a class overloads another method in either the same class or its superclass when
both methods have the same name but differ in the number or types of parameters. Thus,
overloaded methods have the same name but different signatures.

C-15 APPENDIX C Creating Classes from Other Classes

C.18 Multiple use of super. As we have already noted, within the definition of a method of a subclass,
you can call an overridden method of the superclass by prefacing the method name with super and
a dot. However, if the superclass is itself derived from some other superclass, you cannot repeat the
use of super to invoke a method from that superclass.

For example, suppose that the class UndergradStudent is derived from the class CollegeStudent,
which is derived from the class Student. You might think that you can invoke a method of the class
Student within the definition of the class Undergraduate, by using super.super, as in

super.super.toString(); // ILLEGAL!

As the comment indicates, this repeated use of super is not allowed in Java.

C.19 The final modifier. Suppose that a constructor calls a public method m. For simplicity, imagine
that this method is in the same class C as the constructor, as follows:

public class C
{

. . .
public C()
{

m();
. . .

} // end default constructor

public void m()
{

. . .
} // end m
. . .

 Now imagine that we derive a new class from C and we override the method m. If we invoke the
constructor of our new class, it will call the superclass’s constructor, which will call our overridden
version of the method m. This method might use data fields that the constructor has not yet initialized,
causing an error. Even if no error occurs, we will, in effect, have altered the behavior of the super-
class’s constructor.

To specify that a method definition cannot be overridden with a new definition in a subclass, you
make it a final method by adding the final modifier to the method header. For example, you can write

public final void m()

Note: super
Although a method in a subclass can invoke an overridden method defined in the superclass by
using super, the method cannot invoke an overridden method that is defined in the superclass’s
superclass. That is, the construct super.super is illegal.

Question 8 Are the two definitions of the constructors for the class Student
(Segment C.2) an example of overloading or overriding? Why?

Question 9 If you add the method
public void setStudent(Name studentName, String studentId)

to the class CollegeStudent and let it give some default values to the fields year and degree, are
you overloading or overriding setStudent? Why?

Type Compatibility and Superclasses C-16

Note that private methods are automatically final methods, since you cannot override them in a subclass.

Constructors cannot be final. Since a subclass does not inherit, and therefore cannot override, a
constructor in the base case, final constructors are unnecessary.

You can declare an entire class as a final class, in which case you cannot use it as superclass to
derive any other class from it. Java’s String class is an example of a final class.

Multiple Inheritance
C.20 Some programming languages allow one class to be derived from two different superclasses. That

is, you can derive class C from classes A and B. This feature, known as multiple inheritance, is not
allowed in Java. In Java, a subclass can have only one superclass. You can, however, derive class B
from class A and then derive class C from class B, since this is not multiple inheritance.

A subclass can implement any number of interfaces—which we describe in Appendix D—in
addition to extending any one superclass. This capability gives Java an approximation to multiple
inheritance without the complications that arise with multiple superclasses.

Type Compatibility and Superclasses

C.21 Object types of a subclass. Previously, you saw the class CollegeStudent, which was derived
from the class Student. In the real world, every college student is also a student. This relation-
ship holds in Java as well. Every object of the class CollegeStudent is also an object of the class
Student. Thus, if we have a method that has a formal parameter of type Student, the argument in
an invocation of this method can be an object of type CollegeStudent.

Specifically, suppose that the method in question is in some class and begins as follows:
public void someMethod(Student scholar)

Within the body of someMethod, the object scholar can invoke public methods that are defined in
the class Student. For example, the definition of someMethod could contain the expression
scholar.getId(). That is, scholar has Student behaviors.

Programming Tip: If a constructor invokes a method in its class, declare that method to
be final so that no subclass can override the method and hence change the behavior of the
constructor.

Note: String cannot be the superclass for any other class because it is a final class.

Programming Tip: When you design a class, consider the classes derived from it, either
now or in the future. They might need access to your class’s data fields. If your class does not
have public accessor or mutator methods, provide protected versions of such methods. Keep the
data fields private.

C-17 APPENDIX C Creating Classes from Other Classes

Now consider an object joe of CollegeStudent. Since the class CollegeStudent inherits all the
public methods of the class Student, joe can invoke those inherited methods. That is, joe can behave
like an object of Student. (It happens that joe can do more, since it is an object of CollegeStudent,
but that is not relevant right now.) Therefore, joe can be the argument of someMethod. That is, for
some object o, we can write

o.someMethod(joe);

No automatic type casting1 has occurred here. As an object of the class CollegeStudent, joe is also
of type Student. The object joe need not be, and is not, type-cast to an object of the class Student.

We can take this idea further. Suppose that we derive the class UndergradStudent from the
class CollegeStudent. In the real world, every undergraduate is a college student, and every col-
lege student is also a student. Once again, this relationship holds for our Java classes. Every object
of the class UndergradStudent is also an object of the class CollegeStudent and so is also an
object of the class Student. Thus, if we have a method whose formal parameter is of type Student,
the argument in an invocation of this method can be an object of type UndergradStudent. Thus, an
object can actually have several types as a result of inheritance.

C.22 Because an object of a subclass also has the types of all of its ancestor classes, you can assign an
object of a class to a variable of any ancestor type, but not the other way around. For example, since
the class UndergradStudent is derived from the class CollegeStudent, which is derived from the
class Student, the following are legal:

Student amy = new CollegeStudent();
Student brad = new UndergradStudent();
CollegeStudent jess = new UndergradStudent();

However, the following statements are all illegal:

CollegeStudent cs = new Student(); // ILLEGAL!
UndergradStudent ug = new Student(); // ILLEGAL!
UndergradStudent ug2 = new CollegeStudent(); // ILLEGAL!

 This makes perfectly good sense. For example, a college student is a student, but a student is
not necessarily a college student. Some programmers find the phrase “is a” to be useful in deciding
what types an object can have and what assignments to variables are legal.

1. Segment A.21 of Appendix A reviews type casts.

Note: An object of a subclass has more than one data type. Everything that works for
objects of an ancestor class also works for objects of any descendant class.

Programming Tip: Because an object of a subclass is also an object of the superclass,
do not use inheritance when an is a relationship does not exist between your proposed class
and an existing class. Even if you want class C to have some of the methods of class B, use
composition if these classes do not have an is a relationship.

Type Compatibility and Superclasses C-18

The Class Object
C.23 As you have already seen, if you have a class A and you derive class B from it, and then you derive

class C from B, an object of class C is of type C, type B, and type A. This works for any chain of sub-
classes no matter how long the chain is.

 Java has a class—named Object—that is at the beginning of every chain of subclasses. This
class is an ancestor of every other class, even those that you define yourself. Every object of every
class is of type Object, as well as being of the type of its class and also of the types of all the other
ancestor classes. If you do not derive your class from some other class, Java acts as if you had
derived it from the class Object.

The class Object contains certain methods, among which are toString, equals, and clone.
Every class inherits these methods, either from Object directly or from some other ancestor class
that ultimately inherited the methods from the class Object.

The inherited methods toString, equals, and clone, however, will almost never work cor-
rectly in the classes you define. Typically, you need to override the inherited method definitions
with new, more appropriate definitions. Thus, whenever you define the method toString in a class,
for example, you are actually overriding Object’s method toString.

C.24 The toString method. The method toString takes no arguments and is supposed to return all the
data in an object as a String. However, you will not automatically get a nice string representation
of the data. The inherited version of toString returns a value based upon the invoking object’s
memory address. You need to override the definition of toString to cause it to produce an appro-
priate string for the data in the class being defined. You might want to look again at the toString
methods in Segments C.2 and C.8.

C.25 The equals method. Consider the following objects of the class Name that we defined in Appendix B:
Name joyce1 = new Name("Joyce", "Jones");
Name joyce2 = new Name("Joyce", "Jones");
Name derek = new Name("Derek", "Dodd");

Now joyce1 and joyce2 are two distinct objects that contain the same name. Typically, we would
consider these objects to be equal, but in fact joyce1.equals(joyce2) is false. Since Name does not
define its own equals method, it uses the one it inherits from Object. Object’s equals method
compares the addresses of the objects joyce1 and joyce2. Because we have two distinct objects,
these addresses are not equal. However, joyce1.equals(joyce1) is true, since we are comparing
an object with itself. This comparison is an identity. Notice that identity and equality are different
concepts.

Question 10 If HighSchoolStudent is a subclass of Student, can you assign an object of
HighSchoolStudent to a variable of type Student? Why or why not?

Question 11 Can you assign an object of Student to a variable of type HighSchoolStudent?
Why or why not?

Note: Every class is a descendant class of the class Object.

C-19 APPENDIX C Creating Classes from Other Classes

The method equals has the following definition in the class Object:
public boolean equals(Object other)
{

return (this == other);
} // end equals

Thus, the expression x.equals(y) is true if x and y reference the same object. We must override
equals in the class Name if we want it to behave more appropriately.

As you will recall, Name has two data fields, first and last, that are instances of String. We
could decide that two Name objects are equal if they have equal first names and equal last names.
The following method, when added to the class Name, detects whether two Name objects are equal by
comparing their data fields:

public boolean equals(Object other)
{

boolean result = false;

if (other instanceof Name)
{

Name otherName = (Name)other;
result = first.equals(otherName.first) &&

last.equals(otherName.last);
} // end if

return result;
} // end equals

To ensure that the argument passed to the method equals is a Name object, you use the Java
operator instanceof. For example, the expression

other instanceof Name

is true if other references an object of either the class Name or a class derived from Name. If other
references an object of any other class, or if other is null, the expression will be false.

Given an appropriate argument, the method compares the data fields of the two objects. Notice
that we first must cast the type of the parameter other from Object to Name so that we can access
Name’s data fields. To compare two strings, we use String’s equals method. The class String
defines its own version of equals that overrides the equals method inherited from Object.

C.26 The clone method. Another method inherited from the class Object is the method clone. This
method takes no arguments and returns a copy of the receiving object. The returned object is sup-
posed to have data identical to that of the receiving object, but it is a different object (an identical
twin or a “clone”). As with other methods inherited from the class Object, we need to override the
method clone before it can behave properly in our class. However, in the case of the method clone,
there are other things we must do as well. A discussion of the method clone appears in Chapter 30.

Abstract Classes and Methods
C.27 The class Student defined in Segment C.2 is a superclass for other classes such as CollegeStudent.

We really do not need to create objects of type Student, although it is certainly legal to do so. We
might, however, want to prevent a client from creating objects of type Student. To do so, we can

Question 12 If sue and susan are two instances of the class Name, what if statement can
decide whether they represent the same name?

Type Compatibility and Superclasses C-20

declare the class to be an abstract class by including the reserved word abstract in the header of the
class definition, as follows:

public abstract class Student
{
. . .

Often when programmers define an abstract class, they declare one or more methods that have
no body. The intention in doing so is to require that every subclass implement such methods in an
appropriate way for that class. For example, we might want every subclass of Student to imple-
ment a method display. We certainly cannot write such a method for a future class that is not yet
defined, but we can require one. To do so, we declare display as an abstract method by including
the reserved word abstract in the header of the method, as follows:

public abstract void display();

Note that the method header is followed by a semicolon; the method has no body.

C.28 If a class has at least one abstract method, Java requires that you declare the class itself as abstract.
This makes sense, for otherwise you could create an object of an incomplete class. In our example,
the object would have a method display without an implementation.

What if the subclass of an abstract class does not implement all of the abstract methods? Java will
treat the subclass as abstract and prevent you from creating an object of its type. For example, if the class
CollegeStudent, which is derived from Student, did not implement display, CollegeStudent
would have to be abstract.

Even after we’ve made the class Student abstract by adding the abstract method display, not
all of its methods are abstract. All the method definitions, except for the method display, are
exactly the same as in our original definition. They are full definitions that do not use the reserved
word abstract. When it makes sense to implement a method in an abstract class, you should do so.
In this way, you include as much detail as possible in the abstract class, detail that need not be
repeated in subclasses.

Note: An abstract class will be the superclass of another class. Thus, an abstract class is
sometimes called an abstract superclass.

Note: An abstract method declaration within an abstract class consists of the method’s
header followed by a semicolon. The header must include the reserved word abstract. An
abstract method cannot be private, static, or final.

Note: A class with at least one abstract method must be declared as an abstract class. Thus,
abstract methods can appear only within an abstract class.

Note: Constructors cannot be abstract
Since a class cannot override a constructor in its superclass, if the constructor were abstract, it
could not be implemented. Thus, constructors are never abstract.

C-21 APPENDIX C Creating Classes from Other Classes

C.29 Example. Let’s add another method to the class Student, one that invokes the abstract method
display. Before you complain about invoking a method that has no body, remember that Student
is an abstract class. When we finally derive a class from Student that is not abstract, display will
be implemented.

The method we have in mind serves mainly as an example, rather than doing anything useful.
It simply skips the specified number of lines before displaying an object:

/** Displays the object after skipping numberOfLines lines. */
public void displayAt(int numberOfLines)
{

for (int count = 0; count < numberOfLines; count++)
System.out.println();

display();
} // end displayAt

The method displayAt invokes the abstract method display. Here the abstract method serves as a
placeholder for a method that will be defined in a future subclass. If display were not abstract, we
would have to give it a body that really would be useless, since every subclass would override it.

Polymorphism

C.30 The term “polymorphism” comes from a Greek word meaning “many forms.” Polymorphism as a
concept is actually common in English. For example, the English instruction “Play your favorite
sport” means different things to different people. To one person it means to play baseball. To
another person it means to play soccer. In Java, polymorphism allows the same program instruc-
tion to mean different things in different contexts. In particular, one method name, used as an
instruction, can cause different actions depending on the kind of object performing the action.

Originally, overloading a method name was considered polymorphism. However, the modern
usage of the term refers to an object determining at execution time which action of a method it will
use for a method name that is overridden either directly or indirectly.

C.31 Example. For example, a method named display can display the data in an object. But the data it
displays and how much it displays depend on the kind of object that you use to invoke the method.
Let’s add the method display to the class Student of Segment C.2 and assume that neither the
method nor the class is abstract. Thus, display has an implementation within the class Student. Now
add to the class the method displayAt as it appears in Segment C.29.

If the only class around were Student, these changes would not be exciting. But we derived the
class UndergradStudent from the class CollegeStudent, which we derived from the class Student.
The class UndergradStudent inherits the method displayAt from the class Student. In addition,
UndergradStudent overrides the method display defined in Student by providing its own imple-
mentation. So what? you might be wondering.

Question 13 Suppose that you change the name of the previous method displayAt to display.
Does the resulting method overload or override the method display? Why?

Note: Polymorphism
One method name in an instruction can cause different actions according to the kinds of
objects that receive the method invocation.

Polymorphism C-22

Well, look at the poor compiler’s job when it encounters the following Java statements (we are
ignoring the constructor’s arguments):

UndergradStudent ug = new UndergradStudent(. . .);
ug.displayAt(2);

The method displayAt was defined in the class Student, but it calls the method display that is
defined in the class UndergradStudent, as Figure C-6 illustrates. The code for displayAt could
have been compiled with the class Student before the class UndergradStudent was even written.
In other words, this compiled code could use a definition of the method display that was not even
written at the time that displayAt was compiled. How can that be?

When the code for displayAt is compiled, the call to display produces an annotation that
says, “use the appropriate definition of display.” Then, when we invoke ug.displayAt(2), the
compiled code for displayAt reaches this annotation and replaces it with an invocation of the ver-
sion of display that goes with ug. Because in this case ug is of type UndergradStudent, the version
of display that is used will be the definition in the class UndergradStudent.

FIGURE C-6 The method displayAt calls the correct version of display

C.32 The decision as to which method definition to use depends on the receiving object’s place in the
inheritance chain, not on the type of the variable naming the object. For example, consider the fol-
lowing code:

UndergradStudent ug = new UndergradStudent(. . .);
Student s = ug;
s.displayAt(2);

As we noted in Segment C.22, assigning an object of the class UndergradStudent to a vari-
able of type Student is perfectly legal. Here, the variable s is just another name for the object

public class CollegeStudent
 extends Student
{
 . . .
 public void display()
 {
 . . .
 } // end display
 . . .

} // end CollegeStudent

public class UndergradStudent
 extends CollegeStudent
{
 . . .
 public void display()
 {
 . . .
 } // end display
 . . .

} // end UndergradStudent

public class Client
{
 public static void main(String[] args)
 {
 . . .
 UndergradStudent ug = new UndergradStudent(. . .);
 ug.displayAt(2);
 . . .
 } // end main
 . . .
} // end Client

public class Student
{
 . . .
 public void display()
 {
 . . .
 } // end display

 public void displayAt(int numberOfLines)
 {
 . . .
 display();
 } // end displayAt
} // end Student

C-23 APPENDIX C Creating Classes from Other Classes

that ug references, as Figure C-7 illustrates. That is, s and ug are aliases. But the object still
remembers that it was created as an UndergradStudent. In this case, s.displayAt(2) ultimately
will use the definition of display given in UndergradStudent, not the definition of display
given in Student.

A variable’s static type is the type that appears in its declaration. For example, the static type
of the variable s is Student. The static type is fixed and determined when the code is compiled. The
type of object that a variable references at a point in time during execution is called its dynamic
type. A variable’s dynamic type can change as execution progresses. When the assignment s = ug
executes in the previous code, the dynamic type of s is UndergradStudent. A variable of a refer-
ence type is called a polymorphic variable, since its dynamic type can differ from its static type
and change during execution.

For our example, Java decides which definition of display to use by seeing which con-
structor created the object. That is, Java uses the dynamic type of the variable s to make this
determination.

FIGURE C-7 The variable s is another name for an undergraduate object

This way of handling a call to a method that might be overridden later is called dynamic binding
or late binding, because the meaning of the method invocation is not bound to the location of the
method invocation until you run the program. If Java did not use dynamic binding when you ran the
preceding code, you would not see the data for an undergraduate student. Instead you would see only
what the method display of the class Student provided.

C.33 Java is so good at figuring out which definition of a method to use that even a type cast will not fool it.
Recall that you use a type cast to change the type of a value to some other type. The meaning of
s.displayAt(2) in the previous segment will always be appropriate for an UndergradStudent, even
if we use a type cast to change the type of ug to the type Student, as in the following statements:

UndergradStudent ug = new UndergradStudent(. . .);
Student s = (Student) ug;
s.displayAt(2);

s

ug
Object of type UndergradStudent

Note: Java uses an object’s dynamic type, not its name, to see which method to invoke.

Note: Dynamic binding
Dynamic binding is the process that enables different objects to use different method actions
for the same method name.

Polymorphism C-24

Despite the type cast, s.displayAt(2) will use the definition of display given in UndergradStudent,
not the definition of display given in Student. An object’s dynamic type, not its name, is the determin-
ing factor in choosing the correct method to invoke.

To see that dynamic binding really is a big deal, consider the following code:

UndergradStudent ug = new UndergradStudent(. . .);
Student s = ug;

GradStudent g = new GradStudent(. . .);
s = g;

The two highlighted lines are identical, yet each one invokes a different version of display. The
first line displays an UndergradStudent and the second displays a GradStudent, as Figure C-8
illustrates. An object remembers what method definitions it had when the new operator created it.
You can place the object in a variable of a different (but ancestor) class type, but that has no effect
on which method definition the object uses for an overridden method.

Let’s pursue this process a bit more to see that it is even more dramatic than it may appear at
first glance. Note that objects of the classes UndergradStudent and GradStudent inherit the
method displayAt from the class Student and do not override it. Thus, the text of the method def-
inition is even the same for objects of the classes UndergradStudent and GradStudent. It is the
method display, invoked in the definition of displayAt, that is overridden.

FIGURE C-8 An object, not its name, determines its behavior

s.displayAt(2);

s.displayAt(2);

Note: Objects know how they are supposed to act
When an object receives a call to either an overridden method or a method that calls an overridden
method, the action of that method is the one defined in the class whose constructor created the object.
The choice of action is not affected by the static type of the variable naming the object. A variable of
any ancestor class can reference an object of a descendant class, but the object always remembers
which method actions to use for every method name, because Java uses dynamic binding.

s

g

s

ug

Object of type GradStudent

s.displayAt(2) invokes the method
display in the class GradStudent

s.displayAt(2) invokes the method
display in the class UndergradStudent

Object of type UndergradStudent

C-25 APPENDIX C Creating Classes from Other Classes

C.34 Type checking and dynamic binding. You need to be aware of how dynamic binding interacts
with Java’s type checking. For example, if UndergradStudent is a subclass of the class Student, we
can assign an object of type UndergradStudent to a variable of type Student, as in

Student s = new UndergradStudent();

But that is not the end of the story.
Although we can assign an object of type UndergradStudent to a variable s of type Student,

we cannot use s to invoke a method that is only in the class UndergradStudent. However, if the
method is overridden in the definition of the class UndergradStudent, the version of the method
defined in UndergradStudent will be used. In other words, the variable determines what method
names can be used, but the object determines which definition of the method name will be used. If
we want to use a method name that was first introduced in the class UndergradStudent with the
object named by the variable s of type Student, we must use a type cast.

C.35 Example. For example, recall that Student is not abstract and implements the method display. Also
remember that UndergradStudent is a subclass of Student. The following statements are legal:

Student s = new UndergradStudent(. . .);
s.setName(new Name("Jamie", "Jones"));
s.display();

The definition of display given in the class UndergradStudent is used. Remember, the object, not
the variable, determines which definition of a method will be used.

On the other hand, the following is illegal:

s.setDegree("B.A."); // ILLEGAL

because setDegree is not the name of a method in the class Student. Remember, the variable
determines which method names can be used.

The variable s is of type Student, but it references an object of type UndergradStudent. That
object can still invoke the method setDegree, but the compiler does not know this. To make the
invocation legal, we need a type cast, such as the following:

UndergradStudent ug = (UndergradStudent)s;
ug.setDegree("B.A."); // LEGAL

You may think this is all just a silly exercise, because you would never assign an object of type
UndergradStudent to a variable of type Student. Not so. You might not often make such an
assignment directly, but you frequently will do so unwittingly. Recall that we can have an argument
of type UndergradStudent for a method parameter of type Student and that a formal parameter
behaves like a local variable that is assigned the value of its corresponding argument. In this case an
object of type UndergradStudent (the argument in the method invocation) is assigned to a variable
of type Student (the formal parameter in the method definition).

C.36 Example. Since each of the classes Student and Name has an appropriate version of the method
toString, we can display an object of this class as follows:

Name joe = new Name("Joe", "Student");
Student s = new Student(joe, "5555");
System.out.println(s.toString());

But thanks to dynamic binding, we do not even need to write toString in our invocation of
System.out.println. The method invocation System.out.println(s) will work just as well and
will produce exactly the same output. Let’s see why.

Answers to Self-Test Questions C-26

The object System.out has the method println. One definition of the method println has a
single parameter of type Object. The definition is equivalent to the following:

public void println(Object theObject)
{

System.out.println(theObject.toString());
} // end println

The method println invoked inside the braces is a different, overloaded definition of the method
println that has a parameter of type String, not Object.

These definitions of println existed before the class Student was defined. Yet the invocation

System.out.println(s);

with an object s of type Student—and hence also of type Object—uses Student’s toString, not
Object’s toString. Dynamic binding is what makes this work.

EXERCISES AND PROJECTS

ANSWERS TO SELF-TEST QUESTIONS

Question 14 Is a method display with no parameters that is defined explicitly in each of
the classes Student, CollegeStudent, and UndergradStudent an example of overloading or
overriding? Why?

Question 15 Is overloading a method name an example of polymorphism?

Question 16 In the following code, will the two invocations of displayAt produce the
same output?

Student s = new UndergradStudent(. . .);
s.displayAt(2);
s = new GradStudent(. . .);
s.displayAt(2);

A collection of exercises and projects for this appendix are available online at pearsonhighered.com/carrano.

1. Some possibilities are roomNumber and dorm, or street, city, state, zip.

2. private Address residence;
Add the methods setAddress and getAddress.

3. The constructors, setStudent, and toString.

4. public Student()
{

this(new Name(), "");
} // end default constructor

5. NickName bob = new NickName();
bob.setNickName("Bob");
System.out.println(bob.getNickName());

6. The Vehicle class has two subclasses, WheeledVehicle and WheellessVehicle. The subclasses of WheeledVehicle
are Automobile and Wagon. Boat is a subclass of WheellessVehicle. The remaining subclasses are the same as
given in the figure.

C-27 APPENDIX C Creating Classes from Other Classes

7. No. Since getNickName returns a string, the first statement implicitly calls the method toString defined in the
class String. Thus, Bob is displayed. Since the class NickName does not define its own version of toString, the
second statement invokes Object’s toString. The output involves the memory address of the object referenced
by bob.

8. Overloading.The constructors have the same name but different signatures.

9. Overriding. The revised version of setStudent in CollegeStudent has the same signature and return type as the
version in the superclass Student.

10. Yes. You can assign an object of a class to a variable of any ancestor type. An object of type HighSchoolStudent
can do anything that an object of type Student can do.

11. No. The Student object does not have all the behaviors expected of a HighSchoolStudent object.

12. if (sue.equals(susan))

13. Overload. The two methods have the same name but different signatures: One has a parameter, one does not.

14. Overriding. The methods have the same signatures and return types.

15. At one time, overloading was an example of polymorphism. Today, polymorphism describes a situation in which
an object determines at execution time which action of a method it will use for a method name that is overridden
either directly or indirectly.

16. No. Each call to displayAt will invoke the correct version of display. The first invocation calls display in
UndergradStudent; the second invocation calls display in GradStudent.

Appendix

DDesigning Classes
Contents
Encapsulation
Specifying Methods

Comments
Preconditions and Postconditions
Assertions

Java Interfaces
Writing an Interface
Implementing an Interface
An Interface as a Data Type
Generic Types Within an Interface
The Interface Comparable
Extending an Interface
Interfaces Versus Abstract Classes
Named Constants Within an Interface

Choosing Classes
Identifying Classes
CRC Cards
The Unified Modeling Language

Reusing Classes

Prerequisites
Appendix A Java Essentials
Appendix B Java Classes
Appendix C Creating Classes from Other Classes
Appendix G Documentation and Programming Style

Object-oriented programming embodies three design concepts: encapsulation, inheri-
tance, and polymorphism. We have already discussed inheritance and polymorphism.

D-2 APPENDIX D Designing Classes

Now, building on our earlier discussion of classes, this appendix introduces encapsulation as a way to
hide the details of an implementation during the design of a class. It then goes on to emphasize the
importance of specifying how a method should behave before you implement it and of expressing your
specifications as comments in your program.

We introduce Java interfaces as a way to separate the declarations of a class’s behavior from its
implementation. Finally, we present, at an elementary level, some techniques for identifying the
classes necessary for a particular solution.

Encapsulation

D.1 What is the most useful description of an automobile, if you want to learn to drive one? It clearly is
not a description of how its engine goes through a cycle of taking in air and gasoline, igniting the
gasoline/air mixture, and expelling exhaust. Such details are unnecessary when you want to learn to
drive. In fact, such details can get in your way. If you want to learn to drive an automobile, the most
useful description of an automobile has such features as the following:

• If you press your foot on the accelerator pedal, the automobile will move faster.
• If you press your foot on the brake pedal, the automobile will slow down and eventually stop.
• If you turn the steering wheel to the right, the automobile will turn to the right.
• If you turn the steering wheel to the left, the automobile will turn to the left.

Just as you need not tell somebody who wants to drive a car how the engine works, you need
not tell somebody who uses a piece of software all the fine details of its Java implementation. Like-
wise, suppose that you create a software component for another programmer to use in a program.
You should describe the component in a way that tells the other programmer how to use it but that
spares the programmer all the details of how you wrote the software.

D.2 Encapsulation is one of the design principles of object-oriented programming. The word “encap-
sulation” sounds as though it means putting things into a capsule, and that image is indeed correct.
Encapsulation hides the fine detail of what is inside the “capsule.” For this reason, encapsulation is
often called information hiding. But not everything should be hidden. In an automobile, certain
things are visible—like the pedals and steering wheel—and others are hidden under the hood. In
other words, the automobile is encapsulated so that the details are hidden, and only the controls
needed to drive the automobile are visible, as Figure D-1 shows. Similarly, you should encapsulate
your Java code so that details are hidden and only the necessary controls are visible.

Encapsulation encloses data and methods within a class and hides the implementation details
that are not necessary for using the class. If a class is well designed, its use does not require an
understanding of its implementation. A programmer can use the class’s methods without knowing
the details of how they are coded. The programmer must know only how to provide a method with
appropriate arguments, leaving the method to perform the right action. Stated simply, the program-
mer need not worry about the internal details of the class definition. The programmer who uses
encapsulated software to write more software has a simpler task. As a result, software is produced
more quickly and with fewer errors.

Note: Encapsulation is a design principle of object-oriented programming that encloses
data and methods within a class, thereby hiding the details of a class’s implementation. A
programmer receives only enough information to be able to use the class. A well-designed
class can be used as though the body of every method was hidden from view.

Encapsulation D-3

FIGURE D-1 An automobile’s controls are visible to the driver, but its inner
workings are hidden

D.3 Abstraction is a process that asks you to focus on what instead of how. When you design a class,
you practice data abstraction. You focus on what you want to do with or to the data without wor-
rying about how you will accomplish these tasks and how you will represent the data. Abstraction
asks you to focus on what data and operations are important. When you abstract something, you
identify the central ideas. For example, an abstract of a book is a brief description of the book, as
opposed to the entire book.

When designing a class, you should not think about any method’s implementation. That is, you
should not worry about how the class’s methods will accomplish their goals. This separation of
specification from implementation allows you to concentrate on fewer details, thereby making your
task easier and less error-prone. Detailed, well-planned specifications facilitate an implementation
that is more likely to be successful.

D.4 When done correctly, encapsulation divides a class definition into two parts, which we will call the
client interface and the implementation. The client interface describes everything a programmer
needs to know to use the class. It consists of the headers for the public methods of the class, the
comments that tell a programmer how to use these public methods, and any publicly defined con-
stants of the class. The client interface part of the class definition should be all you need to know to
use the class in your program.

The implementation consists of all data fields and the definitions of all methods, including
those that are public, private, and protected. Although you need the implementation to run a client
(a program that uses the class), you should not need to know anything about the implementation to
write the client. Figure D-2 illustrates an encapsulated implementation of a class and the client
interface. Although the implementation is hidden from the client, the interface is visible and pro-
vides a well-regulated means for the client to communicate with the implementation.

Note: The process of abstraction asks you to focus on what instead of how.

D-4 APPENDIX D Designing Classes

FIGURE D-2 An interface provides well-regulated communication between a
hidden implementation and a client

The client interface and implementation are not separated in the definition of a Java class.
They are mixed together. You can, however, create a separate interface in Java as a companion to
your class. A later section of this appendix describes how to write such an interface, and we will
write several of them in this book.

Specifying Methods
Separating the purpose of a class and its methods from their implementations is vital to a successful
software project. You should specify what each class and method does without concern for its
implementation. Writing descriptions enables you to capture your ideas initially and to develop
them so that they are clear enough to implement. Your written descriptions should reach the point
where they are useful as comments in your program. You need to go beyond a view that sees com-
ments as something you add after you write the program to satisfy an instructor or boss.

Comments
Let’s focus on comments that you write for a class’s methods. Although organizations tend to have
their own style for comments, the developers of Java have specified a commenting style that you
should follow. If you include comments written in this style in your program, you can run a utility
program called javadoc to produce documents that describe your classes. This documentation tells
people what they need to know to use your class but omits all the implementation details, including
the bodies of all method definitions.

The program javadoc extracts the header for your class, the headers for all public methods,
and comments that are written in a certain form. Each such comment must appear immediately
before a public class definition or the header of a public method and must begin with /** and end
with */. Certain tags that begin with the symbol @ appear within the comments to identify various
aspects of the method. For example, you use @param to identify a parameter, @return to identify a
return value, and @throws to indicate an exception that the method throws. You will see some
examples of these tags within the comments in this appendix. Appendix G provides the details for
writing comments acceptable to javadoc.

Client
Interface
 Headers of public methods
 Public named constants

Implementation
 Private data fields
 Private constants
 All method definitions

Question 1 How does a client interface differ from a class implementation?

Question 2 Think of an example, other than an automobile, that illustrates encapsulation.
What part of your example corresponds to a client interface and what part to an implementation?

Specifying Methods D-5

Rather than talk further about the rules for javadoc here, we want to discuss some important
aspects of specifying a method. First, you need to write a concise statement of the method’s pur-
pose or task. Beginning this statement with a verb will help you to avoid many extra words that you
really do not need.

In thinking about a method’s purpose, you should consider its input parameters, if any, and
describe them. You also need to describe the method’s results. Does it return a value, does it cause
some action, or does it affect the state of an argument? In writing such descriptions, you should
keep in mind the following ideas.

Preconditions and Postconditions
D.5 A precondition is a statement of the conditions that must be true before a method begins execution.

The method should not be used, and cannot be expected to perform correctly, unless the precondi-
tion is satisfied. A precondition can be related to the description of a method’s parameters. For
example, a method that computes the square root of x can have x ≥ 0 as a precondition.

A postcondition is a statement of what is true after a method completes its execution, assuming
that the precondition was met. For a valued method, the postcondition will describe the value returned
by the method. For a void method, the postcondition will describe actions taken and any changes to the
calling object. In general, the postcondition describes all the effects produced by a method invocation.

Thinking in terms of a postcondition can help you to clarify a method’s purpose. Notice that
going from precondition to postcondition leaves out the how—that is, we separate the method’s
specification from its implementation.

D.6 Responsibility. A precondition implies responsibility for guaranteeing that certain conditions are
met. If the client is responsible for meeting the conditions before calling the method, the method
need not check the conditions. On the other hand, if the method is responsible for enforcing the
conditions, the client does not check them. A clear statement of who must check a given set of con-
ditions increases the probability that someone will do so and avoids duplication of effort.

For example, you could specify the square root method that we mentioned in the previous seg-
ment by writing the following comments before its header:

/** Computes the square root of a number.
@param x a real number >= 0
@return the square root of x

*/

In this case, the method assumes that the client will provide a nonnegative number as an argument.
On the other hand, the method could assume responsibility for checking the argument. In that

case, its comments could read as follows:

/** Computes the square root of a number.
@param x a real number
@return the square root of x if x >= 0
@throws ArithmeticException if x < 0

*/

Although we’ve integrated the precondition and postcondition into the previous comments, we
could instead identify them separately.

Programming Tip: A method that cannot satisfy its postcondition, even though its pre-
condition is met, can throw an exception. (See Appendix E for a discussion of exceptions.)

D-6 APPENDIX D Designing Classes

D.7 When you use inheritance and polymorphism to override a method in a superclass, the method in
the subclass could be inconsistent with the method in the superclass. Preconditions and postcondi-
tions will help you to avoid this problem. A postcondition must apply to all versions of a method
throughout the subclasses. An overriding method can add to a postcondition—that is, it can do
more—but it should not do less. However, an overriding method cannot augment its precondition.
In other words, it cannot require more than a version of the method in a base class requires.

Assertions
D.8 An assertion is a statement of truth about some aspect of your program’s logic. You can think of it

as a boolean expression that is true, or that at least should be true, at a certain point. Preconditions
and postconditions, for example, are assertions made about conditions at the beginning and end of a
method. If one of these assertions is false, something is wrong with your program.

You can state assertions as comments within your code. For example, if at some point in a
method’s definition, you know that the variable sum should be positive, you could write the follow-
ing comment:

// Assertion: sum > 0

Such comments point out aspects of the logic that might not be clear. Additionally, they provide
places for you to check the accuracy of your code during debugging.

D.9 The assert statement. Java enables you to do more than simply write a comment to make an
assertion. You can enforce the assertion by using an assert statement, such as

assert sum > 0;

Programming Tip Specify each public method fully in comments placed before the
method’s header. State whether a method or its client is responsible for ensuring that the nec-
essary conditions are met for the successful execution of the method. In this way, checking is
done but not duplicated. During debugging, however, a method should check that its precon-
dition has been met.

Question 3 Assume that the class Square has a data field side and the method setSide to
set the value of side. What header and comments can you write for this method? Keep in
mind a precondition and postcondition as you do this.

Question 4 Suppose that you have an array of positive integers. The following statements
find the largest integer in the array. What assertion can you write as a comment after the if
statement in the following loop?

int max = 0;
for (int index = 0; index < array.length; index++)
{

if (array[index] > max)
max = array[index];

// Assertion:
} // end for

Java Interfaces D-7

If the boolean expression that follows the reserved word assert is true, the statement does nothing.
If it is false, an assertion error occurs and program execution terminates. An error message such
as the following is displayed:

Exception in thread “main” java.lang.AssertionError

You can clarify this error message by adding a second expression to the assert statement. The
second expression must represent a value, since its representation as a string is displayed within the
error message. For example, the statement

assert sum > 0 : sum;

adds the value of sum to the error message in case sum ≤ 0. For example, the error message might be
Exception in thread “main” java.lang.AssertionError: −5

By default, assert statements are disabled at execution time. Thus, you can leave assert
statements in your program after you have finished it without wasting execution time. When you
run a program, you must enable the assert statements if you want them to execute. Exactly how
you enable them depends on your programming environment.1

Java Interfaces

D.10 Earlier in this appendix, we spoke in general terms about the client interface, which tells you all
you need to know to use a particular class in your program. Although a Java class intermixes its
interface with its implementation, you can write a separate interface.

A Java interface is a program component that declares a number of public methods and can
define public named constants. Such an interface should include comments that specify the methods,
in order to provide a programmer with the necessary information to implement them. Some interfaces
describe all the public methods in a class, while others specify only certain methods.

1. If you use the Java Development Kit (JDK) from Oracle, the command java -ea MyProgram executes MyProgram
with assertions enabled. Further details about enabling assertions when using the JDK are available at the following URL:
download.oracle.com/javase/7/docs/technotes/guides/language/assert.html

Note: Assertions within a program identify aspects of your logic that must be true. In Java,
you can use an assert statement to make an assertion. It has the following form:

assert boolean_expression : valued_expression;

The value of the optional second expression appears in the error message that occurs if the
first expression is false.

Programming Tip: Using the assert statement is a simple but effective way to find
errors in your program’s logic. After serving this purpose, assertions left in your program
document its logic for those who want to revise or expand its capability. Remember, Java
ignores assert statements unless the user of your program specifies otherwise.

Programming Tip: Use an assert statement during debugging to enforce that a method’s
precondition has been met. However, an assert statement is not a substitute for an if statement.
You should use assert statements as a programming aid, not as part of a program’s logic.

D-8 APPENDIX D Designing Classes

 When you write a class that defines the methods declared in an interface, we say that the class
implements the interface. A class that implements an interface must define a body for every method
that the interface specifies. The interface, however, might not declare every method defined in the class.

You can write your own interfaces, and you can use those that are in the Java Class Library.
When you write a Java interface, you place it in its own file. That is, the interface and the class that
implements it are in two separate files.

Writing an Interface
D.11 A Java interface begins like a class definition, except that you use the word interface instead of

class. That is, an interface begins with the statement
public interface interface-name

rather than
public class class-name

The interface can contain any number of public method headers, each followed by a semicolon. An
interface does not declare the constructors for a class and cannot declare static or final methods.
Note that methods within an interface are public by default, so you can omit public from their
headers. The interface can also define any number of public named constants.

D.12 Example. Imagine objects such as circles, squares, or plots of land that have both a perimeter and
an area. Suppose that we want the classes of these objects to have get methods that return these
quantities. If various programmers implemented these classes, they likely would not name or spec-
ify these get methods in the same way. To ensure that these classes define our methods in a uniform
way, we write the interface shown in Listing D-1. This interface provides a programmer with a
handy summary of the methods’ specifications. The programmer should be able to use these meth-
ods without looking at the class that implements them.

You store an interface definition in a file with the same name as the interface, followed by
.java. For example, the previous interface is in the file Measurable.java.

LISTING D-1 An interface Measurable

/** An interface for methods that return
the perimeter and area of an object.

*/
public interface Measurable
{

/** Gets the perimeter.
@return the perimeter */

public double getPerimeter();

/** Gets the area.
@return the area */

public double getArea();
} // end Measurable

Java Interfaces D-9

D.13 Example. Suppose that you eventually want to define a class of people’s names. You might begin
by writing the Java interface given in Listing D-2 to specify the methods for such a class. We have
included comments for only the first two methods, to save space. This interface provides specifica-
tions of the desired methods for an entire class. You could use it when implementing a class such as
Name. Additionally, you should be able to write a client for the class just by looking at the interface.

Notice that the parameter of the method giveLastNameTo has NameInterface as its data type
instead of Name. We will talk about interfaces as data types beginning with Segment D.16. For now, sim-
ply be aware that an interface should not restrict the name of the class or classes that might implement it.

Programming Tip: A Java interface is a good place to provide comments that specify
each method’s purpose, parameters, precondition, and postcondition. In this way, you can
specify a class in one file and implement it in another.

Note: An interface can declare data fields, but they must be public. By convention, a
class’s data fields are private, so any data fields in an interface should represent named con-
stants. Thus, they should be public, final, and static.

Note: Methods declared within an interface cannot be static and cannot be final. However,
such methods can be declared as final within a class that implements the interface.

LISTING D-2 The interface NameInterface

/** An interface for a class of names. */
public interface NameInterface
{

/** Sets the first and last names.
@param firstName a string that is the desired first name
@param lastName a string that is the desired last name */

public void setName(String firstName, String lastName);

/** Gets the full name.
@return a string containing the first and last names */

public String getName();

public void setFirst(String firstName);
public String getFirst();

public void setLast(String lastName);
public String getLast();

public void giveLastNameTo(NameInterface aName);

public String toString();
} // end NameInterface

D-10 APPENDIX D Designing Classes

Implementing an Interface
D.14 Any class that implements an interface must state this at the beginning of its definition by using an

implements clause. For example, if a class Circle implemented the interface Measurable, it would
begin as follows:

public class Circle implements Measurable

The class then must provide a definition for each method declared in the interface. In this example,
the class Circle must implement at least the methods getPerimeter and getArea.

If we wrote a class Square that implemented Measurable, the class would begin as
public class Square implements Measurable

and would define at least the methods getPerimeter and getArea. Clearly, the definitions of these
two methods would differ from those in the class Circle.

Figure D-3 illustrates the files that contain Measurable, Circle, Square, and their client.

FIGURE D-3 The files for an interface, a class that implements the interface,
and the client

Note: Naming an interface
Interface names, particularly those that are standard in Java, often end in “able,” such as
Measurable. That ending does not always provide a good name, so endings such as “er” or
“Interface” are also used. Just as Java’s exception names end in “Exception,” we will usu-
ally end our interface names with “Interface.”

Measurable.java

Circle.java

Client.java

public class Client
{
 Measurable aCircle;
 Measurable aSquare;

 aCircle = new Circle();
 aSquare = new Square();
 . . .

}

The clientThe classes

public class Circle implements
 Measurable
{
 . . .
}

The interface

public interface Measurable
{
 . . .

}
public class Square implements
 Measurable
{
 . . .
}

Square.java

Note: Writing an interface is a way for a class designer to specify methods for another pro-
grammer. Implementing an interface is a way for a programmer to guarantee that a class has
defined certain methods.

Java Interfaces D-11

D.15 Multiple interfaces. A class can implement more than one interface. If it does, you simply list
all the interface names, separated by commas. If the class is derived from another class, the
implements clause always follows the extends clause. Thus, you could write

public class C extends B implements Measurable, AnotherInterface

To remember this order, note that the reserved words extends and implements appear alphabeti-
cally in the heading of the class.

A class that implements several interfaces must define each method declared in the interfaces.
If the same method header appears in more than one interface that a class implements, the class
defines only one corresponding method.

You cannot derive a class from more than one base class. This restriction avoids the possibility
of inheriting conflicting implementations. But a Java interface contains method specifications, not
implementations. A class can implement these specifications regardless of whether they appear in
one interface or are spread among several interfaces. By allowing a class to implement any number
of interfaces, Java approximates multiple inheritance without the complications it can cause.

An Interface as a Data Type
D.16 You can use a Java interface as you would a data type when you declare a variable, a data field, or a

method’s parameter. For example, the method giveLastNameTo in Segment D.13 has a parameter
whose type is NameInterface:

public void giveLastNameTo(NameInterface aName);

Any argument that you pass to this method must be an object of a class that implements
NameInterface.

Why didn’t we declare aName’s type to be Name, as we did in Appendix B? We want the inter-
face to be independent of any class that implements it, since more than one class can implement an
interface. By using NameInterface as the parameter’s type, you ensure that the method’s argument
will be able to invoke all of the methods declared in NameInterface. In general, you can be sure
that a method’s parameter can invoke particular methods, namely those declared in an interface, if
its data type is the interface. Additionally, the parameter can invoke only those methods.

What if a class C does not begin with the phrase implements NameInterface, yet still imple-
ments the methods in the interface? You could not pass an instance of C to giveLastNameTo.

Note: Several classes can implement the same interface, perhaps in different ways. For example,
many classes can implement the interface Measurable and provide their own version of the meth-
ods getPerimeter and getArea.

Question 5 Write a Java interface that specifies and declares methods for a class of
students.

Question 6 Begin the definition of a class that implements the interface that you wrote in
answer to the previous questions. Include data fields, a constructor, and at least one method
definition.

Note: By using an interface as a variable’s type, you indicate that the variable can invoke a
certain set of methods and only those methods.

D-12 APPENDIX D Designing Classes

D.17 A variable declaration such as
NameInterface myName;

makes myName a reference variable. Now myName can reference any object of any class, such as
Name, that implements NameInterface. So if you have

myName = new Name("Coco", "Puffs");

then myName.getFirst() returns a reference to the string "Coco". If the class AnotherName also
implements NameInterface, and you later write

myName = new AnotherName("April", "MacIntosh");

then myName.getFirst() returns a reference to the string "April".
Appendix C introduced polymorphic variables when discussing inheritance. In that discussion,

you saw that you could write
A item = new B();

if class B is a subclass of class A. The variable item is polymorphic, since its dynamic type can dif-
fer from its static type. Here you see that the variable myName also is polymorphic. Thus, polymor-
phic variables can occur as a result of using either inheritance or interfaces.

Generic Types Within an Interface
D.18 Imagine a class of pairs of objects whose data types are the same and are of any one class type. We

can use a generic type in the definition of the class. For example, a method setPair—which
assigns two objects to a pair—can have parameters of the same generic type.

Now imagine an interface Pairable that declares this method. We use a notation for the
generic type that is analogous to the notation we use for a class, as follows:

public interface Pairable<S>
{

public void setPair(S firstItem, S secondItem);
} // end Pairable

A class that implements this interface could begin with the statement
public class OrderedPair<T> implements Pairable<T>

In this example, the data type that we pass to the interface in the implements clause is the generic
type T declared for the class. In general, one could pass the name of an actual class to the interface
that appears in an implements clause. You will see an example of this situation in Segment D.21.

Note that the definition of the interface Pairable could have used T instead of S for its
generic type, even though we use T for the same purpose when defining the class that implements
the interface.

D.19 The method compareTo. Recall from Appendix A the method compareTo for the class String. This
method returns an integer as a result of comparing two strings. For example, if s and t are strings,
s.compareTo(t) is

• Negative if s comes before t
• Zero if s and t are equal
• Positive if s comes after t

Other classes can have their own compareTo method that behaves in an analogous way.

Question 7 What revision(s) should you make to both the interface you wrote for
Question 5 and the class Student that implements it to make use of NameInterface?

Java Interfaces D-13

D.20 The interface Comparable. All classes that define the method compareTo implement the standard
interface Comparable, which is in the Java Class Library in the package java.lang. This interface,
which is shown in Listing D-3, uses a generic type T to represent the class that implements the
interface. Thus, by invoking compareTo, you compare two objects of the class T.

D.21 Let’s create the class Circle, giving it the methods equals, compareTo, and the methods in the
interface Measurable, as given in Listing D-1. The class implements two interfaces, so we begin it
as follows:

public class Circle implements Comparable<Circle>, Measurable
{

private double radius;

< Definitions of constructors and methods are here >
. . .

The name of the class appears in brackets after the interface name Comparable. Thus, Circle corre-
sponds to T in the interface and is therefore the data type of compareTo’s parameter.

The method compareTo has the following implementation within the class:

public int compareTo(Circle other)
{

int result;
if (this.equals(other))

result = 0;

Note: The method compareTo compares two objects and returns a signed integer that indi-
cates the result of the comparison. For example, if x and y are two instances of the same class
that implements the interface Comparable, x.compareTo(y) returns

• A negative integer if x is less than y
• Zero if x equals y
• A positive integer if x is greater than y

If x and y have different types, x.compareTo(y) throws the exception ClassCastException.

Note: Enumerations have a compareTo method. The order in which the enumerated objects
appear in the enumeration determines the result of a comparison. For example, if we have

enum Coin {PENNY, NICKEL, DIME, QUARTER}

and myCoin is an instance of Coin, myCoin.compareTo(Coin.DIME) decides whether myCoin
is before, after, or equal to Coin.DIME. In particular, if myCoin has the value Coin.PENNY, the
result of the comparison with Coin.DIME is a negative integer.

LISTING D-3 The interface java.lang.Comparable

package java.lang;
public interface Comparable<T>
{

public int compareTo(T other);
} // end Comparable

D-14 APPENDIX D Designing Classes

else if (radius < other.radius)
result = -1;

else
result = 1;

return result;
} // end compareTo

This version of compareTo assumes that Circle has its own equals method. While compareTo need
not invoke equals, these two methods usually should return consistent results. That is, if
object1.equals(object2) is true, object1.compareTo(object2) should return zero.

D.22 Although the previous version of compareTo returns either -1 or +1 for unequal objects, the specifi-
cation of compareTo does not insist on these values. Only the sign of the result must be correct.
Thus, when the comparison involves integers, a simple subtraction often produces a suitable return
value. For example, if the data field radius in the class Circle were an integer instead of a real
value, compareTo could have had the following simple definition:

// assumes radius is an integer
public int compareTo(Circle other)
{

return radius - other.radius;
} // end compareTo

D.23 You might wonder why compareTo does not belong to the class Object. The reason is that not all
classes should have a compareTo method. Classes of objects without a natural ordering are possible and
not at all unusual. For example, consider a class of mailing addresses. Deciding whether two addresses
are equal should be simple, but what does it mean for one address to be less than another?

Extending an Interface
D.24 Once you have an interface, you can derive another interface from it by using inheritance. In fact,

you can derive an interface from several interfaces, even though you cannot derive a class from
several classes.

When an interface extends another interface, it has all the methods of the inherited interface.
Thus, you can create an interface that consists of the methods in an existing interface plus some
new methods. For example, consider classes of pets and the following interface:

public interface Nameable
{

public void setName(String petName);
public String getName();

} // end Nameable

We can extend Nameable to create the interface Callable:

public interface Callable extends Nameable
{

Note: Not all classes should implement the interface Comparable.

Question 8 Define a class Name that implements the interface NameInterface, as given in
Listing D-2, and the interface Comparable.

Java Interfaces D-15

public void come(String petName);
} // end Callable

A class that implements Callable must implement the methods come, setName, and getName.

D.25 You also can combine several interfaces into a new interface and add even more methods if you
like. For example, suppose that in addition to the previous two interfaces, we define the following
interfaces:

public interface Capable
{

public void hear();
public void respond();

} // end Capable

public interface Trainable extends Callable, Capable
{

public void sit();
public void speak();
public void lieDown();

} // end Trainable

A class that implements Trainable must implement the methods setName, getName, come, hear,
and respond, as well as the methods sit, speak, and lieDown.

Interfaces Versus Abstract Classes
The purpose of an interface is similar to that of an abstract class. However, an interface is not a
class. When should you use an interface and when should you use an abstract class? Use an abstract
class if you want to provide a method definition or declare a private data field that your classes will
have in common. Otherwise, use an interface. Remember that a class can implement several inter-
faces but can extend only one abstract class.

Let’s look at two examples. One uses an interface and the other an abstract class.

D.26 Example: An interface. Imagine classes for various geometric forms like circles, spheres, and cyl-
inders. Each of these forms has a radius. We could define the following interface that our classes
would implement:

public interface Circular
{

public void setRadius(double newRadius);
public double getRadius();

} // end Circular

This interface recognizes that a radius will exist, and so declares both set and get methods for it.
However, it cannot declare a field for the radius. The class that implements the interface will do that.

Note: A Java interface can be derived from several interfaces, even though you cannot
derive a class from several classes.

Question 9 Imagine a class Pet that contains the method setName, yet does not implement
the interface Nameable of Segment D.24. Could you pass an instance of Pet as the argument
of the method with the following header?

 void enterShow(Nameable petName)

D-16 APPENDIX D Designing Classes

A class Circle that implements this interface could appear as follows:

public class Circle implements Circular
{

private double radius;

public void setRadius(double newRadius)
{

radius = newRadius;
} // end setRadius

public double getRadius()
{

return radius;
} // end getRadius

public double getArea()
{

return Math.PI * radius * radius;
} // end getArea

} // end Circle

The class defines a private data field radius, and implements the methods setRadius and getRadius
that the interface Circular declares. An interface cannot contain a data field like radius, since it is
private.

D.27 Example: An abstract class. Instead of using an interface in the implementation of a class like
Circle, let’s define an abstract class:

public abstract class CircularBase
{

private double radius;

public void setRadius(double newRadius)
{

radius = newRadius;
} // end setRadius

public double getRadius()
{

return radius;
} // end getRadius

public abstract double getArea();
} // end CircularBase

This class declares the data field radius that descendant classes will inherit. Since the data field
radius is private, the class CircularBase must implement set and get methods so that its descen-
dant classes can access it. If CircularBase simply declared setRadius and getRadius as
abstract—omitting their implementations—a descendant class would be unable to implement them
because it would be unable to access radius.

If the definition of CircularBase stopped here, it would not need to be abstract, but it still
would be a useful base class. However, this class also declares the abstract method getArea, which
its descendant classes must implement in their own way.

Note: A class can define more methods than are declared in the interfaces it implements.
For example, the class Circle defines the method getArea, which is not in the interface
Circular.

Java Interfaces D-17

The following class is derived from the class CircularBase. It implements the abstract method
getArea, invoking the inherited method getRadius to access the inherited data field radius. Circle
cannot reference the data field radius by name.

public class Circle extends CircularBase
{

public double getArea()
{

double radius = getRadius();
return Math.PI * radius * radius;

} // end getArea
} // end Circle

In this method, radius is simply a local variable.

Named Constants Within an Interface
An interface can contain named constants, that is, public data fields that you initialize and declare
as final. If you want to implement several classes that share a common set of named constants, you
can define the constants in an interface that the classes implement. You also could define your con-
stants in a separate class instead of an interface. We will look at both ways in this section. Which-
ever way you choose, you have only one set of constants to keep current.

Imagine several classes that must convert measurements to the metric system. We can define con-
version factors as constants that these classes can share. Let’s place the constants in an interface.

D.28 An interface of constants. The following interface defines three named constants:
public interface ConstantsInterface
{

public static final double INCHES_PER_CENTIMETER = 0.39370079;
public static final double FEET_PER_METER = 3.2808399;
public static final double MILES_PER_KILOMETER = 0.62137119;

} // end ConstantsInterface

Any interface can define constants in addition to declaring methods, but this interface contains only
constants.

To use these constants in a class, you write an implements clause in the class definition. The
constants then will be available by name throughout the class. For example, consider the following
simple class:

public class Demo implements ConstantsInterface
{

public static void main(String[] args)
{

System.out.println(FEET_PER_METER);
System.out.println(ConstantsInterface.MILES_PER_KILOMETER);

} // end main
} // end Demo

Qualifying the constants with the name of the interface is optional. However, if the same named
constant is defined in more than one interface that a class implements, the class must qualify the
constant with the name of the interface.

Programming Tip: If you want to define a method or declare a private data field that
your classes will have in common, use an abstract class. Otherwise, use an interface.

D-18 APPENDIX D Designing Classes

D.29 A class of constants. Instead of defining constants in an interface, you can define them in a class
just for that purpose:

public class Constants
{

private Constants()
{
} // end private default constructor

public static final double INCHES_PER_CENTIMETER = 0.39370079;
public static final double FEET_PER_METER = 3.2808399;
public static final double MILES_PER_KILOMETER = 0.62137119;

} // end Constants

Notice the private constructor. Since we provide a constructor, Java will not. And since our con-
structor is private, a client cannot create instances of the class.

Using this class is simple, as the following example shows:

public class Demo
{

public static void main(String[] args)
{

System.out.println(Constants.FEET_PER_METER);
System.out.println(Constants.MILES_PER_KILOMETER);

} // end main
} // end Demo

Since the constants are static, you must precede their names with the name of the class and a period.
This can be an advantage, as readers of your program will see immediately the source of the constant.
If doing so becomes an annoyance, you can always define a local copy of the constant, such as

final double FEET_PER_METER = Constants.FEET_PER_METER;

and use it instead.

Design Decision: Should you define constants in an interface or in a class?
Programmers seem to disagree about the answer to this question. Even the Java Class Library
contains examples of both techniques. Generally, constant definitions are an implementation
detail that should appear within a class. Interfaces declare methods and so are in the realm of
specification, not implementation. Reserving interfaces solely for methods is a reasonable
guideline.

Choosing Classes
We have talked about specifying classes and implementing classes, but up to now, we have
described the class to specify or implement. If you must design an application from scratch, how
will you choose the classes you need? In this section, we introduce you to some techniques that
software designers use in choosing and designing classes. Although we will mention these tech-
niques from time to time throughout the book, our intent is simply to expose you to these ideas.
Future courses will cover ways to select and design classes in more depth.

Choosing Classes D-19

D.30 Imagine that we are designing a registration system for your school. Where should we begin? A
useful way to start would be to look at the system from a functional point of view, as follows:

• Who or what will use the system? A human user or a software component that interacts
with the system is called an actor. So a first step is to list the possible actors. For a registra-
tion system, two of the actors could be a student and the registrar.

• What can each actor do with the system? A scenario is a description of the interaction
between an actor and the system. For example, a student can add a course. This basic scenario
has variations that give rise to other scenarios. For instance, what happens when the student
attempts to add a course that is closed? Our second step, therefore, is to identify scenarios. One
way to do this is to complete the question that begins “What happens when...”.

• Which scenarios involve common goals? For example, the two scenarios we just described
are related to the common goal of adding a course. A collection of such related scenarios is
called a use case. Our third step, then, is to identify the use cases.

You can get an overall picture of the use cases involved in a system you are designing by drawing
a use case diagram. Figure D-4 is a use case diagram for our simple registration system. Each actor—
the student and the registrar—appears as a stick figure. The box represents the registration system, and the
ovals within the box are the use cases. A line joins an actor and a use case if an interaction exists between
the two.

FIGURE D-4 A use case diagram for a registration system

Some use cases in this example involve one actor, and some involve both. For example, only
the student applies for admission, and only the registrar enrolls a student. However, both the stu-
dent and the registrar can add a course to a student’s schedule.

Student

Change address

Display course schedule

Drop a course

Add a course

Enroll student

Apply for admission

Registration system

Registrar

Note: Use cases depict a system from the actors’ points of view. They do not necessarily
suggest classes within the system.

D-20 APPENDIX D Designing Classes

Identifying Classes
D.31 Although drawing a use case diagram is a step in the right direction, it does not identify the classes

that are needed for your system. Several techniques are possible, and you will probably need to use
more than one.

One simple technique is to describe the system and then identify the nouns and verbs in the
description. The nouns can suggest classes, and the verbs can suggest appropriate methods within
the classes. Given the imprecision of natural language, this technique is not foolproof, but it can be
useful.

For example, we could write a sequence of steps to describe each use case in Figure D-4.
Figure D-5 gives a description of the use case for adding a course from the point of view of a stu-
dent. Notice the alternative actions taken in Steps 2a and 4a when the system does not recognize the
student or when a requested course is closed.

FIGURE D-5 A description of a use case for adding a course

What classes does this description suggest? Looking at the nouns, we could decide to have
classes to represent a student, a course, a list of all courses offered, and a student’s schedule of
courses. The verbs suggest actions that include confirming whether a student is eligible to register,
seeing whether a course is closed, and adding a course to a student’s schedule. One way to assign
these actions to classes is to use CRC cards, which we describe next.

CRC Cards
D.32 A simple technique for exploring the purpose of a class uses index cards. Each card represents one

class. You begin by choosing a descriptive name for a class and writing it at the top of a card. You
then list the actions that represent the class’s responsibilities. You do this for each class in the sys-
tem. Finally, you indicate the interactions, or collaborations, among the classes. That is, you write
on each class’s card the names of other classes that have some sort of interaction with the class.
Because of their content, these cards are called class-responsibility-collaboration, or CRC, cards.

For example, Figure D-6 shows a CRC card for the class CourseSchedule that represents the
courses in which a student has enrolled. Notice that the small size of each card forces you to write
brief notes. The number of responsibilities must be small, which suggests that you think at a high
level and consider small classes. The size of the cards also lets you arrange them on a table and
move them around easily while you search for collaborations.

System: Registration
Use case: Add a course
Actor: Student
Steps:
 1. Student enters identifying data.
 2. System confirms eligibility to register.
 a. If ineligible to register, ask student to enter identification data again.
 3. Student chooses a particular section of a course from a list of course offerings.
 4. System confirms availability of the course.
 a. If course is closed, allow student to return to Step 3 or quit.
 5. System adds course to student’s schedule.
 6. System displays student’s revised schedule of courses.

Question 10 Write a CRC card for the class Student given in Appendix C.

Choosing Classes D-21

FIGURE D-6 A class-responsibility-collaboration (CRC) card

The Unified Modeling Language
D.33 The use case diagram in Figure D-4 is part of a larger notation known as the Unified Modeling

Language, or UML. Designers use the UML to illustrate a software system’s necessary classes and
their relationships. The UML gives people an overall view of a complex system more effectively
than either a natural language or a programming language can. English, for example, can be ambig-
uous, and Java code provides too much detail. Providing a clear picture of the interactions among
classes is one of the strengths of the UML.

Besides the use case diagram, the UML provides a class diagram that places each class
description in a box analogous to a CRC card. The box contains a class’s name, its attributes
(data fields), and operations (methods). For example, Figure D-7 shows a box for the class
CourseSchedule. Typically, you omit from the box such common operations as constructors, get
methods, and set methods.

FIGURE D-7 A class representation that can be a part of a class diagram

As your design progresses, you can provide more detail when you describe a class. You can
indicate the visibility of a field or method by preceding its name with + for public, - for private,
and # for protected. You also can write the data type of a field, parameter, or return value after a
colon that follows the particular item. Thus, in Figure D-7 you can write the data fields as

-courseCount: integer
-courseList: List

and the methods as
+addCourse(course: Course): void
+removeCourse(course: Course): void

CourseSchedule
Responsibilities
 Add a course
 Remove a course
 Check for time conflict
 List course schedule

Collaborations
 Course
 Student

CourseSchedule

courseCount
courseList

addCourse(course)
removeCourse(course)
isTimeConflict()
listSchedule()

D-22 APPENDIX D Designing Classes

+isTimeConflict(): boolean
+listSchedule(): void

You represent an interface in UML much as you represent a class, but you precede its name
with <<interface>>. Figure D-8 shows the notation for the interface Measurable that appears
in Segment D.12.

FIGURE D-8 UML notation for the interface Measurable

D.34 In a class diagram, lines join the class boxes to show the relationships among the classes, includ-
ing any inheritance hierarchy. For example, the class diagram in Figure D-9 shows that the
classes UndergradStudent and GradStudent are each derived from the class Student. An arrow
with a hollow head points to the superclass. Within the UML, the superclass Student is said to be
a generalization of UndergradStudent and GradStudent. If a class implements an interface, you
draw an arrow having a dotted shaft and hollow head from the class to the interface.

FIGURE D-9 A class diagram showing the base class Student and two
subclasses

<<interface>>
Measurable

+getPerimeter(): double
+getArea(): double

Question 11 How would the class Name, given in Appendix B, appear in a class diagram of
the UML?

UndergradStudent GradStudent

Student

Reusing Classes D-23

An association is a line that represents a relationship between instances of two classes. Basi-
cally, an association represents what a CRC card calls a collaboration. For example, relationships
exist among the classes Student, CourseSchedule, and Course. Figure D-10 shows how the UML
pictures these relationships. The association (line) between the classes CourseSchedule and
Course, for example, indicates a relationship between objects of the class CourseSchedule and
objects of the class Course. This association has an arrow pointing toward Course. The arrow indi-
cates responsibilities. Thus, a CourseSchedule object should be able to tell us the courses it con-
tains, but a Course object need not be able to tell us to which schedules it belongs. The UML calls
this aspect of the notation the navigability.

FIGURE D-10 Part of a UML class diagram with associations

This particular arrow is said to be unidirectional, since it points in one direction. An associa-
tion with arrowheads on both ends is called bidirectional. For example, a Student object can find
its course schedule, and a CourseSchedule object can discover the student to which it belongs. You
can assume that the navigability of an association without arrowheads is unspecified at the present
stage of the design.

At the ends of each association are numbers. At the end of the line beginning at CourseSchedule and
extending to Course, you see the notation 0..10. This notation indicates that each CourseSchedule object
is associated with between zero and ten courses. If you follow the line in the other direction, you encounter
an asterisk. It has the same meaning as the notation 0..infinity. Each Course object can be associated with
many, many course schedules—or with none at all. The figure also indicates a relationship between one
Student object and one CourseSchedule object. This notation on the ends of an association is called the
association’s cardinality or multiplicity.

Reusing Classes

D.35 When you first start to write programs, you can easily get the impression that each program is
designed and written from scratch. On the contrary, most software is created by combining already
existing components with new components. This approach saves time and money. In addition, the
existing components have been used many times and so are better tested and more reliable.

For example, a highway simulation program might include a new highway object to model a
new highway design, but it would probably model automobiles by using an automobile class that
had already been designed for some other program. As you identify the classes that you need for

Student CourseSchedule Course

0..10*11

Question 12 Combine Figures D-9 and D-10 into one class diagram. Then add a class
AllCourses that represents all courses offered this semester. What new association(s) do you
need to add?

D-24 APPENDIX D Designing Classes

your project, you should see whether any of the classes exist already. Can you use them as is, or
would they serve as a good base class for a new class?

D.36 As you design new classes, you should take steps to ensure that they are easily reusable in the
future. You must specify exactly how objects of that class interact with other objects. This is the
principle of encapsulation that we discussed in the first section of this appendix. But encapsulation
is not the only principle you must follow. You must also design your class so that the objects are
general and not tailored too much for one particular program. For example, if your program
requires that all simulated automobiles move only forward, you should still include a reverse in
your automobile class. Some other simulation may require automobiles to back up.

Admittedly, you cannot foresee all the future uses of your class. But you can and should avoid depen-
dencies that will restrict its use later. Chapter 17 describes the design of a class with its future use in mind.

Using the principles that this appendix discusses to design a reusable class with an interface that has
comments suitable for javadoc takes work. Hacking together a solution to your specific problem would
take less time. But the payback for your effort will come later on, when you or another programmer
needs to reuse an interface or a class. If you planned for the future when you wrote those components,
every use of them will be faster and easier. Actual software developers use these principles to save time
over the long term, because saving time saves them money. You should use them, too.

EXERCISES AND PROJECTS

ANSWERS TO SELF-TEST QUESTIONS

A collection of exercises and projects for this appendix are available online at pearsonhighered.com/carrano.

1. A client interface describes how to use the class. It contains the headers for the class’s public methods, the com-
ments that tell you how to use these methods, and any publicly defined constants of the class. The implementation
consists of all data fields and the definitions of all methods, including those that are public, private, and protected.

2. A television is one example. The remote control and the controls on the TV form the client interface. The imple-
mentation is inside the TV itself.

3. Here are three possibilities:
/** Sets the side of the square to a new value.

@param newSide a real number >= 0 */
public void setSide(double newSide)

/** Sets the side of the square to a new value.
@param newSide a real number
@return true if the side is set, or

false if newSide is < 0 */
public boolean setSide(double newSide)

/** Sets the side of the square to a new value.
@param newSide a real number
@throws IllegalArgumentException if newSide is < 0 */

public void setSide(double newSide)

Answers to Self-Test Questions D-25

4. // Assertion: max is the largest of array[0],..., array[index]

5. public interface StudentInterface
{

public void setStudent(Name studentName, String studentId);
public void setName(Name studentName);
public Name getName();
public void setId(String studentId);
public String getId();
public String toString();

} // end StudentInterface

6. public class Student implements StudentInterface
{

private Name fullName;
private String id; // identification number

public Student()
{

fullName = new Name();
id = "";

} // end default constructor

public Student(Name studentName, String studentId)
{

fullName = studentName;
id = studentId;

} // end constructor

public void setStudent(Name studentName, String studentId)
{

setName(studentName); // or fullName = studentName;
setId(studentId); // or id = studentId;

} // end setStudent

public void setName(Name studentName)
{

fullName = studentName;
} // end setName

public Name getName()
{

return fullName;
} // end getName

public void setId(String studentId)
{

id = studentId;
} // end setId

public String getId()
{

return id;
} // end getId

public String toString()
{

return id + " " + fullName.toString();
} // end toString

} // end Student

D-26 APPENDIX D Designing Classes

7. In the interface and in the class, replace Name with NameInterface in the methods setStudent, setName, and getName.
Additionally in the class, replace Name with NameInterface in the declaration of the data field fullName and in the
parameterized constructor.

8. /**
A class that represents a person's name.
@author Frank M. Carrano

*/
public class Name implements NameInterface, Comparable<Name>
{

private String first; // first name
private String last; // last name

public Name()
{

first = "";
last = "";

} // end default constructor

public Name(String firstName, String lastName)
{

first = firstName;
last = lastName;

} // end constructor

public void setName(String firstName, String lastName)
{

setFirst(firstName);
setLast(lastName);

} // end setName

public String getName()
{

return toString();
} // end getName

public void setFirst(String firstName)
{

first = firstName;
} // end setFirst

public String getFirst()
{

return first;
} // end getFirst

public void setLast(String lastName)
{

last = lastName;
} // end setLast

public String getLast()
{

return last;
} // end getLast

public void giveLastNameTo(NameInterface aName)
{

aName.setLast(last);
} // end giveLastNameTo

Answers to Self-Test Questions D-27

public String toString()
{

return first + " " + last;
} // end toString

public int compareTo(Name other)
{

int result = last.compareTo(other.last);

// if last names are equal, check first names
if (result == 0)

result = first.compareTo(other.first);
return result;

} // end compareTo
} // end Name

9. No. The class Pet must state that it implements Nameable in an implements clause.

10.

11.

12. Add a unidirectional association (arrow) from AllCourses to Course with a cardinality of 1 on its tail and * on its head.

Student

Responsibilities
Set name and ID
Set name
Set ID
Get name
Get ID
Get a string that represents a student

Collaborations
String

Name

Name

-first: String

-last: String

+setName(firstName: String, lastName: String): void

+getName(): String

+setFirst(firstName: String): void

+getFirst(): String

+setLast(lastName: String): void

+getLast(): String

+giveLastNameTo(aName: Name): void

+toString(): String

Appendix

E HandlingExceptions
Contents
The Basics
Handling an Exception

Postpone Handling: The throws Clause
Handle It Now: The try-catch Blocks
Multiple catch Blocks

Throwing an Exception
Programmer-Defined Exception Classes
Inheritance and Exceptions
The finally Block

Prerequisites
Appendix A Java Essentials
Appendix B Java Classes
Appendix C Creating Classes from Other Classes

An exception is an object that is created when an unusual circumstance or event
occurs during the execution of a method, thereby interrupting program execution.
Some exceptions indicate mistakes in your code. By correcting those mistakes, you
avoid the exceptions and no longer have to worry about them. In fact, your final code
gives no indication that an exception could occur. Furthermore, if your code is
entirely correct, an exception will not occur.

On the other hand, a programmer can intentionally cause an exception to occur
under certain conditions. In fact, the programmers who wrote the code for the Java
Class Library did so. If you peruse the documentation for this library, you will see lists
of the exceptions that might occur during the execution of certain methods. We need to
know about exceptions so we can use these methods. What should we do when such
an exception occurs? Should we ever intentionally cause an exception in our own pro-
grams, and if so, how would we do so? These are some of the questions that this
appendix will answer. This knowledge will be particularly important to us when we
talk about file input and output in Appendix F.

The Basics E-2

The Basics

E.1 When a method creates an exception object, we say that the method throws the exception. An excep-
tion is a signal to the rest of the program that something unexpected has happened. Our code can
react appropriately to the exception based on its class type and what the exception, as an object, can
tell us via its methods. We handle the exception when we detect and react to it.

Exceptions belong to various classes, but all of these classes have the standard class Exception
as an ancestor. Exception is in the Java Class Library and is available to us without an import
statement. Exceptions are classified into two groups:

• Checked exceptions, which must be handled
• Unchecked, or runtime, exceptions, which need not be—and usually are not—handled

E.2 Checked exceptions are the result of a serious occurrence during program execution. For example, if
a program is reading data from a disk—as the next appendix will describe—and the system cannot
find the file that contains the data, a checked exception will occur. The name of the class to which this
exception belongs is FileNotFoundException. This name, like the names of all exception classes in the
Java Class Library, is meant to describe the cause of the exception. A common practice is to describe an
exception by its class name. For example, we might say that a FileNotFoundException has occurred.

E.3 Unchecked exceptions often are called by their alternate name, runtime exceptions, so that is what
we will call them. The cause of a runtime exception usually is a logical error in the program. For
example, an out-of-bounds array index causes an exception of the class ArrayIndexOutOfBounds.
A division by zero causes an ArithmeticException. Although we could add code that would handle
a runtime exception, we usually just need to fix the mistakes in our program.

Note: Checked exceptions in the Java Class Library
The following classes in the Java Class Library represent some of the checked exceptions that
you might encounter:

ClassNotFoundException
FileNotFoundException
IOException
NoSuchMethodException
WriteAbortedException

Note: Runtime (unchecked) exceptions in the Java Class Library
The following classes in the Java Class Library represent some of the runtime exceptions that
you are likely to encounter:

ArithmeticException
ArrayIndexOutOfBoundsException
ClassCastException
IllegalArgumentException
IllegalStateException
IndexOutOfBoundsException
NoSuchElementException
NullPointerException
StringIndexOutOfBoundsException
UnsupportedOperationException

E-3 APPENDIX E Handling Exceptions

E.4 An error is an object of either the standard class Error or one of its descendant classes. Since the
class Error is not derived from the class Exception, an error is not an exception, even though errors
appear to be similar to exceptions. In general, an error indicates the occurrence of an abnormal
situation, such as running out of memory. If your program uses more memory than is available, you
must either revise your program to make it more efficient in its use of memory, change a setting to let
Java access more memory, or buy more memory for your computer. These situations are too serious
for a typical program to handle. Hence, errors need not be handled, even though doing so is legal.

Figure E-1 shows the hierarchy of some exception and error classes. Runtime exceptions, such
as ArithmeticException, are descended from RuntimeException. Checked exceptions, such as

FIGURE E-1 The hierarchy of some standard exception and error classes

Note: All exception classes have the standard class Exception as an ancestor
The standard class RuntimeException extends Exception, and all classes for runtime excep-
tions extend RuntimeException. Thus, a runtime exception is an object of either the class
RuntimeException or one of its descendants. The classes of checked exceptions extend
Exception but do not have RuntimeException as an ancestor.

Note: Many exception classes are in the package java.lang, and so do not need to be imported.
Some exception classes, however, are in another package, and these do need to be imported. For
example, when we use the class IOException in a program, we will need the import statement

import java.io.IOException;

We will encounter this exception in the next appendix.

 Object

 Throwable

 Exception Error

 RuntimeException AssertionError

 OutOfMemoryError

 VirtualMachineError

 StackOverflowError

 IOException

 ArithmeticException FileNotFoundException

Handling an Exception E-4

IOException, are descended from Exception but not RuntimeException. An assertion error, which
Segment D.9 of Appendix D defined, is an object of the class AssertionError, which has the class Error
as its superclass. When we discuss recursion in Chapter 7, we mention a stack overflow error. This error
belongs to the class StackOverflowError. Both StackOverflowError and OutOfMemoryError are
derived from the abstract class VirtualMachineError, which has Error as its superclass. Right now, all
that is important to us is knowing that StackOverflowError, OutOfMemoryError, and AssertionError
have Error, instead of Exception, as an ancestor class.

 Handling an Exception
When a checked exception might occur, it must be handled somewhere. For a method that might
cause a checked exception, you have two choices: Handle the exception within the method or tell
the method’s client to do so.

Postpone Handling: The throws Clause
E.5 Imagine a method that returns the string it reads from a disk. Since we will learn how to write

such a method in the next appendix, let’s not worry about how this method accomplishes its task.
However, something might go wrong while reading from the disk. That something could generate
an IOException. Since an IOException is a checked exception, it must be handled. We could handle
the exception within the method’s body. Sometimes, however, a programmer is not sure what
action is best for a client when an exception occurs. Should execution end, or would another action
make more sense? When you’re not sure what action to take, you can leave the handling of the
exception to the method’s client. As long as the exception is handled at some point, you need not
handle it within the method itself.

A method that can cause but does not handle a checked exception must declare that fact in its
header. For example, if the method readString might throw an IOException but does not handle it,
its header would look like this:

The highlighted portion is a throws clause. It frees the method readString of the responsibility of
handling any exceptions of type IOException that might occur during its execution. If, however,
another method calls readString, it must deal with the exception. That invoking method can either
handle the IOException itself or tell its client to handle the exception by including it in a throws
clause in its header. Eventually, every thrown, checked exception should be handled somewhere in
the program.

You can list more than one checked exception in a throws clause by separating the exceptions
with commas.

public String readString(. . .) throws IOException

Note: The throws clause
A method’s header can contain a throws clause that lists the possible exceptions the
method can throw but will not handle. The clause has the following syntax:

throws exception-list

The exception names listed in exception-list are separated by commas. Their order here
is unimportant.

E-5 APPENDIX E Handling Exceptions

Handle It Now: The try-catch Blocks
E.6 To handle an exception, we first must identify the Java statements that can cause it. We also must

decide which exception to look for. A method’s documentation and throws clause will tell us which
checked exceptions might occur. It is those exceptions that we will handle.

The code to handle an exception consists of two pieces. The first piece, the try block, contains
the statements that might throw an exception. The second piece consists of one or more catch
blocks. Each catch block contains code to react to, or catch, a particular type of exception. Thus,
the code to handle an IOException as a result of invoking the method readString would have the
following form:

try
{

< Possibly some code >
anObject.readString(. . .); // might throw an IOException
< Possibly some more code >

}
catch (IOException e)
{

< Code to react to the exception, probably including the following statement: >
System.out.println(e.getMessage());

}

E.7 The statements within the try block execute just as they would if the block was not there. If no
exception occurs and the try block completes execution, execution continues with the statement
after the catch block. However, if an IOException occurs within the try block, execution immedi-
ately transfers to the catch block. The exception now has been caught.

The syntax for a catch block resembles that of a method definition. The identifier e is called a
catch block parameter; it represents the object of IOException that the catch block will handle.

Note: If a method can throw a checked exception, you must either declare the exception in
the method’s header by writing a throws clause or handle the exception within the method.
Failure to do so will cause a syntax error.

If a method can throw an unchecked exception, you can declare it in a throws clause or
handle it, but neither action is required.

Note: A method’s execution ends if it throws but does not handle an exception
If a method throws an exception but does not handle it, the method’s execution ends.
For example, if the previous method readString throws an IOException, its execution ends
immediately. Program execution continues, however, and the exception is passed to
readString’s client.

Programming Tip
When defining a method that can throw a checked exception, if you cannot provide a
reasonable reaction to the exception, pass it on to the method’s client by writing a
throws clause in the method’s header. Avoid using Exception in a throws clause, as
doing so provides another programmer with little if any useful information about call-
ing the method. Instead, use as specific an exception as you can.

Handling an Exception E-6

Although a catch block is not a method definition, throwing an exception within a try block is like
calling a catch block, in that the parameter e represents an actual exception.

As an object, every exception has the accessor method getMessage, which returns a descrip-
tive string created when the exception is thrown. By displaying this string, we provide a program-
mer with an indication of the nature of the exception.

E.8 After the catch block executes, the statements after it execute. But what if the problem is serious,
and the best reaction to it is to terminate the program? The catch block can end the program by
calling the exit method as follows:

System.exit(0);

The number 0 given as the argument to System.exit indicates a normal termination of the pro-
gram. Although we have encountered a serious problem, we intentionally terminate the program,
which, in the view of the operating system, is normal.

Multiple catch Blocks
E.9 The statements within a single try block can throw any one of a number of different types of exceptions.

For example, suppose that the code within the try block in Segment E.6 could throw more than one type of
checked exception. The catch block after this try block can catch exceptions of the class IOException
and any class derived from IOException. To catch exceptions of other types, we can write more than one
catch block after the try block. When an exception is thrown, the order in which catch blocks appear is
significant. Execution continues with the first catch block—in order of appearance—whose parameter
matches the exception in type.

E.10 A poor order for catch blocks. For example, the following sequence of catch blocks is poor,
because the catch block for FileNotFoundException never executes:

catch (IOException e)
{
. . .

}
catch (FileNotFoundException e)
{
. . .

}

With this ordering, any I/O exception will be caught by the first catch block. Because FileNot-
FoundException extends IOException, a FileNotFoundException is a kind of IOException and will
match the parameter of the first catch block. Fortunately, this ordering likely will receive a warning from
the compiler.

Note: If you do not handle a checked exception or declare it in a throws clause, the com-
piler will complain. You can handle some of a method’s exceptions within its definition and
declare some in its throws clause. Generally, you do not handle or declare runtime
(unchecked) exceptions, since they indicate a bug in your program. Such exceptions termi-
nate program execution when they are thrown.

Note: A catch block whose parameter has the type C can catch exceptions of the class C
and any of C’s descendant classes.

E-7 APPENDIX E Handling Exceptions

E.11 A good order for catch blocks. The correct ordering places the more specific exception before its
ancestor class, as follows:

catch (FileNotFoundException e)
{
. . .

}
catch (IOException e) // handle all other IOExceptions
{
. . .

}

Programming Tip
Since all exception classes have Exception as an ancestor, avoid using Exception in a catch
block. Instead, catch as specific an exception as you can, and catch the most specific one first.

Note: The try-catch blocks have the following syntax:
try
{

< Statements that can cause an exception >
}
catch (exceptionType e)
{

< Code to react to the exception, probably including the following: >
System.out.println(e.getMessage());

}
< Possibly other catch blocks >

Programming Tip: Avoid nested try-catch blocks, if possible
Although nesting try-catch blocks within either a try block or a catch block is legal, you
should avoid doing so if possible. First see whether you can organize your logic differently to
avoid the nesting. Failing that, move the inner blocks to a new method that you call within
what was an outer block.

If you must nest try-catch blocks, the following guidelines apply. When a catch block
appears within another catch block, they must use different identifiers for their parameters. If
you plan to nest try-catch blocks within a try block, you could omit the inner catch blocks
if the outer catch blocks deal with the relevant exceptions appropriately. In such a case, an
exception thrown within an inner try block is caught in the outer try block.

Note: Where to next?
At this point in our use of Java, handling an exception thrown by an invoked library method
is our greatest concern. This ability will be essential to learning how to perform input and
output with external files, as you will see in Appendix F. If you want, you can skip the rest of
this appendix for now and read the next one.

Throwing an Exception E-8

Throwing an Exception
Although the ability to handle an exception is most useful, knowing how to throw an exception and
how to define a class of exceptions is also important. This section looks at how exceptions are
thrown. You should throw an exception within a method only in unusual or unexpected situations
that you cannot address in a reasonable way.

E.12 The throw statement. A method intentionally throws an exception by executing a throw statement.
Its general form is

throw exception_object;

Rather than creating the exception object in a separate step, programmers usually create the object
within the throw statement, as in the following example:

throw new IOException();

This statement creates a new object of the class IOException and throws it. Just as we should catch
as specific an exception as possible, the exceptions we throw should be as specific as possible.

Although we can invoke the default constructor of the exception class, as in the previous example,
we also can provide the constructor with a string as an argument. The resulting object will contain that
string in a data field, and both the object and this string will be available to the catch block that handles
the exception. The catch block then can use the exception’s method getMessage to retrieve the string,
as you saw earlier. The default constructor provides a default value for such a string.

Design Decision: If an unusual situation occurs, should I throw an exception?

• If you can resolve the unusual situation in a reasonable manner, you likely can use a deci-
sion statement instead of throwing an exception.

• If several resolutions to an abnormal occurrence are possible, and you want the client to
choose one, you should throw a checked exception.

• If a programmer makes a coding mistake by using your method incorrectly, you can throw
a runtime exception. However, you should not throw a runtime exception simply to enable
a client to avoid handling it.

You should throw only exceptions, never errors.

Note: The throw statement has the following syntax:
throw exception_object;

where exception_object is an instance of a class of exceptions, typically created by one of the
following invocations of the class’s constructor:

new class_name()

or

new class_name(message)

Either the string provided by the default constructor or the string message is available to the
code that catches the exception, via the exception’s method getMessage.

E-9 APPENDIX E Handling Exceptions

Programmer-Defined Exception Classes
You can define your own exception classes by extending existing exception classes. An existing
superclass could be one in the Java Class Library or one of your own. The constructors in an excep-
tion subclass are the most important—and often the only—methods you need to define. Other
methods are inherited from the superclass.

E.13 A sample definition. For example, consider the method sqrt provided by Java’s class Math to com-
pute the square root of a real number. Since sqrt returns a double value, it computes the square root
of only nonnegative numbers. If we give the method a negative number, it returns the special value
NaN, which stands for “not a number.” If displayed, this value appears as NaN. If it is involved in arith-
metic, the result is NaN.

Imagine, instead, a square root method that requires a nonnegative argument. Let’s treat the pass-
ing of a negative number to the method as a programming mistake and throw a runtime exception.
The method certainly could throw an instance of RuntimeException, but a more specific exception
would be better. So let’s define our own class, SquareRootException, as shown in Listing E-1.
Because we want a runtime exception, our class extends RuntimeException. Each of the two con-
structors for this class uses super to invoke RuntimeException’s constructor, passing it a string as a
message. The default constructor passes a default message, but the second constructor passes the mes-
sage provided as its argument when it is called. Most programmer-defined exception classes are as
straightforward as SquareRootException.

Programming Tip
If a method contains a throw statement to throw an exception, add a throws clause to its
header rather than catching the exception within the method’s body. In general, throwing an
exception and catching one should occur in separate methods.

LISTING E-1 The exception class SquareRootException
/**

A class of runtime exceptions thrown when an attempt
is made to find the square root of a negative number.
@author Frank M. Carrano

*/
public class SquareRootException extends RuntimeException
{

public SquareRootException()
{

super("Attempted square root of a negative number.");
} // end default constructor

public SquareRootException(String message)
{

super(message);
} // end constructor

} // end SquareRootException

Programmer-Defined Exception Classes E-10

E.14 Note that SquareRootException’s default constructor could use this instead of super, as follows:
public SquareRootException()
{

this("Attempted square root of a negative number.");
} // end default constructor

By using this, the constructor calls the second constructor, which in turn calls RuntimeException’s con-
structor. In contrast, the default constructor shown in Listing E-1 uses super to call RuntimeException’s
constructor directly. Although the version in Listing E-1 is more direct and might seem better, using this
to link one constructor to another is usually preferable, as the technique tends to reduce mistakes.

E.15 Using our own exception class. We have imagined a square root method that throws a runtime
exception when given a negative number as its argument. Now that we have an appropriate class of
exceptions, let’s define this method within a class of static methods, as shown in Listing E-2, that is
much like the class Math. We have numbered the lines in this listing to make the output in the next list-
ing easier for you to understand.

The header for the method squareRoot is similar to the header of Math.sqrt but also includes a
throws clause to indicate that the method might throw a SquareRootException. Notice the tag
@throws in the javadoc comment preceding the header. It provides documentation of the exception that
might occur. If the method could throw more than one exception, we would include a separate @throws
tag for each one and list the exceptions alphabetically by name. Since SquareRootException is a run-
time exception, listing it in a throws clause and documenting it in javadoc are optional.

Within the body of the method squareRoot is a throw statement. It throws a SquareRootException
if the method’s argument is negative. If the argument is not negative, the method simply returns the square
root as computed by the method Math.sqrt.

LISTING E-2 The class OurMath and its static method squareRoot
1 /**
2 A class of static methods to perform various mathematical
3 computations, including the square root.
4 @author Frank M. Carrano
5 */
6 public class OurMath
7 {
8 /** Computes the square root of a nonnegative real number.
9 @param value a real value whose square root is desired
10 @return the square root of the given value
11 @throws SquareRootException if value < 0 */
12 public static double squareRoot(double value)
13 throws SquareRootException
14 {
15 if (value < 0)
16 throw new SquareRootException();
17 else
18 return Math.sqrt(value);
19 } // end squareRoot

< Other methods not relevant to this discussion are here. >

99 } // end OurMath

E-11 APPENDIX E Handling Exceptions

E.16 A demonstration of the class OurMath is given in Listing E-3. Note the message displayed as a
result of the exception. Also note that execution stops when the exception occurs.

Programming Tip: Do not confuse the keywords throw and throws
You use the Java reserved word throws in a method’s header to declare the exceptions that
the method might throw. The reserved word throw is used within the body of a method to
actually throw an exception.

Note: The javadoc tag @throws
A javadoc comment that precedes a method’s header should contain a separate line for each exception
the method might throw. Each of these lines begins with the tag @throws, and they should be
ordered alphabetically by the names of the exceptions. All checked exceptions must be documented.

Documenting runtime exceptions is optional and is generally not done. However, a
designer can document those runtime exceptions that a client might reasonably want to han-
dle. In fact, you will encounter some documented runtime exceptions in the Java Class
Library. Realize, however, that your use of a method might cause a runtime exception that is
undocumented. If you decide to document runtime exceptions, they must not depend on how
the method is defined. Thus, identifying the exceptions a method might throw should be done
as part of its design and specification, and not its implementation.

LISTING E-3 A driver for the class OurMath
1 /**
2 A demonstration of a runtime exception using the class OurMath.
3 */
4 public class OurMathDriver
5 {
6 public static void main(String[] args)
7 {
8 System.out.print("The square root of 9 is ");
9 System.out.println(OurMath.squareRoot(9.0));
10

11 System.out.print("The square root of -9 is ");
12 System.out.println(OurMath.squareRoot(-9.0));
13

14 System.out.print("The square root of 16 is ");
15 System.out.println(OurMath.squareRoot(16.0));
16 } // end main
17 } // end OurMathDriver

Output

The square root of 9 is 3.0
The square root of -9 is Exception in thread "main" SquareRootException:
Attempted square root of a negative number.

at OurMath.squareRoot(OurMath.java:16)
at OurMathDriver.main(OurMathDriver.java:12)

Programmer-Defined Exception Classes E-12

E.17 Imagine that our class OurMath is widely available to other programmers. Joe wants to use our class to
compute the square root, but he doesn’t want to receive an error message when squareRoot encoun-
ters a negative argument. Instead, he wants the method to return a complex1 number involving i,
which is an abbreviation for the square root of –1. For example, the square root of –9 is 3i, because

To accommodate results that involve i and those that do not, Joe has his method return a string.
Thus, Joe envisions a method that would return the string "3i" as the square root of –9 and would
return the string "3" as the square root of 9.

Joe’s method will invoke OurMath.squareRoot. As this invocation must appear within a try
block, Joe writes

String result = "";
try
{

Double temp = OurMath.squareRoot(value);
result = temp.toString();

}

All is fine, as long as value is not negative, but if it is negative, a SquareRootException is thrown.
Instead of displaying an error message, as the driver in Listing E-3 does, Joe wants his method to return the
correct value for a negative argument. He writes the following pseudocode to get his ideas on paper:

// assume value is negative
catch (SquareRootException e)
{

Double temp = the square root of -value
result = temp.toString() followed by "i"

}

Joe then translates this pseudocode into the following catch block:

catch (SquareRootException e)
{ // Assertion: value is negative

Double temp = OurMath.squareRoot(-value);
result = temp.toString() + "i";

}

E.18 Listing E-4 shows Joe’s method squareRoot within his class JoeMath, and Listing E-5 provides a
demonstration of the class.

1. Only a rudimentary knowledge of complex numbers is needed here. Complex numbers build on real numbers by adding
an imaginary part involving i. Every complex number has the form a + b i, where a and b are real numbers. To represent a
real number in this notation, you would have b be zero.

9– 9 1–() 9 1– 3i= = =

LISTING E-4 The class JoeMath

/**
A class of static methods to perform various mathematical
computations, including the square root.

*/

E-13 APPENDIX E Handling Exceptions

public class JoeMath
{

/** Computes the square root of a real number.
@param value a real value whose square root is desired
@return a string containing the square root of the given value */

public static String squareRoot(double value)
{

String result = "";
try
{

Double temp = OurMath.squareRoot(value);
result = temp.toString();

}
catch (SquareRootException e)
{

Double temp = OurMath.squareRoot(-value);
result = temp.toString() + "i";

}

return result;
} // end squareRoot

< Other methods not relevant to this discussion could be here. >

} // end JoeMath

LISTING E-5 A driver for the class JoeMath

/**
A demonstration of a runtime exception using the class JoeMath.

*/
public class JoeMathDriver
{

public static void main(String[] args)
{

System.out.print("The square root of 9 is ");
System.out.println(JoeMath.squareRoot(9.0));

System.out.print("The square root of -9 is ");
System.out.println(JoeMath.squareRoot(-9.0));

System.out.print("The square root of 16 is ");
System.out.println(JoeMath.squareRoot(16.0));

System.out.print("The square root of -16 is ");
System.out.println(JoeMath.squareRoot(-16.0));

Inheritance and Exceptions E-14

Inheritance and Exceptions

E.19 Imagine a class whose method someMethod has a throws clause in its header. Can we override
someMethod in a subclass and list additional checked exceptions in its throws clause? No, Java will
not let us; we will get a syntax error if we do.

For example, consider the following superclass and subclass:

public class SuperClass
{

public void someMethod() throws Exception1
{ . . .
} // end someMethod

} // end SuperClass

public class SubClass extends SuperClass
{

public void someMethod() throws Exception1, Exception2 // ERROR!
{ . . .
} // end someMethod

} // end SubClass

The throws clause in the overriding method will be flagged as syntactically incorrect. Let’s think
about why this is an error.

Suppose a program creates an instance of SubClass, assigns the object to a variable of
SuperClass—let’s call it superObject—and places the call superObject.someMethod() within a
try block, as follows:

public class Driver
{

public static void main(String[] args)
{

SuperClass superObject = new SubClass();
try
{

superObject.someMethod();
}
catch (Exception1 e)
{

System.out.println(e.getMessage());
}

} // end main
} // end Driver

Since superObject references an instance of SubClass, SubClass’s version of someMethod is
called. But since superObject’s static type is SuperClass, the compiler sees only SuperClass’s

} // end main
} // end JoeMathDriver

Output
The square root of 9 is 3.0
The square root of -9 is 3.0i
The square root of 16 is 4.0
The square root of -16 is 4.0i

E-15 APPENDIX E Handling Exceptions

definition for someMethod. Thus, it checks only that Exception1 is caught. If the throws clause in
SubClass was legal, we could call SubClass’s someMethod without catching Exception2.

E.20 The rule governing which exceptions can appear in a throws clause of an overriding method is
relaxed somewhat if the exceptions are related by inheritance. For example, if Exception2 extends
Exception1, the following is legal:

public class SuperClass
{

public void someMethod() throws Exception1
{ . . .
} // end someMethod

} // end SuperClass

public class SubClass extends SuperClass
{

public void someMethod() throws Exception2 // OK, assuming Exception2
{ . . . // extends Exception1
} // end someMethod

} // end SubClass

The finally Block

E.21 If you have code that must execute regardless of whether an exception occurs, you could place it
at the end of the try block and at the end of each catch block. An easier way to accomplish this,
however, is to place one copy of the code in question within a finally block that follows the last
catch block. Code within a finally block executes after either the try block or an executing
catch block ends. Although optional, the finally block is a good way to provide cleanup ser-
vices, such as closing a file or releasing system resources.

The following code shows the placement of the finally block:

try
{

< Code that might throw an exception, either by executing a throw statement
or by calling a method that throws an exception >

}
catch (AnException e)
{

< Code that handles exceptions of type AnException or a subclass of AnException >
}

< Possibly other catch blocks to handle other types of exceptions >
finally
{

< Code that executes after either the try block or an executing catch block ends >
}

Note: An overriding method in a subclass cannot list exceptions in a throws clause that
aren’t listed in a throws clause of the overridden method in the superclass, unless they are
derived from the exception classes listed in the overridden method. However, an overriding
method can list fewer exceptions in its throws clause or none at all.

The finally Block E-16

E.22 Example. Imagine that you open the refrigerator door and reach for the milk. Whether you find
milk or not, you should close the door. In the following code, the method takeOutMilk will throw
an exception if no milk is found. Whether an exception occurs or not, closeRefrigerator is called
within the finally block.

try
{

openRefrigerator();
takeOutMilk();
pourMilk();
putBackMilk();

}
catch (NoMilkException e)
{

System.out.println(e.getMessage());
}
finally
{

closeRefrigerator();
}

E.23 Let’s explicitly demonstrate the behavior of a finally block by executing the code given in the previous
example. The program in Listing E-6 provides simple definitions for the methods called in this example.
All but takeOutMilk simply display an appropriate message. The method takeOutMilk, however, dis-
plays a message some of the time at random but throws a NoMilkException the rest of the time.

In the first sample output shown in Listing E-6, no exception occurs. Each method within the
try block executes in turn, as the output indicates. Lastly, the method closeRefrigerator within
the finally block executes. In the second sample output, openRefrigerator executes normally,
but then takeOutMilk throws an exception. After the exception is caught by the catch block, the
finally block executes as expected.

Note: Statements within a finally block execute regardless of whether an exception occurs,
but they do not execute if either the try block or a catch block calls System.exit. If no excep-
tion takes place, the finally block executes after its corresponding try block completes its
execution. (If the try block contains a return statement, the finally block executes before the
return.) However, if an exception occurs, and it is caught by one of the catch blocks, the
finally block executes after that catch block executes.

LISTING E-6 A demonstration of a finally block

/**
Demonstrates the behavior of a finally block.

*/
public class GetMilk
{

public static void main(String[] args)
{

E-17 APPENDIX E Handling Exceptions

try
{

openRefrigerator();
takeOutMilk();
pourMilk();
putBackMilk();

}
catch (NoMilkException e)
{

System.out.println(e.getMessage());
}
finally
{

closeRefrigerator();
}

} // end main

public static void openRefrigerator()
{

System.out.println("Open the refrigerator door.");
} // end openRefrigerator

public static void takeOutMilk() throws NoMilkException
{

if (Math.random() < 0.5)
System.out.println("Take out the milk.");

else
throw new NoMilkException("Out of Milk!");

} // end openRefrigerator

< The methods pourMilk, putBackMilk, and closeRefrigerator are analogous to
openRefrigerator and are here. >

. . .
} // end GetMilk

Sample Output 1 (no exception is thrown)
Open the refrigerator door.
Take out the milk.
Pour the milk.
Put the milk back.
Close the refrigerator door.

Sample Output 2 (exception is thrown)
Open the refrigerator door.
Out of milk!
Close the refrigerator door.

The finally Block E-18

E.24 Nested try-finally blocks. Some programmers find the try-catch-finally sequence confusing
and prefer to place the finally block after a try block instead of after a catch block. Doing so,
however, requires the try-finally blocks to be nested within another try block. For example, the
program in Listing E-7 revises the try-catch-finally blocks shown in Segment E.22.

If takeOutMilk throws an exception, the finally block executes and then the exception prop-
agates to the outer try block and is caught by the catch block. The output shown in Listing E-7
demonstrates this behavior. Thus, when an exception is thrown, the finally block executes before
the exception is caught, whereas the reverse is true for the code shown in Listing E-6.

LISTING E-7 A demonstration of a nested finally block

/**
Demonstrates the behavior of a nested finally block.

*/
public class GetMilk2
{

public static void main(String[] args)
{

try
{

try
{

openRefrigerator();
takeOutMilk();
pourMilk();
putBackMilk();

}
finally
{

closeRefrigerator();
}

}
catch (NoMilkException e)
{

System.out.println(e.getMessage());
}

} // end main

< The remaining methods are identical to those given in Listing E-6. >
. . .

} // end GetMilk

E-19 APPENDIX E Handling Exceptions

Sample Output 1 (no exception is thrown)
Open the refrigerator door.
Take out the milk.
Pour the milk.
Put the milk back.
Close the refrigerator door.

Sample Output 2 (exception is thrown)
Open the refrigerator door.
Close the refrigerator door.
Out of milk!

Note: Despite our earlier advice about not nesting try-catch blocks, nesting try-finally
blocks can be a reasonable choice. However, the unnested sequence of a try block followed
by a finally block followed by one or more catch blocks is illegal.

Same as the output shown in Listing E-6

Different from the output shown in Listing E-6

Appendix

FFile Inputand Output
Contents
Preliminaries

Why Files?
Streams
The Kinds of Files
File Names

Text Files
Creating a Text File
Reading a Text File
Changing Existing Data in a Text File
Defining a Method to Open a Stream

Binary Files
Creating a Binary File of Primitive Data
Reading a Binary File of Primitive Data
Strings in a Binary File
Object Serialization

Prerequisites
Appendix A Java Essentials
Appendix D Designing Classes
Appendix E Handling Exceptions

Input to a program can come from a keyboard or a mouse, and its output can be
displayed on a screen. These forms of input and output occur in real time and are
temporal. When the program ends, the input and output vanish.

However, program input can be taken from a file, and its output can be sent to a
file. A file is simply data on a particular storage medium, such as a disk. In this
appendix, we explain how you can read input from a file and send output to another
file, and why you would want to do so.

F-2 APPENDIX F File Input and Output

Preliminaries
We begin by looking at some generalities about files.

Why Files?
F.1 You own files such as Java programs, songs, photos, and so on. Each of these files was created by a

program. You might have run the program yourself—such as when you used a text editor to write a
Java program—or obtained the result of someone else’s program in the form of a song or picture. In
any event, you clearly do not want the output of the program to disappear when program execution
stops. You want the data to last, to be persistent. By “persistent,” we mean “to last beyond program
execution.” The contents of a file last until a program changes them or they become damaged. We
want to use our files—that is, we want to run our programs, listen to our music, and watch our vid-
eos. The reasons for creating files should be obvious.

Would you ever use a file as input to a program? You have done so if you have ever edited a
photo or revised an essay you wrote yesterday. Java programs—like the ones we have written—can
read data from an input file rather than the keyboard. Thus, files provide a convenient way to deal
with large data sets.

Streams
F.2 In Java, all input and output of data—including reading a file or writing a file—involves streams. A

stream is an object that represents a flow of data. The data is a collection of eight-bit bytes repre-
senting numbers, characters, music, and so on. A stream either

• Sends data from your program to a destination, such as a file or the screen—in which case it
is called an output stream—or

• Takes data from a source, such as a file or the keyboard, and delivers it to your program—in
which case it is called an input stream

For example, the object System.out is an output stream that moves data from a program to a dis-
play. If an output stream is connected to a file, data will move from the program to the file. That is, the
program will write the file. Likewise, System.in is an input stream that moves data from the key-
board to a program. If an input stream is connected to a file, the program will read data from the file.

Note: Reasons why a program creates a file

• A program creates and saves a file so it can be used over and over by other programs.
• A program creates a file for its own use as temporary storage for numerous intermedi-

ate results. The program writes data into the file and later reads the data, but does not
save the file.

Note: Input and output are done from the perspective of the program. Thus, “input” means that
data moves into your program from an input device such as a disk or keyboard. The word “output”
means that data moves out of your program to an output device such as a disk or the screen.

Note: Streams in Java are objects of certain classes in the Java Class Library. In particular,
these classes are in the package java.io. Thus, to use these classes, you must import them
from java.io.

Text Files F-3

Before you can read or write a file, you must connect the file to an appropriate stream and
associate it with your Java program. You accomplish these steps, or open the file, when you create
the stream by invoking the constructor of the stream’s class. After you are finished with the file you
must close it, or disconnect it from the stream, and hence from your program, by calling a particular
stream method named close. We will examine the details of these steps shortly.

The Kinds of Files
F.3 All files are written as representations of ones and zeros, that is, binary digits, or bits. Java, how-

ever, treats files as either text files or binary files. A text file represents a collection of characters.
The streams associated with text files provide methods that interpret the file’s binary contents as
characters. The files that contain your Java programs are most likely text files. A text editor can
read a text file and make it appear to you as a sequence of characters. Any file other than a text file
is called a binary file. For example, your song and picture files are binary files.

 A Java program can create or read text files and binary files. The steps for processing—that is,
writing or reading—a text file are analogous to those for a binary file. The kind of file determines
which stream classes we use to perform the input or output.

File Names
F.4 Although Java does not specify the characters that can make up a file name, your operating system

does. Typically, you use letters, digits, and a dot in the name of a data file, ending it with a suffix,
such as .txt. This suffix is simply a convention, not a Java rule, although your operating system
can give it meaning. This book uses the suffix .txt to indicate a text file.

Within a Java program, the name of a file is a string. Although our examples will use a String
constant as a file name, our programs could have asked the user for the file’s name and stored it in a
String variable.

Text Files
We begin by exploring text files.

Creating a Text File
F.5 The contents of a text file. A text file contains a sequence of characters in which each character is rep-

resented by the system’s default encoding. Java uses the Unicode character set, which includes many let-
ters in natural languages that are quite different from English. The Unicode representation of each
character requires two bytes. Many text editors, operating systems, and programming languages other
than Java use the ASCII character set. The ASCII character set is a subset of the Unicode character set
and contains the characters normally used for English and typical Java programs. The representation of
each character in ASCII requires one byte.

Programming Tip: Choosing the kind of file
Your Java program should use a text file if you will use a text editor to

● Create files that the program will read
● Read or edit files that the program will create

If you will not use a text editor to create or read a file, consider using a binary file, as such
files typically require less disk space than text files.

F-4 APPENDIX F File Input and Output

A typical text file is organized as lines, each ending with a special end-of-line character. The
lines in a text file are analogous to the lines you see when a program displays its output. In reality,
however, the file is a sequence of data. For this reason, we say that a text file offers sequential
access to its contents. That is, before you can read the nth line of the file, you start at the file’s
beginning and read through its first n – 1 lines.

F.6 Opening a text file for output. The standard class PrintWriter, which is in the package java.io of
the Java Class Library, has the familiar methods print and println. As you will see, these methods
behave like System.out.print and System.out.println. Thus, we will use this class to create an
output stream for a text file.

Before you can write to a text file, you must open it by writing a statement like
PrintWriter toFile = new PrintWriter(fileName);

The call to PrintWriter’s constructor creates an output stream and connects it to the file named by
the String variable fileName. The stream variable toFile references this stream. Once the
stream is created, your program always refers to the file by using the stream variable instead of its
actual file name.

When you connect a file to an output stream in this way, your program always starts with an
empty text file. If the file named by fileName did not exist before the constructor was called, a new,
empty file is created and given that name. However, if the file named by fileName already exists,
its old contents will be lost.

F.7 PrintWriter’s constructor can throw a checked exception—FileNotFoundException—while
attempting to open a file. For this reason, its invocation must appear within either a try block that is
followed by an appropriate catch block or a method whose header lists this exception in a throws
clause. For example, we could write the following statements to open the text file data.txt for output:

String fileName = "data.txt";
PrintWriter toFile = null;
try
{

toFile = new PrintWriter(fileName);
}
catch (FileNotFoundException e)
{

System.out.println("PrintWriter error opening the file " + fileName);
System.out.println(e.getMessage());

< Possibly other statements to deal with this exception. >
}

Notice that we declared the variable toFile outside of the try block so that toFile is available
outside of this block. Remember, anything declared in a block—even a try block—is local to the
block. Declaring toFile in this way enables us to use it to write to the file, as you will see.

A FileNotFoundException does not necessarily mean that the file was not found. After
all, if you are creating a new file, it doesn’t already exist. In that case, an exception is thrown
if the file could not be created because, for example, the file name is already used as a folder
(directory) name.

Note: A FileNotFoundException will occur if a file cannot be opened for output, either
because it does not exist and cannot be created or because it is inaccessible.

Text Files F-5

F.8 Writing a text file. The methods println and print of the class PrintWriter work the same for
writing to a text file as the respective methods System.out.println and System.out.print work
for writing to the screen. Thus, when a program writes a value to a text file, the number of charac-
ters written is the same as if it had written the value to the screen. For example, writing the int
value 12345 to a text file places five characters in the file. In general, writing an integer of type int
places between 1 and 11 characters in a text file.

The following statements write four lines to the text file we created in the previous segment:

for (int counter = 1; counter <= 4; counter ++)
toFile.println("Line " + counter);

Notice that we use the stream variable toFile when calling println, not the actual name of the
file. Additionally, we did not place the call to println within a try block, as println does not
throw any checked exceptions. The same is true of print.

F.9 Buffering. Instead of sending output to a file immediately, PrintWriter waits to send a larger packet of
data. Thus, the output from println, for example, is not sent to the output file right away. Instead, it is
saved and placed into a portion of memory called a buffer, along with the output from other invocations of
print and println. When the buffer is too full to accept more output, its contents are written to the file.
Thus, the output from several print and println statements is written at the same time, instead of each
time one statement executes. This technique is called buffering, and it saves execution time.

F.10 Closing a text file. When we are finished using a file, we must disconnect it from the stream. Every
stream class, including PrintWriter, has a method named close to accomplish this task. Thus, to
close the file associated with the stream variable toFile, we write

tofile.close();

When closing a file, the system writes any data still left in the buffer to the file and releases any
resources it used to connect the stream to the file. Note that close will not throw an exception.

F.11 Flushing an output text file. You can force any pending output that is currently in a buffer to be
written to its destination file by calling PrintWriter’s method flush, as follows:

toFile.flush();

The method close automatically calls the method flush, so for most simple applications, you do
not need to call flush explicitly. However, if you continue to program, you will eventually encoun-
ter situations in which you will have to use flush.

Note: System.out is an object of the standard class PrintStream. Because both PrintStream
and PrintWriter define the same print and println methods, objects of PrintWriter have
the same print and println methods as System.out. However, System.out directs its output
stream to a different destination than PrintWriter objects do.

Programming Tip:
If you do not close a file, Java will close it for you, but only if your program ends normally.
To avoid any possible loss of data or damage to a file, you should close it as soon as possible
after you are finished using it.

F-6 APPENDIX F File Input and Output

F.12 Example: Creating a text file of user data. Let’s create a text file of data that a user enters at the
keyboard. We’ll provide this operation as a static method within a class that reads and writes text
files. If the method accepts as arguments the file name and number of lines that the user will enter,
its header could be as follows:

public static boolean createTextFile(String fileName, int howMany)

The only checked exception that can occur is during the opening of the file, so our method can
return a boolean value to indicate whether the operation succeeds.

Listing F-1 shows the definition of this method within a class TextFileOperations.

LISTING F-1 The static method createTextFile in the class
TextFileOperations

import java.io.FileNotFoundException;
import java.io.PrintWriter;
import java.util.Scanner;
public class TextFileOperations
{

/** Writes a given number of lines to the named text file.
@param fileName the file name as a string
@param howMany the positive number of lines to be written
@return true if the operation is successful */

public static boolean createTextFile(String fileName, int howMany)
{

boolean fileOpened = true;
PrintWriter toFile = null;
try
{

toFile = new PrintWriter(fileName);
}
catch (FileNotFoundException e)
{

fileOpened = false; // error opening the file
}

if (fileOpened)
{

Scanner keyboard = new Scanner(System.in);
System.out.println("Enter " + howMany + " lines of data:");
for (int counter = 1; counter <= howMany; counter++)
{

System.out.print("Line " + counter + ": ");
String line = keyboard.nextLine();
toFile.println(line);

} // end for

 toFile.close();
} // end if

Text Files F-7

F.13 Appending to a text file: Getting ready. When you add a line to the end of an existing text file,
you append it to the file. Since we actually will write a new line to the file, we want to use the class
PrintWriter, as we did to create the file. When we consult the documentation for PrintWriter,
however, we find no constructor that will open an existing file and append data to it. As we men-
tioned before, when you open a file for output, you ordinarily lose any existing data.

Although PrintWriter does not have an appropriate constructor, it is still the class we want to
use to write the file. What we need is another class to help us open the file in the way we want.
Such a class is FileWriter, which is in the package java.io of the Java Class Library. The appro-
priate FileWriter constructor is declared as follows:

public FileWriter(String fileName, boolean append)

This constructor opens the text file named by the String variable fileName for output. If the argu-
ment append is true, any data written to the file will be appended to its end. Otherwise, if append is
false, any existing data in the file is lost.

Conveniently, PrintWriter has a constructor that accepts a FileWriter object as its argument.
Thus, we can use FileWriter to open the text file so that it will accept additional output, and then
use PrintWriter to provide methods such as print and println to write the output. Note that
FileWriter does not have such methods.

F.14 Appending to a text file: Writing new lines. Most of FileWriter’s constructors, including the
one given in the previous segment, can throw an IOException if they cannot open the designated
file. The reasons for such an occurrence are the same as we encountered before: Either no such file
exists and one cannot be created; fileName names an existing text file, but it cannot be opened; or
fileName is actually the name of a folder instead of a text file.

Since the constructors of both FileWriter and PrintWriter can throw an exception, we
invoke them within a try block. For example, to append another line to the existing text file
CollegeFile.txt, we could open it as follows:

try
{

FileWriter fw = new FileWriter(fileName, true);// IOException?
toFile = new PrintWriter(fw); // FileNotFoundException?

}
catch (FileNotFoundException e)
{

System.out.println("PrintWriter error opening the file " + fileName);
System.out.println(e.getMessage());
System.exit(0);

}
catch (IOException e)
{

System.out.println("FileWriter error opening the file " + fileName);
System.out.println(e.getMessage());
System.exit(0);

}

We now can add one or more lines of data to the end of the file by using statements of the form
toFile.println(. . .);

return fileOpened;
} // end createTextFile

} // end TextFileOperations

F-8 APPENDIX F File Input and Output

Reading a Text File
You know how to use the class Scanner to read data from the keyboard. We can use this same class
to read data from a text file. Let’s see how. Realize, however, that Scanner is not a stream class.

F.15 Opening a text file for input. Previously, we invoked PrintWriter’s constructor to open a text
file for output. In an analogous way, we might invoke Scanner’s constructor to open a text file for
input. You might guess that we would accomplish this step by using a statement such as

Scanner fromFile = new Scanner(fileName);// does NOT open a text file

where fileName is a String variable representing the file’s name. Unfortunately, this statement has
nothing to do with any text file! Instead, the Scanner object fromFile extracts portions of the string
fileName, as Appendix A describes, beginning with Segment A.81.

Scanner has several constructors, one of which takes an instance of the standard class File. This
latter class, which is in the package java.io, represents a file in a system-independent and abstract
way. Moreover, one of File’s constructors accepts a string that is the file’s name as its argument.
Thus, to access the file whose name is referenced by the String variable fileName, we would write

Scanner fileData = new Scanner(new File(fileName));

Although the Scanner object fileData is not a stream object, it creates an input stream, thus open-
ing the file for input. We chose the name fileData as a reminder that it is not a stream variable.

Unlike other constructors of Scanner that we use when either reading from the keyboard or
processing a string, this new constructor can throw a FileNotFoundException. Thus, its invoca-
tion must appear within either a try block that is followed by an appropriate catch block or a

Note: Why do we need PrintWriter? Isn’t FileWriter enough?
Although the class FileWriter has the constructor we need to append to a file, it provides
only basic support for text files. The class PrintWriter lacks the necessary constructor, but it
has useful methods such as println. Using both classes provides an appropriate constructor
and convenient methods.

Note: A Scanner object is not a stream
We will use Scanner to get data from a text file, but Scanner is not a stream class. In fact, it
belongs to the package java.util, not java.io. According to the constructor we use to cre-
ate it, a Scanner object can process a string

● Entered at the keyboard or
● Read from a text file or
● Given to its constructor as an argument

The Scanner objects we will use to read a text file actually contain a stream object that reads
the file. The Scanner methods then translate, or parse, the input string, convert the data to the
desired data type, and pass it to our program.

Text Files F-9

method whose header lists this exception in a throws clause. For example, the following state-
ments ultimately open the text file named data.txt for input:

String fileName = "data.txt";
Scanner fileData = null;
try
{

// can throw FileNotFoundException
fileData = new Scanner(new File(fileName));

}
catch (FileNotFoundException e)
{

System.out.println("Scanner error opening the file " + fileName);
System.out.println(e.getMessage());
< Possibly other statements that react to this exception. >

}

F.16 Reading a text file. All of Scanner’s methods are available to you when reading a text file. If you
do not know the format of the data in the file, you can use the Scanner method nextLine to read it
line by line. For example, the following statements read and display the lines in the existing text file
data.txt:

while (fileData.hasNextLine())
{

String line = fileData.nextLine();
System.out.println(line);

} // end while

If nextLine were to read beyond the end of a file, it would throw a runtime (unchecked) exception,
NoSuchElementException. We use Scanner’s method hasNextLine to prevent nextLine from
reading beyond the end of the file. Thus, the while loop ends when the end of the file is reached.

F.17 Example. Listing F-2 adds the static method displayFile to our previous class TextFileOperations,
as shown in Listing F-1. Notice the previous code fragments in the context of this method. After the text file
is read, we use the Scanner method close to indirectly close the file. Also, notice that the try block here
opens, reads, and closes the file, whereas the try block in Listing F-1 only opens the file. However, that
code requires an if statement to skip further file processing if the file cannot be opened.

Note: The Scanner constructor, whose parameter is a File object, will throw a FileNot-
FoundException if it cannot open a file for input because the file either does not exist or is
inaccessible.

Note: Input from a text file
Opening a text file for input enables you to read data from it sequentially, starting from the
file’s beginning. Note that other standard classes exist that let you open a text file directly,
rather than indirectly by using Scanner. However, Scanner offers you a convenient way to
read from a text file.

F-10 APPENDIX F File Input and Output

LISTING F-2 The static method displayFile in the class
TextFileOperations

import java.io.File;
import java.io.FileNotFoundException;
import java.io.PrintWriter;
import java.util.Scanner;
/**

A class of methods that create and display a text file of
user-supplied data.
@author Frank M. Carrano

*/
public class TextFileOperations
{

< The method createTextFile, as given in Listing F-1, appears here. >

/** Displays all lines in the named text file.
@param fileName the file name as a string
@return true if the operation is successful */

public static boolean displayFile(String fileName)
{

boolean fileOpened = true;
try
{

Scanner fileData = new Scanner(new File(fileName));
System.out.println("The file " + fileName +

" contains the following lines:");
while (fileData.hasNextLine())
{

String line = fileData.nextLine();
System.out.println(line);

} // end while
fileData.close();

}
catch (FileNotFoundException e)
{

fileOpened = false; // error opening the file
}

return fileOpened;
} // end displayFile

} // end TextFileOperations

Text Files F-11

Note: Other methods in Scanner
The previous example simply reads and displays entire lines of a text file. However, Scanner
has other convenient methods that read data in various formats. Segment A.33 of Appendix A
mentioned nextInt and nextDouble in conjunction with reading from the keyboard. You can
use these and other similar methods to read data from a text file as well. Note that none of
Scanner’s methods throw checked exceptions, and so they need not appear within a try
block. However, Scanner’s constructor can throw a checked exception.

Programming Tip: When you read a value at the end of a line using any Scanner
method other than nextLine, the character or characters marking the end of the line remain as
the next to be read. Only nextLine reads past these characters. So regardless of whether you
read from the keyboard or from a text file using Scanner, you must read beyond these ending
characters—by using nextLine—before trying to read the next string.

Note: The class File
Segment F.15 introduced the standard class File, whose constructor accepts as its argument a
string that is a file’s name. Because Scanner has no constructor that accepts a file name as an
argument, but File does, we can open a text file for input by using a statement such as

Scanner fileData = new Scanner(new File(fileName));

This Scanner constructor accepts a File object as its argument and instantiates an input
stream connected to the file. Although this stream belongs to the Scanner object fileData
and is hidden from us, we can use fileData to read from the file.

The class File is useful in other ways as well. For example, you can

● Test whether a file exists, using the method exists
● Test whether a file exists and can be read, using the method canRead
● Test whether a file exists and can be written, using the method canWrite
● Change the name of a file, using the method renameTo
● Delete a file, using the method delete

The next segment will use File to perform some of these tasks. For more details, you should
consult the online documentation for this class in the Java Class Library.

Note: Reading a file more than once
Reading a file can be time consuming, particularly when it is quite large. Therefore, you
should not read a file more than once, if at all possible. Some algorithms, however, do require
you to process data more than once. Doing so is not a problem when the data is in memory,
but accommodating the data from a large file in an array, for example, might be impossible.
In those cases, you might want to read the file several times.

After the file is read completely, you close it by closing the Scanner object. You then open
it again so that you can read the file from its beginning.

F-12 APPENDIX F File Input and Output

Changing Existing Data in a Text File
F.18 Once we have created a text file, some of its data might need to be updated or corrected. Although

we can add lines at the end of an existing text file, we cannot add them anywhere else. Moreover,
we cannot delete lines, and in general, we cannot modify lines. However, as we read a text file, we
can copy lines unchanged to another text file, skip lines that we no longer want to keep in the file,
and write additional or modified lines to the new file. Changing the data in a file, therefore, is like
reading one file and writing another. Most of the logic in a program that makes the changes must
decide where and what changes are needed.

When the new file is complete, we can delete the old file and—if we like—give the new file
the name of the old file. Although we can use the operating system to rename or delete a file after
the program has run, our Java program can perform these tasks for us by using the class File. For
example, to change the name of the existing file MyData.txt, we could write statements such as

File originalFile = new File("MyData.txt");
File newFile = new File("MyUpdatedData.txt");
originalFile.renameTo(newFile);

The File method renameTo changes the name of the file and returns a boolean value to indicate
whether the change was successful. Although the previous example ignores this returned value, we
could have written something like

if (originalFile.renameTo(newFile))
System.out.println("Name change successful.");

else
System.out.println("Attempted name change unsuccessful.");

Note that renameTo has a File object as its argument instead of a string containing the new name.
The File method delete deletes an existing file and returns either true or false to indicate

whether the operation was successful. For example, to delete the previous file, we could write
originalFile.delete();

Note: Sorting the data in a file
Searching a data set for a particular entry is a common task. As Chapter 18 shows, searching
sorted data can be faster than searching unsorted data. Chapters 8 and 9 discuss sorting the
entries in an array. When your data is in a file, however, it might not fit entirely into an array:
The file is simply too large for the computer’s memory to accommodate it.

The merge sort, which Chapter 9 presents, can be adapted to sort the data in a file.
Although the details of this modification are beyond our scope, its basic idea is not hard to
understand. The sort reads a portion of the file into an array, sorts the array, and writes the
sorted data to another file. This process is repeated for successive portions of the original file
until all data has been processed. In the next phase, pairs of sorted blocks of data are read
from the new file and merged into a larger block, which is then written to the original file.
This merging continues until the second file is processed and is then repeated on the original
file, and so on until all the data has been sorted. Note that merging involves small portions of
sorted data at a time, so that only a small amount of memory is needed to sort a large file.

Programming Tip: Avoid a silent program
Without the println statements in the previous segment, the user would not know whether
the name of the file was changed. Worse than this code is an entire program that processes a
file without any visible output. Such a program is called a silent program and can bewilder
its user. Did the program actually do anything? Always provide at least one message to the
user to indicate the program’s status.

Binary Files F-13

Defining a Method to Open a Stream
F.19 Imagine that we want to write a method that opens a file. We will open a text file for output, but the

idea is also applicable to opening it for input and to a binary file. Our method has a String param-
eter that represents the file name. The client of this method could either read the file name from the
user or use a literal for the file name. The method that follows creates an output stream, connects it
to the given file, and returns the stream to the client.

public static PrintWriter openOutputTextFile(String fileName)
throws FileNotFoundException, IOException

{
PrintWriter toFile = new PrintWriter(fileName);
return toFile;

} // end openOutputTextFile

We could invoke this method as follows:

PrintWriter toFile = null;
try
{

PrintWriter toFile = openOutputTextFile("data.txt");
}
< appropriate catch blocks are here >

and go on to use toFile to write to the file.
What if we had written the method as a void method, so that instead of returning an output stream, it

had the stream as a parameter? The following method looks reasonable, but it has a problem:

// This method does not do what we want it to do.
public static void openFile(String fileName, PrintWriter stream)

throws FileNotFoundException, IOException
{

stream = new PrintWriter(fileName);
} // end openFile

Let’s consider, for example, the following statements that invoke the method:

PrintWriter toFile = null;
try
{

openFile("data.txt", toFile);
}

After this code is executed, the value of toFile is still null. The file that was opened by the
method openFile went away when the method ended. The problem has to do with how Java han-
dles arguments of a class type. These arguments are passed to the method as a memory address that
cannot be changed. The object at the memory address normally can be changed, but the memory
address itself cannot be changed. Thus, you cannot change toFile.

This observation applies only to arguments of methods. If the stream variable is either a data
field or declared locally within the body of the method, you can open a file and connect it to the
stream and this problem will not occur. Once a stream is connected to a file, however, you can pass
the stream variable as an argument to a method, and the method can change the file.

Binary Files

F.20 Text files and binary files share some similarities. For example, before you can read or write any
file, you open it, and when you are finished, you close it. The standard classes used for text files,
however, differ from those we will use here for binary files, with one exception—the class File.
This class, which is introduced in Segment F.15, can be used with binary files as well as text files.

F-14 APPENDIX F File Input and Output

Anything that you can write to a text file can be written to a binary file. Binary files store a
value of a primitive type in the same format and the same number of bytes as it is stored in the com-
puter’s primary memory. For example, every int value occupies four bytes, and every double value
requires eight bytes. This is one reason why a binary file can be more efficient in its use of time and
space than a text file.

 The most commonly used stream classes for processing binary files are DataInputStream and
DataOutputStream. Each class has methods to read or write data one byte at a time. These streams can
also convert numbers and characters to bytes that can be stored in a binary file. They allow your program
to write data to or read data from a binary file as if the data were not just bytes but either strings or items
of any of Java’s primitive data types. If you do not need to access your files via an editor, the easiest and
most efficient way to read and write data to files is to use DataInputStream and DataOutputStream
with a binary file.

Binary files also offer features not possible with a text file. For example, you can write entire
objects to a binary file, without knowledge of their data, and read them back again. In contrast,
writing an object to a text file requires you to write each of its data components. This task becomes
even more complicated when a data field is itself an object.

While some binary files are read only via sequential access, just like text files, certain binary files
offer random access. That is, you can access their data without having to first read all the data preced-
ing it, as you would with a sequential-access file. In other words, you can access the data at position n
much as you can access the data in an array at index n. However, we will not cover random-access files
in this book.

In this appendix, we will use the suffix .bin when naming a sequential-access binary file.

Creating a Binary File of Primitive Data
Would you ever create or use a binary file of primitive data? Yes; files of statistical or scientific data,
such as the hourly outdoor temperatures for a year in a certain location, are common. Let’s begin by
writing primitive data to a sequential-access binary file. When a binary file will contain only data of a
primitive type, you typically will use the standard class DataOutputStream to create it.

F.21 Opening a binary file for output. To write primitive data to a binary file, we’ll use a stream of the class
DataOutputStream. Like most of the classes we use for files, this one belongs to the package java.io of
the Java Class Library. To open a binary file for output, we invoke the constructor of DataOutputStream.
Like some of the classes we encountered earlier for text files, DataOutputStream has no constructor that
accepts a file name as an argument. However, it does have a constructor whose argument can be an object
of the class FileOutputStream, and a constructor of FileOutputStream does accept a file name as an
argument. Thus, if the name of a binary file is in the String variable fileName, we can open the file for
output by writing statements such as

FileOutputStream fos = new FileOutputStream(fileName);
DataOutputStream toFile = new DataOutputStream(fos);

These statements create an output stream and connect it to the named file. The stream variable
toFile references this stream. As is true of text files, when you open a binary file for output, your
program always starts with an empty file. If the named file does not already exist, a new, empty file
is created. However, if the named file already exists, its old contents will be lost.

Note: You can use a Java program to create a binary file on one computer and have it read by
a Java program on another computer. Normally, you cannot use a text editor to read binary files.

Binary Files F-15

F.22 Example. FileOutputStream’s constructor will throw a FileNotFoundException if the file either
does not exist and cannot be created or exists but cannot be opened. Since this exception is a
checked exception, the constructor’s invocation must appear within either a try block that is fol-
lowed by an appropriate catch block or a method whose header lists this exception in a throws
clause. Note that DataOutputStream’s constructor does not throw any exceptions. For example, we
could write the following statements to open the binary file data.bin for output:

String fileName = "data.bin";
DataOutputStream toFile = null;
try
{

FileOutputStream fos = new FileOutputStream(fileName);
toFile = new DataOutputStream(fos);

}
catch (FileNotFoundException e)
{

System.out.println("Cannot find, create, or open the file " + fileName);
System.out.println(e.getMessage());
System.exit(0);

}

We declare the variable toFile outside of the try block so that toFile is available outside of the
try block.

F.23 Using the class File when opening a binary file. Earlier, in Segment F.15, we introduced the
class File. Recall that you can use methods from this class to test whether a file exists, can be read,
or can be written. We can use File to make the same tests of a binary file. If a particular binary file
exists and can be written, for example, we can use the File object that we created for the tests as
the argument for a constructor of FileOutputStream. Thus, we might modify the previous state-
ments as follows:

< Declarations of and assignments to fileName and toFile >
boolean okToWrite = true;
try
{

File aFile = new File(fileName);
if (aFile.canWrite())
{

FileOutputStream fos = new FileOutputStream(aFile);
toFile = new DataOutputStream(fos);

}
else

okToWrite = false;
}
< catch block is here >
< Statements that test okToWrite and act accordingly >

F.24 Writing primitive data to a binary file. DataOutputStream has an output method for each primi-
tive data type, as follows:

● writeByte—Writes the low-order 8 bits of its int argument
● writeChar—Writes the low-order 16 bits of its int argument as a Unicode character
● writeShort—Writes the low-order 16-bit integer of its int argument
● writeInt—Writes the 32-bit integer in its int argument
● writeLong—Writes the 64-bit integer in its long argument
● writeFloat—Writes the 32-bit real value in its float argument
● writeDouble—Writes the 64-bit real value in its double argument
● writeBoolean—Writes the boolean value in its boolean argument

F-16 APPENDIX F File Input and Output

Each method is a void method, has one parameter, and can throw an IOException in case an error
occurs while writing a value to the file. Note that each of the methods writeByte, writeChar,
writeShort, and writeInt has an int parameter, even though the first three write a smaller value
to the file.

F.25 Closing a binary file. You use the method close to close a binary file after writing it. Unlike the
close method for a text file, this method can throw an IOException if an error occurs while closing
the file.

F.26 Appending to an existing binary file. To add a program’s output to the end of the data already in
an existing binary file—that is, to append data to the file—you would revise the statements given in
Segment F.21 that open the file by calling FileOutputStream’s constructor as follows:

FileOutputStream fos = new FileOutputStream(fileName, true);

The second parameter of the constructor is a boolean value that indicates whether to append data to
an existing file. If the named file does not exist already, Java will create an empty file of that name
and write the output to this empty file. However, if the file does exist, the program’s output will be
placed after the old contents of the file.

F.27 Example: Creating a binary file of random integers. Let’s define a class of static methods that
deal with binary files. One of these methods can create a file of random integers. Suppose that the
client of our method passes it the name of the file and the desired number of random values the file
should contain. The method’s header then can have the following form:

public static returnType createBinaryFile(String fileName, int howMany)

As we noted previously in this appendix, we must concern ourselves with checked exceptions
when we create this file. We must either handle the exceptions within the body of the method or add
a throws clause to the method’s header.

Design Decision: Should the method handle the exceptions or pass them on to its client?
If we pass the exceptions on to the method’s client, our method will be simpler to write and can
be a void method. However, the client will have to worry about the exceptions. Let’s handle the
exceptions ourselves but tell the client what has happened by returning a code. The resulting
method definition will be more involved, but its use will be convenient.

Listing F-3 shows the definition of the static method createBinaryFile within a class
BinaryFileOperations. Notice how we close the file within a finally block, which Appendix E
introduced. Its use not only ensures that the file is closed but also allows us to have two separate
catch blocks for an IOException. In this way, we can tell whether an IOException is caused by the
method writeInt or the method close.

LISTING F-3 The static method createRandomIntegers in the class
BinaryFileOperations

import java.io.DataOutputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.util.Random;

public class BinaryFileOperations

Binary Files F-17

{
/** Writes a given number of random integers to the named binary

file.
@param fileName the file name as a string
@param howMany the positive number of integers to be written
@return an integer code indicating the outcome of the operation

*/
public static int createBinaryFile(String fileName, int howMany)
{

int resultCode = 0;
Random generator = new Random();
DataOutputStream toFile = null;
try
{

FileOutputStream fos = new FileOutputStream(fileName);
toFile = new DataOutputStream(fos);

for (int counter = 0; counter < howMany; counter++)
{

toFile.writeInt(generator.nextInt());
} // end for

}
catch (FileNotFoundException e)
{

resultCode = 1; // error opening file
}
catch (IOException e)
{

resultCode = 2; // error writing file
}
finally
{

try
{

if (toFile != null)
toFile.close();

}
catch (IOException e)
{

resultCode = 3; // error closing file
}

return resultCode;
} // end finally

} // end createBinaryFile
} // end BinaryFileOperations

F-18 APPENDIX F File Input and Output

Reading a Binary File of Primitive Data
F.28 Once we have created a binary file of primitive values by using an output stream of the class

DataOutputStream, we will use the class DataInputStream to read the file. The details of opening
and closing this file for input are like the ones we saw earlier. For each method in DataOutputStream
that we used to write a primitive value to the file, DataInputStream has an analogous method to read
the value from the file. Those methods are as follows:

● readByte—Reads and returns the next byte in the file as a byte value
● readChar—Reads and returns the next two bytes in the file as a char value
● readShort—Reads and returns the next two bytes in the file as a short value
● readInt—Reads and returns the next four bytes in the file as an int value
● readLong—Reads and returns the next eight bytes in the file as a long value
● readFloat—Reads and returns the next four bytes in the file as a float value
● readDouble—Reads and returns the next eight bytes in the file as a double value
● readBoolean—Reads and returns the next boolean value in the file

Each of these methods can throw either an EOFException when the end of the file is encountered or an
IOException if an error occurs during the read operation. These checked exceptions must be handled.

F.29 Example: Reading a binary file of integers. Listing F-4 shows the definition of the static method
displayBinaryFile within the class BinaryFileOperations. The method is similar to create-
BinaryFile, as given in Listing F-3, with respect to its return value and how it opens the file, closes
the file, and handles exceptions. This method has only one parameter, the file name as a string, and
displays all of the integers in the file. Notice that createBinaryFile did not write a sentinel after it
wrote the last integer to the file.

LISTING F-4 The static method displayBinaryFile in the class
BinaryFileOperations

import java.io.DataInputStream;
import java.io.DataOutputStream;
import java.io.EOFException;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.util.Random;

/**
A class of methods that create and display a binary file of
random integers.
@author Frank M. Carrano

*/
public class BinaryFileOperations
{

< The method createBinaryFile, as given in Listing F-3, appears here. >

/** Displays all integers in the named binary file.
@param fileName the file name as a string

Binary Files F-19

@return an integer code indicating the outcome of the operation
*/
public static int displayBinaryFile(String fileName)
{

int resultCode = 0;
DataInputStream fromFile = null;
try
{

FileInputStream fis = new FileInputStream(fileName);
fromFile = new DataInputStream(fis);

}
catch (FileNotFoundException e)
{

resultCode = 1; // error opening file
}
catch (EOFException e)
{

// normal occurrence since entire file is read
}
catch (IOException e)
{

resultCode = 2; // error reading file
}
finally
{

try
{

if (fromFile != null)
fromFile.close();

}
catch (IOException e)
{

resultCode = 3; // error closing file
}

return resultCode;
} // end finally

} // end displayBinaryFile
} // end BinaryFileOperations

while (true)
{

int number = fromFile.readInt();
System.out.println(number);

} // end while

F-20 APPENDIX F File Input and Output

When you read a binary file of primitive values, you can detect the end of the file without
checking for a sentinel at its end. You do so by catching the EOFException that the read methods
throw when the end of the file is reached. You treat the exception as an expected occurrence, not as
a mistake.

For example, the method displayBinaryFile contains an infinite loop to read all of the inte-
gers in the file. The entire loop—highlighted in the listing—is within a try block, so we can handle
the exceptions. DataInputStream’s method readInt can throw either an EOFException when it
attempts to read beyond the end of the file or an IOException if an error occurs during a read oper-
ation. Since the end of the file is an expected and normal occurrence in this example, one of the
catch blocks after the previous try block is

catch (EOFException e)
{

// normal occurrence since the entire file is read; ignore exception
}

Thus, we catch but ignore an EOFException.

Strings in a Binary File
Although strings are objects, you can use DataOutputStream to write one to a binary file as a
sequence of characters and DataInputStream to read these characters from the file as a string.

F.30 Writing strings to a binary file. DataOutputStream has another method, writeUTF, that writes a
string to a file as a sequence of characters in a machine-independent way:

● writeUTF—Writes the characters in its String argument using an encoding called UTF, or
Unicode Transformation Format

Like the other methods of DataOutputStream that we introduced previously, writeUTF is a void
method, has one parameter, and can throw an IOException.

F.31 Reading strings from a binary file. To read a value previously written to the file by the method
writeUTF, we use the following method of DataInputStream:

● readUTF—Reads and returns the next UTF string in the file as a String object

Note: What is UTF?
Recall that Unicode is a representation of characters by unique integers. However, Unicode
does not specify how many bytes one should use to store each integer in memory. UTF makes
this specification. Several UTF encoding schemes exist. UTF-8 represents each character as
a sequence of between one and four bytes. UTF-8 uses one byte for each ASCII character,
which is sufficient for the characters in the English language. Unicode, however, is more uni-
versal and provides many more characters. For such characters, UTF-8 uses two, three, or
four bytes each. The method writeUTF uses a slight variation of UTF-8, known as modified
UTF-8. Thus, the method writeUTF can represent all Unicode characters, but it saves file
space when ASCII characters are written.

UTF-16 uses either two or four bytes to represent a character. Java uses UTF-16, but a char
value occupies only two bytes, and the method writeChar writes two bytes to a file. For strings
and char arrays, characters requiring four bytes each are represented as pairs of char values.

UTF-32 uses four bytes for each character. Although a fixed number of bytes per charac-
ter is convenient, UTF-32 is space inefficient.

Binary Files F-21

This method can throw one of two possible checked exceptions: a UTFDataFormatException if the
bytes read are not a UTF string, or an IOException if an error occurs during the read operation.

Programming Tip: A binary file can contain data of differing types, and you can use
DataInputStream to read such a file. You must be careful, however, to match the data with
the appropriate read methods. If a data item in the file is not of the type expected by the read-
ing method, the result is likely to be wrong. For example, if your program writes an integer
using writeInt, any program that reads that integer should read it using readInt. If you
instead use readDouble, for example, your program will misbehave. This and subsequent
read operations will most likely not match the file and will be incorrect.

Programming Tip: Binary files and text files encode their data in different ways. A
stream that expects to read a binary file, such as a stream in the class DataInputStream, will
have problems reading a text file. If you attempt to read a text file with a stream in the class
DataInputStream, your program either will read “garbage values” or will encounter some
other error condition.

Programming Tip: Check for the end of a file
When reading from a file, your program should check for the end of the file and do some-
thing appropriate when it reaches it. If your program tries to read beyond the end of a file, it
may enter an infinite loop or end abnormally. Even if you think your program will not read
past the end of the file, you should provide for this eventuality just in case things do not go
exactly as you planned.

Programming Tip: Ways to check for the end of a file
Here are some possible ways to test for the end of a file:

● Catch an EOFException, if the read method that you use throws one. When reading
from a binary file, the methods in DataInputStream throw an EOFException when they
try to read beyond the end of a file.

● Test for a special value—the sentinel—if one has been written at the end of the file. Your
program then can stop reading when it reads the sentinel value. For example, you could
use a negative integer as a sentinel value at the end of a file of nonnegative integers.
Using a sentinel value, however, restricts your data to values other than the sentinel.

Note: Path names
When passing a file name as an argument to a constructor of classes like File, you can use a
simple file name. Java assumes that the file is in the same directory (folder) as the one that
contains the program. You also can use a full or relative path name. A full path name gives
not only the name of the file, but also tells what directory (folder) the file is in. A relative path
name gives the path to the file starting in the directory that contains your program. Paths
depend on your operating system rather than the Java language.

Note that Java 7 provides an interface Path and a class Paths whose instances are like
path names, but cannot be passed to File’s constructors.

F-22 APPENDIX F File Input and Output

Object Serialization
F.32 You have seen how to write primitive values and strings to a file, and how to read them again. How

would you write and read objects other than strings? You could, of course, write an object’s data
fields to a file and invent some way to reconstruct the object when you read the file. When you con-
sider that a data field could be another object that itself could have an object as a data field, com-
pleting this task sounds formidable.

Fortunately, Java provides a way—called object serialization—to represent an object as a
sequence of bytes that can be written to a binary file. This process will occur automatically for any
object that belongs to a class that implements the interface Serializable. This interface, which is
in the package java.io, is empty, so you have no additional methods to implement. Adding only
the words implements Serializable to the class’s definition is enough.

For example, we could begin a class Student as follows:

import java.io.Serializable;
public class Student implements Serializable
{

. . .

The Serializable interface tells the compiler that Student objects can be serialized. Since
Serializable appears only once in the definition of the class Student, you could conveniently
omit the import statement and begin the class as follows:

public class Student implements java.io.Serializable

To serialize an object and write it to a binary file, you use the method writeObject from the
class ObjectOutputStream. To read a serialized object from a binary file, you use the method
readObject from the class ObjectInputStream.

F.33 Example. To serialize the Student object aStudent and write it to a binary file, we would write the
following statements within one or more try blocks:

FileOutputStream fos = new FileOutputStream(fileName);
ObjectOutputStream toFile = new ObjectOutputStream(fos);
. . .
toFile.writeObject(aStudent);

Any objects that are data fields of aStudent must also belong to a class that implements Serializable.
Such objects are serialized when aStudent is serialized. Many classes in the Java Class Library—including
String—implement Serializable.

To read the Student object from the binary file, we would write

FileInputStream fis = new FileInputStream(fileName);
ObjectInputStream fromFile = new ObjectInputStream(fis);
. . .
Student joe = (Student)fromFile.readObject();

within one or more try blocks.

F.34 We will call a class serializable if all of the following are true:

● It implements the interface Serializable
● Its data fields are either primitive values or objects of a serializable class
● Its direct superclass, if any, is serializable and defines a default constructor

Binary Files F-23

Any subclass of a serializable class is serializable.
We will call an object serializable if it belongs to a class that is either serializable or a subclass

of a serializable class.

F.35 Arrays. Java treats arrays as objects, and they are serializable. You can use writeObject to write
an array to a binary file, and you can use readObject to read it from the file. For example, suppose
that group is an array of Student objects. If toFile is an instance of ObjectOutputStream that is
associated with a binary file, we can write the array to that file by executing the statement

toFile.writeObject(group);

After creating the file, we can read the array by using the statement
Student[] myArray = (Student[])fromFile.readObject();

where fromFile is an instance of ObjectInputStream that is associated with the file that we just created.

Note: Object serialization
As we mentioned, object serialization is the process Java uses to represent an entire object as
a sequence of bytes. Any serialized object receives a serial number as it is written to a binary
file. If later we write the same object to the file, only its serial number is written. This
approach saves space on the file, as the object’s data is not written again. Moreover, when the
first instance of the object is read from the file, both its data and serial number are read and a
new object is created within the program. However, when a duplicate serial number is read,
Java creates a reference to the object—that is, an alias—instead of a duplicate object.

Shouldn’t all objects be serialized to save file space? Clearly, the designers of Java did
not think so. Some objects simply should not be saved in a file. Perhaps more importantly,
serialized objects are easy to access, and for security reasons, easy access is not always a
good idea. Thus, the interface Serializable gives programmers the option of allowing or
preventing the serialization of objects of their classes.

If an object is not serializable, you cannot use writeObject to write it to a binary file.
Instead, you must write each of its data fields to the file.

Note: Strings are serializable objects
We know that strings are objects of the class String. Since String implements the interface
Serializable, we can use the method writeObject instead of writeUTF to write strings to a
binary file.

Note: The classes ObjectOutputStream and ObjectInputStream have methods to write
and read primitive values when working with a binary file. You can consult the online docu-
mentation for the Java Class Library to learn about these methods.

F-24 APPENDIX F File Input and Output

Note: Checked exceptions thrown by a selection of classes and methods in the Java
Class Library

Class and Methods Exceptions (All are in the package java.io, except for
ClassNotFoundException)

DataInputStream
Constructor
close
readInt, other read

methods

None
IOException
EOFException, IOException

DataOutputStream
Constructor
close, flush, writeInt,

other write methods

None
IOException

File
Constructor, canRead,
canWrite, delete,
exists, getName,
getPath, length

None

FileInputStream
Constructor
close

FileNotFoundException
IOException

FileOutputStream
Constructor
close

FileNotFoundException
IOException

ObjectInputStream
Constructor
close
readObject

IOException, StreamCorruptedException
IOException
java.lang.ClassNotFoundException, InvalidClassException,
OptionalDataException, StreamCorruptedException,
IOException

ObjectOutputStream
Constructor, close
writeObject

IOException
InvalidClassException, IOException,
NotSerializableException

PrintWriter
Constructor
close, flush
print, println

FileNotFoundException
IOException
None

Scanner
Constructor
Other methods

FileNotFoundException
None

Appendix

GDocumentation andProgramming Style
Contents
Naming Variables and Classes
Indenting
Comments

Single-Line Comments
Comment Blocks
When to Write Comments
Java Documentation Comments
Running javadoc

Prerequisite
Appendix A Java Essentials

Most programs are used many times and are changed either to fix bugs or to
accommodate new demands by the user. If the program is not easy to read and to
understand, it will not be easy to change. It might even be impossible to change
without heroic efforts. Even if you use your program only once, you should pay some
attention to its readability. After all, you will have to read the program to debug it.

In this appendix, we discuss three techniques that can help make your program
more readable: meaningful names, indenting, and comments.

Naming Variables and Classes

G.1 Names without meaning are almost never good variable names. The name you give to
a variable should suggest what the variable is used for. If the variable holds a count of
something, you might name it count. If the variable holds a tax rate, you might name
it taxRate.

In addition to choosing names that are meaningful and legal in Java, you should
follow the normal practice of other programmers. That way it will be easier for them
to read your code and to combine your code with their code, should you work on a
project with more than one person. By convention, each variable name begins with a
lowercase letter, and each class name begins with an uppercase letter. If the name con-
sists of more than one word, use a capital letter at the beginning of each word, as in
the variable numberOfTries and the class StringBuffer.

Use all uppercase letters for named constants to distinguish them from other
variables. Use the underscore character to separate words, if necessary, as in
INCHES_PER_FOOT.

G-2 APPENDIX G Documentation and Programming Style

Indenting

G.2 A program has a structure: Smaller parts are within larger parts. You use indentation to indicate this
structure and thereby make your program easier to read. Although Java ignores any indentation you
use, indenting consistently is essential to good programming style.

Each class begins at the left margin and uses braces to enclose its definition. For example, you
might write

public class CircleCalculation
{

. . .
} // end CircleCalculation

The data fields and methods appear indented within these braces, as illustrated in the following
simple program:

public class CircleCalculation
{

public static final double PI = Math.PI;

public static void main(String[] args)
{

double radius; // in inches
double area; // in square inches
. . .

} // end main
} // end CircleCalculation

Within each method, you indent the statements that form the method’s body. These statements in
turn might contain compound statements that are indented further. Thus, the program has state-
ments nested within statements.

Each level of nesting should be indented from the previous level to show the nesting more
clearly. The outermost structure is not indented at all. The next level is indented. The structure
nested within that is double indented, and so on. Typically, you should indent two or three spaces at
each level of indentation. You want to see the indentation clearly, but you want to be able to use
most of the line for the Java statement.

If a statement does not fit on one line, you can write it on two or more lines. However, when
you write a single statement on more than one line, you should indent the successive lines more
than the first line, as in the following example:

System.out.println("The volume of a sphere whose radius is " +
radius + " inches is " + volume +
" cubic inches.");

Ultimately, you need to follow the rules for indenting—and for programming style in
general—given by your instructor or project manager. In any event, you should indent con-
sistently within any one program.

Comments

G.3 The documentation for a program describes what the program does and how it does it. The best
programs are self-documenting. That is, their clean style and well-chosen names make the pro-
gram’s purpose and logic clear to any programmer who reads the program. Although you should
strive for such self-documenting programs, your programs will also need a bit of explanation to
make them completely clear. This explanation can be given in the form of comments.

Comments G-3

Comments are notations in your program that help a person understand the program, but that
are ignored by the compiler. Many text editors automatically highlight comments in some way,
such as showing them in color. In Java, there are several ways of forming comments.

Single-Line Comments
G.4 To write a comment on a single line, begin the comment with two slashes //. Everything after the

slashes until the end of the line is treated as a comment and is ignored by the compiler. This form is
handy for short comments, such as

String sentence; // Spanish version

If you want a comment of this kind to span several lines, each line must contain the symbols //.

Comment Blocks
G.5 Anything written between the matching pair of symbols /* and */ is a comment and is ignored by

the compiler. This form is not typically used to document a program, however. Instead, it is handy
during debugging to temporarily disable a group of Java statements. Java programmers do use the
pair /** and */ to delimit comments written in a certain form, as you will see in Segment G.7.

When to Write Comments
G.6 It is difficult to explain just when you should write a comment. Too many comments can be as bad

as too few. Too many comments can hide the really important ones. Too few comments can leave a
reader baffled by things that were obvious to you. Just remember that you also will read your pro-
gram. If you read it next week, will you remember what you did just now?

Every program file should begin with an explanatory comment. This comment should give all
the important information about the file: what the program does, the name of the author, how to
contact the author, the date that the file was last changed, and in a course, what the assignment is.
Every method should begin with a comment that explains the method.

Within methods, you need comments to explain any nonobvious details. Notice the poor com-
ments on the following declarations of the variables radius and area:

double radius; // the radius
double area; // the area

Because we chose descriptive variable names, these comments are obvious. But rather than
simply omitting these comments, can we write something that is not obvious? What units are
used for the radius? Inches? Feet? Meters? Centimeters? We will add a comment that gives this
information, as follows:

double radius; // in inches
double area; // in square inches

Java Documentation Comments
G.7 The Java language comes with a utility program named javadoc that will generate HTML docu-

ments that describe your classes. These documents tell people who use your program or class how
to use it, but they omit all the implementation details.

The program javadoc extracts the header for your class, the headers for all public methods, and
comments that are written in a certain form. No method bodies and no private items are extracted.

G-4 APPENDIX G Documentation and Programming Style

For javadoc to extract a comment, the comment must satisfy two conditions:

● The comment must occur immediately before a public class definition or the header of a pub-
lic method.

● The comment must begin with /** and end with */.

Segment G.12 contains an example of a comment in this style.
You can insert HTML commands in your comments so that you gain more control over

javadoc, but that is not necessary and we have not done so in this book.

G.8 Tags. Comments written for javadoc usually contain special tags that identify such things as the
programmer and a method’s parameters and return value. Tags begin with the symbol @. We will
describe only four tags in this appendix.

The tag @author identifies the programmer’s name and is required of all classes and interfaces.
The other tags of interest to us are used with methods. They must appear in the following order
within a comment that precedes a method’s header:

@param
@return
@throws

We will describe each of these tags next.

G.9 The @param tag. You must write a @param tag for every parameter in a method. You should list
these tags in the order in which the parameters appear in the method’s header. After the @param tag,
you give the name and description of the parameter. Typically, you use a phrase instead of a sen-
tence to describe the parameter, and you mention the parameter’s data type first. Do not use punc-
tuation between the parameter name and its description, as javadoc inserts one dash when creating
its documentation.

For example, the comments

@param code the character code of the ticket category
@param customer the string that names the customer

will produce the following lines in the documentation:

code - the character code of the ticket category
customer - the string that names the customer

G.10 The @return tag. You must write a @return tag for every method that returns a value, even if you
have already described the value in the method’s description. Try to say something more specific
about this value here. This tag must come after any @param tags in the comment. Do not use this tag
for void methods and constructors.

G.11 The @throws tag. Next, if a method can throw a checked exception, you name it by using a @throws
tag, even if the exception also appears in a throws clause in the method’s header. You can list
unchecked exceptions if a client might reasonably catch them. Include a @throws tag for each
exception, and list them alphabetically by name.

G.12 Example. Here is a sample javadoc comment for a method. We usually begin such comments with
a brief description of the method’s purpose. This is our convention; javadoc has no tag for it.

/** Adds a new entry to a roster.
@param newEntry the object to be added to the roster
@param newPosition the position of newEntry within the roster
@return true if the addition is successful

Comments G-5

@throws RosterException if newPosition < 1 or newPosition > 1 + the length
of the roster */

public boolean add(Object newEntry, int newPosition) throws RosterException

The documentation that javadoc prepares from the previous comment appears as follows:

add

public boolean add(java.lang.Object newEntry,
int newPosition)

throws RosterException

Adds a new entry to a roster.
Parameters:

newEntry - the object to be added to the roster
newPosition - the position of newEntry within the roster

Returns:
true if the addition is successful

Throws:
RosterException - if newPosition < 1 or newPosition > 1 + the length of the

roster

To save space in this book, we sometimes omit portions of a comment that we would include in
our actual programs. For example, some methods might have only a description of their purpose,
and some might have only a @return tag. Note that javadoc accepts these abbreviated comments.

Running javadoc
G.13 You run javadoc on an entire package. However, if you want to run it on a single class, you can

make the class into a package simply by inserting the following at the start of the file for the class:
package package_name;

Remember that the package name should describe a relative path name for the directory or folder
containing the files in the package.

To run javadoc, you must be in the folder that contains the package’s folder, but not in the
package folder itself. Then you execute the following command:

javadoc -d document_ folder package_name

Replace document_ folder with the name of the folder in which you want javadoc to place the
HTML documents it produces. The folder must already exist; javadoc will not create it for you.

For example, suppose you want to use javadoc to generate documentation for the class
MyClass. Create a folder to hold a package; for instance, you might call the folder—and the
package—MyStuff. Place the file MyClass.java in the folder MyStuff, and place the following
at the start of the file MyClass.java:

package MyStuff;

The package MyStuff now contains the class MyClass.
Next, create a folder to receive the HTML documents. For example, you might call this folder

MyDocs. Place MyDocs in the folder containing MyStuff. Do not place it within MyStuff.
Finally, use the command cd to change to the directory that contains both MyStuff and MyDocs,

and give the following command:
javadoc -d MyDocs MyStuff

G-6 APPENDIX G Documentation and Programming Style

If you then look in the folder MyDocs, you will see a number of HTML documents whose
names end in .html. You can view these files by using your browser. The HTML documents will
describe the package MyStuff, including the class MyClass.

If you wish, you can use the folder MyStuff in place of MyDocs, so that both the source file
MyClass.java and the HTML documents end up in the same folder.

Further details about javadoc are available at www.oracle.com/technetwork/java/javase/
documentation/index-137868.html.

www.oracle.com/technetwork/java/javase/documentation/index-137868.html

www.oracle.com/technetwork/java/javase/documentation/index-137868.html

Index

() (parentheses)
balancing, 119–123
overriding precedence, 126
precedence rules, A-11–A-12

. (dot), invoking methods, A-4

. (period), invoking methods, A-4
{ } (braces)

balancing, 119–123
forming compound statements, A-20

&& (ampersands), logical AND, A-21
* (asterisk), multiplication

operator, 118, A-10
@ (at sign), comment delimiter, D-4–D-5
^ (caret), exponentiation, 118
= (equal sign), assignment operator,

A-8, A-47–A-48
== (equal signs), comparison operator,

A-21, A-47–A-48
! (exclamation point), negation

operator, A-22
!= (exclamation point, equal), not equal

operator, A-21
< (left angle), less than operator, A-21
<= (left angle, equal), less than or equal

operator, A-21
- (minus sign), subtraction operator,

118, A-10
-- (minus signs), decrement operator,

A-12–A-13
% (percent sign), remainder operator, A-11
? (question mark), sorting wildcard, 197
> (right angle), greater than operator, A-21
>= (right angle, equal), greater than or

equal operator, A-21
/ (slash), division operator, 118,

A-10–A-11
|| (vertical lines), logical OR, A-21–A-22
[] (square brackets), balancing, 119–123
/* */ (slash asterisk), comment

delimiters, G-3
/** */ (slash asterisk), comment

delimiters, D-4–D-5, G-3

+ (plus sign)
addition operator, 118, A-10
concatenation operator, A-17

++ (plus signs), increment operator,
A-12–A-13

2-3 trees, 707–712, 715
2-4 trees, 712–716

A
abstract classes vs. interfaces, D-15–17
abstract data type (ADT)

bags, 5–22, see bags
binary search tree implementation,

629–662
compared with vending machines, 20–21
deques, 260–265
described, 5, 5–6
dictionaries, see dictionaries
graphs, see graphs
heaps, see heaps
iterators, see iterators
lists, see lists
priority queues, 265–269
queues, 245–260, 247
searching, 448–464
sorted lists, see sorted lists
stacks, see stacks
trees, see trees

abstraction, D-3
AbstractQueue class, 294–295
access modifiers, B-6
accessor method, B-6
activation record, 132, 165
adapters, adapter class, C-4–5
add method

adding to chain of nodes, 68–70
addToBackmethod, LinkedDeque class,

296–297
ArrayBag class, 29, 30, 33–35, 54
Bag class, 7, 11
HashedDictionary class, 559–560

OurStack class, 115
addresses, 62
adjacency list, 763–764
adjacency matrix, 762
ADT, see abstract data type (ADT), 5
algebraic expressions, processing with

stacks, 118–132
algorithms. See also specific

implementation
divide and conquer, 222
infix, 131
infix to postfix, 123–128
measuring efficiency of, 89–94
picturing efficiency of, 98–102
sorting, 167

aliases
and arrays, A-47–48
for methods, 115
references and, B-4–5

AList class, 324–326
amortize, 147
ampersand (&) operator, A-21
analysis of algorithms, 90
ancestors, nodes, 572
applications and applets, A-2
arguments, A-4, B-4

and parameters, B-9
passing, B-9–13

arithmetic operators and expressions,
A-10–11

array resizing, bag implementation
using, 50–55

Arraybag class, 2950
array-based implementations

bags, 27–56
described, 27
dictionaries, 498–508
graphs, 62–763
lists, 322–332
of interface ListIterator,

395–402
iterators, 385–388

I-2 INDEX

pros and cons of, 55–56
queues, 278–286
stacks, 145–149

ArrayDeque class, 264–265
ArrayDictionary class, 498–500
ArrayList class, 316–317
arrays

adjacency matrix, 762
of buckets, 235–237
circular, 278–286
described, using, A-44–51
finding midpoint of, 170
implementing ADT bags with

fixed-size, 28–50
list implementations using, 322–332
merging, 222–225
multidimensional, A-49–51
organizing Java methods that sort, 196–

198
parallel, 498
partitions, 204
pivot element in, 228–234
recursively processing, 168–171
resizing, 50–53
searching sorted, 452–460
searching unsorted, 448–452
using to represent heaps, 674–676

Arrays.copyOf method, 52
ArrayStack class, 145–149
ASCII, A-36
assertion error, D-7
assertions, D-6–7
Assignment class, 266–267
assignment compatibilities, A-9
assignment statements, A-8
AssignmentLog class, 266–268
association, D-23
associative arrays, see dictionaries
at sign (@), comments, D-4–5
attributes, class, D-21
auto-boxing, A-52
automatic garbage collection, B-16
average case, 94
AVL trees, 696–707, 715
AVLTree class, 703–704

B
backIndex method, 278–281
bags

adding entries to, 33–35
ADT data type, 11–12

ADT set, 22
array-based implementations, pros and

cons of, 55–56
behaviors of, 6–13
chain implementations, pros and cons

of, 81–82
clients of, 20–21
counting number of times entry appears

in, 72–73
described, 6
designing for invalid, unusual

conditions, 12–13
displaying, 170–171
efficiency of implementations, 102–105
emptying, filling, 9
examples using, 15–20
implementation using array resizing,

50–55
implementation using fixed-size array,

28–50
interface for, 13–15
linked implementation of, 65–74
removing entries from, 42–50
specifying, 7–13
summary about, 22–23
using ADT, 13
viewing contents of, 10

balance, in binary search trees, 657–658
balanced expression, 118
balanced node, 696
balanced search trees

2-3 trees, 707–712
2-4 trees, 712–716
AVL trees, 696–707
binary search trees, 657-658
B-trees, 724
introduction to, 696
red-black trees, 716–723

base class, inheritance and, 436–441
basic operation (of algorithms), 91
behaviors of bags, collections, 6–13
bidirectional, D-23
Big Oh notation, 94–98, 98
Big Omega notation, 98
Big Theta notation, 98
binary files

described, F-3
input and output, F-13–23
overview of, F-13–14
of primitive data, creating, F-14–17
of primitive data, reading, F-18–20
strings in, F-20–21

binary operators, 118, A-10

binary search
of arrays, 459
described, 453
vs. sequential search, 463–464
sorted arrays, 453–460
sorted chains, 462–463

binary search trees
adding entries, 635
balance, 657–658
described, 588–590, 630
efficiency of operations, 656–659
implementation of, 629–662
implementation of ADT dictionary,

659–662
removing entries, 643–656

binary trees, 572, 574, 576–592, 604–607,
607–619, 622–623

BinaryNode class, 606–607
BinaryNodeInterface interface, 605–606
binarySearch method, 458
BinarySearchTree class, 634–635
BinaryTree class, 607
binding, dynamic, C-23
blocks, data, 724
body, method, B-7
Boolean expressions, A-20–23
bound, 198
bounded wildcards, 198
boxing, unboxing, A-52
breadth-first traversals, 578, 738–740
break statement, A-26–27
B-trees, 724
buckets, 235–237, 539–540

C
call, method, A-3
call-by-value, B-9
cardinality, D-23
case label, A-26
case sensitivity of Java, A-5
catch blocks, E-6–7
ceiling of a number, 459
chain of linked nodes

adding to the top, 143
circular doubly linked, 299
circular linked, 289–294
classroom analogy of, 62–65, 74–75
insertion sort of, 208–211
operations on, 340–346
outline of class, 142–145
pros and cons of, 81–82

INDEX I-3

removing items from, 74–78
removing the top, 144–145
retrieving the top, 143–144
searching sorted, 462–463
searching unsorted, 460–462

checked exceptions, E-2, F-24
children, nodes, 572
circular arrays, 278–286
circular doubly linked chains, 299
circular linked chains, 289–294
circular linked implementations,

288–294
class diagrams, D-21
class methods, B-20
class type, A-6
class variable, B-19–21
classes. See also specific class

abstract, vs. interfaces, D-15–D-17
choosing, D-18–23
composition, C-2–5
creating from other classes, C-1–26
defining Java, B-5–21
described, A-3
designing, D-1–24
designing for future needs, 440
encapsulation, D-2–4
enumerations, B-22–25
implementing interfaces, D-8
importing, 53
methods, specifying, D-4–7
methods in Java, B-3–5
nested, 66
and objects generally, B-1–3
outer and inner, 66
polymorphism, C-21–26
programmer-defined exception, E-9–14
reusing, D-23–24
type compatibility, and superclasses,

C-16–21
class-responsibility-collaboration

(CRC) cards
for a class Bag, 7
described, D-20–21

clear method, 115
ArrayBag class, 42–43
Bag class, 9, 12
LinkedBag class, 75–78
LinkedStack class, 148–149
LList class, 357

client interface, D-3
clients, B-3
clustering, hash table collision resolution,

535–536

collaborations among classes, D-20
collections

bags, see bags
described, 5–6

collisions
described, 526
resolving, 530–542, 553–554

color flip, 719
comments, writing for class methods,

 D-4–5
Comparable interface, 458, D-13
compareTo method, 458
comparison operators, A-20–21
compiler warnings, suppressing, 31
complexity

of algorithms, 89
of program constructs, 97

composition, class, C-2
compound statements, A-20
concatenation of strings, A-37–38
concordance, 488
Concordance class, 488–490
conditional operator, A-25–26
connected graphs, 734
constants

defining in interface vs. in class, D-18
described, A-7
named, A-14

constructors, B-21
class ArrayBag, 30–32
described, B-3, B-15
invoking constructors within,

C-9–10
containers, 6
contains method
ArrayBag class, 41–42, 47, 49
Bag class, 10, 12
LinkedBag class, 73–74
LList class, 356

core groups, 29
core methods

described, 29
implementing, 30–36
LinkedBag class, 67–72
testing, 37–40

countdown method, 158–166, 172–174
covariant return types, C-13
CRC cards, see class-responsibility-

collaboration (CRC) cards
cursor, iterators, 371
cycles, path, 733, 742

D
data abstraction, 5–6, D-3
data, iteration of, 158
data fields, B-6

node’s, 65
specifying class’s, 30

data members, B-6
data structures, 5
data types

defined, 5
enumerated, A-28
generic, B-26–29
interfaces as, D-11–12
in Java, A-6

deallocating memory, 78, B-16
decision trees, 584–588
declaration, B-7
decrement, increment operators, A-12–13
default constructors, B-15
delimiters

and balanced expressions, 118
in input data, A-42

depth-first traversals, 578, 738, 740–741
deque, 260
deque method, 260–263, 284–285, 294
descendants, nodes, 572
designing classes, D-1–24
dictionaries

ADT data type, 474–475
array-based implementations, 498–508
described, 471–472
frequency of words, 484–487
hashing as an implementation, 548,

554–564
implementation of ADT, 659–662
iterators, 477–478
Java Class Library: Interface Map,

490–491
Java interface, 476–477, 490–491
linked implementations, 512–518
Map interface, 490–491
search keys, 475
specifications for, 472–478
telephone directory analogy for, 479–484
using, 478–490
vector-based implementations, 508–512

directed graphs (digraphs), 733
directly proportional, 90
displayArray method, 168–171,

185–186
displayChain method, 171
displayChainBackward method, 172

I-4 INDEX

displaying bags, 170–171
divide and conquer algorithms, 222
dot (period), A-4
double hashing, collision resolution,

536–539
double-ended queue, 260, 295–299
doubly linked chains, 295, 299
doubly linked implementation of deque,

295–299
do-while statement, A-34–35
dynamic binding, C-23, C-25–26
dynamic hashing, 553
dynamic type, C-23

E
Edge class, 767–768
edges, of graphs, 732, 764, 767–770
efficiency

of ADT bag implementations, 102–105
of array-based implementations,

102–103
of linked implementations, 103–104
measuring algorithm’s, 89–94
picturing algorithm’s, 98–102
of writing code, 87–88

element, array, A-45
encapsulation, D-2–4
enclosing classes, 66
enqueue method, 275–276, 287, 292–293
ensureCapacity method
AList class, 331–332
ArrayBag class, 54
ArrayQueue class, 285–286

entry, array, A-45
enumerations, A-28–30, B-22–25
equality operator (==), A-48
errors, E-3–4
escape characters, A-36–37
exception handling

checked exceptions, selection of, F-24
finally block, E-15–19
handling it now, E-5–6
inheritance and exceptions, E-14–15
multiple catch blocks, E-6–7
overview, basics of, E-1–4
postpone, E-4–5
programmer-defined exception classes,

E-9–14
throwing exceptions, 13, E-8–9

exclamation mark (!) operator, A-22
expert systems, 584

expression trees, 582–584, 619–620
expressions

and arithmetic operators, A-10–11
conditional operator, A-25
processing algebraic, using stacks, 118–132

extending interfaces, D-14–15

F
Fibonacci numbers problem, 180–182
Fibonacci sequence, 180
file input and output

binary files, F-13–23
preliminaries, F-2–3
text files, F-3–13

final class, C-16
final method, C-15
finally block, E-15–19
first-in, first-out (FIFO), 246
fixed-size arrays, bag implementation

using, 28–50
floating-point numbers, A-7
floor of a number, 459
folding, hash code, 529
for statement, A-32–34
for-each loop, A-34, A-48–49
formal parameter, B-9
frame, activation, 132
FrequencyCounter class, 484–487
frontIndex method, 278–281
functions, measuring efficiency of

algorithms, 89–94

G
game trees, 593–594
garbage collection, automatic, B-16
general trees, 572, 579, 593–594, 621–623
generalization, D-22
generic data types, B-26–29
get methods, B-6
getCurrentSize method
ArrayBag class, 40
Bag class, 8, 11

getEntry method, LList class, 355–356
getFrequencyOf method
ArrayBag class, 40–41, 42
Bag class, 10, 12
LinkedBag class, 72–73

getFront method, 276
ArrayQueue class, 282–283
LinkedDeque class, 298

getIndexOf method, ArrayBag class,
48–49

getNodeAt method, LList class,
345–346, 349

getNodeBefore method,
SortedListInterface class,
418–419, 444

getValue method, HashedDictionary
class, 557–558

grammar
algebraic expressions, 593
Java language, A-5

graphs
examples and terminology,

732–737
implementations of, 761–777
Java interfaces for, 751–755
paths, 744–751
topological order, 741–744
traversals, 737–741

groups, core, 29
growth-rate functions, 90, 92
GuessingGame class, 587–588

H
handling exceptions, E-2
hash codes

computing, 527–530
described, 526

hash functions
described, 524
generally, 527–531
perfect, 525

hash index, 524
hash tables. See also collisions

clustering, collisions, 535–536
dictionaries, 524
sparse, 526

HashedDictionary class, 556–564
hashes, 524
hashing

dictionary implementation that uses,
554–564

double, 537–539
dynamic, 553
introduction to, 524–527
Java Class Library: Classes HashMap,

HashSet, 564–565
load factor, 548–549
open addressing, 549–551
rehashing, 552–553

INDEX I-5

resolving collisions, 530–542, 553–554
separate chaining, 539–542, 551–552
typical, 526

hasNext method, 372–375
head reference, 66–67
headers, method, B-7
heap implementation

adding entries, 677–680
creating a heap, 683–686
heap sort, 686–689
removing the root, 680–683
using arrays to represent heaps, 674–676

heap sort, 238, 686–689
heaps

creating, 683–686
described, 590–591, 673–674
implementation. see heap

implementation
semiheaps, 680

height, of trees, 573
hierarchical organizations, trees, 570–571

I
identifiers

described, A-5
one-letter, 200

if-else statement, A-19–26
immutable objects, 259
implementations. See also specific

implementation
described, D-3–4
efficiency of, 102–104

importing classes, 53, A-17
increment, decrement operators, A12–13
index, dictionary application, 488
index, array, A-44
indirect recursion, 184
infinite loops, A-31–32
infinite recursion, 161, 165
infix expression, 118

checking for balanced delimiters in,
119–123

evaluating, 130–131
transforming to postfix expression,

123–128
information hiding, D-2
inheritance

abstract base class, 441–443
base class, 436–441
described, 433–434, C-5–9
and exceptions, E-14–15

implementation of sorted list, 443–444
invoking constructors within

constructors, C-9–10
multiple, C-16
overriding and overloading methods,

C-11–16
private fields, methods of superclasses,

C-10–11
protected access, 438, C-11
using to implement sorted lists, 434–436

initializing arrays, A-47
inner class

described, 66
iterators, 371, 384
Node with set and get methods,

78–81
inorder predecessor, successor, 646
inorder traversal, trees, 577
InorderIterator class, 616–617
inorderTraverse method, 615–616
input

file, see file input and output
using keyboard and screen, A-15, A-17–19

input stream, A-19
insertion sort, 203–211
instance, B-2
instance variables, B-6
instantiate, B-2
integers, A-7
interface bloat, 389
interfaces. See also specific class or

interface
vs. abstract classes, D-15–17
for ADT bag, 6
for ADT graph, 751–755
binary search trees, 633–635
Java, see Java interfaces
ListIterator, 390–397
naming, D-10
trees, 579–582
for vertices in graph, 765–767
writing generally, 13

invoke, method, A-3
I/O (input/output), A-15
isEmpty method, 115
ArrayBag class, 40
Bag class, 8, 11
LinkedStack class, 148–149
LList class, 350–351

isFull method
ArrayBag class, 29, 35
Bag class, 8, 11
LinkedBag class, 71

Iterable interface, 402–403
iterates, 370
iteration of data, 158
iterations, 370, A-30
iterative insertion sort, 204–206
iterative merge sort, 227
iterative methods vs. recursive methods,

162, 165
iterative selection sort, 199–201
iterative sequential search

vs. recursive search, 464
unsorted arrays, 449–450
unsorted chains, 460–461

IteratorForArrayList class, 386
IteratorForLinkedList class, 383
iterators

array-based implementation,
385–388

described, 370
dictionaries, 477–478
HashedDictionary class, 562–563
inner class, 397–402
interface Iterator, 371–377
Java Class Library: Interface

ListIterator, 402–403
linked implementation of, 381–385
ListIterator, 390–397
reasons for different classes of,

388–389
separate class, 377–380
traversals that use, 615

J
Java

applications and applets, A-2
arithmetic operators and expressions,

A-10–11
arrays, A-44–51
assignment compatibilities, A-9
assignment statements, A-8
Class Math, A-15, A-16
Class String, A-36–40
Class StringBuilder, A-40–41
constants, A-7
enumerations, A-28–30
identifiers, A-5
if-else statement, A-19–26
increment, decrement operators, A-12–13
input, output using keyboard and screen,

A-15–19
loops, A-30–36

I-6 INDEX

named constants, A-14
objects and classes, A-3
packages, B-25
parentheses and precedence rules, A-11–12
primitive types, A-7
reserved words, A-6
sample program, A-3–5
special assignment operators, A-13
stack, 132
type casting, A-9–10
using Scanner to extract pieces of

strings, A-42–44
variables, A-6–7
wrapper classes, A-51–54

Java Application Programming Interface
(API), B-25

Java Class Library, 294–295
Class AbstractQueue, 294–295
Class ArrayList, 316–317
Class LinkedList, 362
Class Stack, 133–134
Class TreeMap, 724
Class Vector, 150–152
Classes HashMap, HashSet, 564–565
Interface Deque, 263–264
Interface Iterable, 402–403
Interface List, 316
Interface Map, 490–491
Interface Queue, 259–260
interface set, 21–22
merge sort, 227–228
method binarySearch, 458
overview of, B-25
quick sort, 234–235
runtime exceptions, E-2

Java classes. See also specific class
defining, B-5–21

Java Collections Framework, 21
Java interfaces

as data types, D-11–12
described, D-7–8
extending, D-14–15
generic types within, D-12–14
implementing, D-10–11
named constants within, D-17–18
writing, D-8–10

K
keywords, A-6

L
last-in, first-out (LIFO) behavior, 114
late binding, C-23
length, array, A-45
level-order traversals, 578
linear linked chains, 288
linear probing, collision resolution,

531–536, 549–550
linked chains

circular, 289–294
removing items from, 74–78
singly and doubly, 295

linked data
described, 62–65
efficiency of linked implementations,

103–104
linked implementations

bags, 65-74
circular linked, 288–294
dictionaries, 512–518
efficiency of, 103–104
iterators, 381–385
queues, 274–278
sorted lists, 416–424
stacks, 141–145

LinkedBag class, 67–72
LinkedList class, 362
LinkedListWithIterator class,

382–383
LinkedStack class, 142–145
ListIterator interface, 390–402
lists

ADT data type, 307–308
array-based implementations, 322–332
described, ADT, 305–306
inheritance and, 433
Java Class Library: Class

LinkedList, 362
Java Class Library: Interface List, 316
linked implementation, 340–362
LList class, 347–348, 356, 360–362
sorted, see sorted lists
specifications for, 306–312
using, 312–316
vector-based implementations, 332–335

ListWithTraversal class, 388–389
literals, A-7
LList class, 347–348, 356, 360–362,

436–441
load factor, 548–549
locate method, HashedDictionary class,

558–559

logical operators, A-21
loops, A-30–36
lower bound

of algorithms, 98
of wildcards, 198

M
main method, B-20
makeRoom method, AList class,

327, 332
map, see dictionaries
Map interface, 490–491
Math class, A-15, A-16
maxheap, 590–591
median-of-three pivot selection, 230
members, B-8
memory

allocating, 70
deallocating, 78, B-16
leak, B-16
measuring efficiency of algorithms,

89–94
merge sort, 222–228
methods. See also specific method

aliases for, 115
core, see core methods
core group of, 29
defining to open stream, F-13
in Java, A-3
Java class, B-3-5
overloading, B-21
preconditions, postconditions, D-5–6
to remove entries from bags, 42–50
specifying class, D-4–7
static fields and, B-19–21
stubs described, 37
testing a class’s, 23
that call other methods, B-17–18
that return instances of their class,

B-19
minheap, 590–591
multidimensional arrays, A-49–51
multiple inheritance, C-16
multiplicity, D-23
multiway if-else statement, A-24–25
multiway search tree of order m, 724
mutable objects, 259
mutator methods, B-6, B-17
mutual recursion, 184

INDEX I-7

N
Name class, B-13–19
named constants, A-14, D-17–18
n-ary trees, 572
navigability, D-23
n-dimensional arrays, A-49–51
nested classes, 66
nested statements, A-23–24
next entry, iteration, 371
NickName class, C-5
Node class, 65–66, 78–81, 340

adding to chain of, 68–70
balanced, 696
in binary trees, 604–607
chain of linked, 142–143
described, 65
for general trees, 621
of graphs, 732
subtree, 573
tree, 572

notation
Big Oh, 95
Polish, reverse Polish, 118
types of, 98
Unified Modeling Language (UML), 7, 10

O
object serialization, F-22–23
object-oriented programming (OOP), B-3
objects

adding to, removing from bags, 6
allocating memory for, 70
and classes generally, B-1–3
grouping, 5
mutable and immutable, 259
nodes, 65

one-dimensional arrays, A-49–51
one-letter identifiers, 200
OOP (object-oriented programming), B-3
open addressing

cost of, 549–551
described, 531
with double hashing, 536–539
with linear probing, 531–536
problem with, 539
with quadratic probing, 536

operations, class, D-21
operator precedence, overriding rules of, 126
operators in assignment statements, A-8

OurMath class, E-10–12
outer class, 66
OutOfMemoryError, 70
output

file, see file input and output
using keyboard and screen, A-15–17

output stream, A-19
overloading methods, B-21
overriding and overloading methods,

C-11–16

P
packages, A-4, B-25
parallel arrays, 498
parentheses (())

overriding rules of operator
precedence, 126
and precedence rules, A-11–12

parents, nodes, 572
parity, hash code, 530
parse trees, 593
partitions

creating for quick sort, 229–232
described, 204
and quick sort, 228

passing arguments, B-9–13
paths

in graphs, 733
trees, 573

peek method, 114–117, 147
pivot element in arrays, 228–234
Poisson distribution, 256
Polish notation, 118
polymorphic variable, C-23
polymorphism, C-21–26
pop method, 114–117, 147–148
postconditions, preconditions of methods,

D-5–6
postfix expression, 118

evaluating, 128–129
transforming infix expression to, 123–128

postorder traversals, trees, 578
precedence

of Boolean operators, A-23
described, 118
overriding operator, 126
parentheses and precedence rules,

A-11–12
successive operators with same, 125

preconditions, postconditions of methods,
D-5–6

prefix expression, 118
preorder traversals, trees, 577
prime numbers, hash code, 530
primitive types, 529, A-6, A-7
priority, 265
priority queue

described, 265–266
implementations of, 299, 592

PriorityQueue class, 268–269
privateSetTree method, BinaryTree

class, 609–612
probe method, HashedDictionary class,

560–562
probe sequence, 532
probing, open addressing with, 532–537
problem size of algorithms, 90
program constructs, complexity of, 97
program counter, 132
program stacks, 132–133
programs

reasons why they create files, F-2
sample Java, A-3–5
writing Java, A-2

prompt, A-18
protected access, inheritance, 438, C-11
pseudo-random numbers, 256
push method, 114–117

Q
quadratic probing, collision resolution,

536, 550–551, 553–554
query method, B-6
queue, 246
addToBack method, 296–297
ADT data type, 247–248
array-based implementation, 278–286
back, 246
backIndex method, 278–281
circular arrays, 278–286
circular linked chains, 289–294
circular linked implementations,

288–294
deque method, 260–263, 277,

284–285, 294
doubly linked implementation of,

295–299
enqueue method, 287, 292–293
ensureCapacity method, 285–286
first-in, first-out (FIFO), 246
front, 246

I-8 INDEX

getFront method, 276, 282–283,
293, 298

isEmpty method, 286, 294
Java Class Library: Class

AbstractQueue, 294–295
linked implementation of, 274–278
methods, demonstrating, 248–249
priority, 265–266, 299
removeFront method, 297–298
vector-based implementation, 286–288

quick sort, 228–235

R
radix sort, 235–237
reading text files, F-8–12
recursion. See also recursive method

array, processing a, 168–171
chain of linked nodes vs. iterative

approach, 419–420
countdown method, 158–160
described, 158–160
Fibonacci numbers problem, 180–182
indirect, 184
infinite, 161, 165
linked chain, processing a, 171–172
mutual, 184
stack instead of, 185–186
tail, 182–184
and Towers of Hanoi problem, 175–180
tracing a method, 158–160

recursive call, 160
recursive insertion sort, 206–208
recursive invocation, 160
recursive merge sort, 223–225
recursive method

debugging, 168
described, 160
vs. iterative methods, 162, 165
returning a value, 166–167
time efficiency of, 172–175
tracing, 162–165, 167

recursive selection sort, 201–202
recursive sequential search, 464

unsorted arrays, 450–451
unsorted chains, 461

red-black trees, 716–723
reference, array, A-48
reference variables, A-6
references

and aliases, B-4–5
described, 62

head, 66–67
tail, 274

rehash method, HashedDictionary
class, 562

rehashing, 552–553
remainder operators, A-11
remove method, 115
ArrayBag class, 29, 30, 43–48, 49
Bag class, 9, 11, 12
HashedDictionary class, 558
LinkedBag class, 75–78
LList class, 354

removeEntry method, ArrayBag class,
46–47

removeFront method, LinkedDeque class,
297–298

removeGap method, AList class,
329–330

replace method, LList class, 355
reserved words, A-6
ResizeArrayBag class, 54–55
resizing arrays, 50–53
responsibilities, class, D-20
return type, method definition, B-7
reusing classes, D-23–24
reverse Polish notation, 118
runtime exceptions, E-2

S
Scanner class, A-17–19, A-42–44
scenarios, D-19
scope, A-30
screen input, output, A-15–17
search keys, 472, 475
search trees, 588

balanced, see balanced search trees
binary, see binary search trees

searches, sequential, 331
searching

binary search trees, 588–590, 635
choosing a method of, 463–464
introduction to, 448
sequential vs. binary search, 463–464
sorted arrays, 452–460
sorted chains, 462–463
unsorted array, 448–452
unsorted chains, 460–462

secondary clustering, hash table collision
resolution, 537

selection sort, 198–202
semiheaps, 680

sentinel, roots, 674
separate chaining, collision resolution,

539–542, 551–554
separate class iterators, 371, 380
SeparateIterator class, 377–380
sequential search

vs. binary search, 463–464
described, 331, 452–453, 462

Set interface, 22
set methods, B-6
Shell sort, 211–214
short-circuit evaluation, A-22
siblings, nodes, 572
signature, method, B-21
simulate method, WaitLine class,

251–252
simulations, time-driven, 250
singly linked chains, 295
sort

described, 167
topological, 742

SortArray class, 196, 200–201
sorted lists

ADT data type, 413
described, 411–412
effective implementation of, 443–444
implementation using, 424–429
linked implementation, 416–424
specifications for, 412–416

SortedArrayDictionary class, 503–508
SortedLinkedDictionary class, 515–518
SortedLinkedList class, 416–424
SortedListInterface interface, 414–416
SortedVectorDictionary class,

508–512
sorting

algorithms, 167
algorithms, comparison of, 214–215
faster methods of, 221–222
heap sort, 238
insertion sort, 203–211
introduction to, 195–196
merge sort, 222–228
organizing Java methods, 196–198
quick sort, 228–235
radix sort, 235–237
selection sort, 198–202
Shell sort, 211–214
stable sorts, 227–228

space complexity of algorithms, 89
special assignment operators, A-13
SquareRootException class, E-9–10
Stack class, 133–134

INDEX I-9

stack overflow, 165
StackInterface, 116–117, 122
stacks

adding to the top, 151
ADT data type, 115
algebraic expressions, processing, 118–132
array-based implementation, 145–149
demonstrating methods for, 116–117
described, 113–114
Java Class Library, Class Stack, 133–134
last-in, first-out (LIFO) behavior, 114
linked implementation, 141–145
peek method, 147
pop method, 114–117, 147–148
program, 132–133
push method, 114–117, 147
vs. recursion, 185–186
removing the top, 147–148, 152
retrieving the top, 147, 151
specifications of, 114–117
top entry, 114, 141–142
vector-based implementation, 149–152

stand-alone programs, A-2
static

fields, B-19–20
methods, B-20–21
type, C-23
variable, B-19–21

StockLedger class, 257–259
StockPurchase class, 262–263
stopping cases, 161
streams

defining method to open, F-13
input and output, A-19, F-2–3

String class, A-36–40
StringBuilder class, A-40–41
strings

in binary files, F-20–21
concatenation of, A-37–38
described, A-4
extracting pieces with Scanner, A-42–44
hash codes, 528–529

stubs, 37
Student class, C-3–4
subscript, array, A-44
subtrees, 573
sumOf method, tracing execution, 166–167
superclasses

private fields, methods of, C-10–11
type compatibility and, C-16–21

suppressing compiler warnings, 31
switch statement, A-26–28
syntax of Java, A-5

T
table, see dictionaries, hash tables
tags, comment, D-4–5
tail recursion, 182–184
tall reference, 274
target, searching, 448
TelephoneDictionary class, 482–484
ternary operator, A-25
testing

ADT bags, 16
class methods, 23
a class’s core methods, 37–40
LinkedBag class methods, 71–72
ResizeArrayBag class methods, 55
stubs, 37

text files
changing existing data in, F-12
creating, F-3–8
described, F-3
reading, F-8–12

throw statement, E-8
throwing exceptions, 13, E-2, E-8–9
throws clause, E-4–5
tight (algorithms), 95
time complexity of algorithms, 89, 97
time-driven simulations, 250
toArray method, 10, 70–71
ArrayBag class, 33, 35–36
Bag class, 12
LList class, 351
viewing bag’s contents, 29

token, A-42
top-level classes, 66
topological order, graphs, 737,

741–744
topological sort, 742
toString method, B-17
Towers of Hanoi problem, recursive

solution to, 175–180
tracing recursive methods, 162–165, 167
traversals

binary trees, 614–615
described, 70
graphs, 737–741
that use an iterator, 615
trees, 576–579

traverse, 370
tree implementations

binary tree, 607–619
expression trees, 619–620
nodes in binary tree, 604–607

trees
binary, 572, 574, 580–592
concepts and terminology, 570–576
described, 57
general, 572, 579, 593–594, 621–623
implementations, see tree

implementations
Java interfaces for, 579–582
search, see search trees
traversals of, 576–579

try-catch blocks, E-5–7
try-finally blocks, E-18
two-dimensional arrays, A-49–51
type cast, A-9–10
type checking, and dynamic binding,

C-25–26
type compatibility, and superclasses,

C-16–21
type parameter, B-26–29

U
unary operators, 118, A-10
unboxing, A-52
unchecked exceptions, E-2
Unicode, A-5
unidirectional, D-23
Unified Modeling Language (UML), D-21

notation, 7, 10
upper bound

of algorithms, 95
of wildcards, 198

use case diagram, D-19
use modifiers, B-7
UTF encoding schemes, F-20

V
valued method, A-3
variables, A-6–7

declarations, A-6
indexed, subscripted, A-45
instance, B-6
local, B-8–9
scope, A-30

vector, 149
Vector, class, 149–152, 321
vector-based implementations

dictionaries, 508–512
lists, 332–335

I-10 INDEX

queues, 286–288
stacks, 149–152

VectorStack class, 150–152
Vertex class, 768–769
vertices, in graphs, 732, 734, 738,

764–768
viewing bag contents, 10
visibility modifiers, B-6
void method, A-3

W
WaitLine class, 251–256
warnings, suppressing compiler, 31
weighted graphs, 733
while statement, 17, A-31–32
white space, A-18

wildcards
question mark (?), 197
bounded, 198

worst case (of algorithm), 94
wrapper classes, A-51–54

	Cover
	Title Page
	Copyright Page
	From the Author
	A Note to Students
	New to this Edition
	Pedagogical Elements
	Resources
	Detailed Content Description
	Acknowledgments
	Contents
	Introduction
	Chapter 1 Bags

	The Bag

	A Bag’s Behaviors

		Specifying a Bag

	An Interface

		Using the ADT Bag
	Using an ADT Is Like Using a Vending Machine
	Java Class Library: The Interface Set

		Chapter 2 Bag Implementations That Use Arrays

	Using a Fixed-Size Array to Implement the ADT Bag

	An Analogy
	A Group of Core Methods
	Implementing the Core Methods
	Testing the Core Methods
	Implementing More Methods
	Methods That Remove Entries

		Using Array Resizing to Implement the ADT Bag

	Resizing an Array
	A New Implementation of a Bag

		The Pros and Cons of Using an Array to Implement the ADT Bag

		Chapter 3 A Bag Implementation That Links Data

	Linked Data

	Forming a Chain by Adding to Its Beginning

		A Linked Implementation of the ADT Bag

	The Private Class Node
	An Outline of the Class LinkedBag
	Defining Some Core Methods
	Testing the Core Methods
	The Method getFrequencyOf
	The Method contains

		Removing an Item from a Linked Chain

	The Methods remove and clear

		A Class Node That Has Set and Get Methods
	The Pros and Cons of Using a Chain to Implement the ADT Bag

		Chapter 4 The Efficiency of Algorithms

	Motivation
	Measuring an Algorithm’s Efficiency

	Counting Basic Operations
	Best, Worst, and Average Cases

		Big Oh Notation

	The Complexities of Program Constructs

		Picturing Efficiency
	The Efficiency of Implementations of the ADT Bag

	An Array-Based Implementation
	A Linked Implementation
	Comparing the Implementations

		Chapter 5 Stacks

	Specifications of the ADT Stack
	Using a Stack to Process Algebraic Expressions

	A Problem Solved: Checking for Balanced Delimiters in an Infix Algebraic Expression
	A Problem Solved: Transforming an Infix Expression to a Postfix Expression
	A Problem Solved: Evaluating Postfix Expressions
	A Problem Solved: Evaluating Infix Expressions

		The Program Stack
	Java Class Library: The Class Stack

		Chapter 6 Stack Implementations

	A Linked Implementation
	An Array-Based Implementation
	A Vector-Based Implementation

	Java Class Library: The Class Vector
	Using a Vector to Implement the ADT Stack

		Chapter 7 Recursion

	What Is Recursion?
	Tracing a Recursive Method
	Recursive Methods That Return a Value
	Recursively Processing an Array
	Recursively Processing a Linked Chain
	The Time Efficiency of Recursive Methods

	The Time Efficiency of countDown
	The Time Efficiency of Computing x[sup(n)]

		A Simple Solution to a Difficult Problem
	A Poor Solution to a Simple Problem
	Tail Recursion
	Indirect Recursion
	Using a Stack Instead of Recursion

		Chapter 8 An Introduction to Sorting

	Organizing Java Methods That Sort an Array
	Selection Sort

	Iterative Selection Sort
	Recursive Selection Sort
	The Efficiency of Selection Sort

		Insertion Sort

	Iterative Insertion Sort
	Recursive Insertion Sort
	The Efficiency of Insertion Sort
	Insertion Sort of a Chain of Linked Nodes

		Shell Sort

	The Java Code
	The Efficiency of Shell Sort

		Comparing the Algorithms

		Chapter 9 Faster Sorting Methods

	Merge Sort

	Merging Arrays
	Recursive Merge Sort
	The Efficiency of Merge Sort
	Iterative Merge Sort
	Merge Sort in the Java Class Library

		Quick Sort

	The Efficiency of Quick Sort
	Creating the Partition
	Java Code for Quick Sort
	Quick Sort in the Java Class Library

		Radix Sort

	Pseudocode for Radix Sort
	The Efficiency of Radix Sort

		Comparing the Algorithms

		Chapter 10 Queues, Deques, and Priority Queues

	The ADT Queue

	A Problem Solved: Simulating a Waiting Line
	A Problem Solved: Computing the Capital Gain in a Sale of Stock
	Java Class Library: The Interface Queue

		The ADT Deque

	A Problem Solved: Computing the Capital Gain in a Sale of Stock
	Java Class Library: The Interface Deque
	Java Class Library: The Class ArrayDeque

		The ADT Priority Queue

	A Problem Solved: Tracking Your Assignments
	Java Class Library: The Class PriorityQueue

		Chapter 11 Queue, Deque, and Priority Queue Implementations

	A Linked Implementation of a Queue
	An Array-Based Implementation of a Queue

	A Circular Array
	A Circular Array with One Unused Location

		A Vector-Based Implementation of a Queue
	Circular Linked Implementations of a Queue

	A Two-Part Circular Linked Chain

		Java Class Library: The Class AbstractQueue
	A Doubly Linked Implementation of a Deque
	Possible Implementations of a Priority Queue

		Chapter 12 Lists

	Specifications for the ADT List
	Using the ADT List
	Java Class Library: The Interface List
	Java Class Library: The Class ArrayList

		Chapter 13 List Implementations That Use Arrays

	Using an Array to Implement the ADT List

	An Analogy
	The Java Implementation
	The Efficiency of Using an Array to Implement the ADT List

		Using a Vector to Implement the ADT List

		Chapter 14 A List Implementation That Links Data

	Operations on a Chain of Linked Nodes

	Adding a Node at Various Positions
	Removing a Node from Various Positions
	The Private Method getNodeAt

		Beginning the Implementation

	The Data Fields and Constructor
	Adding to the End of the List
	Adding at a Given Position Within the List
	The Methods isEmpty and toArray
	Testing the Core Methods

		Continuing the Implementation
	A Refined Implementation

	The Tail Reference

		The Efficiency of Using a Chain to Implement the ADT List
	Java Class Library: The Class LinkedList

		Chapter 15 Iterators

	What Is an Iterator?
	The Interface Iterator

	Using the Interface Iterator

		A Separate Class Iterator
	An Inner Class Iterator

	A Linked Implementation
	An Array-Based Implementation

		Why Are Iterator Methods in Their Own Class?
	The Interface ListIterator

	Using the Interface ListIterator

		An Array-Based Implementation of the Interface ListIterator

	The Inner Class

		Java Class Library: The Interface Iterable

	Iterable and for-each loops
	The Interface List Revisited

		Chapter 16 Sorted Lists

	Specifications for the ADT Sorted List

	Using the ADT Sorted List

		A Linked Implementation

	The Method add
	The Efficiency of the Linked Implementation

		An Implementation That Uses the ADT List

	Efficiency Issues

		Chapter 17 Inheritance and Lists

	Using Inheritance to Implement a Sorted List
	Designing a Base Class

	Creating an Abstract Base Class

		An Efficient Implementation of a Sorted List

	The Method add

		Chapter 18 Searching

	The Problem
	Searching an Unsorted Array

	An Iterative Sequential Search of an Unsorted Array
	A Recursive Sequential Search of an Unsorted Array
	The Efficiency of a Sequential Search of an Array

		Searching a Sorted Array

	A Sequential Search of a Sorted Array
	A Binary Search of a Sorted Array
	Java Class Library: The Method binarySearch
	The Efficiency of a Binary Search of an Array

		Searching an Unsorted Chain

	An Iterative Sequential Search of an Unsorted Chain
	A Recursive Sequential Search of an Unsorted Chain
	The Efficiency of a Sequential Search of a Chain

		Searching a Sorted Chain

	A Sequential Search of a Sorted Chain
	A Binary Search of a Sorted Chain

		Choosing a Search Method

		Chapter 19 Dictionaries

	Specifications for the ADT Dictionary

	A Java Interface
	Iterators

		Using the ADT Dictionary

	A Problem Solved: A Directory of Telephone Numbers
	A Problem Solved: The Frequency of Words
	A Problem Solved: A Concordance of Words

		Java Class Library: The Interface Map

		Chapter 20 Dictionary Implementations

	Array-Based Implementations

	An Unsorted Array-Based Dictionary
	A Sorted Array-Based Dictionary

		Vector-Based Implementations
	Linked Implementations

	An Unsorted Linked Dictionary
	A Sorted Linked Dictionary

		Chapter 21 Introducing Hashing

	What Is Hashing?
	Hash Functions

	Computing Hash Codes
	Compressing a Hash Code into an Index for the Hash Table

		Resolving Collisions

	Open Addressing with Linear Probing
	Open Addressing with Quadratic Probing
	Open Addressing with Double Hashing
	A Potential Problem with Open Addressing
	Separate Chaining

		Chapter 22 Hashing as a Dictionary Implementation

	The Efficiency of Hashing

	The Load Factor
	The Cost of Open Addressing
	The Cost of Separate Chaining

		Rehashing
	Comparing Schemes for Collision Resolution
	A Dictionary Implementation That Uses Hashing

	Entries in the Hash Table
	Data Fields and Constructors
	The Methods getValue, remove, and add
	Iterators

		Java Class Library: The Class HashMap
	Java Class Library: The Class HashSet

		Chapter 23 Trees

	Tree Concepts

	Hierarchical Organizations
	Tree Terminology

		Traversals of a Tree

	Traversals of a Binary Tree
	Traversals of a General Tree

		Java Interfaces for Trees

	Interfaces for All Trees
	An Interface for Binary Trees

		Examples of Binary Trees

	Expression Trees
	Decision Trees
	Binary Search Trees
	Heaps

		Examples of General Trees

	Parse Trees
	Game Trees

		Chapter 24 Tree Implementations

	The Nodes in a Binary Tree

	An Interface for a Node
	An Implementation of BinaryNode

		An Implementation of the ADT Binary Tree

	Creating a Basic Binary Tree
	The Method privateSetTree
	Accessor and Mutator Methods
	Computing the Height and Counting Nodes
	Traversals

		An Implementation of an Expression Tree
	General Trees

	A Node for a General Tree
	Using a Binary Tree to Represent a General Tree

		Chapter 25 A Binary Search Tree Implementation

	Getting Started

	An Interface for the Binary Search Tree
	Duplicate Entries
	Beginning the Class Definition

		Searching and Retrieving
	Traversing
	Adding an Entry

	A Recursive Implementation
	An Iterative Implementation

		Removing an Entry

	Removing an Entry Whose Node Is a Leaf
	Removing an Entry Whose Node Has One Child
	Removing an Entry Whose Node Has Two Children
	Removing an Entry in the Root
	A Recursive Implementation
	An Iterative Implementation

		The Efficiency of Operations

	The Importance of Balance
	The Order in Which Nodes Are Added

		An Implementation of the ADT Dictionary

		Chapter 26 A Heap Implementation

	Reprise: The ADT Heap
	Using an Array to Represent a Heap
	Adding an Entry
	Removing the Root
	Creating a Heap
	Heap Sort

		Chapter 27 Balanced Search Trees

	AVL Trees

	Single Rotations
	Double Rotations
	Implementation Details

		2-3 Trees

	Searching a 2-3 Tree
	Adding Entries to a 2-3 Tree
	Splitting Nodes During Addition

		2-4 Trees

	Adding Entries to a 2-4 Tree
	Comparing AVL, 2-3, and 2-4 Trees

		Red-Black Trees

	Properties of a Red-Black Tree
	Adding Entries to a Red-Black Tree
	Java Class Library: The Class TreeMap

		B-Trees

		Chapter 28 Graphs

	Some Examples and Terminology

	Road Maps
	Airline Routes
	Mazes
	Course Prerequisites
	Trees

		Traversals

	Breadth-First Traversal
	Depth-First Traversal

		Topological Order
	Paths

	Finding a Path
	The Shortest Path in an Unweighted Graph
	The Shortest Path in a Weighted Graph

		Java Interfaces for the ADT Graph

		Chapter 29 Graph Implementations

	An Overview of Two Implementations

	The Adjacency Matrix
	The Adjacency List

		Vertices and Edges

	Specifying the Class Vertex
	The Inner Class Edge
	Implementing the Class Vertex

		An Implementation of the ADT Graph

	Basic Operations
	Graph Algorithms

		Chapter 30 Mutable, Immutable, and Cloneable Objects

	Mutable and Immutable Objects

	Creating a Read-Only Class
	Companion Classes

		Cloneable Objects

	Cloning an Array
	Cloning a Chain
	A Sorted List of Clones

		Appendices

	A. Java Essentials

	Introduction
	Java Basics
	Simple Input and Output Using the Keyboard and Screen
	The if-else Statement
	The switch Statement
	Enumerations
	Scope
	Loops
	The Class String
	The Class StringBuilder
	Using Scanner to Extract Pieces of a String
	Arrays
	Wrapper Classes

		B. Java Classes

	Objects and Classes
	Using the Methods in a Java Class
	Defining a Java Class
	Enumeration as a Class
	Packages
	Generic Data Types

		C. Creating Classes from Other Classes

	Composition
	Inheritance
	Type Compatibility and Superclasses
	Polymorphism

		D. Designing Classes

	Encapsulation
	Specifying Methods
	Java Interfaces
	Choosing Classes
	Reusing Classes

		E. Handling Exceptions

	The Basics
	Handling an Exception
	Throwing an Exception
	Programmer-Defined Exception Classes
	Inheritance and Exceptions
	The finally Block

		F. File Input and Output

	Preliminaries
	Text Files
	Binary Files

		G. Documentation and Programming Style

	Naming Variables and Classes
	Indenting
	Comments

		Index

	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

	Applied Sciences
	Architecture and Design
	Biology
	Business & Finance
	Chemistry
	Computer Science
	Geography
	Geology
	Education
	Engineering
	English
	Environmental science
	Spanish
	Government
	History
	Human Resource Management
	Information Systems
	Law
	Literature
	Mathematics
	Nursing
	Physics
	Political Science
	Psychology
	Reading
	Science
	Social Science
	Liberty University
	New Hampshire University
	Strayer University
	University Of Phoenix
	Walden University

	Home
	Homework Answers
	Archive
	Tags
	Reviews
	Contact
		
	

Copyright © 2024 SweetStudy.com (Step To Horizon LTD)

