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PREFACE 


Biomedical optics is a rapidly growing area of research. Although many universi-
ties have begun to offer courses on the topic, a textbook containing examples and 
homework problems has not been available. The need to fill this void prompted 
us to write this book. 


This book is based on our lecture notes for a one-semester (45 lecture hours) 
entry-level course, which we have taught since 1998. The contents are divided 
into two major parts: (1) fundamentals of photon transport in biological tissue and 
(2) optical imaging. In the first part (Chapters 1 -7) , we start with a brief introduc-
tion to biomedical optics and then cover single-scatterer theories, Monte Carlo 
modeling of photon transport, convolution for broadbeam responses, radiative 
transfer equation and diffusion theory, hybrid Monte Carlo method and diffusion 
theory, and sensing of optical properties and spectroscopy. In the second part 
(Chapters 8-13), we cover ballistic imaging, optical coherence tomography, dif-
fuse optical tomography, photoacoustic tomography, and ultrasound-modulated 
optical tomography. 


When the book is used as the textbook in a course, the instructor may request 
a solution manual containing homework solutions from the publisher. To ben-
efit from this text, students are expected to have a background in calculus 


® and differential equations. Experience in MATLAB or C/C++ is also helpful. 
Source codes and other information can be found at ftp://ftp.wiley.com/public/ 
scLtech_med/biomedical_optics. 


Although our multilayered Monte Carlo model is in the public domain, we 
have found that students are able to better grasp the concept of photon transport in 
biological tissue when they implement simple semiinfinite versions of the model. 
For this reason, we encourage the use of simulations whenever appropriate. 


Because a great deal of material beyond our original lecture notes has been 
added, two semesters are recommended to cover the complete textbook. Alterna-
tively, selected chapters can be covered in a one-semester course. In addition to 
serving as a textbook, this book can also be used as a reference for professionals 
and a supplement for trainees engaged in short courses in the field of biomedical 
optics. 


We are grateful to Mary Ann Dickson for editing the text and to Elizabeth 
Smith for redrawing the figures. We appreciate Sancy Wu's close reading of 


xiii 








XIV PREFACE 


the manuscript. We are also thankful to the many students who contributed to 
the homework solutions. Finally, we wish to thank our students Li Li, Manojit 
Pramanik, and Sava Sakadzic for proofreading the book. 


LIHONG V. WANG, PH.D. 
HSIN-I Wu, PH.D. 








CHAPTER 1 


Introduction 


1.1. MOTIVATION FOR OPTICAL IMAGING 


The most common medical imaging modalities include X-ray radiography, ultra-
sound imaging (ultrasonography), X-ray computed tomography (CT), and mag-
netic resonance imaging (MRI). The discovery of X rays in 1895, for which 
Roentgen received the first Nobel Prize in Physics in 1901, marked the advent of 
medical imaging. Ultrasonography, which is based on sonar, was introduced into 
medicine in the 1940s after World War II. The invention of CT in the 1970s, for 
which Cormack and Hounsfield received the Nobel Prize in Medicine in 1979, 
initiated digital cross-sectional imaging (tomography). The invention of MRI, 
also in the 1970s, for which Lauterbur and Mansfield received the Nobel Prize 
in Medicine in 2003, enabled functional imaging with high spatial resolution. 
Optical imaging, which is compared with the other modalities in Table 1.1, is 
currently emerging as a promising new addition to medical imaging. 


Reasons for optical imaging of biological tissue include 


1. Optical photons provide nonionizing and safe radiation for medical appli-
cations. 


2. Optical spectra—based on absorption, fluorescence, or Raman scatter-
ing—provide biochemical information because they are related to molec-
ular conformation. 


3. Optical absorption, in particular, reveals angiogenesis and hyperme-
tabolism, both of which are hallmarks of cancer; the former is related 
to the concentration of hemoglobin and the latter, to the oxygen satura-
tion of hemoglobin. Therefore, optical absorption provides contrast for 
functional imaging. 


4. Optical scattering spectra provide information about the size distribution 
of optical scatterers, such as cell nuclei. 


5. Optical polarization provides information about structurally anisotropic 
tissue components, such as collagen and muscle fiber. 


Biomedical Optics: Principles and Imaging, by Lihong V. Wang and Hsin-i Wu 
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INTRODUCTION 


TABLE 1.1. Comparison of Various Medical Imaging Modalities 


Characteristics 


Soft-tissue contrast 
Spatial resolution 
Maximum imaging depth 
Function 
Nonionizing radiation 
Data acquisition 
Cost 


X-ray 
Imaging 


Poor 
Excellent 
Excellent 
None 
No 
Fast 
Low 


Ultrasonography 


Good 
Good 
Good 
Good 
Yes 
Fast 
Low 


MRI 


Excellent 
Good 
Excellent 
Excellent 
Yes 
Slow 
High 


Optical 
Imaging 


Excellent 
Mixed" 
Good 
Excellent 
Yes 
Fast 
Low 


"High in ballistic imaging (see Chapters 8-10) and photoacoustic tomography (see Chapter 12); 
low in diffuse optical tomography (see Chapter 11). 


6. Optical frequency shifts due to the optical Doppler effect provide infor-
mation about blood flow. 


7. Optical properties of targeted contrast agents provide contrast for the 
molecular imaging of biomarkers. 


8. Optical properties or bioluminescence of products from gene expression 
provide contrast for the molecular imaging of gene activities. 


9. Optical spectroscopy permits simultaneous detection of multiple contrast 
agents. 


10. Optical transparency in the eye provides a unique opportunity for high-
resolution imaging of the retina. 


1.2. GENERAL BEHAVIOR OF LIGHT IN BIOLOGICAL TISSUE 


Most biological tissues are characterized by strong optical scattering and hence 
are referred to as either scattering media or turbid media. By contrast, optical 
absorption is weak in the 400-1350-nm spectral region. The mean free path 
between photon scattering events is on the order of 0.1 mm, whereas the mean 
absorption length (mean path length before photon absorption) can extend to 
10-100 mm. 


Photon propagation in biological tissue is illustrated in Figure 1.1. The light 
source is spatially a pencil beam (an infinitely narrow collimated beam) and 
temporally a Dirac delta pulse. The optical properties (see Appendix A) of the 
tissue include the following: refractive index n — 1.37, absorption coefficient 
[ia =z 1.4 cm- 1 , scattering coefficient [is = 350 cm"1, and scattering anisotropy 
g = 0.8. The mean free path equals 28 μιτι, corresponding to a propagation time 
of 0.13 ps. The transport mean free path equals 140 μηι, corresponding to a 
propagation time of 0.64 ps. Note how widely the photons spread versus time in 
relation to the two time constants mentioned above. This diffusion-like behavior 
of light in biological tissue presents a key challenge for optical imaging. Various 
techniques have been designed to meet this challenge. 
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Figure 1.1. Snapshots of the simulated photon density distribution in a piece of biological 
tissue projected along the y axis, which points out of the paper. 


1.3. BASIC PHYSICS OF LIGHT-MATTER INTERACTION 


Absorption of a photon can elevate an electron of a molecule from the ground 
state to an excited state, which is termed excitation. Excitation can also be caused 
by other mechanisms, which are either mechanical (frictional) or chemical in 
nature. When an electron is raised to an excited state, there are several possi-
ble outcomes. The excited electron may relax to the ground state and give off 
luminescence (another photon) or heat. If another photon is produced, the emis-
sion process is referred to as fluorescence or phosphorescence, depending on the 
lifetime of the excited electron; otherwise, it is referred to as nonradiative relax-
ation. Lifetime is defined as the average time that an excited molecule spends in 
the excited state before returning to the ground state. The ratio of the number of 
photons emitted to the number of photons absorbed is referred to as the quantum 
yield of fluorescence. If the excited molecule is near another molecule with a sim-
ilar electronic configuration, the energy may be transferred by excitation energy 
transfer—the excited electron in one molecule drops to the ground state while 
the energy is transferred to the neighboring molecule, raising an electron in that 
molecule to an excited state with a longer lifetime. Another possible outcome is 
photochemistry, in which an excited electron is actually transferred to another 
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Figure 1.2. Jablonski energy diagram showing excitation and various possible relaxation 
mechanisms. Each hv denotes the photon energy, where subscripts A, F, P, and R denote 
absorption, fluorescence, phosphorescence, and Raman scattering, respectively. 


molecule. This type of electron transfer alters the chemical properties of both the 
electron donor and the electron acceptor, as in photosynthesis. 


A Jablonski energy diagram describing electronic transitions between ground 
states and excited states is shown in Figure 1.2. Molecules can absorb photons 
that match the energy difference between two of their discrete energy levels, 
provided the transitions are allowed. These energy levels define the absorption 
and the emission bands. 


Fluorescence involves three events with vastly different timescales. Excita-
tion by a photon takes place in femtoseconds (1 fs = 10-15 s, about one optical 
period). Vibrational relaxation (also referred to as internal conversion) of an 
excited-state electron to the lowest vibrational energy level in the excited state 
lasts for picoseconds (1 ps = 10~12 s) and does not result in emission of a photon 
(nonradiative). Fluorescence emission lingers over nanoseconds (1 ns = 10~9 s). 
Consequently, fluorescence lifetime is on the order of a nanosecond. 


Phosphorescence is similar to fluorescence, but the excited molecule further 
transitions to a metastable state by intersystem crossing, which alters the electron 
spin. Because relaxation from the metastable state to the ground state is spin-
forbidden, emission occurs only when thermal energy raises the electron to a 
state where relaxation is allowed. Consequently, phosphorescence depends on 
temperature and has a long lifetime (milliseconds or longer). 


Two types of photon scattering by a molecule exist: elastic and inelastic (or 
Raman) scattering. The former involves no energy exchange between the photon 
and the molecule, whereas the latter does. Although both Raman scattering and 
fluorescence alter the optical wavelength, they have different mechanisms. In 
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Raman scattering, the molecule is excited to a virtual state; in fluorescence, the 
molecule is excited to a real stationary state. In both cases, the excited molecule 
relaxes to an energy level of the ground state and emits a photon. The molecule 
may either gain energy from, or lose energy to, the photon. If the molecule gains 
energy, the transition is known as a Stokes transition. Otherwise, the transition 
is known as an anti-Stokes transition. The scattered photon shifts its frequency 
accordingly since the total energy is conserved. Raman scattering can reveal 
the specific chemical composition and molecular structure of biological tissue, 
whereas elastic scattering can reveal the size distribution of the scatterers. 


1.4. ABSORPTION AND ITS BIOLOGICAL ORIGINS 


The absorption coefficient μα is defined as the probability of photon absorp-
tion in a medium per unit path length (strictly speaking, per unit infinitesimal 
path length). It has a representative value of 0.1 cm - 1 in biological tissue. The 
reciprocal of \ia is referred to as the mean absorption length. 


For a single absorber, the absorption cross section oa, which indicates the 
absorbing capability, is related to its geometric cross-sectional area og through the 
absorption efficiency Qa : σα = Qaog. In a medium containing many absorbers 
with number density Na, the absorption coefficient can be considered as the total 
cross-sectional area for absorption per unit volume: 


ν>α = Νασα. (1.1) 


Here, absorption by different absorbers is considered to be independent. 
According to the definition of the absorption coefficient, light attenuates as it 


propagates in an absorbing-only medium according to the following equation: 


— = - μ β Λ χ , (1.2) 


where / denotes the light intensity and x denotes the distance along the light 
propagation direction. Equation (1.2) means that the percentage of light being 
absorbed in interval (JC, X -f- dx) is proportional to the product of \ia and dx; the 
negative sign is due to the decrease of / as x increases. Integrating Eq. (1.2) 
leads to the well-known Beer law 


I(x) = / 0 βχρ( -μ β χ ) , (1.3) 


where IQ is the light intensity at x — 0. Beer's law actually holds even for a 
tortuous path. The transmittance is defined by 


rw = T ,̂ (1.4) 


which represents the probability of survival after propagation over x. 
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Wavelength (nm) 


Figure 1.3. Molar extinction coefficients of oxy- and deoxyhemoglobin versus wave-
length. 


Optical absorption in biological tissue originates primarily from hemoglobin, 
melanin, and water. Hemoglobin has two forms: oxygenated and deoxygenated. 
Figure 1.3 shows the molar extinction coefficients—the extinction coefficient 
divided by ln(10) (see Section 7.3) per unit molar concentration—of oxy- and 
deoxyhemoglobin as a function of wavelength, where the extinction coefficient 
is defined as the probability of photon interaction with a medium per unit path 
length. Although extinction includes both absorption and scattering, absorption 
dominates scattering in hemoglobin. The molar extinction spectra of oxy- and 
deoxyhemoglobin are distinct but share a few intersections, termed isosbestic 
points. At these points, the absorption coefficient of an oxy- and deoxyhe-
moglobin mixture depends only on the total concentration, regardless of the 
oxygen saturation. 


The absorption coefficients of some primary absorbing biological tissue com-
ponents are plotted as a function of wavelength in Figure 1.4. Melanin absorbs 
ultraviolet (UV) light strongly but longer-wavelength light less strongly. Even 
water can be highly absorbing in some spectral regions. At the 2.95-μπι water 
absorption peak, the penetration depth is less than 1 μτη since \xa — 12,694 cm- 1 . 


The absorption coefficients of biological tissue at two wavelengths can be 
used to estimate the concentrations of the two forms of hemoglobin based on the 
following equations: 


μα(λ,) = 1η(10)εοχ(λ1)Γοχ + 1η(10)εα6(λ1)Γα6, (1.5) 


μα(λ2) = ln(10)8ox(X2)Cox + ln(10)ede(X2)Cde. (1.6) 


Here, λι and λ2 are the two wavelengths; εοχ and ede are the known molar 
extinction coefficients of oxy- and deoxyhemoglobin, respectively; Cox and Cde 
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Figure 1.4. Absorption coefficients of primary biological absorbers. 


are the molar concentrations of oxy- and deoxyhemoglobin, respectively, in the 
tissue. Once Cox and Cde are obtained, the oxygen saturation (SO2) and the total 
concentration (CHÖ) of hemoglobin can be computed as follows: 


C0 
so2 = 


CfJb = Cox + Cde-


(1.7) 


(1.8) 


This principle provides the basis for pulse oximetry and functional imaging. Angio-
genesis can increase Cnb, whereas tumor hypermetabolism can decrease SO2. 


1.5. SCATTERING AND ITS BIOLOGICAL ORIGINS 


Scattering of light by a spherical particle of any size can be modeled exactly by 
the Mie theory, which reduces to the simpler Rayleigh theory if the spherical 
particle is much smaller than the wavelength. In a scattering medium containing 
many scatterers that are distributed randomly in space, photons usually encounter 
multiple scattering events. If scatterers are sparsely distributed (where the mean 
distance between particles is much greater than both the scatterer size and the 
wavelength), the medium is considered to be loosely packed. In this case, scat-
tering events are considered to be independent; hence, single-scattering theory 
applies to each scattering event. Otherwise, the medium is considered to be 
densely packed. In this case, scattering events are coupled; thus, single-scattering 
theory does not apply. In this book, we consider only loosely packed scattering 
media. Keep in mind that one must differentiate a single coupled-scattering event 
(which involves multiple particles) from successive independent-scattering events 
(each of which involves a single particle). 
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The scattering coefficient [is is defined as the probability of photon scattering 
in a medium per unit path length. It has a representative value of 100 cm- 1 in bio-
logical tissue. The reciprocal of μν is referred to as the scattering mean free path. 


For a single scatterer, the scattering cross section σν, which indicates the 
scattering capability, is related to its geometric cross-sectional area og through the 
scattering efficiency Qs : as = Qsog. For a medium containing many scatterers 
with number density Ns, the scattering coefficient can be considered as the total 
cross-sectional area for scattering per unit volume: 


\is = Nsas. (1.9) 


The probability of no scattering (or ballistic transmittance T) after a photon 
propagates over path length x can be computed by Beer's law: 


T(x) = ε χ ρ ( - μ , χ ) . (1.10) 


Optical scattering originates from light interaction with biological structures, 
which range from cell membranes to whole cells (Figure 1.5). Photons are scat-
tered most strongly by a structure whose size matches the optical wavelength and 
whose refractive index mismatches that of the surrounding medium. The indices 
of refraction of common tissue components are 1.35-1.36 for extracellular fluid, 
1.36-1.375 for cytoplasm, 1.38-1.41 for nuclei, 1.38-1.41 for mitochondria and 
organelles, and 1.6-1.7 for melanin. Cell nuclei and mitochondria are primary 
scatterers. The volume-averaged refractive index of most biological tissue falls 
within 1.34-1.62, which is greater than the refractive index of water (1.33). 


The extinction coefficient μ,, also referred to as the total interaction coefficient, 
is given by 


μ, = μ« + μ*. ( 1 . 1 1 ) 


The reciprocal of μ, is the mean free path between interaction events. 


Cells 


Nuclei 


Mitochondria 


Lysosomes, vesicles 


Striations in collagen fibrils 
Macromolecular aggregates 


Membranes 


ΙΟμπι 


1 μηι 


0.1 μπ\ 


0.01 μπι 


Figure 1.5. Biological structures of various sizes for photon scattering. 
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1.6. POLARIZATION AND ITS BIOLOGICAL ORIGINS 


Linear birefringence (or simply birefringence), which is also known as double 
refraction, is the most important polarization property. A linearly birefringent 
material has dual principal indices of refraction associated with two linear polar-
ization states of light (orientations of the electric field). The index of refraction 
for light polarization that is parallel with the optical axis of the material (e.g., 
the orientation of collagen fibers) is commonly denoted by ne, while the light is 
referred to as the extraordinary ray. By contrast, the index of refraction for light 
polarization that is perpendicular to the optical axis is commonly denoted by n0, 
while the light is referred to as the ordinary ray. If ne > n0, the birefringence is 
said to be positive. Conversely, if ne < n0, the birefringence is said to be negative. 


Similarly, a circularly birefringent material has dual principal indices of refrac-
tion associated with the left and the right circular polarization states of light; as a 
result, it can rotate a linear polarization. The amount of rotation depends on the 
properties and the concentration of the active material, the optical wavelength, 
and the path length. If the other parameters are known, the amount of rotation 
can reveal the concentration. 


Collagen, muscle fibers, myelin, retina, and keratin have linear birefringence. 
Collagen I is intensely positively birefringent, whereas collagen III is weakly 
negatively birefringent. Amino acids and glucose have circular birefringence; 
amino acids are levorotatory (exhibit left rotation) to linearly polarized light, 
whereas glucose is dextrorotatory (exhibits right rotation). 


1.7. FLUORESCENCE AND ITS BIOLOGICAL ORIGINS 


Fluorescence has the following characteristics: 


1. Fluorescence light is red-shifted (wavelength is increased or frequency is 
reduced) relative to the excitation light; this phenomenon is known as the 
Stokes shift. The primary origins include the initial vibrational relaxations 
and the subsequent inclined fluorescence transitions to higher vibrational 
energy levels of the ground state. Other origins include excited-state reac-
tions, complex formations, and resonance energy transfers. 


2. Emission wavelengths are not only longer than but also independent of 
the excitation wavelength. Although the initial excited state is related to 
the excitation wavelength, a vibrational relaxation to the same intermediate 
state terminates the memory of such a relationship. 


3. Fluorescence light is incoherent even if the excitation light is coherent 
because the uncertain delays in the vibrational relaxations spread over more 
than one light period. 


4. Fluorescence spectrum, when plotted against the frequency, is generally 
a mirror image of the absorption spectrum for the following reasons: 
(a) before excitation, almost all the molecules are at the lowest vibra-
tional energy level of the ground state; (b) before emission, almost all the 
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molecules are at the lowest vibrational energy level of the first excited 
state; (c) the least photon energy for excitation equals the greatest emis-
sion photon energy; (d) the vibrational energy levels in the ground and first 
excited states have similar spacing structures; and (e) the probability of a 
ground-state electron excited to a particular vibrational energy level in the 
first excited state is similar to that of an excited electron returning to a 
corresponding vibrational energy level in the ground state. 


The properties of some endogenous fluorophores are listed in Table 1.2 (where \a 
denotes maximum absorption wavelength; ε denotes molar extinction coefficient; 
\ x denotes maximum excitation wavelength; \m denotes maximum emission 
wavelength; Y denotes quantum yield of fluorescence). Fluorescence can provide 
information about the structure, dynamics, and interaction of a bioassembly. For 
example, mitochondrial fluorophore NADH (nicotinamide adenine dinucleotide, 
reduced form) is a key discriminator in cancer detection; it tends to be more 
abundant in cancer cells owing to their higher metabolic rate. NAD(P)H (nicoti-
namide adenine dinucleotide phosphate, reduced form) has a lifetime of 0.4 ns 
when free but a longer lifetime of 1-3 ns when bound. 


1.8- IMAGE CHARACTERIZATION 


Several parameters are important in the characterization of medical images. In 
this section, the discussion is limited primarily to two-dimensional (2D) images, 
but the principles involved can be extended to one-dimensional (ID) or three-
dimensional (3D) images. 


When a high-contrast point target is imaged, the point appears as a blurred blob 
in the image because any practical imaging system is imperfect. The spatial distri-
bution of this blob in the image is referred to as the point spread function (PSF). 
The PSF is sometimes called the impulse response (or Green's function) because 


TABLE 1.2. Properties of Endogenous Fluorophores at Physiologic pH 


Fluorophore 


Ceroid 


Collagen, elastin 
FAD 
Lipofuscin 


NAD+ 


NADH 


Phenylalanine 
Tryptophan 
Tyrosine 


Xö(nm) 


— 


— 
— 
— 


260 
260 
340 
260 
280 
275 


e(cm_1M_1) 


— 


— 
— 
— 


18 x 103 


14.4 x 103 


6.2 x 103 


0.2 x 103 


5.6 x 103 


1.4 x 103 


λ*(ηηα) 


340-395 


325 
450 


340-395 


— 
290 
340 
— 
280 
— 


Xw(nm) 


430-460 
540-640 


400 
515 


430-460 
540-540 


— 
440 
450 
280 
350 
300 


Y 


— 


— 
— 
— 


— 
— 
— 


0.04 
0.2 
0.1 
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a geometric point can be represented by a spatial Dirac delta function (an impulse 
function). When two point targets are too close to each other, the combined blob 
in the image can no longer be clearly resolved into two entities. The full width 
at half maximum (FWHM) of the PSF is often defined as the spatial resolution. 
Even though an ideal geometric point target cannot be constructed or detected in 
reality, a point target needs only to be much smaller than the spatial resolution. 


Sometimes, a line spread function (LSF), which is the system response to a 
high-contrast geometric line, is measured instead of a PSF. For a linear system, 
an LSF can be related to a PSF on the (JC, y) plane by 


LSF( 
- / 


PSF(;t, y)dy. (1.12) 


Likewise, an edge spread function (ESF), which is the system response to a high-
contrast semiinfinite straight edge, can be measured as well. For a linear system, 
an ESF can be related to an LSF as follows (Figure 1.6): 


ESF(JC) -Γ 
J-c 


LSF(x)dx\ 


LSF(x) = —ESF(x). 
dx 


(1.13) 


(1.14) 


In a linear, stationary, and spatially translation-invariant system, image function 
i(r) equals the convolution of object function o(r) with point spread function 
PSF(r): 


/ ( r ) = o ( r ) * * P S F ( r ) , (1.15) 


1 


0.8 


0.6 


0.4 


0.2 


n 


-


—r 


J - ** 
S 


__ — 


/ 
/ 


/ 
/ 


/ 
/ 


1 


™ "" " Lol' 
ESF 1 


H 


, x» -""" 


\ 


1 ^ " * * * 


-0.5 0.5 


Figure 1.6. Illustration of an LSF and an ESF. 
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where r — (x, y) and ** represents 2D spatial convolution. Equation (1.15) can 
be expressed in several forms: 


i(r)= if o(r')PSF(? -r')dr' 


o(x, / ) P S F ( J C -x',y- y')dx'dy' (1.16) 


o(r-r")PSF(r")dr". 


Taking the 2D Fourier transformation of Eq. (1.15) yields 


/(ρ,ξ) = 0(ρ,ξ)//(ρ,ξ). (1.17) 


Here, p and ξ represent the spatial frequencies; / represents the image spectrum; 
O represents the object spectrum; and H represents the PSF spectrum, which is 
the system transfer function (STF). The amplitude of the STF is referred to as 
the modulation transfer function (MTF): 


ΜΤΡ(ρ,ξ) = |//(ρ,ξ)|. (1.18) 


Similarly, for an LSF, the MTF is based on the ID Fourier transformation: 


(1.19) 
/


+oo 
exp(-j2npx)[LSF(x)]dx 


-oo 


Most imaging systems act as lowpass filters, resulting in blurring of the fine 
structures. 


The visibility of a structure in an image depends on, among other factors, the 
contrast C: 


Δ / 
C = — . (1.20) 


(/) 


While (/) is the average background image intensity, Δ / is the intensity variation 
in the region of interest (Figure 1.7). 


Contrast does not represent a fundamental limitation on visualization since it 
can be artificially enhanced by, for example, subtracting part of the background 
(thresholding) or raising the intensity to some power. Statistical noise does, 
however, represent a fundamental limitation. The signal-to-noise ratio (SNR) 
is defined as 


SNR= — , (1.21) 
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/ 
▲ 


L-JT" 
τ 


Figure 1.7. Illustration of image contrast. 


where σ/ denotes the standard deviation of the background intensity, that is, the 
noise representing the root-mean-squared (rms) value of the intensity fluctuations. 


Ultimately, the ability to visualize a structure depends on the contrast-to-noise 
ratio (CNR), which is defined as 


Δ / 
C N R = — , (1.22) 


07 


which can be rewritten as 


CNR = C SNR. (1.23) 


The field of view (FOV) in an image refers to the extent of the image field 
that can be seen all at once. A tradeoff often exists between FOV and spatial 
resolution. For example, "zooming in" with a camera compromises the FOV for 
resolution. 


The maximum imaging depth in tomography is the depth limit at which the 
SNR or the CNR is acceptable. A tradeoff often exists between maximum imaging 
depth and depth resolution. The ratio of maximum imaging depth to depth reso-
lution, referred to as the depth-to-re solution ratio (DRR), represents the number 
of effective pixels in the depth dimension. A DRR of 100 or greater is considered 
to indicate high resolution in terms of pixel count. 


The frame rate is defined as the number of frames of an animation that are 
displayed per second, measured in frames per second (fps); it measures how 
rapidly an imaging system produces consecutive 2D images. At or above the 
video rate (30 fps), the human eye cannot resolve the transition of images; hence, 
the animation appears smooth. 


In this book, the object to be imaged is typically a scattering medium, which 
can be a biological tissue phantom, a sample (specimen) of biological tissue, or 
an insitu or in vivo biological entity. Sometimes, "sample" refers broadly to the 
object to be imaged. 
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Example 1.1. Derive Eq. (1.13). 


On the basis of ID convolution followed by a change of variable, we derive 


E S F U ) = / LSFU - x') dx = / LSF(x")d(-x") 


= j LSF(x')dx'. (1.24) 
J — oo 


PROBLEMS 


1.1 Derive the following relationship between electromagnetic wavelength λ 
in the unit of μπ\ and photon energy hv in electron volts (eV): \hv — 1.24, 
where h denotes the Planck constant and v denotes the electromagnetic 
frequency. 


1.2 In a purely absorbing (nonscattering) medium with absorption coefficient 
μα, what percentage of light is left after a lightbeam propagates a length 
of L? Plot this percentage as a function of L in MATLAB. 


1.3 In a purely absorbing (nonscattering) medium with absorption coefficient 
μα, derive the average length of survival of a photon. 


1.4 In a purely scattering (nonabsorbing) medium with scattering coefficient 
μs, what percentage of light has not been scattered after the original light-
beam propagates a length of L? 


1.5 In a purely scattering (nonabsorbing) medium with scattering coefficient 
μν, derive the average length of survival of a photon. 


1.6 In a scattering medium with absorption coefficient μα and scattering coef-
ficient μ5, what percentage of light has survived scattering and absorption 
after the original lightbeam propagates a length of L? Of the percentage 
that has been absorbed and scattered, what is the percentage that has been 
absorbed? 


1.7 In MATLAB, draw a 2D diagram to simulate a random walk by follow-
ing the subsequent steps: (1) start the point at (0,0); (2) sample a random 
number x\ that is evenly distributed in interval (0,1]; (3) determine a step 
size by s = lOOlnQcj); (2) sample a random number X2 that is evenly dis-
tributed in interval (0,1]; (4) determine an angle by α = 2π*2; (5) move 
the point by step size s along angle a; (6) repeat steps 2-5 20 times to 
obtain a trajectory; (7) repeat steps 1-6 3 times to trace multiple trajec-
tories. 


1.8 Derive the oxygen saturation SO2 and the total concentration of hemo-
globin CHÖ based on Eqs. (1.5) and (1.6). 
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1.9 Download the data for the molar extinction coefficients of oxy- and deoxy-
hemoglobin as a function of wavelength from the Web (URL: http://omlc. 
ogi.edu/spectra/) and plot the two curves in MATLAB. 


1.10 Download the data for the molar extinction coefficients of oxy- and deoxy-
hemoglobin as a function of wavelength from the Web (URL: http://omlc. 
ogi.edu/spectra/). Download the data for the absorption coefficient of pure 
water as a function of wavelength as well. Using physiologically repre-
sentative values for both oxygen saturation SO2 and total concentration of 
hemoglobin CHÖ* compute the corresponding absorption coefficients. Plot 
the three absorption spectra on the same plot in MATLAB. Identify the 
low-absorption near-IR window that provides deep penetration. 
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CHAPTER 2 


Rayleigh Theory and Mie Theory 
for a Single Scatterer 


2.1. INTRODUCTION 


Both the Rayleigh and the Mie theories, which are based on the Maxwell 
equations, model the scattering of a plane monochromatic optical wave by a 
single particle. Even if the particle size is much greater than the optical wave-
length, the wave is diffracted by the particle with an effective cross section that 
is usually different from the geometric cross section. The Rayleigh theory is 
applicable only to particles that are much smaller than the optical wavelength, 
whereas the Mie theory is valid for homogeneous isotropic spheres of any size. 
The Mie theory reduces to the Rayleigh theory when the particle is much smaller 
than the wavelength. 


2.2. SUMMARY OF RAYLEIGH THEORY 


The Rayleigh theory (Appendix 2A) models the scattering of light by particles 
that are much smaller than the optical wavelength. Figure 2.1 shows the spherical 
polar coordinates used for light scattering. The incident light propagates along 
the z axis; the scatterer is located at the origin; field point P is located at (r, θ, φ). 
The distribution of the scattered light intensity for unpolarized incident light is 
given by 


( l+cos29)fc4 |q | 2 , 
/<>, Θ) = —2 /0. (2.1) 


Here, a denotes the polarizability of the particle; /o denotes the incident light 
intensity; k denotes the propagation constant (also referred to as the magnitude of 
the wavevector or the angular wavenumber) in the background medium. We have 


k=2-^, (2.2) 
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* y 


Figure 2.1. Spherical polar coordinates used for light scattering, where Θ denotes the 
polar angle and φ denotes the azimuthal angle. 


where nt, denotes the refractive index of the background medium and λ denotes 
the wavelength in vacuum. Substituting Eq. (2.2) into Eq. (2.1), we obtain /(r, Θ) 
a l/λ4. This strong wavelength dependence explains the blue sky in broad day-
light because blue light is scattered much more strongly than red light. 


The scattering cross section is given by 


Snk4\a\2 
(2.3) 


The polarizability of a sphere with radius a is given by 


4i + 2 
(2.4) 


where nre\ is the relative refractive index of the particle: 


"rel = — · 
nb 


(2.5) 


Here, ns is the refractive index of the sphere and nt, is the refractive index of 
the background. Substituting Eq. (2.4) into Eq. (2.3), we obtain 


8πα x 2 V 4 
a. = 


<ι - 1 
Λ«ι + 2 


(2.6) 


where size parameter x is defined as 


x = ka. (2.7) 
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Substituting Eqs. (2.7) and (2.2) into Eq. (2.6), we obtain os oc a6/\4. From 
Eq. (2.6), the scattering efficiency is given by 


0* = ΊΓ 
Sx4 ' * ' l2 »rel ~ 1 


i L + 2 'rel 
(2.8) 


The scattering efficiency depends only on x and ηκ\. If nre\ is close to unity, 
Eq. (2.8) reduces to 


32JC4 


Qs = ^ - K e i - l | 2 · (2.9) 


Note that rcrei can be complex, in which case the imaginary part is responsible 
for absorption. 


2.3. NUMERICAL EXAMPLE OF RAYLEIGH THEORY 


The Rayleigh theory can compute scattering cross section os and scattering effi-
ciency Qs. As an example, the following parameters are given: 


1. Diameter of sphere: 2a = 20 nm 
2. Wavelength in vacuum: λ = 400 nm 
3. Refractive index of sphere: ns = 1.57 
4. Refractive index of background: n^ — 1.33 
5. Specific weight of sphere: ρ̂  = 1.05 g/cm3 


6. Specific weight of background: p^ = 1.00 g/cm3 


7. Concentration of spheres in background by weight: Cwt = 1 x 10~5 


We compute in SI units as follows: 


1. Propagation constant in background medium: k = Inn^/X = 2.09 x 107 
m-1. 


2. Relative refractive index of sphere: nre\ — ns/ni, — 1.18. 
3. Size parameter: x = ka = 0.209. 
4. From Eq. (2.6), σν = 2.15 x 10~20 m2. 
5. From Eq. (2.8), Qs = 6.83 x 10~5. 
6. Compute the number density of scatterers Ns. For a sphere, the mass density is 


Ps = ms/Vs, where ms denotes the mass and Vs denotes the volume—Vs = 
(4/3)πα3. For the background, the mass density is p^ = my, j V&, where m^ is 
the total mass of the background and V& is the total volume of the background. 
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The concentration by weight is Cwt — (NsVb)ms/mi,. Therefore, we have 
Ns = Cwt(9h/ps)/Vs = 2.27 x 1018 m~3. 


7. From Section 1.5, μ5 = Nsos = 0.0488 m _ l . 


We can implement the Rayleigh theory with the following MATLAB script: 


% Rayleigh scattering 
% Use SI units 


diameter=input('Diameter of sphere (e.g., 20 nm):')*1e-9; 
radius=diameter/2; 
lambda=input('Wavelength (e.g., 400 nm):')*1e-9; 
n_sphere=input('Refractive index of sphere (e.g., 1.57):'); 
n_background=input('Refractive index of background (e.g., 1.33):'); 
w_sphere=input('Specific weight of sphere(e.g., 1.05 g/cc):')*1e3; 
w_background=input("Specific weight of background(e.g., 1 g/cc):')*1e3; 
concentration=input('Concentration by weight (e.g., 1e-5):'); 


k=2*pi*n_background/lambda 
x=k*radius 
n_rel=n_sphere/n_background 


Qs = 8*x A 4 /3*abs( (n_rer2 - 1 ) / (n_re l A 2 + 2) )Λ2 
sigma_s=Qs*pi*radiusΛ2 


vol_sphere = 4*p i /3* rad ius"3 
N_s=concentration*w_background/(vol_sphere*w_sphere) 
mu_s=N_s*sigma_s 


% Output resu l t s 
{'wavelength(nm) ' ,'Qs ( - ) V m u s ( /cm) ' ; lambda*1e9, Qs, mu_s/1e2} 


2.4. SUMMARY OF MIE THEORY 


The Mie theory (Appendix 2B) models the scattering of light by a spherical 
particle of any radius a. The sphere is made of homogeneous and isotropic 
material and is irradiated by a plane monochromatic wave. In practice, we can 
treat the incident wave as a plane wave if the wavefront is much wider than both 
the wavelength and the particle size. 


Application of the Mie theory is straightforward. The scattering efficiency 
Qs and the scattering anisotropy g (defined by g = (cosG)) can be computed 
as follows: 


2 °° 


Qs = -2 Σ ( 2 / + 1}(ι^ι2 + ι^/i2)' (2·10) 


^ ^ Ϊ Σ [ Τ Τ Γ R e ^ > + * ' * ' + > ) + mh^01^} (2·η) 
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Size parameter x = ka. Coefficients ai and b[ are given by 


Ψ/ΟΟΨ/00 - Ππ;ΐΨ/Ο0Ψ/(*) 
0/ = 


bi = 


ΨϋΟζ/(*)-Λι*ιΨ/ϋΟζ(*) 
(2.12) 


πι*ιΨί(3θζ/(*)-Ψ/ϋΟζί(*) ' 


where superscript prime denotes first-order differentiation and size parameter y 
is defined by 


2nnsa y = nrdx = . (2.13) 


The Riccati-Bessel functions are defined by 


' π ζ \ ΐ / 2 


< π ζ \ ΐ / 2 


Ψ/(ζ) - zji(z) = ( y ) ' 7/+i/2(z) - St(z), (2.14) 


X/(z) = -zyiiz) = - ( y ) F/+i/2(z) = Q(z), (2.15) 


ζ/ω = Ψ/ω + ιχ/ω = zApfe) = ( y ) , / 2 #/(+ί/2ω. (2·16> 
Here, / and I + \ are the orders; ji( ) and y/( ) denote the spherical Bessel 
functions of the first and second kind, respectively; 7/( ) and K/( ) denote the (2) 
Bessel functions of the first and second kind, respectively; h) {) denotes the 
spherical Hankel function of the second kind; //, }{ ) denotes the Hankel function 
of the second kind; and 5/() and C/() are alternative symbols that are commonly 
used. Note that 


A/(2)() = 7/( ) - i > ( ) , (2.Π) 


/ / / 2 ) ( ) = J / O - i T / O . (2.18) 


If ttrei is complex, the extinction instead of scattering efficiency that also contains 
a component representing absorption can be computed. 


2.5. NUMERICAL EXAMPLE OF MIE THEORY 


For a spherical particle of any size, the Mie theory can compute the scattering 
efficiency Qs, the scattering anisotropy g, and the scattering cross section os. 
For a scattering medium, we can further compute the scattering coefficient μ5 
and the reduced scattering coefficient μ^. When the Mie theory is implemented 
in MATLAB or another high-level computer language, the following derivative 
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identities are useful: 


J,'(z) = --Ji(z) + Ji-dz). (2 
z 


y;(z) = --Yi(z) + Yi-\(z)· (2 


An example MATLAB script is shown below: 


% Mie theory 
% Use SI units 


diameter = input('Diameter of sphere (e.g., 579 nm):')*1e-9; 
radius = diameter/2; 
lambda = input('Wavelength (e.g., 400 nm):')*1e-9; 
n_s = input('Refractive index of sphere (e.g., 1.57):'); 
n_b = input('Refractive index of background (e.g., 1.33):'); 
w_s = input('Specific weight of sphere(e.g., 1.05 g/cc):')*1e3; 
w_b = input('Specific weight of background(e.g., 1.0 g/cc):')*1e3; 
concentration = input('Concentration by weight (e.g., 0.002):'); 


k = 2*pi*n_b/lambda 
x = k*radius 
n_rel = n_s/n_b 
y = n_rel*x 


% Calculate the summations 
err = le-8; 
Qs = 0; 
gQs = 0; 
for n = 1:100000 


Snx = sqrt(pi*x/2)*besselj(n+0.5,x); 
Sny = sqrt(pi*y/2)*besselj(n+0.5,y); 
Cnx = -sqrt(pi*x/2)*bessely(n+0.5,x); 
Zetax = Snx+i*Cnx; 


% Calculate the first-order derivatives 
Snx_prime = - (n/x)*Snx+sqrt(pi*x/2)*besselj(n-0.5,x); 
Sny_prime = - (n/y)*Sny+sqrt(pi*y/2)*besselj(n-0.5,y); 
Cnx_prime = - (n/x)*Cnx-sqrt(pi*x/2)*bessely(n-0.5,x); 
Zetaxprime = Snx_prime + i*Cnx_prime; 


an_num = Sny_prime*Snx-n_rel*Sny*Snx_prime; 
an_den = Sny_prime*Zetax-n_rel*Sny*Zetax_prime; 
an = an_num/an_den; 


bn_num = n_rel*Sny_prime*Snx-Sny*Snx_prime; 
bn_den = n_rel*Sny_prime*Zetax-Sny*Zetax_prime; 
bn = bn_num/bn_den; 


Qs1 = (2*n+1)*(abs(an)^2+abs(bn)A2); 
Qs = Qs+Qs1; 
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if Π > 1 
gQsl = (n-1)*(n+1)/n*real(an_1*conj(an)+bn_1*conj(bn))... 


+(2*n-1)/((n-1)*n)*real(an_1*conj(bn_1)); 
gQs = gQs+gQs1; 


end 


an_1 = an; 
bn_1 = bn; 


if abs(Qs1)<(err*Qs) & abs(gQs1)<(err*gQs) 
break; 


end 
end 


Qs = (2/xA2)*Qs; 
gQs = (4/x"2)*gQs; 
g = gQs/Qs; 


vol_s = 4*pi/3*radiusA3 
N_s = concentration*w_b/(vol_s*w_s) 
sigma_s = 05*ρί*Γ3αίυ8Λ2; 
mu_s = N_s*sigma_s 


mu_s_prime = mu_s*(l-g); 


% Output resul ts 
{'wavelength(nm)','Qs ( - ) V g ( - ) V m u s ( /cm)' , 'mus_prime(/cm)' ; . . . 


lambda*1e9,Qs,g,mu_s*1e-2,mu_s_prime*1e-2} 


Below, we present a numerical example with the following inputs: 


1. Diameter of sphere: 2a = 579 nm 
2. Wavelength: λ = 400 nm 
3. Refractive index of sphere: ns == 1.57 
4. Refractive index of background: η\, = 1.33 
5. Specific weight of sphere: ps = 1.05 g/cm3 


6. Specific weight of background: p^ = 1.0 g/cm3 


7. Concentration of spheres in the solution by weight: Cwt = 0.002 


The MATLAB script gives the following outputs: Qs = 2.03, g = 0.916, \is = 
100 cm"1, and μ̂  = 8.40 cm"1. 


In Figure 2.2, Qs and g, which are calculated using a modified version of the 
MATLAB program presented above, are plotted against ka, where ns = 1.40 and 
nh = 1.33. Note that g is less than unity even for large x values. 


APPENDIX 2A. DERIVATION OF RAYLEIGH THEORY 


The Rayleigh theory is derived here. The polarizability a is defined as the pro-
portionality constant between the induced oscillating dipole moment ρβχρ(ιωί) 
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(b) x - ka 


Figure 2.2. (a) Qs versus ka, where the dashed line represents the asymptote from the 
Rayleigh theory; (b) anisotropy g versus ka. 


and the electric field of the incident linearly polarized wave Εο^χρ(ίωί), where 
ω denotes angular frequency and t denotes time: 


p = VLEQ. (2.21) 


On the basis of the dipole radiation theory for a <^ λ, the electric field of the 
scattered wave in the far field (r > λ) is 


k2puxvy ikr t, = e (2.22) 
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where γ is the angle between the directions of the scattered light propagation and 
the dipole oscillation. From Eq. (2.21) and (2.22), the scattered light intensity is 


9 £4|/?|2sin2 γ £4 |a |2sin2y 7 &4|al2sin2y / = \E\2 = — ^ - Y- = —L» L|£0|2 = _Ji L/0f ( 2 2 3 ) 


where IQ is the incident light intensity. 
The incident light is assumed to propagate in the positive z direction. Thus, its 


electric field lies on the xy plane. We express both the unit vector of polarization 
p and the unit vector that points to the field point P from the scatterer at the 
origin r in terms of the unit vectors of the Cartesian coordinates, (ex, ey, ez): 


p = ex cos ψ + ey sin ψ, (2.24) 


r = ex sin Θ cos φ -f ey sin Θ sin φ -f ez cos Θ. (2.25) 


Thus, we obtain 


cosy = p · r = sinθcos(φ — ψ), (2.26) 


which leads to 


sin2 Y = 1 - cos2 γ = 1 - sin2 Θ c o s 2 ^ - ψ). (2.27) 


If the incident light is unpolarized, sin2 y needs to be averaged over angle ψ: 


(sin2 y) = 1 - - sin2 Θ = - (1 + cos2 Θ). (2.28) 


Hence 


£ 4 | a | 2 ( l+cos 2 0) 
/(r, Θ) - 2 r 2 -/o, (2.29) 


which is Eq. (2.1). 
The total scattering cross section σ̂  is defined as 


os = - I 7(Γ,θ)Γ2ί/Ω. (2.30) 


Evaluating Eq. (2.30) with differential solid angle element dQ = sin θί/θ^φ, we 
obtain 


a , f l + c o s 2 0 8π^4|α|2 σ, = 2πΓ |α | ζ / sinOJO = — , (2.31) t4|a|2 Γ 
Jo 


which is Eq. (2.3). 
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APPENDIX 2B. DERIVATION OF MIE THEORY 


The Mie theory is an exact solution of the Maxwell equations for a plane 
monochromatic electromagnetic wave scattered by a homogeneous sphere of 
radius a with an isotropic relative index of refraction nrt\. An abbreviated deriva-
tion of the Mie theory is presented here. The general idea is to (1) solve the 
Maxwell equations inside and outside the sphere with undetermined coefficients 
in the solution expansions and (2) determine these coefficients by applying bound-
ary conditions on the spherical surface. The Mie theory for a cylindrical scatterer 
is beyond the scope of this book. 


We assume that all conditions for the following Maxwell equations are met: 


V · E = 0, (2.32) 


V · B = 0, (2.33) 


r) R 


S/xE = , (2.34) 
dt 


V x * = ( - ) - . (235) 


Here, E and B are the electric and magnetic fields, respectively; n is the refractive 
index of the medium; c is the speed of light in vacuum. 


2B.1. Vector and Scalar Wave Equations 


The following vector wave equation for both E and B can be obtained from 
Eqs. (2.32)-(2.35): 


/n\2 32A 


= Ü w ,236) V2A 
where A represents either E or B. Each vector component satisfies the following 
scalar wave equation: 


ν2ψ = (ö) w i237) 


Example 2.1. Derive Eq. (2.36) for E. 


Operating Vx from the left on both sides of Eq. (2.34), we obtain V x 
(V x E) = -3 (V x B)/dt. From V x (V x E) = V(V · E) - V2E = - V 2 £ , 
we get 


9 - dV x B V2E = . (2.38) 
dt 


Substituting Eq. (2.35) into Eq. (2.38), we obtain Eq. (2.36) for E. 
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2B.2. Solution of Scalar Wave Equation 


The standard procedure for solving Eq. (2.37) is by separation of the variables. 
Let Ψ(χ, 0 = X(x)T(t), where x represents the spatial coordinates. Substituting 
this expression into Eq. (2.37) and dividing both sides by XT, we obtain 


V2X /n\2 1 /d2T\ 


The left-hand side of this equation is a function of only x, whereas the right-hand 
side is a function of only t\ thus, the two sides must equal a constant, which 
is termed a separation variable constant', this constant is denoted by — β2. The 
time-dependent part can be expressed as 


(d2T\ 
+ ω2Τ = 0, (2.40) 


where ω = ßc/n. Since ω is the angular frequency of the wave, we have β = 
k = nko, where k and ko are the propagation constants in the medium and in 
vacuum, respectively. The solution of Eq. (2.40) is 


C O S ( 0 / ) . (2.41) 
sinooi J 


The pair of braces represents a linear combination of the two functions inside. 
The spatially dependent part is a scalar Helmholtz equation 


V2X + k2X = 0, (2.42) 


which can be expressed in spherical coordinates as 


- x — [r2— + - (sinO— I + = X + k2X = 0. 
r2dr\ drj r2 sind dd \ 3Θ/ r2 sin2 Θ d<\>2 J 


(2.43) 


Letting X = /?(λ-)Θ(θ)Φ(φ), substituting it into Eq. (2.43), and then dividing the 
equation by /?(Γ)Θ(Θ)Φ(Φ), we obtain 


1 a / 2dR\ 1 3 / . dS\ 1 32Φ f 2 Λ 
-Ϊ \r2— ) + -T ( s inG— 1 + = T + * = 0. 
r2Rdr\ dr ) r 2 0 s in0aOV 3Θ / Γ2Φδίη2θ3φ2 


(2.44) 


Multiplying Eq. (2.44) by r2 sin2 Θ, we see that the third term on the left-hand side 
depends only on φ, whereas the other terms are independent of φ. Thus, we let 


1 32Φ 
φ " ^ 


2 constant = — m . (2.45) 
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Thus, we have 


92Φ 
3φ2 


which has the following solutions: 


+ m2cD = 0, (2.46) 


Φ 
cos(m(|)) 
sin(m$) I * (2.47) 


From condition Φ(0) = Φ(2π), we have m = 0, ± 1 , ±2, The r0-dependent 
part from Eq. (2.44) is 


l a / 7dR\ i a / . a © \ 
—^ r2— I + -^ sinG— ) - -
r2Rdr\ dr r 2 0 s i n 0 a 0 V 9Θ / r 2sin29 


+ r = 0. (2.48) 


Multiplying this equation by r2, we see that the first and fourth terms depend 
only on r, whereas the other terms are independent of r. Letting 


i a 
0sin0äÖ 


we have 


s i n0— -


r2 dr \ dr 


—7Γ- = constant = —/(/ + 1), 
sin20 


+ 
.2 K / + D 


R = 0 


(2.49) 


(2.50) 


and 


d-z2)-
d2@ Λ ^ Θ Γ / ( /+ ! ) - m dz2 dz \ \-z2 


where z = cos θ. The solutions of Eq. (2.50) are 


1θ = 0, (2.51) 


R 
jl(kr) | _ | ji(nk0r) 
yiihr) I I yi(nkQr) 


(2.52) 


Here, / is an integer; ji(x) and yi(x) are the spherical Bessel functions of the 
first and second kinds, respectively, given by 


JiM = J^JIM\/2)W, 


yiM = J 2^Yi+(\/2)(x)-


(2.53) 


(2.54) 
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The solutions of Eq. (2.51) are 


Θ ~ ( ^ ( ; 0 8 θ > } , (2.55) 
l Ö/,m(cOS0) j 


where P/m (cosΘ) and Q\m (cosΘ) are the associated Legendre polynomials of 
the first and second kinds, respectively. 


Recalling that Ψ ( ί , 0 = X(x)T(t) and X = / ? (Γ)Θ(Θ)Φ(Φ) , we obtain the 
solution of the scalar wave equation [Eq. (2.37)] in spherical polar coordinates 
(see Figure 2.1): 


ψ _ | cos(ü>f) ] ί cos(/w<|>) I | ji(nk0r) J J P/,m(cosO) | 
{ sin(ü>r) J [ sin(/w<|>) J { yi(nk0r) J { ß/,m(cos9) J 


We use expO'cof) from the linear combination of the time-dependent factors for 
the phasor expressions of the waves. Of course, we can also use exp(—ι'ωί) 
consistently. Function Qi m (cosO) is dropped off because it has singularities 
at Θ € {0, π}. For a wave inside the sphere, function ylinker) is dropped off 
because ylinker) -» —oo when r -> 0. For an outgoing spherical wave outside 


(2) the sphere, the spherical Hankel function of the second kind h\ {nk^r) is chosen 
because of its asymptotic behavior: 


(2) 


h) (nkor) — exp(—ink$r). (2.57) 
nkor 


Therefore, we use 


*~«HÄ)H*?w>},,-<a,,')· ("8) 
If exp(—ΐωί) is used, the spherical Hankel function of the first kind h) \nkor) 
should be used instead for the outgoing spherical wave. 


2B.3. Theorem Relating Solutions of Scalar and Vector Wave Equations 


From Eq. (2.37), the time-independent scalar wave equation (the scalar Helmholtz 
equation) is given by 


V2X + rc2^X = 0, (2.59) 


which has the following solutions: 


cos(m(|)) 1 [ ji(nkor) } ( 4 ^ ( 2 · 6 0 ) sin(ra<t>) I I hi(nk0r) 
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Similarly, from Eq. (2.36), the time-independent vector equation (the vector 
Helmholtz equation) is given by 


V2A+n2klA = 0. (2.61) 


The solution to the vector Helmholtz equation can be found from the following 
theorem. If X satisfies the scalar wave equation [Eq. (2.59)], vectors Μχ and 
Νχ, defined by 


Mx = V x (rX) and nk0Nx = V x Mx, (2.62) 


must satisfy the vector Helmholtz equation [Eq. (2.61)], where Μχ and Νχ are 
related by 


nk0Mx = V x Nx. (2.63) 


The full components of Μχ and Νχ are 


Μθ 


Μφ 


nkoNr 


nk0Ne 


nk0N^ 


Equations (2.67) can also be expressed as 


1 d / dX\ 1 d2X 
nk0Nr = — - s i n 0 — - — - j - - ^ . (2.70) 


If u and v are two solutions to the scalar wave equation, and Mu, Nu, Mv, and 
Nv are the derived vector fields, the spatial components of the solutions of the 
vector wave equations are 


E = Mv + iNu and B = -(-Mu + iNv). (2.71) 
c 


o, 
1 d(rX) 


rsinG 3φ 
1 d(rX) 


~~r 9Θ ' 
i a * 2HrX)~ r 


1 32(rX) 


~r 3r39 ' 
1 


r sin Θ 
d2(rX) 


+ n2k^r X, 


(2.64) 


(2.65) 


(2.66) 


(2.67) 


(2.68) 


(2.69) 
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The components of E and B can thus be written in terms of the scalar solutions 
u and v and their first and second derivatives. 


Example 2.2. Show that vector Μχ defined by Eq. (2.62) satisfies the vector 
wave equation given by Eq. (2.61). 


Multiplying r and then operating Vx from the left through Eq. (2.59), we obtain 


V x (?V2X) + n2klMx = 0. (2.72) 


From the vector identity 


V[V · (VX x r)] = r(V x VX) - VX(V x r) = 0, (2.73) 


we derive 


V x V x (VX x r) = V[V · (VX x r)] - V2(VX x r) 


= -V 2 (VX x r) . (2.74) 


Also 


V x [V x (VX x r)] = V x [(r · V)VX - ?V2X - (VX · V)r + VX(V · r)] 


= V x [(r · V)VX] - V x [rV2X] - V x [(VX · V)r] 


+ V x [ V X ( V . r ) ] , (2.75) 


The first, third, and fourth terms on the right-hand side can be evaluated as 
follows: 


r · V = r— => V x [(r · V)VX] = V x ( r —VX ) = 0, (2.76) 
Or \ dr ) 


(VX .V)? = V X 4 V x [(VX · V)?] = V x VX = 0, (2.77) 


V · r = 3 => V x [VX(V · r)] = 0. (2.78) 


Therefore, Eq. (2.75) becomes 


V x [V x (VX x r)] = - V x (rV2X). (2.79) 


From Eqs. (2.74) and (2.79), we obtain 


V2(VX x r) = V x (?V2X). (2.80) 


We also obtain 


V2MX = V2[V x (rX)] = V2[VX x r 4- X(V x r)] = V2(VX x r). (2.81) 
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Merging Eqs. (2.72), (2.80), and (2.81) yields 


V2Mx+n
2klMx = 0, (2.82) 


which shows that Μχ is a valid solution of the vector wave equation. 


Example 2.3. Verify the relationships in Eqs. (2.64)-(2.66). 


From the vector operation of curl in spherical coordinates 


V X V : 


we obtain 


f 


r sin0 
9 9Ve — (snGVd.) 
9Θ φ 9φ 


φ Γ 9 dVr~ + - - ( r V e ) - - ^ 
r \_dr 9Θ _ 


Θ 
+ -


r 


' 


M x = V x (rX) ■■ 
Θ 


sin 
3X 


Θ9φ 


" 1 3Vr 
_sin9 9φ 


.ax 
- Φ — , 


- έ(^φ)] 
(2.83) 


(2.84) 


which can be rewritten as Eqs. (2.64)-(2.66). 


2B.4 Solution for Coefficients from Boundary Conditions 


The origin of the coordinates is set at the center of the spherical scatterer. The 
positive z axis is set along the propagation direction of the incident wave. The 
x axis is set in the plane of electric vibration of the linearly polarized incident 
wave. Solutions u and v are chosen in the following forms: 


1. For the incident plane wave outside the spherical particle, we have 


°° 2/ + 1 
u =η^6χρ( /ωΟοο8φ^(- / ) / —-—-P/ , i (cose)7 / ( / : r ) , (2.85) 


/= i /(/ + 1) 


2/ + 1 
v = η^χρ^ωΟύη^Υ^^ί)1 -—— P/j(cosO)y/(*r), (2.86) 


/=! 


where k represents the propagation constant of the background. 
2. For the scattered wave outside the spherical particle, we have 


°° 2/ + 1 
u = rib exp(io)t) cosφ 22, ~~ai^~^ fyiicosOJAj (fcr), (2.87) 


/=! / ( /+!) 
00 2/4-1 


v = n^exp(i^0 s i n φ ^ ] - & / ( - / ) ' PlA[cosü)hf\kr), (2.88) 
/ = i 
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where a\ and b\ are coefficients to be determined. 
3. For the wave inside the spherical particle, we have 


00 2/ + 1 
u = η5εχρ(ίωί)οο$φΣαι(-ί)


1 ——--Pij (cos d)jt(nre\kr), (2.89) 


°° 2/ + 1 
υ = π,βχρίιωθβίηφ Υ ] φ(-ί)1 ——— P/,i(cos0).//(ftrei*r), (2.90) 


where Q and d/ are also coefficients to be determined. 


To determine these coefficients, we substitute solutions E and B from Eqs. (2.85) 
-(2.90) into the following boundary conditions: 


än x (E0 - Ei) = unx (B0 - Bi) = 0. (2.91) 


Here, un is the unit vector perpendicular to the boundary surface; subscripts o 
and i represent the outside and inside, respectively. The obtained coefficients a\ 
and b\ are shown in Eq. (2.12). 


2B.5 Scattering Efficiency and Anisotropy 


Substituting the asymptotic expression of the spherical Hankel function of the 
second kind into Eqs. (2.87) and (2.88) leads to 


exp(—ikr -f ίωί) v-> 2/ -f 1 
u = -i-^—, c o s φ Γ ο , — — Ρ,,i(cosΘ), (2.92) 


kr ^ /(/ + 1) 


exp(—ikr + ιωί) ^ 2/ -f- 1 
υ = - ί F . - s i ^ V ^ / — — f t , , ( c o s e ) . (2.93) 


fcr ^ /(/ + 1) 
The resulting field components are 


exO(—ikr + ιωί) 
ΕΘ = Β^ = ~i


 FV
 y - cos φ52(θ), (2.94) 


exp(—/fcr -f /ωί) 
- £ φ = £θ = - t y βίηφΑΚΘ). (2.95) 


kr 
The amplitude functions are given by 


2/4-1 
5ι(β) = ΣΖ 77ϊ^-ΤΤ[α'π'(°08θ> + *ix/(cose)], (2.96) 


S2Q) = Z^JTTT—[&/^(cose)+a,T/(cose)], (2.97) 
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where 


π,(cosΘ) = J . Λ , (2.98) 
sinO 


x/(cose) = ^ P / j ( c o s e ) . (2.99) 
αυ 


The scattering efficiency Qs, defined as the ratio of the scattering cross-sectional 
area as to the physical cross-sectional area πα2, can be expressed in terms of the 
amplitude functions: 


Qs = ^ = - ^ f ( |5,(θ) |^θ82φ + |52(θ)|28ίη2φ)^Ω. (2.100) 


Following the integration over φ, Eq. (2.100) becomes 


Qs = \ f (|5,(θ)|2 + |52(θ)|2)8ίηθ^θ. (2.101) 
x2 Jo 


Likewise, the scattering anisotropy g — (cos Θ) can be evaluated by 


gQs = \ f (|51(0)|2 + |52(0)|2)cosesineJ6. (2.102) 


The integrations over Θ in Eqs. (2.101) and (2.102) can be completed using the 
orthogonality relations of π/ and x/, which yields Eqs. (2.10) and (2.11). 


PROBLEMS 


2.1 Show that 


2.2 Show that 


2.3 Show that 


Sji(kr) k . 
0 = -zr—rVji-dkr) - (I + l)ji+\(kr)]. 
or 21 + 1 


= —ψ/(ζ) + ψ/-ι(ζ). 
dz z 


— — = — ζ / ( ζ ) + ζ / - ι ( ζ ) . 
dz z 


2.4 Derive the net radiation force exerted by light on a spherical particle. 
(Hint: The photon momentum equals the photon energy divided by the 
speed of light.) 


2.5 Plot the angular distribution of the scattered light in the Rayleigh scattering 
regime and calculate the scattering anisotropy. 
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2.6 Implement the Mie theory using an alternative program to calculate 
the scattering efficiency, scattering anisotropy, scattering coefficient, and 
reduced scattering coefficient of spherical particles suspended in a back-
ground medium. 
(a) Use the example in Section 2.5 to verify your program. 
(b) Duplicate Figure 2.2. 
(c) Summarize the asymptotic dependence of the scattering cross section 


on the particle size as ka varies. 
2.7 Derive coefficients a\ and b\ shown in Eqs. (2.12) by completing the 


derivations in Appendix 2B. 
2.8 (a) Extend the Mie theory to absorbing scatterers. 


(b) Extend the Rayleigh theory to absorbing scatterers. 
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CHAPTER 3 


Monte Carlo Modeling of Photon 
Transport in Biological Tissue 


3.1. INTRODUCTION 


Photon transport in biological tissue can be numerically simulated by the Monte 
Carlo method. The trajectory of a photon is modeled as a persistent random 
walk, with the direction of each step depending on that of the previous step. By 
contrast, the directions of all the steps in a simple random walk are independent. 
By tracking a sufficient number of photons, we can estimate physical quantities 
such as diffuse reflectance. 


3.2. MONTE CARLO METHOD 


Although widely used in various disciplines, the Monte Carlo method defies a 
succinct definition. Here, we adopt the description provided by Lux and Koblinger 
(1991): 


In all applications of the Monte Carlo method, a stochastic model is constructed 
in which the expected value of a certain random variable (or of a combination of 
several variables) is equivalent to the value of a physical quantity to be determined. 
This expected value is then estimated by averaging multiple independent samples 
representing the random variable introduced above. For the construction of the 
series of independent samples, random numbers following the distribution of the 
variable to be estimated are used. 


It is important to realize that the Monte Carlo method estimates ensemble-
averaged quantities. 


The Monte Carlo method offers a flexible yet rigorous approach for simulating 
photon transport in biological tissue. An ensemble of biological tissues is mod-
eled for the averaged characteristics of photon transport; the ensemble consists 
of all instances of the tissues that are microscopically different but macroscop-
ically identical. Rules are defined for photon propagation from the probability 
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distributions of, for example, the angles of scattering and the step sizes. The 
statistical nature requires tracking a large number of photons, which is compu-
tationally time-consuming. Multiple physical quantities can be simultaneously 
estimated, however. 


In this chapter, photons are treated as waves at each scattering site but as clas-
sical particles elsewhere. Coherence, polarization, and nonlinearity are neglected. 
Structural anisotropy—not to be confused with scattering angular anisotropy—in 
tissue components, such as muscle fibers or collagens, is neglected as well. 


3.3. DEFINITION OF PROBLEM 


The problem to be solved begins with an infinitely narrow photon beam, also 
referred to as a pencil beam, that is perpendicularly incident on a multilay-
ered scattering medium (Figure 3.1); various physical quantities are computed 
as responses. The pencil beam can be represented by an impulse (Dirac delta) 
function of space, direction, and time; thus, the responses are termed impulse 
responses or Green's functions. The layers are infinitely wide and parallel to 
each other. Each layer is described by the following parameters: thickness d, 
refractive index n, absorption coefficient μβ, scattering coefficient μ.ν, and scat-
tering anisotropy g. The top and the bottom ambient media are each described 
by a refractive index. Although never infinitely wide in reality, a layer can be so 
treated if it is much wider than the photon distribution. 


Three coordinate systems are defined. A global Cartesian coordinate system 
(JC, y, z) is used for tracking photons (Figure 3.1); the xy plane coincides with 
the surface of the scattering medium; the z axis is along the pencil beam. 


A global cylindrical coordinate system (r, φ', ζ), which shares the z axis with 
the Cartesian coordinate system, is used for recording photon absorption as a 
function of r and z. The photon absorption distribution has cylindrical symmetry 


Photon beam 


Layer 1 


Layer 2 


Layer Nj 


Figure 3.1. Schematic of a scattering medium with Ni layers. The y axis points out of 
the paper. 
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because of the homogeneity of each layer and the axial alignment of the pencil 
beam. The r coordinate is also used for recording both the diffuse reflectance 
and the diffuse transmittance that are functions of r as well as a, where a is the 
polar angle of the propagation direction of a reemitted photon with respect to the 
normal vector of the exit surface of the scattering medium (—z axis for the top 
surface and +z axis for the bottom surface). One can further resolve reemitted 
photons with the azimuthal angle φ'. 


A local moving spherical coordinate system whose z axis is dynamically 
aligned with the propagation direction of the photon is used for sampling the 
scattering angles. Once the polar angle Θ and the azimuthal angle φ are sampled, 
they are converted to direction cosines in the global Cartesian coordinate system. 


The physical quantities to be computed include relative specific absorption, rel-
ative fluence, relative diffuse reflectance, and relative diffuse transmittance, all of 
which are relative to the incident energy. The relative specific absorption A(r, z) 
represents the probability of photon absorption per unit volume by the medium. 
From A(r, z), the relative fluence F(r,z)—which is the probability of photon 
flow per unit area—can be computed. The unscattered absorption from the first 
photon interaction events, which always take place on the z axis, is recorded sepa-
rately. The relative diffuse reflectance Rd(r, a) for the top surface and the relative 
diffuse transmittance 7^(r, a) for the bottom surface—collectively referred to as 
the relative diffuse reemittance—are defined as the probability of photon reemis-
sion from the surfaces per unit area at r per unit solid angle around a, where a 
solid angle has the unit of steradians (sr). Like unscattered absorption, specularly 
reflected and unscattered transmitted photons are recorded separately. Physical 
quantities of lower dimensions can be computed from those of higher dimen-
sions. For brevity, relative physical quantities are written as physical quantities 
in this chapter unless otherwise noted. 


Simulated physical quantities are represented in grids on the coordinate sys-
tems. For photon absorption, a 2D homogeneous grid system is set up in the r 
and z directions. The grid element sizes in the r and z directions are ΔΓ and 
Δζ, respectively, and the total numbers of grid elements are Nr and Nz, respec-
tively. For reemitted photons, a ID grid system in the a direction is further set 
up with Na grid elements. Since a has a range of π/2, the grid element size is 
Δα = π/(2Να). For convenience, the grid elements that should appear after a 
physical quantity are sometimes represented in this chapter by coordinates. 


For consistency, centimeters (cm) are used as the basic unit of length through-
out the simulation. For example, the thickness of each layer and the grid element 
sizes in the r and z directions are measured in cm. The absorption and scattering 
coefficients are measured in reciprocal centimeters (cm-1). 


3 A PROPAGATION OF PHOTONS 


This section presents the rules that govern photon propagation. Figure 3.2 shows 
a basic flowchart for the photon tracking part of the Monte Carlo simulation of 
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/ Launch photon 
Udimensionless s_ = 0y 


Figure 3.2. Flowchart for tracking photons in a scattering medium by the Monte Carlo 
method, where s_ denotes the dimensionless step size (to be discussed) and Y and N 
represent yes and no, respectively. 


light transport in multilayered scattering media. The Monte Carlo simulation was 
written in ANSI (American National Standards Institute) Standard C as a software 
package entitled MCML (Appendix 3A). This software can be executed on any 
computer platform that supports ANSI Standard C. The following subsections 
implement many of the boxes in the flowchart. 
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3.4.1. Sampling of a Random Variable 


The Monte Carlo method relies on the sampling of random variables from their 
probability distributions. The probability density function (PDF) /?(χ) defines 
the distribution of χ over interval (a, b). The interval can also be closed or half-
closed in some cases, which usually makes no practical difference. For readers 
unfamiliar with PDF, a brief review is given in Appendix 3B. 


To sample χ, we choose a value repeatedly based on its PDF. First, a pseu-
dorandom number ξ that is uniformly distributed between 0 and 1 is generated 
by computer. Then, χ is sampled by solving the following equation: 


/ ' 
Ja 


ρ ( χ ) ^ χ = ξ. (3.1) 


Since the left-hand side represents the cumulative distribution function (CDF) 
^ (x ) , we have 


P(lO = *. (3.2) 


This equation means that if Ρ(χ) is sampled uniformly by ξ between 0 and 1, 
the inverse transformation correctly samples χ as illustrated in Figure 3.3: 


χ = />"ι(ξ). (3.3) 


This sampling method, referred to as the inverse distribution method (IDM), is 
invoked repeatedly below. 


Figure 3.3. Illustration of the inverse distribution method (IDM) for sampling a random 
variable χ based on a random number ξ uniformly distributed between 0 and 1. 
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Example 3.1. Prove Eq. (3.1) 


We show that when χ is sampled according to Eq. (3.1), χ follows its intended 
CDF Ρ(χ) . 


If χ is sampled according to Eq. (3.1), the probability that a selected χ is less 
than xi can be expressed by 


/>ιθΜ{χ<Χι} = />{ξ<ξι} · (3.4) 


Here, PIDM{ } denotes the probability in the IDM of the event in the braces; P{} 
denotes the true probability of the event in the braces based on the CDF of the 
random variable; χι is related to ξι through Eq. (3.1): 


*;■= Γ%(χ)<ίχ. (3-5) 
Ja 


Because ξ is equidistributed between 0 and I, we have Ρ{ξ < ξι} = ξ\. Thus, 
we obtain 


^ I D M { X < X I } = [ ' PdOdm. (3.6) 
Ja 


Since the right-hand side is the CDF Ρ(χ) , we have 


A D M ( X < X I } - / > ( X I ) , (3.7) 


which means that the sampled χ indeed follows its intended CDF. 


3.4.2. Representation of a Photon Packet 


A simple variance reduction technique, referred to as implicit photon capture, is 
used to improve the efficiency of the Monte Carlo simulation. This technique 
enables many photons to propagate as a packet of equivalent weight W along a 
particular trajectory. 


Related parameters are structured in C to make the program easier to write, 
read, and modify. Thus, parameters for a photon packet are grouped into a single 
structure defined by 


typedef struct { 
double x, y ,z ; /* Cartesian coordinates of photon packet. */ 
double ux, uy, uz ; / * d i rect ion cosines of photon propagation. */ 
double w; /* weight of photon packet. */ 
char dead; /* 0 i f photon is propagating, 1 i f terminated. */ 
double s_; /* dimensionless step size. */ 
long scatters; /* number of scatter ing events experienced. */ 
short layer; /* index of layer where photon packet resides. */ 


} PhotonStruct; 
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Structure members x, y, and z represent the coordinates of a photon 
packet, (JC, y, z), respectively. Structure members ux, uy, and uz represent 
the direction cosines of the propagation direction of the photon packet, 
{μχ, μ>;, μ^}, respectively. Structure member w represents the weight of 
the photon packet, W. 


Structure member dead represents the status of the photon packet and is 
initialized to zero when the photon packet is launched. If the photon packet 
has reemitted from the scattering medium or has not survived a Russian 
roulette (to be discussed), this structure member is set to unity, which 
signals the program to stop tracking the current photon packet. 


Structure member s_ represents the dimensionless step size, which is defined 
as the integration of extinction coefficient μ, over the trajectory of the 
photon packet. In a homogeneous medium, the dimensionless step size is 
simply the physical path length multiplied by the extinction coefficient. 


Structure member s c a t t e r s stores the number of scattering events expe-
rienced by the photon packet. If this structure member is zero when the 
weight of a photon packet is recorded, the weight contributes to the unscat-
tered physical quantities. 


Structure member l aye r is the index of the layer in which the photon packet 
resides; it is updated only when the photon packet leaves the current layer. 


3.4.3. Launching of a Photon Packet 


One photon packet is launched at a time orthogonally onto the scattering medium. 
For each new photon packet, the coordinates (x, y, z) are initialized to (0,0,0), the 
direction cosines {μ*, μγ,μζ] are initialized to (0,0,1), and the weight W is ini-
tialized to unity. Several other structure members—including dead, s c a t t e r s , 
and layer—are also initialized. 


If the upper ambient medium and the first layer have mismatched indices of 
refraction (no and n\, respectively), specular (Fresnel) reflection occurs. Specular 
reflectance^ in normal incidence is given by 


K S P = ( ^ V . 0.8) 


If the first layer of refractive index n\ is a clear medium, it causes multiple spec-
ular reflections and transmissions. If interference effect is neglected, an effective 
specular reflectance can be computed by 


Asp = flspl + - j · (3.9) 


Here, Rsp\ and Rsp2 are the specular reflectances on the two boundaries of the 
first layer: 


*spi = (**^λ) , (3.10) 
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( Π\ — ηι\ 
*sp2= \ - ~ - - , (3.11) 


where n2 denotes the refractive index of the second layer. 
When the photon packet enters the scattering medium, the weight is decreased 


by #sP: 


W=l- Rsp. (3.12) 


If Eq. (3.8) is applicable, structure member l ayer is set to the first layer. If 
Eq. (3.9) is applicable, it is set to the second layer, and member z is set accord-
ingly. 


Example 3.2. Compute the specular reflectance in normal incidence between air 
and water, glass, and soft tissue, respectively. 


For water, n\ = 1.33. For an air-water interface, Rsp = 2.0%, where HQ = 1 
for air. 


For glass, n\ — 1.5. For an air-glass interface, Rsp — 4.0%. 
For soft tissue, n\ — M.37. For an interface between air and soft tissue, 


Rsp = -2 .4%. 


Example 3.3. Compute the effective specular reflectance in normal incidence for 
a glass slide that is sandwiched between air and water. 


For air, no = 1. For glass, n\ — 1.5. For water, n2 = 1.33. Thus, R$p\ = 0.04, 
and /?sp2 = 0.0035. The effective specular reflectance Rsp = 0.0432. In this case, 
Rsp is quite close to the direct sum of Rsp\ and /?sp2< 


3.4.4. Stop Size of a Photon Packet 


The step size of a photon packet is sampled by the IDM [Eq. (3.3)], based on the 
PDF of the dimensional free-path length s (0 < s < oo)) of a photon. We first 
consider a homogeneous medium. According to the definition of the extinction 
coefficient μ,, we have 


~dP{s > s') 1 . . . . . 
μ — (3.13) 
^ P{s>s'} dsf 


where P{] denotes the probability of the event in the braces. The first frac-
tion on the right-hand side represents the probability of interaction in interval 
(s\ s' + ds'), and the second fraction represents normalization by the path length. 
Rearranging Eq. (3.13) yields 


d[\n(P{s > s'})] = - μ , ds'. (3.14) 








PROPAGATION OF PHOTONS 4 5 


Integrating this equation over s' in interval (0, s\), we obtain 


P{s > 5ι} = βχρ(-μ , ί ι ) . (3.15) 


This is a form of the well-known Beer law. 
From Eq. (3.15), the probability that an interaction occurs within s\ is given by 


P{s < s\] — 1 - exp(—\its\). (3.16) 


The corresponding PDF is given by 
dP{s <s\] 


P(s\) = = μ, cxp(-\itsi). (3.17) 
ds\ 


According to the IDM, the CDF of s in Eq. (3.16) can be equated to ξ to yield 
the sampling equation for the step size 


ln(l ~ %) n 15n 
s\ = , (3.18) 


where 1 — ξ can be replaced by ξ for simplicity because ξ is uniformly distributed 
between 0 and 1: 


„ = - ί ^ . (3.19) 
μ* 


We then consider a multilayered medium where the photon packet may experience 
a free path over multiple layers before an interaction occurs. In this case, the 
counterpart of Eq. (3.15) becomes 


-Y^VtiSi \ . P{s > st) = exp I - 2 ^ VtiSi 1 . (3.20) 


Here, the summation is over all the segments that the photon packet has traversed 
before an interaction occurs; μπ is the extinction coefficient for the ith segment, 
Si is the length of the ith segment, and st is the total step size: 


st Σ*· <3·21) 


Equating Eq. (3.20) to ξ, we obtain the sampling equation 


£ > „ * , = - 1 η ( ξ ) , (3.22) 


which is a generalized form of Eq. (3.19). The left-hand side of Eq. (3.22) is the 
total dimensionless step size. Note that photon paths in a clear medium do not 
change the dimensionless step size because the extinction coefficient is zero. 
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Equation (3.22) is used to sample the step size in MCML, where the dimen-
sionless step size s_ is initialized to — 1η(ξ). A photon packet may travel multiple 
substeps of size s, in a multilayered scattering medium before reaching an interac-
tion site. Only when the photon packet has completed — 1η(ξ) in dimensionless 
step size does an interaction occur. In an interaction event, the entire photon 
packet must experience both absorption and scattering. Since the step size is 
modeled, the simulation is intrinsically time-resolved. 


3.4.5. Movement of a Photon Packet 


Once the dimensional substep size s; is determined, the photon packet is moved. 
The coordinates of the photon packet are updated by 


x^-x + [ixSj, y<^y + VLySi, ζ « - ζ + μζ5/ , (3.23) 


where the arrows indicate quantity substitutions. The variables on the left-hand 
side have the new values, and the variables on the right-hand side have the old 
values. In C/C 4- +, an equal sign (=) is used for this purpose. 


3.4.6. Absorption of a Photon Packet 


Once the photon packet reaches an interaction site, a fraction of the weight (AW) 
is absorbed: 


AW = — W. (3.24) 


If the photon packet has not been scattered, AW is recorded into an array for 
unscattered absorption. Otherwise, it is recorded into A(r, z) at the local grid 
element: 


A(r,z) <~ A(r,z) + AW. (3.25) 


The weight must be updated by 


W+-W-AW. (3.26) 


The photon packet with the new weight then undergoes scattering at the interac-
tion site. 


3.4.7. Scattering of a Photon Packet 


For scattering, the polar angle Θ (0 < θ < π) and the azimuthal angle φ (0 < φ < 
2π) are sampled by the IDM. The probability distribution of cos Θ is commonly 
given by the Henyey-Greenstein phase function that was originally proposed for 
galactic scattering: 


P(cos Θ) - * - ^ . (3.27) 
2(1 + gl — 2 gcosO)-5/2 
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The anisotropy g, defined as (cos0), has a value between —1 and 1. A value 
of zero indicates isotropic scattering, and a value close to unity indicates dom-
inantly forward scattering. For most biological tissues, g is M).9. In addition 
to the Henyey-Greenstein phase function, the Mie theory can also provide a 
phase function. Note that the phase function is irrelevant to the phase of an 
electromagnetic wave. 


Applying the IDM [Eq. (3.1)] to Eq. (3.27), we sample cosG as follows: 


COS0 = (ΐΐ4ξ)} lf * * ° . (3.28) 
2% - 1 if g = 0 


The azimuthal angle φ, which is assumed to be uniformly distributed over interval 
[0, 2π), is sampled with another independent pseudorandom number ξ: 


φ = 2πξ. (3.29) 


Once the local polar and azimuthal angles are sampled, the new propagation 
direction of the photon packet can be represented in the global coordinate sys-
tem as 


/ s in0^j^zcos( | ) — μν sinc|)) μ* = , l· μ* cosO, 


iz cos φ 4-μν = p = h μν cos Θ, (3.30) 
ι2 


μζ = -J\ — μ2 8 ΐηθ^8φ + μ^θ8θ . 


If the photon direction is sufficiently close to the z axis (e.g., |μζ | > 0.99999), 
the following formulas are used instead so that division by a small number is 
avoided: 


μχ = sin Θ cos φ, 


μ^ = sin Θ sin φ, (3.31) 


μ̂  = s g n ^ ) c o s 0 , 


where sign function sgn^ z ) returns 1 when μ̂  is positive and —1 when μ̂  is 
negative. 


Note that the direction cosines are in the global Cartesian coordinate system, 
whereas the polar and azimuthal angles are in the local spherical coordinate 
system. Since trigonometric operations are computationally intensive, alternative 
algebraic operations are encouraged in the program when possible. 
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Example 3.4. Derive Eq. (3.28) for g φ 0 using the IDM [Eq. (3.1)]. 


Here, χ = cos6 and χ e [—1, 1]. Therefore, we have 


/
x /»cose 


ρ(χ) d\ = / p(COS0') dcOSd' 


= izi! / » L·^ 
2g V A / I + ^ - ^ ^ C O S G 1 + g / 


which leads to Eq. (3.28) for g φ 0. 


3.4.8. Boundary Crossing of a Photon Packet 


During a step of dimensionless size s_, the photon packet may hit a boundary 
of the current layer. Several steps are involved in boundary crossing. 


Step 1. The distance df, between the current location (x, y, z) of the photon 
packet and the boundary of the current layer in the photon propagation direction 
is computed by 


db = 


zo-z 
if μζ < 0 


oo if μ, = 0 , (3.32) 
Ζ\ — Ζ 


μ< 
if μζ > 0 


where zo and z \ are the z coordinates of the upper and lower boundaries of the 
current layer. If μζ approaches zero, the distance approaches infinity, which is 
represented by constant DBL-MAX in C. 
Step 2. The dimensionless step size s_ and the distance db are compared as 
follows: 


db[Lt < * - , (3-33) 


where μ, is the extinction coefficient of the current layer. If Eq. (3.33) holds, 
the photon packet is moved to the boundary; s_ is updated by s_ <— s_ — ^ μ , ; 
the simulation proceeds to step 3. Otherwise, the photon packet is moved by 
s-/\it to reach the interaction site, s- is set to zero to signal the generation of 
the next dimensionless step size, and the photon packet experiences absorption 
and scattering. Since division by μ, is avoided, Eq. (3.33) is applicable to clear 
layers (μ, = 0) as well. 
Step 3. If the photon packet hits a boundary, the specular reflectance is computed. 
The angle of incidence a, of the photon packet is first calculated by 


a , = c o s - V z l ) . (3.34) 
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The angle of transmission at is then computed by Snell's law 


rii sin a,· = nt sin a,, (3.35) 


where Π[ and nt represent the refractive indices of the incident and transmit-
ted media, respectively. If n, > nt and a, is greater than the critical angle 
sin_1(nr/n/), the local reflectance /?,((*,) equals unity. Otherwise, /?,·(α,·) is cal-
culated by Fresnel's formula: 


*/(««)= 2 
sin2 (a,· — a,) tan2 (a,; — at) 
sin2 (a, + ar) tan2 (a,· + a , ) 


(3.36) 


which is an average of the reflectances for two orthogonal linear polarization 
states because light is assumed to be randomly polarized. 
Step 4. To determine whether the photon packet is reflected or transmitted, 
a pseudorandom number ξ is generated. If ξ < /?/(α,·), the photon packet is 
reflected; otherwise, it is transmitted. If reflected, the photon packet stays on the 
boundary and its direction cosines are updated by reversing the z component: 


{μχ, μ^, μζ} <r- [[ix, μν, - μ , } . (3.37) 


If transmitted into a neighboring layer, the photon packet continues to propagate 
with an updated direction and step size. The new direction cosines are 


s i n o t ' n M v 
[i =μχ- , (3.38) 


sin a,· 
S i n 0 t ' / - J i m 


μ Y = Vy- , (3.39) 
y sin a, 


μζ = s g n ^ ) cos a,. (3.40) 


On the basis of Snell's law, Eqs. (3.38) and (3.39) can be computed more effi-
ciently by 


μχ=μχ —, (3.41) 
nt 


f Hi 


μ ^ μ ^ —. (3.42) 


If transmitted into an ambient medium, the photon packet contributes to reemit-
tance. If the photon packet has not been scattered, its weight is recorded into the 
unscattered reemittance; otherwise, its weight is recorded into either the diffuse 
reflectance Rd(r, at) or the diffuse transmittance 7^(r, at): 


Rd(r,at) *-Rd(r,at) + W if z = 0; 
(3.43) 


7^(r, at) <- Td(r, at) -f W if z is at the bottom of the medium. 
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When reemitted from the scattering medium, the photon packet completes its 
history (or Markov chain). 


Reemission at an interface can be modeled alternatively. Rather than making 
the reflection of the photon packet an all-or-none event, the photon packet can be 
partially reflected and partially transmitted. A fraction 1 - /?/((*,) of the current 
weight of the photon packet is reemitted from the scattering medium and recorded 
to the local reemittance. Then, the weight is updated by W <— W/?/(a;). The 
photon packet with the new weight is reflected and further propagated. 


3.4.9. Termination of a Photon Packet 


A photon packet can be terminated from the scattering medium automatically 
by reemission as discussed above. If the weight of a photon packet has been 
sufficiently decreased by many interaction events, further propagation of the 
photon packet yields little useful information unless interest is focused on a 
late stage of photon propagation. However, photon packets must be properly 
terminated so that energy is conserved. 


A technique called Russian roulette is used in MCML to terminate a photon 
packet when the weight falls below a threshold W^ (e.g., W^ — 0.0001). This 
technique gives the photon packet one chance in m (e.g., m — 10) of surviving 
with a weight of m W. In other words, if the photon packet does not survive the 
Russian roulette, it is terminated with the weight set to zero; otherwise, the photon 
packet increases in weight from W to mW. This technique is mathematically 
summarized as 


ί mW if ξ < 1 , 
W <- \ m (3.44) 


0 if %> -, 


where ξ is a uniformly distributed pseudorandom number (0 < ξ < 1). This 
method terminates photons in an unbiased manner while conserving the total 
energy. 


3.5. PHYSICAL QUANTITIES 


In this section, the process of obtaining physical quantities is discussed in detail. 
The units for some of the physical quantities are given at the end of their respec-
tive expressions. 


Physical quantities are stored in arrays. Although photon packets propagate in 
infinite continuous space (limited only by computational precision), weights are 
recorded in finite discrete space (limited by grid element sizes). When a photon 
packet is recorded, its physical location may not fit into the grid system. In this 
case, the last grid element in the direction of the overflow collects the weight. 
Therefore, the last grid elements in the r and z directions do not reflect the actual 
values at the corresponding locations. Angle a, however, does not overflow. 
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As a rule of thumb for most problems, each spatial grid element should mea-
sure about 10% of the penetration depth or the transport mean free path. If the 
grid elements are too small, the relative errors—which are determined by the 
number of events occurring in each grid element—will be too large. If the grid 
elements are too large, the dependence of the physical quantities will not be 
represented with good resolution. 


3.5.1. Reflectance and Transmittance 


The diffuse reflectance and the diffuse transmittance are represented in MCML 
by two arrays, Rd-ralhJa] and Td_r0L[ir, ia], respectively, where ir and ia are 
the indices of r and a (0 < ir < Nr — 1 and 0 < ia < Na — 1), respectively. The 
unscattered reflectance and the unscattered transmittance are stored in Rd_r[— 1] 
and Td_r[— 1], respectively. 


It can be shown that the optimal coordinates of the simulated physical quanti-
ties for the grid elements in the radial and angular directions are as follows (see 
Problem 3.1): 


r(ir) = H) 1 + Ar (cm), (3.45) 12(/r + i ) 
αθ'α) = ( ι'α + - j Δα + 1 - -Aaco t l - A a j cot L· + - j Aa (rad). 


(3.46) 


The deviation of the optimized point from the center is 25% for the first radial 
grid element but decreases as the index of the grid element increases. Because the 
optimized coordinates are computed only after all photon packets are simulated, 
this optimization does not increase simulation time but improves accuracy. 


After multiple photon packets (N) have been tracked, raw data Rd^rAh, ia] 
and Td_ra[ir, ia] represent the total accumulated weights in each grid element. 
To compute the integrated weights in each direction of the 2D grid system, we 
sum the 2D arrays in the other dimension: 


Na-\ 


Rd-rUA = Σ Rd-rAir, l a] , (3.47) 
ία=0 


Nr-\ 


Rd^aUa] = Σ Rd-raUr, I 0 ] , (3 .48) 
i r=0 


Na-\ 


Td_rVr]= £ Td_ra[ir,ial (3.49) 
ί'α=0 


Nr-\ 


Td-oilia] = Σ Td-raUrJal (3-50) 
,7=0 
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To compute the total diffuse reflectance and the total diffuse transmittance, we 
sum the ID arrays: 


Nr-\ 


Rd = Σ Rd-r[ir]> ( 3 5 1 ) 


/r=0 


N,--\ 


Τα=Σ Td-rVr]. (3.52) 
/r=0 


These arrays describe the total weights in each grid element on the basis of N 
initial photon packets of unit weight. Raw data /?</_ra[/r, *<*] and 7j_m[/ r , ia] are 
converted into probabilities of reemission per unit cross-sectional area per unit 
solid angle as follows: 


Rd-ra[h,ia] <- - -prr: (cm sr ), (3.53) 


Td_r*[ir,i*\+- J
d~rAlr\l^AT ( cm-V" 1 ) . (3.54) 


AacosaAilN 
The area Aa and the solid angle ΔΩ are given by 


= 2π(,ν + 1) 


ΔΩ = 4π sin I ia + ~ I Δα sin I - Δ α 1 (sr). (3.56) 


Raw Rd-rUr] and Td_r[iA are converted to probabilities of reemission per unit 
area as follows: 


* r f - r [ i V ] ^ % ^ (cm"2), (3.57) 
N Aa 


7 i _ r [ i V ] ^ - % x ^ (cm-2). (3.58) 
N Aa 


Raw Rd_r[— 1] and 7^_Γ[—1] are converted to total unscattered reflectance and 
total unscattered transmittance, respectively, by dividing them by N. Then, 
Rd-r[—l] is augmented by the specular reflectance or the effective specular 
reflectance. 
Raw Rd^aUa] and 7^_α[/α] are converted to the probabilities of reemission per 
unit solid angle as follows: 


Ärf-J/α] ^ - £ χ 7 ~ (sr"'), (3.59) 
ΝΑΩ 


Td^Va)^7^^ ( s r 1 ) . (3.60) 
ΝΑΩ 


Aa = 2π ( ir + - ) (Ar)2 (cm2), (3.55) 
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Raw Rj and 7^ are converted to probabilities as follows: 


Rd 
Rd < (dimensionless), (3.61) 


N 
T 


Td < (dimensionless). (3.62) 
N 


3.5.2. Absorption and Fluence 


At each interaction, the absorbed weight is stored in the specific absorption 
array Arz[ir, iz], where ir and iz are the indices of grid elements in the r and z 
directions, respectively (0 < ir < Nr — 1 and 0 < iz < Nz — 1). The unscattered 
absorption is stored in Arz[—l,iz]. Whereas the optimal coordinate for ir is 
shown in Eq. (3.45), the coordinate for iz is simply 


A) = (/z + \) zdz) = \iz + 2 ) Az' ( 3 ' 6 3 ) 


Raw Arz[ir, iz] represents the total accumulated weight in each grid element. The 
total weight in each grid element in the z direction is computed by summing the 
2D array in the r direction: 


Nr-\ 


Az[iz]= J^Arz[ir,izl (3.64) 
i r = 0 


Next, the total weight absorbed in each layer, A/[//], can be computed by 


A/[//] = ^ A J i J , (3.65) 


where // is the index of a layer, and the summation includes any iz that leads 
to a z coordinate in layer //. Further, the total weight absorbed in the scattering 
medium A can be computed by 


Nz-\ 
Α = Σ A*vJ' ( 3 · 6 6 ) 


i z=0 


Then, these raw quantities are converted into the final physical quantities as 
follows: 


Arz[irJz]+-
 A'z[h'*z] (cm"3), (3.67) 


NAaAz 


Ard-hit]*-
An[J*'il] (cm-3), (3.68) 


NAz 


AzVz]^^r ( c m _ l ) ' ( 3 6 9 > 
NAz 
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Mh] 
AiUi] < (dimensionless), (3.70) 


N 
A 


A < (dimensionless). (3.71) 


The ID array Λ/[//] represents the probability of photon absorption in each layer. 
The quantity A represents the probability of photon absorption by the entire 
scattering medium. The 2D array Arz[ir, iz] represents the probability of photon 
absorption per unit volume, which can be converted into fluence Frz[ir,iz] as 
follows: 


FrzUrJz)^ a U (cm"2), (3.72) 


where \ia denotes the local absorption coefficient. This equation breaks down in 
a non-absorbing medium. 


The ID array Az[iz] represents the probability of photon absorption per unit 
length in the z direction, which can be converted to a dimensionless quantity 
Fz[iz] as follows: 


M'z] Fz[iz] = (dimensionless). (3.73) 
μ« 


Fz[iz] represents the internal fluence as a function of z apart from a constant 
factor. This equation also breaks down in a non-absorbing medium. 


Example 3.5. Show the equivalence of Eq. (3.73) to the convolution over an 
infinitely wide uniform beam (see Chapter 4). 


According to Eqs. (3.64), (3.67) and (3.69), the final converted Az[iz] and Arz 
[ir, iz] have the following relationship: 


Nr-\ 


Az[iz]= Σ Α Γ Ζ [ Ι Γ , / 2 ] Δ Ο ( Ι Γ ) , (3.74) 
ir=0 


where Aa(ir) is computed by Eq. (3.55). 
Employing Eqs. (3.72) and (3.73), we convert Eq. (3.74) to 


Nr-\ 
F^z]= £ F r z [ / r , / J A a ( / r ) . (3.75) 


/r=o 


This equation is a discrete representation of the following integral: 
poo 


Fz(z)= / Frz(r,z)2nrdr. (3.76) 
Jo 


This integration is essentially the convolution over an infinitely wide uniform 
beam of unit fluence. Therefore, Fz[iz] represents the fluence distribution along 
the z axis in response to such a beam. 
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3.6. COMPUTATIONAL EXAMPLES 


As computational examples, MCML simulation results are compared with results 
from other theories and other investigators' Monte Carlo simulations. These com-
parisons partially validate the MCML. 


3.6.1. Total Diffuse Reflectance and Total Transmittance 


The total diffuse reflectance Rd and the total transmittance Tt (sum of both the 
unscattered and the scattered transmittances) are computed for a slab of scatter-
ing medium with the following optical properties: relative refractive index nre\ = 
1, absorption coefficient μα = 10 cm- 1 , scattering coefficient μ5 = 90 cm- 1 , 
anisotropy g = 0.75, and thickness d = 0.02 cm. The relative refractive index 
is defined as the ratio of the refractive index of the scattering medium to that 
of the ambient medium. If nTe\ = 1, the boundaries are termed refractive-index-
matched. After 10 Monte Carlo simulations of 50,000 photon packets each are 
completed, the averages and the standard errors (standard deviations of the 
averages) of the total diffuse reflectance and total transmittance are computed 
and compared with the data from van de Hulst's (1980) table and Prahl et 
al.'s (1989) Monte Carlo simulations (Table 3.1). Because the unscattered trans-
mittance is exp[—(μα + [Ls)d] = e~2 = 0.13534, the total diffuse transmittance 
equals 0.66096-0.13534 = 0.52562. All results are in good agreement. It is 
worth noting that standard errors are expected to decrease proportionally with 
the square root of the number of photon packets tracked owing to the central 
limit theorem. 


For a semiinfinite scattering medium that has a refractive-index-mismatched 
boundary (nre\ φ 1), the total reflectance is computed similarly and compared in 
Table 3.2 with the data from Giovanelli (1955) and Prahl et al.'s (1989) Monte 
Carlo simulations. The scattering medium has the following optical properties: 
nTe\ = 1.5, \ia = 10 cm"1, [is = 90 cm- 1 , g = 0 (isotropic scattering). Then, 10 
Monte Carlo simulations of 5000 photon packets each are completed to compute 
the average and the standard error of the total diffuse reflectance. 


TABLE 3.1. Comparison of Results from MCML with van de Hulst's Table and 
the Monte Carlo Data of Prahl et al. (1989)α 


Source 


MCML 
van de Hust (1980) 
Prahl et al. (1989) 


Rd Average 


0.09734 
0.09739 
0.09711 


Rd Error 


0.00035 


0.00033 


Tt Average 


0.66096 
0.66096 
0.66159 


Tt Error 


0.00020 


0.00049 
a"Rd average" and "/?</ error" list the averages and the standard errors of the total diffuse reflectance, 
respectively. Columns 'Ύ, average" and 'T, error" list the averages and the standard errors of the 
total transmittance, respectively. 
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TABLE 3.2. Comparison of Total Reflectance0 from 
MCML with Data from Giovanelli (1955) and Prahl 
et al. (1989) 


Source Rj Average Rj Error 


MCML 0.25907 0.00170 
Giovanelli 1995 0.2600 — 
Prahl et al. (1989) 0.26079 0.00079 


"The total reflectance includes both the specular reflectance (0.04) 
and the diffuse reflectance 


3.6.2. Angularly Resolved Diffuse Reflectance and Transmittance 


The angularly resolved diffuse reflectance and transmittance are also computed 
for a slab of scattering medium with the following optical properties: nre\ — 1, 
\xa = 10 cm- 1 , [is = 90 cm- 1, g = 0.75, and d = 0.02 cm. In this simulation, 
500,000 photon packets are tracked, and the number of angular grid elements 
is 30. The results from MCML are compared in Figure 3.4 with the data from 
van de Hülst's (1980) table. Because van de Hülst used a different definition of 
reflectance and transmittance and also used an incident flux of π, his data are 
multiplied by cos a and then divided by π before the comparison. 


3.6.3. Depth-Resolved Fluence 


As an example, the depth-resolved internal fluence Fz[iz] is simulated by 
MCML for two semiinfinite scattering media with refractive-index-matched and 
refractive-index-mismatched boundaries, respectively (Figure 3.5). The optical 
parameters are nrf>\ = 1.0 or 1.37, μα = 0.1 cm- 1 , μ5 = 100 cm- 1, and g = 0.9. 
One million photon packets are tracked in each simulation. The grid element 
size and the number of grid elements in the z direction are 0.005 cm and 200, 
respectively. 


As can be seen, the fluence near the surface is greater than unity because 
scattered light augments the fluence. Furthermore, the internal fluence in the 
scattering medium with a refractive-index-mismatched boundary is greater than 
that in the medium with a refractive-index-matched boundary, because photons 
can be bounced back into the scattering medium by the mismatched boundary. 


When z is greater than the transport mean free path lr diffusion theory predicts 
that the internal fluence distribution is 


F(z) = KF0exp(~y (3.77) 


Here, K is a scaling factor that depends on the relative index of refraction, 
F() is the incident irradiance (unity in MCML), and δ is the penetration depth. 
Consequently, the two curves in the diffusive regime should be separated by 
a constant factor only, which means that the tails of the two curves should be 
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Figure 3.4. Angularly resolved (a) diffuse reflectance Rd(a) and (b) diffuse transmittance 
Td(OL). 


parallel in a log-linear plot (Figure 3.5). The two curves shown here are parallel 
when z > l't = [μα + μ*(1 - g)]~l ^ 0.1 cm. 


We fit the parallel portions of the two curves with exponential functions. The 
decay constants for the curves are approximately 0.578 cm for the refractive-
index-matched boundary and 0.575 cm for the refractive-index-mismatched 
boundary. Both values are close to the one predicted by the diffusion theory 


δ = 
1 


ν 3 μ α [ μ 0 + μ 5 ( 1 - g)] 
= 0.574 cm, (3.78) 


which is independent of the relative index of refraction. 
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Figure 3.5. Comparison of the internal fluence as a function of depth z for two semiin-
finite scattering media with a refractive-index-matched boundary and a refractive-index-
mismatched boundary, respectively. Minus (—) represents a dimensionless unit. 


APPENDIX 3A. SUMMARY OF MCML 


The entire source code for MCML can be found on the Web at ftp://ftp.wiley.com/ 
public/sci_tech_med/biomedical_optics. The whole program for MCML is divided 
into several files. Header file mcml. h defines the data structures and some con-
stants. File mcmlmain.c contains the main function and the status-reporting 
function. File mcmlio.c deals with reading and writing data. File mcmlgo.c 
contains most of the photon-tracking code. File mcmlnr. c contains several func-
tions for dynamical data allocations and error reports. Readers should read the 
main function first. 


In MCML, ID and 2D physical quantities are stored in ID or 2D arrays, 
respectively. These arrays are dynamically allocated so that users are allowed to 
specify the array sizes at runtime without wasting computer memory, an advan-
tage that static arrays do not provide. 


The following list is generated by command cf low -d3 -n --omit-arguments 
--omit-symbol-names mcml*.c, which shows the structure of the program 
(MCML 1.2.2) with the nesting depth limited to 3: 


1 main() < i n t () at MCMLMAIN.C:186>: 
2 ShowVersion() <void () a t MCMLI0.C:71>: 
3 C t rPu ts ( ) <void () at MCMLI0.C:48>: 
4 p r i n t f ( ) 
5 pu ts ( ) 
6 GetFnameFromArgvO <void () at MCMLMAIN.C:130>: 
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7 strcpy() 
8 GetFileO <FILE * () at MCMLIO.C:111>: 
9 printf() 
10 scant() 
11 strlen() 
12 exit() 
13 fopen() 
14 CheckParm() <void () at MCMLIO.C:531>: 
15 ReadNumRuns() <short () at MCMLIO.C:222>: 
16 printf() 
17 ReadParm() <void () at MCMLIO.C:442>: 
18 FnameTaken() <Boolean () at MCMLIO.C:504>: 
19 sprintf() 
20 free() 
21 nrerrorO <void () at MCMLNR.C:17>: 
22 FreeFnameListO <void () at MCMLI0.C:517>: 
23 rewind() 
24 ReadNumRunsO <short () at MCMLIO.C:222>: 
25 FindDataLine() <char * () at MCMLIO.C:201>: 
26 strcpy() 
27 nrerror() <void () at MCMLNR.C:17>: 
28 sscanf() 
29 ReadParm() <void () at MCMLIO.C:442>: 
30 ReadFnameFormatO <void () at MCMLIO.C:242>: 
31 ReadNumPhotons() <void () at MCMLI0.C:260>: 
32 ReadDzDr() <void () at MCMLIO.C:277>: 
33 ReadNzNrNa() <void () at MCMLIO.C:293>: 
34 ReadNumLayers() <void () at MCMLI0.C:316>: 
35 ReadLayerSpecs() <void () at MCMLIO.C:390>: 
36 CriticalAngleO <void () at MCMLIO.C:421>: 
37 DoOneRun() <void () at MCMLMAIN.C:145>: 
38 InitProfileO 
39 cecho2file() 
40 InitOutputDataO <void () at MCMLIO.C:562>: 
41 Rspecular() <double () at MCMLG0.C:116>: 
42 PunchTimeO <time_t () at MCMLMAIN.C:59>: 
43 printf() 
44 PredictDoneTimeO <void () at MCMLMAIN.C:94>: 
45 LaunchPhoton() <void () at MCMLGO.C:140>: 
46 HopDropSpin() <void () at MCMLGO.C:734>: 
47 exit() 
48 ReportResultO <void () at MCMLMAIN.C:115>: 
49 FreeData() <void () at MCMLIO.C:598>: 
50 fcloseO 
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APPENDIX 3B. PROBABILITY DENSITY FUNCTION 


The probability density function (PDF), expressed as p(x), is a function that 
gives the probability that random variable x assumes a value between jti and X2 
as follows: 


P{x] < x < xi) = / p(x) dx. (3.79) 


The PDF has the following properties: 


"+00 


/ " 
p(x) dx = 1 (3.80) 


and 
p(x) > 0 for x e (-oo, +oo). (3.81) 


The relationship between the PDF and the cumulative distribution function (CDF) 
P(x) is 


P(x) = I p{x') dx 
J—oo 


(3.82) 


or 


PROBLEMS 


p(x) = —P(x). (3.83) 
ax 


3.1 Derive Eqs. (3.45) and (3.46). 


3.2 Derive Eq. (3.30). Note that the formula depends on the choice of the 
local moving coordinate system. The Monte Carlo simulation, however, 
leads to the same result. 


3.3 Find the effective specular reflectance in normal incidence from a water 
layer (n — 1.33) placed between air and biological tissue (n = 1.37). 


3.4 Show that the number of scattering events occurring in path length s 
follows the Poisson distribution. Neglect absorption. 


3.5 Show that the mean and standard deviation of the free path between scat-
tering events are both equal to 1/μΛ. Neglect absorption. 


3.6 An alternative to Eq. (3.28) when g φ 0 is 


cos Θ = — 
2g 


14V- \\+g-2g%) 


Why? 
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An absorbing slab of thickness d has absorption coefficient \ia with neg-
ligible scattering. A collimated laser beam of intensity Iin is normally 
incident on the slab. 
(a) Assume that the mismatch between the refractive indices of the ambi-


ent media and the absorbing medium is negligible. Calculate the trans-
mitted light intensity /out. 


(b) Assume that the mismatch between the refractive indices of the ambi-
ent media and the absorbing medium causes a specular reflection R on 
each surface of the slab. Recalculate the transmitted light intensity /out· 


A pencil beam is incident on a semiinfinite reference scattering medium. 
The spatially and temporally resolved diffuse reflectance Ro(r, t) is known 
for the following optical parameters: absorption coefficient μαο, scattering 
coefficient μ5ο, and scattering anisotropy go, where r denotes the radial 
distance between the observation point and the point of incidence, and t 
denotes time. The speed of light in the medium is c. 
(a) Write the expression for the new diffuse reflectance /?i(r, /) assuming 


that the absorption coefficient is changed from μαο to μα\ but the other 
optical parameters are unchanged. 


(b) Write the expression for the new diffuse reflectance Ri(r, t) where 
both the absorption coefficient and the scattering coefficient are scaled 
by the same factor C and the other optical parameter is unchanged: 
μ«2 = C\iao and \xs2 = Cvs0-


Consider a Gaussian beam with a radius of R, a total energy of 1 mJ, 
and a radial energy density distribution of S(r) = (2/nR2) exp(—2r2/R2). 
Derive the sampling expression for the radius r based on the random 
number ξ that is uniformly distributed between 0 and 1. 


Implement a Monte Carlo simulation of photon transport in a semiinfi-
nite scattering medium in C/C++ or another programming language. The 
Henyey-Greenstein function is assumed to be the phase function. Inputs 
include nrei, μα, μ*, and g. Outputs from the program include the total 
reflectance R and the depth-resolved fluence. 
(a) Use the results in Table 3.2 to verify your program. 
(b) Calculate for nK\ — 1.37, μα = 0 . 1 cm- 1 , μ5 = 100 cm- 1 , and g = 


0.9. 
(c) Reproduce Figure 3.5. 


Use the original Monte Carlo code written for Problem 3.10 and a mod-
ified version to verify that the following two algorithms are statistically 
identical. Compare the total diffuse reflectances and the total absorptions 
using a statistical test. Use nre\ — 1, μα = 0.1 cm- 1 , μ5 = 100 cm- 1 , and 
8 - 0.9. 
(a) Sample the step size with s — — 1η(ξ)/μ, and calculate the weight loss 


at each step by AW = ^-W. 
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(b) Sample the step size with s = —1η(ξ)/μν and calculate the weight loss 
at each step by AW = W[\ - exp(—μα5)]. 
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CHAPTER 4 


Convolution for Broadbeam Responses 


4.1. INTRODUCTION 


The Monte Carlo program MCML, introduced in Chapter 3, computes responses 
to a pencil beam normally incident on a multilayered scattering medium. These 
responses are referred to as Green 's functions or impulse responses. When a 
collimated photon beam is of finite width, the Monte Carlo method is still able 
to compute the responses by distributing the incident positions over the cross 
section of the beam. Each broad beam, however, requires a new time-consuming 
Monte Carlo simulation, even if the other parameters are unchanged. Convolu-
tion of Green's functions for the same multilayered scattering medium, however, 
can efficiently compute the responses to a broad beam. Such convolution was 
implemented in a program named CONV (Appendix 4A). Like MCML, CONV 
is written in ANSI Standard C and hence can be executed on various computer 
platforms. Although convolution is applicable to collimated beams of any inten-
sity distribution, only Gaussian and top-hat (flat-top) beams are considered in 
CONV version 1. 


4.2. GENERAL FORMULATION OF CONVOLUTION 


Convolution is applicable to a system that is stationary (time-invariant), lin-
ear, and translation-invariant. The system here consists of horizontal layers of 
homogeneous scattering media that have stationary properties (see Figure 3.1 in 
Chapter 3). The input to the system is a collimated photon beam perpendicu-
larly incident on the surface of the scattering medium. The responses can be any 
observable physical quantities, such as specific absorption, fluence, reflectance, 
or transmittance. The linearity implies that (1) the responses increase by the same 
factor if the input intensity increases by a constant factor and (2) any response to 
two photon beams together is the sum of the two responses to each photon beam 
alone. The translation invariance in space here means that if the photon beam is 
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shifted in any horizontal direction by any distance, the responses are also shifted 
in the same direction by the same distance. The translation invariance in time 
indicates that if the photon beam is delayed by a given time, the responses are 
also shifted by the same delay. Therefore, responses to spatially and temporally 
broad beams can be computed using the convolution of the impulse responses; 
only spatial convolution is described in this chapter, however. 


Impulse responses to a normally incident pencil beam are first computed using 
MCML, where a Cartesian coordinate system is set up as described in Chapter 3. 
The origin of the coordinate system is the incident point of the pencil beam on 
the surface of the scattering medium, and the z axis is along the pencil beam; 
hence, the xy plane is on the surface of the scattering medium. 


We denote a particular response to a collimated broad photon beam as 
C(x, y, z) and denote the corresponding impulse response as G(x, y, z). If the 
broad collimated light source has intensity profile S(x, y), the response to this 
broad beam can be obtained through the following convolution 


/


OO pOO 


I G(x - xf, y - yf, z)S(x', y) dx dy, 
-co J—oo 


(4.1) 


which can be reformulated with a change of variables x" = x — x' and y" = 
y-y': 


/


CO /»OO 


/ G(x'\y",z)S(x~x",y-y")dx"dy". (4.2) 
-CO «/— OO 


Because the multilayered structure has planar symmetry and the photon beam 
is perpendicularly incident on the surface of the scattering medium, G(x, y,z) 
possesses cylindrical symmetry. Consequently, the Green function in Eq. (4.1) 
depends only on the distance ros between the source point (xf, yf) and the obser-
vation point (JC, y), rather than on their absolute locations: 


ros = > / ( * - * ' )
2 + ( y - / ) 2 . (4.3) 


If S(x', y') also has cylindrical symmetry about the origin, it becomes a function 
of only the radius r'\ 


r' = vV2 + y'1. (4.4) 


On the basis of these symmetries, we reformulate Eqs. (4.1) and (4.2) to 


C(JC, y,z)= ί ί G (y(x-x')2 + (y-y')2, z) S (V*'2 + / 2 ) dx'dy\ 


( 4 


/


OO pOO / \ / \ 


/ G Ux"2 + y"2, z) S U(x - x")2 + (y- y")2) dx"dy". 


(4.5) 


(4.6) 








CONVOLUTION OVER A GAUSSIAN BEAM 6 9 


Because C(x, y, z) has the same cylindrical symmetry, Eqs. (4.5) and (4.6) can 
be rewritten in cylindrical coordinates (r, φ): 


C(r, z) = I S(r')r' ί G (y/r2 + r'2 - Irr'costy, z) dtf\ dr', (4.7) 


C(r, z)= I G{r", z)r" j S i^Jr2 + r"2 - 2rr" cos φ") </φ" dr". 


(4.8) 
In Eq. (4.8), the integration over φ" is independent of z and hence needs to be 
computed only once for all z values. In some cases, the integration over φ" can 
be solved analytically; thus, the 2D integral in Eq. (4.8) is reduced to a compu-
tationally more efficient ID integral. Therefore, Eq. (4.8) is more advantageous 
computationally than Eq. (4.7). 


Example 4.1. Derive Eq. (4.7) from Eq. (4.5). 


The differential area element can be changed from dxdy to rdrd§, and the 
corresponding limits of the integrations are from 0 to -f oo for r and from 0 to 2π 
for φ. In the polar coordinates aligned with (JC, y), (JC, y) is represented by (r, 0) 
and (x\ yf) by (rf, φ'). We convert Eq. (4.3) into ros = yjr2 -f r'2 — 2rrf cos φχ. 
Thus, Eq. (4.7) can be obtained from Eq. (4.5). 


4.3. CONVOLUTION OVER A GAUSSIAN BEAM 


For a Gaussian beam, the convolution can be further simplified. The intensity 
profile of the beam is given by 


S(r') = S0 exp <ff (4-9) 
Here, R denotes the l/e2 radius of the beam; So denotes the intensity at the 
center of the beam, and So is related to the total power PQ by 


So = 
2P0 
π/?2 ' 


(4-10) 


Substituting Eq. (4.9) into Eq. (4.8), we obtain 


C(r,z) = S(r)jC°G(r",z)exp\-2('^\ 


D f-2* /4rr"cos( | )" \ „1 „ ,, (4.11) 
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The inner integral in the square brackets resembles the integral representation of 
the zeroth-order modified Bessel function, which is defined by 


/oW 
1 ί2π 


2π Jo 
exp(;c sin φ) d<\> 


or 


1 [2π 


2π Jo 
εχρ0^θ8φ)<Ζφ. 


(4.12) 


(4.13) 


By using Eq. (4.13), we can rewrite Eq. (4.11) as 


ί°° {r"Y\ / 4 r r " \ 
C(r,z) = 2nS(r)j G(r",z)exp - 2 i - J 70 ί - ^ - J r"dr". (4.14) 


Example 4.2. Derive Eq. (4.10). 


The total power 


P0 = ί S(r')2n/dr' = 2nS0 f exp - 2 ( - ) 


- 5Ό exp (4.15) 


which leads to Eq. (4.10). 


Example 4.3. Show that Eqs. (4.12) and (4.13) are equivalent. 


Letting φ = φ' + (π/2) and splitting the integral in Eq. (4.12) into two parts, we 
obtain 


/»2π /·3π/2 
I exp(xsin<\))d$ — / exp(Jccosφ/)ί/φ/ 


JO J-n/ ir/2 


/


0 /*3π/2 


exp(x cos φ') d φ/ + I exp(;c cos φ') d(\>' 
-π/2 JO 


1/2 


Letting φ' = φ" + 2π in the first integral on the right-hand side gives 


Γ·2π 


/


0 /»Z71 


exp(jt ^8φ')οίφ' = I exp(jc cos φ^) άφ". 
-n/2 hn/2 


(4.16) 


(4.17) 
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Substituting Eq. (4.17) into Eq. (4.16) and merging the two integrals on the right-
hand side of Eq. (4.16), we obtain 


/»2π /·2π /»3π/2 


/ expU sin φ) dφ = / exp(x cos φ") d<\>" + / exp(jt cos φ') d§' 
JO J3n/2 JO 


ρ2π 


=■ I βχρί^οοβφ) */φ. (4.18) 
Jo 


Since both φ' and φ" are dummy variables, they are both replaced with φ above. 


4 A CONVOLUTION OVER A TOP-HAT BEAM 


For a top-hat beam of radius R, the source function becomes 


s<H° ϊ '»£· <4i9) 
where So denotes the intensity inside the beam. We have 


Po 
So = ~ , (4.20) 


nRz 


where Po denotes the total power of the beam. 
Substituting Eq. (4.19) into Eq. (4.8), we obtain 


C{r, z) = 2nSQ / G(r", Ζ)/Φ(Γ, r")r"' dr\ (4.21) 
Jo 


where 


1 if R > r + r" 


^ c o s - ^ ^ + ^ V ^ 2 ) if V-r"\ < R<r + r". (4.22) /φ(Γ,Γ") = 


0 if R < \r - r"\ 


From Eq. (4.22), the limits of integration in Eq. (4.21) can be changed to a finite 
range 


rr+R 
it \ j / J i \ > ' j ' f C(r, z) = 2nS0 [ G{r"\ Ζ)/Φ(Γ, r")r" dr", (4.23) 


Ja 


where 


a = max(0, r - R). (4.24) 


Function max( ) takes on the greater of the two arguments. 
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If R tends to infinity, Eq. (4.23) becomes 
/»OO 


C(r, z) = 2nSo / G{r\ z)r" dr". (4.25) 
Jo 


This equation implies that in MCML, if the absorbed weights in all r grid ele-
ments are summed and then divided by the total number of tracked photon 
packets, the result represents the specific absorption as a function of z for an 
infinitely wide beam of unit intensity. 


4.5. NUMERICAL SOLUTION TO CONVOLUTION 


As described in Chapter 3, a grid system is used in the Monte Carlo model. A 
2D homogeneous grid system is set up in the r and z directions. The grid element 
sizes are Ar and Az in the r and z directions, respectively; the total numbers of 
grid elements in the r and z directions are Nr and Nz, respectively. 


When the photon beam is Gaussian or top-hat, the 2D convolution becomes 
ID. Because the Monte Carlo simulation assigns physical quantities to discrete 
grid elements, an appropriate integration algorithm is based on the extended 
trapezoidal rule. This algorithm is ideal for a nonsmooth integrand that is linearly 
interpolated between available data points; it is implemented in C as a function 
named t r a p z d ( ) , which is called by another function named q t r a p ( ) . 


Another method of integration is to evaluate the integrand at the original grid 
points. This approach, however, does not offer any control over the integration 
accuracy. For a top-hat beam, for example, Nr is 50, and R is about 5Ar. If 
C(0, z) is computed from Eq. (4.23), the integration interval [0, R] covers only 
5Ar. Thus, only five function evaluations contribute to the integration and may 
yield unacceptable accuracy. By contrast, the extended trapezoidal rule continues 
to perform function evaluations until a user-specified accuracy is reached. 


The sequence of integrand evaluations in the extended trapezoidal rule is 
shown in Figure 4.1a. Subsequent calls to t r apzd( ) incorporate the previous 
evaluations and evaluate the integrand only at the new points. To integrate f(x) 
over interval [a,b], we evaluate f(a) and f(b) in the first step as noted by 1 
and 2 in Figure 4.1a. To refine the grid, we evaluate / ( | (a + b)) in the second 
step as noted by 3. This process is repeated until the integral evaluation reaches a 
specified accuracy. The bottom line shows all function evaluations after four calls. 


4.5.1. Interpolation and Extrapolation of Physical Quantities 


The physical quantities under discussion have been computed using MCML over 
a grid system. As discussed in Chapter 3, the optimal r coordinate is 


r(ir) = 
2 / l2(/r + ±) 


Ar, (4.26) 
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(a) 


O 


Original data 
Interpolation 
Extrapolation 


' I ' I ' I ' I ' I " I ' I 
1 2 3 4 5 6 7 


(b) r/Ar N -0.5 


Figure 4.1. (a) Sequence of integrand evaluations in the extended trapezoidal rule of 
integration; (b) interpolation and extrapolation of the physical quantities. In this example, 
Nr = 8. Symbols a and b denote the integration limits, and i denotes the iteration index. 
Arrows point to where the integrand is evaluated. Solid circles represent the original data 
points. Dashed and solid lines represent linear interpolation and extrapolation, respectively. 


where ir is the index of the grid element (0 < ir < Nr — 1). For ir = 0, r(0) is 
| Ar instead of ^Ar. The offset between the optimized and the centered coordi-
nates in each grid element decreases as ir increases. 


In qt rap (), the integrand—of which G is only a part—is evaluated at points 
that may not fall on the original grid as illustrated in Figure 4.1. Linear interpo-
lations are used for those points that fall between two original grid points, and 
linear extrapolations are used for those points that are located beyond the origi-
nal grid system (Figure 4.1b). Extrapolation is extended only up to (Nr - 0.5) Ar 
because further extrapolation is unreliable. In MCML, the last cells in the r direc-
tion are used to collect contributions from photon packets that do not fit into the 
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grid system and thus do not represent the true local physical quantities. There-
fore, the upper limit for extrapolation is (Nr — 0.5)Ar instead of (Nr + 0.5)Ar, 
and the physical quantity beyond (Nr — 0.5) Ar is set to zero. We denote 


rmax = (Nr-0.5)Ar. (4.27) 


4.5.2. Integrand Evaluation for a Gaussian Beam 


Although the integration in Eq. (4.14) must converge for physical reasons, it may 
cause overflow in a computer because the modified Bessel function increases 
rapidly as the argument increases. Therefore, a proper reformulation of the inte-
grand is necessary. 


We note that the modified Bessel function has the following asymptotic approx-
imation for large x values: 


expOc) 
/ o W « - ^ . (4.28) 


y/2nx 


We define the following new function on the basis of IQ 


Ioe(x) = Io(x)exp(-x) (4.29) 


or 


/o(x) = /o*U) expU), (4.30) 


where IQ€ is always well bounded. Substituting Eqs. (4.9) and (4.30) into 
Eq. (4.14), we obtain 


poo 


C(r, z) = 2π5ο / G(r", z) exp 
Jo 


Because both the exponential and the I$e terms are well bounded, the integrand 
can be computed without overflow. Since Eq. (4.28) is not actually used in the 
computation, Eq. (4.31) does not carry any asymptotic approximation. 


Computation speed is another issue. The evaluation of exp( )Ioe() in Eq. (4.31) 
is a major part of the computation, which can take up to 90% of the total time. 
For multi-dimensional physical quantities (e.g., the fluence as a function of r and 
z), the convolution may repeatedly evaluate exp( )Ioe( ) at the same r coordi-
nate as the integration is computed for different z coordinates. Therefore, if the 
values of exp( )/o*( ) are stored during the convolution for one z coordinate, 
computation time can be reduced. Because the number of function evaluations 
is unknown in advance, the function evaluations should be saved with dynamic 
data allocation. Since the evaluation sequence in q t r a p O resembles a binary 
tree as shown in Figure 4.1a, a binary tree can be used to store the function 
evaluations. Although the first two nodes are out of balance, the subtree below 
node 3 is perfectly balanced. 


^ Ι Χ Ϊ Κ «-> 
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4.5.3. Integration Limits for a Gaussian Beam 


Although the upper integration limit for a Gaussian beam in Eq. (4.31) is infinity, 
it can be converted to a finite value by a change of variables; then, the integration 
can be computed by a function called midexp(). This approach, however, is not 
computationally efficient. Therefore, q t r a p ( ) is preferred; the upper integration 
limit, however, must be reduced to a finite value. To this end, the integrand is 
nonzero if 


| r " - r | <KR (4.32) 


or 


r-KR<r" <r + KR, (4.33) 


where A' is a constant that can be set in CONV. For example, if K is 4, the 
exponential term in Eq. (4.31) is exp(—32) ~ 10~~14. 


The computation of G covers only interval [0, rm a x] , where rmax is as given 
by Eq. (4.27). Combining this limit and Eq. (4.33), we rewrite Eq. (4.31) as 


fb Γ / r " - r \ 2 1 /4rr"\ 
C(r,z) = 2nS0j G(r",z)exp I —2 f—^—1 \l0ei ~^-\ r"dr"% (4.34) 


where 


a = max(0, r - KR), (4.35) 


fc = min(rmax,r + KR). (4.36) 


Functions max( ) and min( ) take on the greater and the lesser of the two 
arguments, respectively. 


4.5.4. Integration for a Top-Hat Beam 


The integrand for a top-hat beam can be evaluated more easily than that for a 
Gaussian beam, because the integration limits are finite and the integrand causes 
no overflow. However, evaluation of /ψ in Eq. (4.23) is also time-consuming. 
As in the integrand evaluation for Gaussian beams, the evaluated /φ values for 
q t r a p ( ) are stored in a binary tree for computational efficiency. 


Since the physical quantities are computed only in interval [0, rm a x] , Eq. (4.23) 
can be expressed as 


C(r, z) = 2JZSO f G{r\ Ζ)/Φ(Γ, r")r" dr", (4.37) 
Ja 
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where 


a = max(0, r - /?), (4.38) 


fc = min(rmax,r + /?). (4.39) 


4.5.5. First Interactions 


In MCML, absorption from the first photon-tissue interactions is recorded sep-
arately. The first interactions always occur on the z axis and hence contribute 
to the specific absorption or related physical quantities as a delta function. The 
total impulse response can be expressed in two parts 


G(r, z) = G,(0, z)^- + G2(r, z), (4.40) 


where the first term results from the first interactions and the second, from sub-
sequent interactions. 


For a Gaussian beam, substituting Eq. (4.40) into Eq. (4.34) yields 


C(r,z) = G{(0,z)S(r) + 2nS0 f G2{r",z) 
Ja 


- 2 (̂ Χ )̂'*-· x exp 
For a top-hat beam, substituting Eq. (4.40) into Eq. (4.37) yields 


C(r, z) = Gi(0, z)S(r) + 2nS0 f G2(r\ Ζ)/Φ(Γ, r")r" dr". (4.42) 
Ja 


The numerical results obtained with and without separately recording the first 
interactions are compared in the next section. 


4.5.6. Truncation Error in Convolution 


As shown in Eqs. (4.36) and (4.39), the upper integration limits may be bounded 
by rmax. For a top-hat beam, if 


r < W - R, (4.43) 


the limited grid coverage in the r direction does not affect the convolution; 
otherwise, it truncates the convolution and leads to error in the convolution for 
r > ''max — R- Thus, to convolve reliably for physical quantities at r in response 
to a top-hat beam, we must ensure that rmax in the Monte Carlo simulation is 
large enough that Eq. (4.43) holds. 
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For a Gaussian beam, no simple formula similar to Eq. (4.43) exists because 
a Gaussian beam theoretically extends to infinity. At r ^> R, a Gaussian beam 
and a top-hat beam of the same R and So have comparable convolution results. 
Therefore, Eq. (4.43) can be used approximately for Gaussian beams as well. 


4.6. COMPUTATIONAL EXAMPLES 


In this section, the error that is caused by not recording the first photon-matter 
interactions separately is illustrated, and a numerical example of convolution 
is presented. The impulse responses are computed by MCML for a scattering 
medium described in Table 4.1. The grid element sizes in the r and z directions 
are both 0.01 cm. The numbers of grid elements in the r and z directions are 50 
and 40, respectively. One million photon packets are tracked. 


The impulse fluence near the surface of the scattering medium (z = 0.005 cm) 
is shown in Figure 4.2a, where the first interactions are recorded separately. 
If they were recorded into the first r grid element instead, it would augment 
the fluence in the first grid element by 1.95 x 103 cm- 2 , which is significantly 
greater than the current value of 1.34 x 103 cm- 2 . For comparison, the impulse 
response is convolved over a top-hat beam of 1-nJ energy and 0.01-cm radius 
both with, and without, recording the first interactions separately (Figure 4.2b). 
The convolved results differ at r = 0.015 cm by as much as 120%. 


The impulse response is also convolved over a Gaussian beam (1-nJ total 
energy, 0.1-cm radius), where the convolution error is set to 0.01. The contour 
lines of the fluence distribution before and after the convolution are shown in 
Figure 4.3. 


APPENDIX 4A. SUMMARY OF CONV 


The entire source code of CONV can be found on the Web at ftp://ftp.wuey. 
com/public/sci_tech_med/biomedical_optics. The program is divided into several 
files. Header file conv.h defines the data structures and some constants. File 
convmain.c contains primarily the main function. File convi .c handles data 
reading. File convo.c handles data writing. File convconv.c implements the 


TABLE 4.1. Optical Properties and Structure of a Three-Layered Scattering 
Medium0 


Layer 


1 
2 
3 


n 


1.37 
1.37 
1.37 


μ« (cm"1) 


1.0 
1.0 
2.0 


μ* f (cm"
1) 


100.0 
10.0 
10.0 


8 


0.9 
0 
0.7 


Thickness (cm) 


0.1 
0.1 
0.2 


aRefractive indices for top and bottom ambient media are both 1.0. 
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0.2 0.3 
Radius r (cm) 


Figure 4.2. (a) Relative fluence at z = 0.005 cm in response to a pencil beam computed 
by MCML; (b) fluence at z = 0.005 cm in response to a top-hat beam computed by 
CONV. Circles and crosses represent data with and without, respectively, the first inter-
actions scored separately. 


actual convolution. File conviso .c handles calculation of contours. File con-
vnr . c contains several functions for dynamical data allocations and error reports. 
Readers should read the main function first. 


The following list is generated by command cf low -d4 -n - -omit-arguments 
- -omit - symbol- names conv* . c, which shows the structure of the program with 
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(a) 
0.2 0.3 
Radius r (cm) 


0.2 0.3 
Radius r (cm) 


Figure 4.3. (a) Relative fluence distribution in response to a pencil beam computed by 
MCML; (b) fluence distribution in response to a Gaussian beam computed by CONV. 


the nesting depth limited to 4: 


1 main() <int () at C0NVMAIN.C:143>: 
2 ShowVersionO <void () at C0NV0.C:37>: 
3 pu t s ( ) 
4 Cen te rS t r ( ) <char * () a t C0NV0.C:11>: 
5 s t r len ( ) 
6 strcpy() 
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7 s t r c a t ( ) 
8 p r i n t f ( ) 
9 ge ts ( ) 


10 s t r l e n ( ) 
11 BranchMainCmd() <void () at CONVMAIN.C:122>: 
12 strlen() 
13 BranchMaihCmdl() <void () at C0NVMAIN.C:63>: 
14 toupper() 
15 ReadMcoFileO <void () at CONVI.C:568>: 
16 LaserBeam() <void () at C0NVC0NV.C:92>: 
17 ConvResolution() <void () at C0NVC0NV.C:127>: 
18 ConvError() <void () at CONVCONV.C:156>: 
19 ShowMainMenu() <void () at CONVMAIN.C:25>: 
20 QuitProgram() <void () at C0NVMAIN.C:44>: 
21 puts() 
22 BranchMainCmd2() <void () at C0NVMAIN.C:92>: 
23 toupper() 
24 0u tpu t0 r i gDa ta ( ) <void () at C0NV0.C:784>: 
25 OutputConvData() <void () at CONVCONV.C:1017>: 
26 ContourOrigData() <void () at C0NV0.C:893>: 
27 ContourConvData() <void () at CONVCONV.C:1137>: 
28 ScanOrigData() <void () a t CONVO.C:1211>: 
29 ScanConvData() <void () at CONVCONV.C:1506>: 
30 pu ts ( ) 
31 pu ts ( ) 


PROBLEMS 


4.1 Derive Eq. (4.11). 


4.2 Derive Eq. (4.21). 


4.3 Derive Eq. (4.23). 


4.4 Derive Eq. (4.25). 


4.5 Derive Eq. (4.31). 


4.6 Derive Eqs. (4.41) and (4.42). 


4.7 Write a computer program that can convolve the impulse responses over 
a flat beam. 


4.8 Take the Fourier transformation of Eqs. (4.1) and (4.2) with respect to x 
and y. 


4.9 Write the time-domain counterparts of Eqs. (4.1) and (4.2) for an arbi-
trary pulse profile S(t) of the incident pencil beam. In this case, an 
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impulse response G(x, y, z, /) is defined as a time-resolved response to 
a temporally infinitely short δ(ί) photon beam. Assuming the response to 
S(t) to be experimentally measured, explain how to recover the impulse 
response G(JC, y, z, t) through deconvolution. 


4.10 Take the Fourier transformation of the time-domain counterparts of 
Eqs. (4.1) and (4.2) with respect to t. 


4.11 Assume that the incident photon beam is finite in both time and space and 
can be represented by S(x, y,z,t). Write the convolution over this beam. 


4.12 Although Eqs. (4.9) and (4.19) are related to the total power of the light-
beam, explain why the total energy can be used when, for example, the 
lightbeam is infinitely short-pulsed. 
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CHAPTER 5 


Radiative Transfer Equation 
and Diffusion Theory 


5.1. INTRODUCTION 


Photon transport in biological tissue can be modeled analytically by the radiative 
transfer equation (RTE), which is considered equivalent to the numerical Monte 
Carlo method covered in Chapter 3. Because the RTE is difficult to solve, it 
is often approximated to a diffusion equation, which provides solutions that are 
more computationally efficient but less accurate than those provided by the Monte 
Carlo method. 


5.2. DEFINITIONS OF PHYSICAL QUANTITIES 


Spectral radiance Lv, the most general physical quantity discussed in this chapter, 
is defined as the energy flow per unit normal area per unit solid angle per unit time 
per unit temporal frequency (temporofrequency) bandwidth, where the normal 
area is perpendicular to the flow direction. Radiance L is defined as the spectral 
radiance integrated over a narrow frequency range [v, v + Δν]: 


L(r, 5, t) = Lv(r, s, t)Av (W nrV - 1 ) . (5.1) 


Here, r denotes position, s denotes unit direction vector, t denotes time, and the 
parentheses enclose the unit of the physical quantity on the left-hand side of the 
equation. The amount of radiant energy dE that is transported across differential 
area element dA within differential solid angle element dQ during differential 
time element dt (Figure 5.1) is given by 


dE = L(rJ,t)(S'fi)dAdQdt (J). (5.2) 


Here, h denotes the unit outward normal vector of dA; s · h denotes the dot 
product of the two unit vectors, which equals the cosine of the angle between 
them. The radiance is the dependent variable in the RTE (to be derived). Several 
additional physical quantities can be derived from the radiance. 
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Figure 5.1. Schematic of energy flow through a differential area element dA within a 
differential solid angle element dQ. 


Fluence rate (or intensity) Φ is defined as the energy flow per unit area per unit 
time regardless of the flow direction; it is expressed as the radiance integrated 
over the entire 4π solid angle: 


φ(?, t) = I L(r,s, 
J4n 


t)dQ (W/m2). (5.3) 


An infinitesimal sphere of surface area dS receives power in the amount of 
Φ ( Γ , t)dS. In spherical coordinates, we have 


/»π /»2π 
Φ ( Γ , 0 = / / L(r,S,r) sin θ</φέ/θ (5.4) 


and 


s — (sin Θ cos φ, sin Θ sin φ, cosO), (5.5) 


where Θ and φ denote the polar and azimuthal angles, respectively. 
Fluence F is defined as the time-integrated fluence rate: 


F(r) 
/


+oo 
Φ(Γ , 


-oo 


t)dt (J/m2). (5.6) 


Current density J is defined as the net energy flow per unit area per unit time; 
it can be expressed as 


7 ( r , i ) = / sL(?J,t)dQ (W/m2), 
J4n 


(5.7) 








DERIVATION OF RADIATIVE TRANSPORT EQUATION 8 5 


which is the vector counterpart of Eq. (5.3). Current density points to the direction 
of the prevalent flow since flows in opposite directions partially offset each other. 
Current density is also referred to as energy flux; the term flux, however, can also 
refer to a vector quantity integrated over a given area. 


Energy density ue is defined as the energy of the propagating electromagnetic 
wave per unit volume; it can be obtained by 


ue = - (J/m3), (5.8) 
c 


where c is the speed of light in the medium. 
Photon density U is defined as the number of propagating photons per unit 


volume; for monochromatic light, it can be expressed as 


ue Φ i 
U = IT = ~T <m~ >' <5'9) 


nv cnv 
where h is the Planck constant and hv is the energy of a single photon. 


Specific power deposition (or specific absorption rate) Ap is defined as the 
optical energy absorbed by the medium per unit volume per unit time; it can be 
expressed as 


Αρ = μαΦ (W/m3), (5.10) 


where μα is the absorption coefficient of the medium. 
Specific energy deposition (or specific absorption) Ae is defined as the time-


integrated specific power deposition: 


/


+oo 
A„(r,t)dt (J/m3). (5.11) 


-00 


5.3. DERIVATION OF RADIATIVE TRANSPORT EQUATION 


With the quantities defined above, we now heuristically derive the RTE from the 
principle of conservation of energy, where coherence, polarization, and non-
linearity are neglected. The optical properties—including refractive index n, 
absorption coefficient μα, scattering coefficient μ5, and scattering anisotropy 
g—are assumed to be time-invariant but space-variant. Only elastic scattering 
is considered in this chapter. 


Consider a stationary differential cylindrical volume element as shown in 
Figure 5.2. Here, ds is the differential length element of the cylinder along pho-
ton propagation direction s ; dA is the differential area element perpendicular to 
direction s. Below, we consider all possible contributions to the energy change in 
this volume element within differential solid angle element dQ around direction 
s. In addition, dQ' is a differential solid angle element around direction s'. 
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Figure 5.2. Schematic of a stationary differential cylindrical volume element. 


5.3.1. Contribution 1: Divergence 


If the local photon beam is not collimated, divergence is nonzero. Energy diverg-
ing out of the volume element or the solid angle element per unit time is given by 


dL(r,s,t) dL(r,s,t) 
dPdiy = — v } dsdAdQ = —V } dQdV, (5.12) 


ds ds 


where dV = dAds. This contribution is positive for actual divergence and neg-
ative for actual convergence. 


In divergence form, Eq. (5.12) becomes 


dPdiw = § · VL(?, s, t)dQdV = V · [L<7, s, t)s]dQdV. (5.13) 


This contribution is due to local "noninteractive" beam propagation; thus, it can 
exist even in a nonscattering medium. Scattering elsewhere, however, can affect 
the local divergence. It can be seen later that this contribution still exists when 
the absorption and scattering coefficients are set to zero in the radiative transfer 
equation. 


5.3.2. Contribution 2: Extinction 


Energy loss per unit time in the volume element within the solid angle element 
due to absorption and scattering is given by 


rfPext = (lLtds)[L(r,s,t)dAdto], (5.14) 


where \^tds represents the probability of extinction—by either absorption or 
scattering—in ds. Light scattered from all directions into solid angle element 
dQ is considered in the next subsection. 
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5.3.3. Contribution 3: Scattering 


Energy incident on the volume element from any direction s' and scattered into 
d£2 around direction s per unit time is given by 


dP,ca = (NsdV) I L(?, ί', t)P(s', s)os άΐϊ dQ. (5.15) 


Here, Ns denotes the number density of the scatterers and os denotes the scattering 
cross section of a scatterer. Thus, NsdV denotes the number of scatterers in the 
volume element; L(r,s' ,t)osd£l' denotes the energy intercepted by a single 
scatterer within solid angle dQ' per unit time. The phase function P(s\ s) is a 
PDF: 


L P(sJ)dQ= 1. (5.16) 4π 
The product P(s\s)dQ represents the probability of light with propagation 
direction s' being scattered into dQ around direction s. Often, the phase func-
tion depends only on the angle between the scattered and incident directions, 
that is 


P(s'J) = P(s' s), (5.17) 


where s' · s equals the cosine of the angle between the two unit vectors. We limit 
our consideration to this case. The scattering anisotropy can be expressed as 


g= [ (S''§)P(S'-§)da. (5.18) 


From μ5 = Nsos and Eq. (5.17), Eq. (5.15) can be rewritten as 


dP^ = (\isdV)\ I L(rJ',t)P(s' 'S)dQ'\ da. (5.19) 


5.3.4. Contribution 4: Source 


Energy produced by a source in the volume element within the solid angle element 
per unit time is given by 


dPSTC = S ( r , i , 0 dV dQ, (5.20) 


where 5 carries the unit of W/(m3 sr). 








8 8 RADIATIVE TRANSFER EQUATION AND DIFFUSION THEORY 


5.3,5. Conservation of Energy 


The change in energy in the volume element within the solid angle element per 
unit time is given by 


dP = — - 1 - dVdtt, (5.21) 
dt 


where L/c represents the propagating energy per unit volume per unit solid angle. 
This rate of change is a result of the balance among the two negative and two 
positive contributions described above. The principle of conservation of energy 
requires 


dP = -dPdiv - dPexl + dP,ca + dP$rc. (5.22) 


Substituting Eqs. (5.13), (5.14), and (5.19)-(5.21) into Eq. (5.22), we obtain 


dL(r,s,t)/c 
— J/ = -s · VL(r, 5, t) - [itL(r, S, /) 


*' (5.23) 
+ μ, / L(rJ',t)P(s' - s)d& + S(r, s, t), 


J4n 


which is the well-known RTE (or the Boltzmann equation). 
For time-independent responses, the left-hand side of Eq. (5.23) is zero: 


—V = 0. (5.24) 
dt 


To reach a time-independent state requires the use of a time-invariant light source, 
that is, a constant-power continuous-wave lightbeam. For a pulsed light source, 
time-independent responses are still applicable to time-integrated physical quan-
tities such as specific energy deposition. 


5.4. DIFFUSION THEORY 


The RTE is difficult to solve since it has six independent variables (JC, y, z, θ, φ, t). 
Usually, the RTE is simplified in the diffusion approximation. The diffusion 
approximation assumes that the radiance in a high-albedo (μα <£ μ5) scattering 
medium is nearly isotropic after sufficient scattering. 


5.4.1. Diffusion Expansion of Radiance 


Spherical harmonics Y,hm form a basis set, on which the radiance can be expanded. 
In the diffusion approximation, the radiance is expanded to the first order 
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1 n 


L(r, 3,ί)*ΣΣ L " ^ ' OYn.m(S), (5.25) 
n=0 m=—n 


where Ln,m are the expansion coefficients. The term for n = 0 and m — 0 on the 
right-hand side represents the isotropic component, whereas the terms for n = 1 
and m = 0, ± 1 represent the anisotropic component. 


In terms of the associated Legendre polynomials Pnm and a periodic function 
of φ, we have 


Yn,m(s)'= ΚΠιΐη(θ,φ) = ( - 1 Γ / ( 2 w + 1 ) ( n ^ ) ! F n , m ( c o s e y ^ , (5.26) 


where 


(Ί _ x2\m/2 jm+n 
Pnm(x) = !t ί _ ( J C 2 - 1)". (5.27) 


' 2nrc! Jjcm+n 


When m = 0, P n m reduces to the (unassociated) Legendre polynomials Pn. If the 
expansion of L in Eq. (5.25) continues to n = /V, the approximation is known 
as the PH approximation. Hence, the diffusion approximation is also known as 
the Pi approximation. 


The spherical harmonics for n — 1 are 


ΙΌ,οίθ, Φ) = 1 


(5.28) 
Κι,_ι(θ,φ) = λ /^-5ίηθ^- 'Φ, V 8π 


1Ί.ο(θ,φ) = ^ ο ο 8 θ , 


ίΊ.ι(θ,φ) = - ^ 8 ί η θ β ί φ . 


The following symmetry and orthogonality (or orthonormality) exist: 


r„,-m(e, Φ) = ( - i r r ; , m ( G , φ), (5.29) 


Yn,m(S)Y:,m,(s)dn = S n n W . (5.30) / 


Here, * denotes complex conjugation; hnn',mm' denotes the Krönecker delta func-
tion, which equals 1 if both n — n' and m —m! hold and 0 otherwise. The integral 
in Eq. (5.30) is referred to as the inner product, analogous to the dot product of 
two vectors. 
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Substituting Eq. (5.25) into Eq. (5.3), we obtain 


Φ(Γ,0 = 4πΔ0,ο(Γ,0^ο(δ) (5.31) 


or 


4π 


which means that the isotropic term in Eq. (5.25) is equal to the fluence rate 
divided by the entire 4π solid angle. 


Unit vector s can also be expressed in terms of the spherical harmonics: 


s = (sin Θ cos φ, sin Θ sin φ, cos Θ) 


= V Y (^ ι . - ι^) - Yu(S), *m, - i ( i ) + Yu(s)], V2F,,0(i)) · (5.33) 


Multiplying Eq. (5.25) by s and substituting the result into Eq. (5.7), we obtain 


4. [ 


7(r, t)-S = ^- Σ Li.™<?' OYumiS) (5.34) 
3


 m = - i 


or 
1 


4π Σ
 L ^ ( ? ' 0Yum(S) = ^ - J ( r , 0 · 5. (5.35) 


m = - l 


Note that J(r,t) · s = \J(r, t)\ cos a, where a denotes the angle between J(r, t) 
and s. Therefore, the anisotropic term in Eq. (5.25) is proportional to the projec-
tion of 7(r, t) onto s. 


Substituting both Eqs. (5.32) and (5.35) into Eq. (5.25), we obtain 


1 3 - _ 
L(r, S, t) = — Φ ( Γ , 0 + — 7 ( r , i) · s, (5.36) 


4π 4π 


which is illustrated in Figure 5.3. 


Example 5.1. Derive Eq. (5.31). 


Substituting Eq. (5.25) into Eq. (5.3), we obtain 


Φ ( Γ , 0 = [ Lo,o(r,i)r0.o(S)dn+ f L,,_,(r, O l ^ K ^ r f n (5.37) 


+ f L,,o(r,t)Yi.0mdii+ [ Lu(r,t)Yu(S)da. 
J An J4n 
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Figure 5.3. Illustration of the effect of current density J on the radiance. Solid line 
represents the isotropic term; dashed line represents the total radiance. 


Noting that L„ m is independent of s and using Eq. (5.28), we have 


/ L0,o(r, 0*b,o(i) dQ = L0lo(r, 0*b,o(S) / dQ = 4nL0,o(r, t)Y0t0(s), 


(5.38) 


/ 
Li,-i(r,t)Yl,-l(S)dn = J— L, 


4π V 8π 


/»2π /»π 


, - Ι ( Γ , 0 / β" , - φέ/φ/ 8ίη2θέ/θ = 0, 
Jo Jo 


X Li 0(r, ΟΚιο(ί)^Ω = 2πΛ/ — L , 0(r, 0 / cosΘsinθί/θ = 0, 4π ' V 4π ' Jo 
(5.39) 


(5.40) 


f Lix(r,t)Yii(s)da = -J—Lii(r,t)[ e^</φ f sm2Qdd = 0. 
J4n ' ' V 8π ' Jo Jo 


Finally, we obtain 


Φ ( Γ , 0 = 4π^,ο(Γ,ΟΪ"ο,ο(5). 


Example 5.2. Derive Eq. (5.34). 


(5.41) 


(5.42) 


Substituting Eqs. (5.33) and (5.25) into Eq. (5.7) and using Eqs. (5.29) and 
(5.30), we obtain 


J(7, 0 = ^ y ( - L u + Ll t_i , - / ( L l f l 4- L,f_i), V2LK 0) . (5.43) 
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From Eqs. (5.33) and (5.43), we obtain 


4 i 


s · J(r, 0 = y £ L,,m(r, 0*Vm($). (5-44) 
m = -\ 


5.4.2. Source 


The source 5 is assumed to be isotropic; that is, S(r, s, t) is independent of s: 


4π 


A collimated source can be approximately converted into an isotropic source (to 
be discussed). 


5.4.3. Scalar Differential Equation 


Substituting the diffusion expansion of L(r,s,t) [Eq. (5.36)] into the RTE 
[Eq. (5.23)] and integrating over the full 4π solid angle, we obtain the following 
scalar differential equation: 


V + M.fl*(r, t) + V · J(r , 0 - S(r, t). (5.46) 
cat 


Example 5.3. Derive Eq. (5.46). 


We substitute Eq. (5.36) into Eq. (5.23), integrate over the full 4π solid angle 
(scalar sum), and then evaluate each term as follows: 


1. For the left-hand side, on the basis of Eq. (5.3), we obtain 


f 8LCr,U)/cdas=B*£j)^ ( 5 4 ? ) 
Λπ d' Cdt 


2. For the first term on the right-hand side, on the basis of the vector identities 
s · VL = V · (sL) - LV · § and V · s = 0 and then Eq. (5.7), we obtain 


- / S-VL(rJj)dn = -' I V .[sL(r,s,t)]dQ 


= - V · / SL(r, i , 0 dQ = -V · J(r, 0-


(5.48) 


3. For the second term, from Eq. (5.3), we obtain 


J4i\ 
-μ, / Δ(Γ,5 ,0^Ω = ~μΓΦ(Γ,0. (5-49) 


/4π 
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4. For the third term, we have 


</Ω 
J4n U4 


L{?,s,t)P(s s)dti 
4π 


= ψ- ί I l4>(r,t) + 3J(r,t)-s']P(S''S)dada. (5.50) 
4π J4n J4?l 


We first evaluate the following two integrals: 


f \f ΦίΓ ,Ο^ί ί ' s)dQ'\ £/Ω = Φ ( Γ , 0 f | f Ρ ( 5 ' . ί ) ί / Ω Ί 
Λπ 1_./4π J «Μπ ίΛπ J 


= Φ(Γ,0 ί 
J4 


ΛΩ 


</Ω = 4 π Φ ( Γ , ί ) 
4π 


(5.51) 
and 


ί ί [J(r,t)sf]P(s' s)dQ'dQ 
*/4π J4n 


= \J(r,t)\[ \f P(S,'3)dQ\cos&da' 
J4n U4K J (5.52) 


= |7 ( r ,0 l [ costfdQ' 
J4n 


= 0. 


Here, / is aligned with the τ! axis, and dQ! — sinQ'dd'dfy'. Therefore 


[is f \ I L(?,s',t)P(sf s)dQf ί/Ω = μ ,Φ(? ,0 · (5.53) 


5. For the last term, using Eq. (5.45), we obtain 


/ S(rJ,t)dQ = — I S(r,t)da = S(r,t). (5.54) 
J4n 4 π J4n 


Combining these five parts completes the proof, where μ, — μ5 = μα is used. 


5.4.4. Vector Differential Equation 


Substituting the diffusion expansion of L(r, 5 ,0 [Eq. (5.36)] into the RTE 
[Eq. (5.23)], multiplying both sides by s, and integrating over the full 4π solid 
angle, we obtain the following vector differential equation: 


\ + (Ha + W,)J(r, t) + - νΦ(Γ, 0 - 0, (5.55) 
cdt 3 
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where 


μ ; = μ , ( 1 - £ ) (5.56) 


is referred to as the transport (or reduced) scattering coefficient. The sum μα -f 
μ̂ . is referred to as the transport (or reduced) interaction coefficient μ[: 


μ; = μ0 + μ,· (5.57) 


The reciprocal of μ, is referred to as the transport mean free path lt: 


/,' = Λ · (5.58) 


Example 5.4. Derive Eq. (5.55). 


We substitute Eq. (5.36) into Eq. (5.23), multiply both sides by s, integrate over 
the full 4π solid angle (vector sum), and then evaluate each term as follows. 


1. On the left-hand side, on the basis of Eq. (5.7), we obtain 


f JL(rJ, ̂ , Ω = ^ Μ . (5.59) 
cdt 


2. For the first-term on the right-hand side, we have 


s(s VL)dQ 


= — f s(s · ν Φ ) Λ Ω + — / s[s V(J s)]dQ. (5.60) 


It can be shown that the two integrals on the right-hand side here have the 
following results (see Problems 5.1 and 5.2): 


/ 
J4n 


4π 
ί ( ί · ν Φ ) έ / Ω = — ν Φ , (5.61) 


/ s[sV(Js)]dQ = 0. (5.62) 


3. For the second-term on the right-hand side, from Eq. (5.7), we obtain 


SL(r,s,t)dQ = VLtJ(r,s,t). (5.63) μ, / s 
J4n 








/4π 


s[<b(r,t)P(S''§)da']dQ 
4π 


+ j - l s\l U(r,t) -s']P(s' s)dQ'\ dQ. (5.64) 


(5.65) 
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4. For the third-term on the right-hand side, we have 


I I s[L(r,s',t)P(s' s)dQ']dQ 
«/4π J4n 


--[ I 


ΙΊΙ 
J4n {J4 


For the first integral, we have 


/ / s[<b(r,t)P(s' s)d 
JAn J4n 


= Φ(?,0 I s\ I P(s' s)dQ'\ ί/Ω = Φ(Γ,0 / sdQ = 0 
J4n U4n J J4n 


( 


For the second integral, we have 


f Si [ [J(r,t)-5']P(§'-s)da'\da 
J4n [J4n J 


= [ \f SP(s'-s)da\[J(r,t) s]dQ!. (5.66) 


On the basis of the identity 


s = s{s · s) + s x (s x s), (5.67) 


the inner integral in Eq. (5.66) is split into two integrals. The first one is 


[ §'(§' s)P(s' s)dQ = s'g. (5.68) 
J4n 


The second one is 


f s' x 0? x §')P(§' s)dQ = sf x\([ sP(s' · s)da\ x 5Ί . (5.69) 


Since P(sf · S) is azimuthally symmetric about s, f4n sP(s' · £)*/Ω is par-
allel with s'; hence, its cross-product with s' is zero. Therefore, Eq. (5.66) 
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becomes 


H/ 
J4n 


[ i ( r , 0 s']P(sf s)drt\ dQ 


[J(r,t)'S']dQf 


4π - _ 
= —gJ(rj), 


(5.70) 


where the last step is based on Problem 5.1. 
5. For the last term on the right-hand side, from Eq. (5.45), we obtain 


L S(r,t) f sS(r,s,t)dtt = —— I sdtt = 0. 4π 4π / J4n (5.71) 
Combining these five parts completes the proof. 


5.4.5. Diffusion Equation 


We notice that Eqs. (5.46) and (5.55) do not contain s as does Eq. (5.23) but 
contain two physical quantities J(r,t) and Φ(Γ , t). We now aim to obtain a 
single differential equation containing Φ(Γ , 0 only. 


We further assume that the fractional change in J{r,t) within lt is small, 
specifically 


!L 
1 


\J(rj)\ 


dJ(r,t) 


dt 
« 1, (5.72) 


where the first pair of parentheses contains the time duration for photons to 
traverse lt (which may be referred to as the transport mean free time) and the 
second pair of parentheses contains the fractional change in the current density 
per unit time. Equation (5.72) can be rewritten as 


dJ(r,t) 


cdt 
<<(μ* + [is)\J(?j)\. (5.73) 


Under this condition, the time-dependent term in Eq. (5.55) is negligible, lead-
ing to 


7( r , i ) = -DV4>(; , / ) , (5.74) 
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which is referred to as Fick's law. A negative sign appears above because dif-
fusion current density is always along the negative gradient. The constant D is 
referred to as the diffusion coefficient: 


D=~( * , , · (5.75) 
3(μα 4- μ5) 


Fick's law describes the, diffusion of photons in a scattering medium. In fact, 
Fick's law can describe diffusion in many other forms such as pollutant diffusion 
in air, ink diffusion in water, and heat diffusion in metal. It is not, however, 
applicable to propagations driven by external forces, such as electron drift in an 
external electrical field and particle drift under external pressure. 


Substituting Eq. (5.74) into Eq. (5.36), we obtain 


1 - 3 
L(r, 11) = —Φ(? , t) DVO(r, t) · s, (5.76) 


4π 4π 
which expresses the radiance in terms of the fluence rate alone. 


Substituting Eq. (5.74) into Eq. (5.46), we obtain 


^ + μαΦ(?, 0 - V · [DVO(?, t)] = S(?, 0 , (5.77) 
cat 


which is referred to as the diffusion equation. If the absorption coefficient is zero, 
this diffusion equation reduces to the heat diffusion equation. If the diffusion 
coefficient is space-invariant, we have a simpler version: 


cdt 
+ μαΦ(Γ, 0 - Ο Υ Ζ Φ ( Γ , 0 = S(r, t). (5.78) 


The diffusion equation does not depend on vector s and hence has 4 instead 
of 6 degrees of freedom; it can be used to solve for the fluence rate instead 
of the radiance. Note that the diffusion equation does not depend on \is and g 
independently but on their combination μ^. This degeneracy is referred to as the 
similarity relation, which is valid in the context of the diffusion approximation. 


Two approximations are made in the derivation of the diffusion equation from 
the RTE: (1) the expansion of the radiance is limited to the first-order spherical 
harmonics and (2) the fractional change in the current density in one transport 
mean free path is much less than unity. The interpretation of the first approxima-
tion is that the radiance is nearly isotropic (omnidirectional) owing to directional 
broadening. The interpretation of the second approximation is that the photon 
current is temporally broadened relative to the transport mean free time. Both 
broadenings are caused by multiple scattering events. Consequently, these two 
approximations can be translated into a single condition μ̂  > μα, because all of 
the diffuse photons must have sustained a sufficient number of scattering events 
before being absorbed. In addition, we also require that the observation point be 
sufficiently far from sources and boundaries. However, boundary conditions can 
be applied to improve accuracy. 
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5.4.6. Impulse Responses in an Infinite Scattering Medium 


For an infinitely short-pulsed point source, S(r, t) — h(r, t), the solution to the 
diffusion equation [Eq. (5.78)] for t > 0 is 


c ( r2 \ 
Φ(Γ, t) = — exp uact , (5.79) 


which is an impulse response, also referred to as a Green function, in an infinite 
homogeneous scattering medium. The exponential decay exp(—\iact) actually 
represents a form of Beer's law with respect to time due to absorption, whereas 
the other terms represent broadening due to scattering. Note that Eq. (5.79) incor-
rectly predicts a nonzero fluence rate anywhere in space at time 0+ , which violates 
causality. 


For an arbitrary infinitely short-pulsed point source located at r' and peaked 
at t\ Eq. (5.78) becomes 


V ' ' ' ; + μΛΦ(Γ, t\ r\ t') - Ζ)ν2Φ(?, t\ r', t') = h(r - ?f)h(t - tf), 
cdt (5.80) 


which yields a new form of Green's function for t > t'\ 


* ( r ' f ; r ' O = [ 4 T C D c ( r - r 0 p /
2 e x p 


I r - r ' l 2 


4Dc(t - /') 
\iac(t - t


f) (5.81) 


We should note that this solution depends on the distance between source point 
r! and observation point r but that it is independent of the roles of the source and 
the detector, which indicates reciprocity. In other words, if the source and the 
observation points are exchanged, the solution remains the same. This is the well-
known principle of reciprocity, which is applicable to many wave phenomena. 


From the Green function, Green's theorem provides a solution for any arbitrary 
source in space and time, S(r'', tf): 


Φ ( Γ , ί ) = / / Φ(ΐ,ί;Γ',ΐ)8(?',ΐ)άΓ'άΐ'. (5.82) 
JO JO 


The integral represents a superposition of impulse responses weighed by the 
source distribution; it is actually a convolution here because the Green function 
is translation-invariant. 


In a time-independent state, Eq. (5.78) becomes 


1 7 - S(r) Φ(Γ) - - ^ ν 2 Φ ( ? ) = ——. (5.83) 


Here, μ6ίί denotes the effective attenuation coefficient: 
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For a time-independent point source, S(r) = δ(7); the solution to Eq. (5.83) is 


Φ(?) = T - j r - e x p i ^ e f f r ) , (5.85) 


which is a time-independent 3D impulse response or a Green function in an 
infinite homogeneous scattering medium. 


For an infinitely broad isotropic source in a ID case, S(z) = δ(ζ); Eq. (5.83) 
reduces to 


1 α2ΦΙΌ(ζ) Hz) 
Φ\Ό(Ζ) 5 7 1 = ' <5·86) 


Miff dl ^a 


which yields the following solution in an infinite homogeneous scattering 
medium: 


Φ ι ο ω = ^ χ ρ ( - μ 6 * | ζ | ) . (5.87) 
2[La 


The l/e decay constant in this equation is the penetration depth δ: 


& = lMeff. (5.88) 


Comparing Eq. (5.87) with the following Beer's law for a nonscattering 
medium 


Φ ι ο ω = Φ(0)βχρ(-μΛ|ζ |) , (5.89) 


we observe that the ratio μeff/μö = ·γ/3(μ0 4- μ^)/μα can be inteφreted as the 
ratio of the "mean" photon path length in the scattering medium to the depth. 
However, if μ5 = 0, we have μείί = \ /3μα, which implies erroneously that the 
"mean" photon path is greater than the depth even in a nonscattering medium. 
This breakdown of the diffusion theory occurs because condition μ̂  ^> μα is not 
satisfied. 


Example 5.5. Derive Eq. (5.85). 


Solution 1. The following Fourier transformation pair is used: 


Φ(ί) = ί φ(?) exp(-i"jfc · r) dr, (5.90) 


(2π)3 J 


Since 5(r) = 5(r), Eq. (5.83) becomes 


Φ ( Γ ) - - τ - ν 2 Φ ( ? ) = — . (5.92) 
M-eff Μ Ά 
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Taking the Fourier transformation of this equation, we obtain 


ψ(£) = — — (5.93) 
\La(l+k2/\L2en) 


Taking the inverse Fourier transformation of this equation yields 
Eq. (5.85): 


Α/-Λ ] f exp(ifc-r) -
<t>(r) — 5— / :—T-dk 


(2π)3μ«7 l+*2Mrff 
1 f°° k2dk fn 


= — / —— / exp(ikr cos0)sin9J9 
(2π)2μ« io 1 + k2/\L2ef{ io 


- 1 f°° kdk = 7ΓΊΤ- / . , ,■>, 2 exp(f*rcos9)|0 


2 Γ 
(2π)2μαΓ io 


kün(kr)dk 
(5-94) 


eff 


μ ^ χ ρ ( - μ 6 ί ί τ ) 
4πμαΓ 


1 
— - — β χ ρ ( - μ β ί τ Γ ) . 4nDr 


Solution 2. The general solution to Eq. (5.92) is from the following homo-
geneous equation: 


Φ(Γ) r V 2 0 ( r ) = 0. (5.95) 


Since 4>(r) is independent of Θ and φ, Eq. (5.95) can be rewritten as 


r 2 ^ ) + 2 r ^ o _ r) = o (5%) 
drL dr 


This is a transformed Bessel equation that has the following solution after 
the imaginary part of the solution is discarded 


Φ(Γ) = exp(-^effr), (5.97) 


where C is a constant. Substituting Eq. (5.97) into Eq. (5.92) yields C = 
M<eff/(^D), and thus Eq. (5.85) is derived. 
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Example 5.6. Derive Eq. (5.87). 


Solution 1. The general solution of Eq. (5.86) is Φιο(ζ) = Cexp(—|xeffl^D-
Integrating Eq. (5.86) with respect to z from —oo to oo gives 
/ ^ o Φ\Ό(ζ)αζ = 1/μ« since 


/ 


00 ά2ΦΧΌ(ζ) . . dz = 0 
dz2 


and f^°ooh(z)dz = 1. Integrating the general solution gives 


/


oo 


* I D ( 
-oo 


roo 2C 
>(z)dz = — · 


-oo l̂ eff 


Therefore, C = (μβίτ/2μα) a n d Eq. (5.87) is derived. 
Solution 2. Integrating the 3D solution given by Eq. (5.85) over the source 


plane yields 


/•OO /»OO 


Φ ι ο ( ζ ) = Ι Φ(Γ)2πρ^ρ= / <D(r)2:rcr</r, (5.98) 


where z2 + p2 = r2. Completing the integration yields Eq. (5.87). 


5.5. BOUNDARY CONDITIONS 


5.5.1. Refractive-Index-Matched Boundary 


If a nonscattering ambient medium and a scattering medium have the same index 
of refraction, the interface between them is referred to as a refractive-index-
matched boundary. For example, an interface between water and soft tissue is 
approximately refractive-index-matched. At this kind of boundary, no light prop-
agates into the scattering medium from the ambient medium (Figure 5.4). This 
boundary condition is mathematically expressed as 


L(r, S , f ) = 0 for s · n > 0, (5.99) 


where r denotes a point on the boundary and h denotes the unit normal vector of 
the interface pointing into the scattering medium. If the z axis is defined along 
/z, we have s · n = cosO, where Θ is the polar angle of s. Because the radiance 
is nonnegative, an equivalent boundary condition can be expressed as 


/ L( r ,5 ,0S-Ärfn = 0, (5.100) 
Jsn>0 
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I 


Extrapolated boundary 
Scattering medium 


Real boundary 


Figure 5.4. Schematic representation of the boundary condition. 


which means that the direction-integrated radiance toward the scattering medium 
is zero. 


In the diffusion approximation, the boundary condition becomes 


Φ(?, t) + 2J(r, t) · h = 0 . (5.101) 


Substituting Fick's law [Eq. (5.74)] into Eq. (5.101), we obtain 


Φ(?, t) - 2DVO(?, 0 . h = 0 (5.102) 


or 


Φ(Γ , 0 - 2D ^ — = 0. (5.103) 
dz 


This boundary condition mathematically falls into the category of homogeneous 
Cauchy boundary conditions because a linear combination of the fiuence rate and 
its normal derivative on the boundary is zero. 


Using the Taylor expansion to the first order, we obtain 


Φ(ζ = - 2 D , t) = Φ(ζ = 0, t) - ID K ; 
dz 


= 0, (5.104) 
z=0 


which means that the fiuence rate at z = —2D is approximately zero. On an 
extrapolated boundary at 


zb = - 2 D , (5.105) 
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the fluence rate is approximately zero. This boundary condition mathematically 
falls into the category of homogeneous Dirichlet boundary conditions because 
the fluence rate on the boundary is zero. 


Example 5.7. Derive Eq. (5.101). 


Substituting the diffusion expansion of the radiance [Eq. (5.36)] into Eq. (5.100), 
we obtain 


/ L(r,s,t)s ηάΩ= / — Φ ( Γ , t) + —J(r , t) s\s -ηάΩ 
Λη>0 Jsn>0l^ 4π J 


1 - f 3 
= — Φ ( Γ , ί ) / s-ndQ +— (5.106) 


4π JS.A>0 4π 


x / [J(r,t)-s]s-ndn = 0. 
Js-n>0 


For a smooth boundary, the first integral on the right-hand side equals π. The 
second integral can be evaluated as follows: 


I [J(r,t) s]s ndQ= I I [Jx(r, i)sinOcos<|> + Jy(r, f)sin0sin<|> 
Jsn>0 JO JO 


-f Jz (r, t) cos Θ] sin Θ cos Θ d<\> JO 


•π/2 
(5.107) 


= 2π / 
Jo 


Jz{r,t) cosz Θ sin0 dd 


Therefore 


/ 
Jsn>0 


2π _ 2π - ̂  
= j i , ( r , / ) = j 7 ( r , i ) · « . 


L(r, S, t)S -ndQ = -<D(r, /) + - 7 ( r , t) - n = 0, (5.108) 


which leads to Eq. (5.101). 


5.5.2. Refractive-Index-Mismatched Boundary 


When the ambient and scattering media have different indices of refraction, the 
interface between them is referred to as a refractive-index-mismatched bound-
ary. For example, an interface between air and soft tissue is refractive-index-
mismatched. In this case, the boundary condition is modified as follows owing 
to the Fresnel reflections 


Φ(Γ , 0 - 2CRDV<&(7, t) · h = 0 (5.109) 
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or 


Φ(Γ, t) - 2CRD I = 0, (5.110) 


where 


1 + # eff C* = - - ^ . (5.111) 


The effective reflection coefficient /?eff represents the percentage of the outgoing 
radiance integrated over all directions pointing toward the ambient medium that 
is converted to incoming radiance integrated over all directions pointing toward 
the scattering medium. /?eff can be calculated as follows: 


Reff=
 R* + Rj , (5.112) 


Ι-Μφ + Rj 


where 


»π/2 


/?Φ = / 2sin0cose/?/r(cose)d0, (5.113) 
- / ' 


Jo 


Jo 


3 sin 6(cos Θ)2 RF(cos Θ) dQ, (5.114) 


1 /nrei cos θ' — cos θ \ 2 1 //trei cos Θ — cos θ'\ flF(cos0) = - — I + - I — for 0 < θ < ΘΓ, 
2 V^rel COS θ ' - f COS Θ / 2 y*rel COS Θ + COS Θ ' / 


(5.115) 


/?/r(cos6) = 1 for dc < Θ < - . (5.116) 


The angle of incidence is determined by 


Q = cos~](s -n). (5.117) 


The angle of refraction is determined by Snell's law as 


e ' ^ s in^Ke j s inO) , (5.118) 


where the relative refractive index nrt\ is the ratio of the refractive index of the 
scattering medium to that of the ambient medium. The critical angle is given by 


ΘΓ = siiTI — . (5.119) 
Wrel 
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Likewise, the distance between the extrapolated boundary and the actual boundary 
is modified to 


Zb = ~2CRD. (5.120) 


Example 5.8. Derive Eq. (5.109). 


For a refractive-index-mismatched boundary, we have 


f L(r,s,t)s-ndQ= I RF(s · n)L(r,s,t)s · ndQ, (5.121) 


where s · n = cos Θ and the Fresnel reflection RF of the light—presumed to be 
unpolarized—at the boundary is given by Eqs. (5.115) and (5.116). 


We define an effective reflection coefficient as 


A Ä̂ n RF($ · n)L(r, s, t)s · h dQ 
Reff = r / . (5.122) 


JSii<0L(rJ,t)s -ndQ 


As in Example 5.7, /?eff is evaluated in the diffusive regime using the diffusion 
expansion of radiance [Eq. (5.36)] 


Reff = 4 i \ , Λ (5.123) 


where 


R<P= f 
Jo 


L 


π/2 
2sin0cos0/?/r(cos0)i/0, (5.124) 


-π/2 


Rj = / 3sine(cose)2/?/r(cos0)i/G. (5.125) 


Similarly, boundary condition Eq. (5.121) leads to 


1 - 1 - _ 1 - 1 - _ 
- Φ ( Γ , 0 + - / ( r , t) · n = - / ? Φ Φ ( Γ , 0 - Rj-J(7, t) · A (5.126) 


in the diffusive regime. 
Merging Eq. (5.126) and Eq. (5.123) yields 


R<t> -\- Rj 
Reff = 7Γ-^ —, (5.127) 


2-R^ + Rj 


which can be solved numerically. Fitting this equation can provide an empirical 
formula for /?eff. 
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Substituting Eq. (5.122) into Eq. (5.121) yields 


/ L(rJ,t)s ndQ = Refi L(r, s,t)s · hdQ. (5.128) 
Jsn>0 Jsn<0 


In the diffusive regime, this equation can be rewritten as 


-Φ(? , t) + - / ( ? , t)-n = -fieff<Mr, t) - Reff-J(r, t) · h. (5.129) 


Substituting Fick's law [Eq. (5.74)] into this equation yields boundary condition 
Eq. (5.109). 


5.6. DIFFUSE REFLECTANCE 


Measured diffuse reflectance can be used, for example, to determine the optical 
properties of biological tissue noninvasively. The relative diffuse reflectance (or 
simply diffuse reflectance) is defined here as the probability of photon reemis-
sion per unit surface area from a scattering medium. Although the Monte Carlo 
method can predict diffuse reflectance accurately, it is computationally intensive. 
In particular, when the absorption coefficient is much less than the scattering 
coefficient, photons may propagate over long distances before being absorbed. 
Fortunately, the diffusion theory offers an alternative rapid approach although it 
is inaccurate near the light source. 


The task here is to compute the diffuse reflectance in response to an 
infinitely narrow photon beam (a pencil beam) normally incident on a semiinfinite 
homogeneous scattering medium that has a refractive-index-matched boundary 
(Figure 5.5a). The problem is solved below by the diffusion theory along with the 
boundary condition. Key factors that affect the accuracy of the diffusion theory 
are also discussed. 


5.6.1. Steps of Approximation 


Three steps of approximation are involved in the solution (Figure 5.5): (1) the 
anisotropically scattering medium (Figure 5.5a) is converted into an isotropically 
scattering medium (Figure 5.5b), based on the similarity relation; (2) the unit-
power pencil beam is converted into an equivalent isotropic point source at z = l't 
with a power equal to transport albedo a' (Figure 5.5c); see also Problem 5.3); 
and (3) the surface of the scattering medium is removed after an image source 
is added above the surface at z = —{l't + 2zb) to satisfy the boundary condition. 


An image point source is mirror-symmetric with the original point source 
about the extrapolated boundary at z = — Zb [Eq. (5.105)]; it is added to satisfy 
the boundary condition so that the original single source in a semiinfinite medium 
can be converted into double sources in an infinite medium. The response to a 
single source in a semiinfinite medium (Figure 5.5c) can be approximated by a 
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I * 


z μ,ι 


μ«2=μαΐ 
μ,2=μ,ι( ΐ -^ι) 
#2 = 0 


(c) 
Θ 


(d) 


■ Θ 


λ Θ 


μ«2 
μ,2 
82 


μ«2 
μ,2 
82 


Figure 5.5. Illustrations of the steps of approximation (the boxes represent the scatter-
ing media): (a) a pencil beam incident on the original scattering medium with absorption 
coefficient μαι, scattering coefficient [is\, and nonzero anisotropy g\; (b) a pencil beam 
incident on an isotropically scattering medium with μα2 = μαι, μ*2 = P^iO — gi)> and 
g2 — 0; (c) an isotropic point source under the surface of the isotropically scattering 
medium; (d) an image point source added to approximately satisfy the boundary condi-
tion—with this addition, the physical boundary (dashed line) is removed (circled signs 
indicate the polarities of the sources). 


superposition of the two responses to each of the double sources in an infinite 
medium (Figure 5.5d). The latter problem can be solved easily because it is free of 
boundaries. This approach is akin to the common practice of solving electrostatic 
problems with a zero-potential conducting boundary. Therefore, instead of dealing 
with a pencil beam incident on a semiinfinite anisotropically scattering medium 
(Figure 5.5a), we deal with two isotropic point sources in an infinite scattering 
medium (Figure 5.5d). 


5.6.2. Formulation 


A cylindrical coordinate system (r, θ, z) is set up. The origin of the coordinate 
system is the point of light incidence on the surface of the scattering medium, 
and the z axis is along the pencil beam. 


The fluence rate that is generated by a unit-power point source in an infinite 
scattering medium is described by Eq. (5.85) and is rewritten as follows in the 
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cylindrical coordinates 


ΦΟΟ(Γ, θ, ζ\ r\ θ\ ζ') = — l — β χρ ί -μ^ρ ) , (5.130) 
4nDp 


where p is the distance between observation point (r, Θ, z) and source point 
(Λθ' ,ζ ' ) : 


9 = Jr
2 + r'2 - 2rr' cos(0 - θ') + (z - z')2. (5.131) 


A linear combination of the solutions for each of the two isotropic sources in 
Figure 5.5d, according to Eq. (5.130), yields approximately the fluence rate in 
response to the original isotropic point source in the original semiinfinite scat-
tering medium: 


Φ(Γ, Θ, Z\ r\ θ', zf) = fl'Oooir, Θ, z\ r \ θ', ζ') - Α'ΦΟΟ^, Θ, Z; r\ θ', -z' - 2zb), 
(5.132) 


where z! = l't and a' denotes the transport albedo. 
According to Fick's law, the diffuse reflectance from the semiinfinite scattering 


medium is approximately the current density projected to the surface normal: 


3Φ 
Rd(r) = D — 


dz 
(5.133) 


2=0 


Substituting Eq. (5.132) into Eq. (5.133), we obtain 


, ζ ' (1+μβ ί τΡ ι )βχρ(-μβ ί ϊΡ ι ) , , (ζ' + 4D)(1 + \LeffQ2) exp(^e f fP2) 
Rd(r) = a —z + a — r . 


4πρ| 4πρ2 
(5.134) 


Here, pi is the distance between observation point (r, 0, 0) and original source 
point (0, 0, z') and p2 is the distance between observation point (r, 0, 0) and 
image source point (0, 0, — z! — 2zb)· 


Example 5.9. Derive Eq. (5.134). 


From Eqs. (5.130) and (5.131), we derive 


^Φηο 1 1 4- UeffP 
^ μ - " / - -x (5.135) 


(5.136) 


exp(^effPi). 


(5.137) 


δρ 4nD 


3p z-z! 
dz p 


tierefore 


ΘΦΟΟΟ',Θ,Γ,Γ' ,Θ' ,Ζ ') 
dz z=0 


2 ^ Λ ^ 
P2 


ν μ'βημ;» 


ΘΦοο ΘΡ 
dp dz 


ζ' 1 + M-effPi 
ζ=0 ~ Απϋ 9] 
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Likewise, we have 


d<S>00(r,$,z\r',V,-z
f -2zb) 


dz z=0 


z! + AD l + μ6ίΓΡ2 , , 
3 6Χρ(-μ6ίίΡ2)· 4πΖ) P2 


Combining Eqs. (5.137) and (5.138) leads to Eq. (5.134). 
(5.138) 


(a) 


Si - 0 . 4 


(b) 


— — - A: Monte Carlo 
D: Diffusion theory 


0.2 0.3 
Radius r(cm) 


0.2 0.3 
Radius r (cm) 


Figure 5.6. (a) Diffuse reflectance in response to a pencil beam incident on a semi-
infinite scattering medium. Curve A is from the Monte Carlo simulation for the case in 
Figure 5.5a. Curve D is from the diffusion theory for the case in Figure 5.5d. (b) Relative 
error between the two curves in part (a), which is the difference between curves D and 
Λ divided by curve A point-by-point. 
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5.6.3. Validation of Diffusion Theory 


In this section, we evaluate each step of the approximation described above 
using the accurate Monte Carlo method. The following optical properties are 
used: nrei = 1, \ia\ =0 .1 cm- 1 , \is\ = 100 cm- 1 , and g\ = 0.9. As shown in 
Figure 5.6, the diffuse reflectance Rd(r) from the diffusion theory is accurate 
only when r is greater than — l\ (l't = 0 . 1 cm here). 
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Figure 5.7. (a) Comparison between the diffuse reflectance distributions from the 
anisotropically (see Figure 5.5a) and isotropically (see Figure 5.5b) scattering media cal-
culated using the Monte Carlo method; (b) relative error versus r. 
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Figure 5.8. (a) Comparison between the diffuse reflectance distributions from an isotrop-
ically scattering medium in response to a pencil beam (see Figure 5.5b) and an isotropic 
point source (see Figure 5.5c) calculated using the Monte Carlo method; (b) relative error 
versus r. 


Deviations caused by each step of the approximation are illustrated in 
Figures 5.7-5.9. Curves A, B, and C are from the Monte Carlo method, whereas 
curve D is from the diffusion theory; curves A-D are associated with parts 
(a)-(d) in Figure 5.5. 


The error due to the approximation of Figure 5.5a with 5.5b is shown in 
Figure 5.7. The scattering anisotropy is converted from g = 0.9 to g = 0 while 
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Figure 5.9. (a) Comparison between the diffuse reflectance distributions in response to 
an isotropic point source in a semiinfinite scattering medium (see Figure 5.5c) and a pair 
of isotropic point sources in an infinite scattering medium (see Figure 5.5d). Curves C and 
D are from the Monte Carlo method and the diffusion theory, respectively, (b) Relative 
error versus r. 


μ̂ . is held constant. The relative error decreases with increasing r; it is >100% 
near r — 0 and -^20% near r = 2l't =0 .2 cm. 


The error due to the approximation of Figure 5.5b with 5.5c is shown in 
Figure 5.8. This pencil beam is converted to a single isotropic point source at 
z = l't = 0.1 cm. Such a conversion causes a severe underestimation of Rdir) 
near r = 0. 
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The error due to the approximation of Figure 5.5c to 5.5d is shown in 
Figure 5.9. Curves C and D are calculated by the Monte Carlo method and the 
diffusion theory, respectively; they show relatively small systematic differences. 


Although the diffusion theory is acceptable when the isotropic point source 
is far from the surface of the scattering medium as demonstrated in Figure 5.9, 
it becomes less accurate as the source approaches the surface (Figure 5.10). To 
demonstrate this point, we compare the results from the Monte Carlo method and 
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Figure 5.10. Comparison between the diffuse reflectance distributions from the Monte 
Carlo method and the diffusion theory. An isotropic light source is placed at (a) z = 0.1 /,' 
and then (b) z = 0.01/^ in an isotropically scattering semiinfinite medium. 
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10" 
C: isotropic source, g = 0 


- E: Isotropic source, g = 0.9 
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Figure 5.11. Comparison between the diffuse reflectance distributions from the Monte 
Carlo method in response to an isotropic point source placed at z — l't in two scattering 
media whose optical properties are related by the similarity relation. For curve C, g = 0; 
for curve E, g = 0.9; for both, nre\ — 1, \ia = 0.1 cm-1, and μ̂ . = 10 cm"1. 


the diffusion theory for the configurations in Figures 5.5c and 5.5d, respectively. 
The point source, however, is placed at z = 0.1/,' and then at z — 0.01/,' instead 
of at z = lfr As expected from the diffusion theory, data for z = 0.0\l't are less 
accurate than those for z = 0.1/,'. 


Although the conversion from Figure 5.5a to 5.5b introduces considerable 
error in Rd(r) near the source as shown in Figure 5.7, it is acceptable if the pho-
tons originate isotropically deep inside the scattering medium, as demonstrated 
below. In response to an isotropic point source at z = l't, the diffuse reflectance 
distributions from an isotropically scattering medium (as in Figure 5.5c) and an 
anisotropically scattering medium are computed by the Monte Carlo method; 
they are approximately equal to each other (Figure 5.11). 


5.7. PHOTON PROPAGATION REGIMES 


The cumulative effect of photon scattering by a medium can be loosely classified 
into four regimes. The term ballistic regime refers to photons that have undergone 
no scattering; quasiballistic regime refers to photons that have sustained a few 
scattering events but retain a strong memory of the original incidence direction. 
The term quasidiffusive regime refers to photons that have sustained many scat-
tering events and retain only a weak memory of the original incidence direction; 
diffusive regime refers to photons that have suffered many scattering events that 
they have almost completely lost their memory of the original incidence direction. 
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In addition, nonballistic photons are those that have deviated from the ballistic 
path. The propagation regimes can be approximately related to the propagation 
time t through the mean free path lt and the transport mean free path l\. 


On the basis of Beer's law, the probability of no scattering for a photon decays 
with time t is as follows: 


P ( c O = e x p ( - ^ - ) . (5.139) = e x p ( - ^ ) . 


Accordingly, we define the ballistic regime to cover ct <lt, within which the 
probability of no scattering is P(ct) > exp(—1) = 37%. We define the quasibal-
listic regime to cover lt < ct < l't, within which the probability of no scattering 
falls between exp(—////,) and exp(—1) : exp(—1) > P(ct) > exp(—////,). 


When a pencil beam is incident within an infinite scattering medium, the 
photons spread into a photon cloud. From cumulant expansion, it is found that 
the center of the photon cloud approaches l\ according to 


/ ; _ Z c = / ; e x p ( - ^ V (5.140) 


where zc is the distance between the weighted center of the photon cloud and 
the point of incidence. We define a new constant as 


ε, = ^ . (5.141) 


Thus, we have 


er=exp(-yY (5.142) 


Accordingly, we define the quasidiffusive regime to cover Vt < ct < 10/,', within 
which we have exp(—1) > εΓ > exp(—10) = 4.5 x 10~5. We define the diffusive 
regime to cover ct > 10//, within which we have εΓ < exp(—10). If lt — 0.1 mm 
and l't = 1 mm, the four scattering regimes are divided at path lengths of 0.1, 1, 
and 10 mm. The classification holds in scattering dominant media. 


If μα « μ^, the mean number of scattering events that photons experience 
within the dividing path lengths (Ns) can be estimated. Within /, (the ballistic 
regime), Ns < 1 holds. Within l't (the quasiballistic regime), we have 


/; i 
N5<±* - , (5.143) 


U l -g 


which equals 10, for example, if g = 0.9. Likewise, within 10// (the quasidiffu-
sive regime), we have 


io/; io 
Ns < —l- % , (5.144) 


It l~g 
which equals 100, for example, if g — 0.9. 
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PROBLEMS 


5.1 Show that f4 s(s · Α)άΩ — (4π/3)Α, where A is independent of s. 


5.2 Show that f4n s[s · V(7 · s)]dQ = 0. 


5.3 Show that a pencil beam normally incident on a semiinfinite medium can 
be approximated by an isotropic source placed one transport mean free 
path below the surface. Extend to a ID case, namely, an infinitely broad 
beam normally incident on a semiinfinite medium. Explain why this is an 
approximation. 


5.4 Verify Eq. (5.85) using a Monte Carlo simulation for μα =0Λ cm- 1 , 
μ5 = 100 cm- 1, and g = 0.9. (Hint: Use spherical coordinates to record 
photon absorption.) 


5.5 Duplicate Figures 5.6-5.11. 


5.6 Derive the average number of scattering events in one transport mean free 
path given \ia = 0. 


5.7 Derive Eq. (5.10). 


5.8 Show that P(s' · s) — /?(COS0)/2TT, where p(cosO) is defined as in 
Chapter 3. 


5.9 Plot Eq. (5.36) in polar coordinates as a function of a, where 7(r, t) ■ s = 
\J(r, t)\ cos a. Set <&(r,t) = 1 and plot for 3 | /(r , 01 = 3 , 1, 0.3, 0.1, and 
0.03. 


5.10 Plot the Henyey-Greenstein phase function in polar coordinates as a func-
tion of Θ for g = 0, 0.1, 0.5, 0.9, and 0.99. 


5.11 (a) Using the Monte Carlo method, compute L(r, s, t) integrated over time 
t as a function of the polar angle Θ at z = (0.1, 0.5, 1.0, 2.0)/rr below a pen-
cil beam in an infinite medium, where μα — 0.1 cm- 1, μΞ = 100 cm- 1 , 
and g = 0.9. Plot the result in polar coordinates, (b) Use the least-squares 
fitting algorithm available in MATLAB to fit the derived distributions to 
a + b cos Θ. List b/a versus z in a table. 


5.12 Modify the Monte Carlo code written for Chapter 3 to compute and plot 
the specific absorption distributions on the z axis in response to a pencil 
beam in two infinite scattering media of g = 0.9 and g = 0. Both media 
have \xa =0 .1 cm- 1 and μ̂  = 10 cm- 1 . The range of z should cover 
several transport mean free paths. 


5.13 Integrate Eq. (5.79) over the entire space and explain the result. Then, set 
μα = 0 and explain the result. 


5.14 Integrate Eq. (5.79) over time from 0 to +oo and explain the result. 
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5.15 Using a Monte Carlo program, compute and plot the ID depth-resolved 
fluence rate as a function of z in response to a pencil beam incident 
normally on a semiinfinite scattering medium. Fit the curve for μ^ and 
compare with the value predicted by the diffusion theory. Compare the 
depth of the peak fluence rate with l'r 


5.16 Derive Eq. (5.85) from Eq. (5.83) using an alternative method. 


5.17 Derive Eq. (5.79) using the Fourier transformation. 


5.18 Assuming that the absorption coefficient is zero, from Eq. (5.85), derive 
the current density and explain the conservation of energy. 


5.19 (a) The phase function P(sf · s) is highly forward-directed in biological 
tissue. Explain why it is not expanded in spherical harmonics in the deriva-
tion of the diffusion theory, (b) Explain that since P(s' · s) is azimuthally 
symmetric about s, f4jf sP(s' · s)dQ is parallel with s'. 


5.20 One approximation in the diffusion theory is that the fractional change in 
the current density in one transport mean free path is much less than unity. 
Explain why this approximation can be translated to the statement that the 
reduced scattering coefficient must be much greater than the absorption 
coefficient. 


5.21 The diffusion equation derived in this chapter does not conform to the 
postulate of causality. If a second-order temporal wave equation term is 
added, this problem can be corrected. The new equation is referred to as 
the telegraphy equation: 


^ + μαΦ(Γ, t) - V · [DV<S>(r, t)] + 3D \ ' = S(r, t). 
cdt czdtz 


Derive this equation. 


5.22 Derive the RTE by considering a differential area that moves along 
photon propagation direction s. {Hint : (dL/ds) = {dL/ds) + [(dL/dt) 
(dt/ds)].) 
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CHAPTER 6 


Hybrid Model of Monte Carlo Method 
and Diffusion Theory 


6.1. INTRODUCTION 


The Monte Carlo method and the diffusion theory have complementary attributes 
for modeling photon transport in a scattering medium. The Monte Carlo method 
is accurate but computationally inefficient, whereas the diffusion theory is inac-
curate but computationally efficient. A hybrid of the two approaches, however, 
is constructed to combine the advantages of both. The hybrid model computes as 
much as 100 times faster than the Monte Carlo method yet improves the accuracy 
of the diffusion theory. 


6.2. DEFINITION OF PROBLEM 


A pencil beam is normally incident on a slab of homogeneous scattering medium. 
The geometric and optical properties of the slab are described by thickness d, 
relative refractive index nrei, absorption coefficient μα, scattering coefficient μ5, 
and scattering anisotropy g, where nrt\ is the ratio of the refractive index of the 
scattering medium to that of the ambient medium. The Henyey-Greenstein phase 
function is assumed. Cylindrical coordinates (r, φ, z) are used; the origin is the 
point of incidence of the pencil beam on the top surface of the slab; the z axis 
points along the pencil beam. The diffuse reflectance and the diffuse transmittance 
versus r are computed. 


6.3. DIFFUSION THEORY 


The diffusion theory for a scattering slab with refractive-index-mismatched 
(nrel φ 1) boundaries is an extension of the theory for a semiinfinite scatter-
ing medium with a refractive-index-matched (nrei = 1) boundary that was cov-
ered in Chapter 5. The fluence rate Φ at observation point (r, φ, ζ) in response 
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to an isotropic point source of unit power at (r \ φ', ζ') in an infinite scatter-
ing medium is 


^ < A > x* >\ λ exp(^effp) 
ΦοοΟ,φ,ζ; r , φ , ζ ) = — · (6.1) 


4πυ ρ 
Here, p is the distance between the observation point and the source point, D is 
the diffusion coefficient, and μ^ is the effective attenuation coefficient: 


p = yjr2 + r'2 - Irr' cos(<|> - φ') + (z - z')2, (6.2) 


D = ! , (6.3) 
3[μα + μ*0 - g ) ] 


μείΤ = y/Va/D. (6.4) 


To compute the fluence rate in response to an isotropic point source in a scattering 
slab on the basis of Eq. (6.1), we first theoretically convert the slab into an infinite 
medium by satisfying the boundary conditions with an array of image sources, 
akin to the infinite array of images seen by a person standing between two parallel 
mirrors. Two extrapolated boundaries, at which the fluence rate is approximately 
zero, are used; they are separated from the slab surfaces by a distance of Zb 
(Figure 6.1) 


zb = 2CRD, (6.5) 


where CR is related to the effective reflection coefficient /?eff- If nTe\ = 1, then 
CR = 1. Otherwise, CR is estimated by 


CR = \±£L. (6.6) 
1 - Aeff 


Here, the following empirical formula is used (the exact formula can be found 
in Chapter 5): 


Äeff = - 1 . 4 4 0 ^ + 0.710η",1 + 0.668 + 0.0636nreI. (6.7) 


An original isotropic point source at (r', θ', ζ') and its images are shown in 
Figure 6.1. The images are caused by reflections from the two extrapolated 
boundaries, where each reflection alternates the polarity of the point source. The 
z coordinates of the ith source pair are given by 


zi± = -zb + 2i(d + 2zh) ± (z + zt), (6.8) 


where / = 0, ± 1 , ±2, — The source pair at zo± (the original and its image) 
straddles the top boundary of the slab. The source pair at z\± is the image of the 
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Extrapolated boundary 


Θ 
ι = 1 


Θ 
Figure 6.1. Illustration of the original point source inside the scattering slab and the 
image point sources outside the slab. Circled signs indicate the polarities of the sources. 


pair at zo± with respect to the bottom extrapolated boundary. The source pair at 
Z-\± is the image of the pair at z\± with respect to the top extrapolated boundary. 
Although infinite, the image series can be truncated after several source pairs. 


With these image sources, the boundary conditions are satisfied; hence, the true 
boundaries can be removed. Consequently, the original point source in the scatter-
ing slab is converted to an array of isotropic sources in an infinite homogeneous 
medium. The fluence rate from the original source in the slab is approximated by 


Φ(Γ, φ, z; r\ φ', ζ') = £ [ΦοοίΓ, φ, ζ; Λ φ', ζ\+) - Φοο(ι\ Φ, ζ; Λ φ', *{_)], 
ι=ζ 'min 


(6.9) 


where / m j n and /max are the lower and upper indices, respectively, of the truncated 
source pair series. The diffuse reflectance and the diffuse transmittance from the 
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slab are given by 


'max 


/?(/-, φ, 0; r\ φ', ζ') = Σ [ ^ ( r , Φ· ° : ^ Φ'- *ί+) 
' — ' m i n 


- Α Ο Ο ( Γ , Φ , 0 ; Γ ' , Φ ' , Ζ ; _ ) ] , (6.10) 


'max 


T(r, φ, ά\ r \ φ', ζ') = Σ [ΤΌοί̂  Φ, ^ ; Λ Φ', ζί+) 
' = ' m i n 


-Γοο(Γ,φ, < / ;Γ ' ,Φ ' , *;_)], (6.11) 


where 


ΑΟΟ(Γ,Φ,0 ;Γ ' ,Φ ' ,Ζ ' ) = D — ^ 
ζ = ο " 4 π Ρ 3 


(6.12) 


7oo(r, φ, d; Γ', φ', ζ) = -£>—■— 
9ζ 


6.4. HYBRID MODEL 


_ (d - zf)(\ + μeffp)exp(-μeffp) 


z=d ~ 4 ^ P 3 


(6.13) 


Accurate conversion of the incident pencil beam into an isotropically emitting 
light source deep in the scattering medium can improve the accuracy of the 
diffusion theory. Such a conversion can be provided by the Monte Carlo method. 
The combination of the Monte Carlo method and the diffusion theory is referred 
to as a hybrid model. 


In the Monte Carlo step, the incident pencil beam is converted into a distributed 
isotropic source while reemitted photons are recorded. Since the diffusion theory 
is inaccurate when photons are within a critical depth zc from the two boundaries 
of the slab, photons are tracked by the Monte Carlo method until they reach the 
center zone defined by zc £ z < d — zc (Figure 6.2). 


The Monte Carlo step is based on the conventional Monte Carlo method 
described in Chapter 3. A photon packet with an initial weight of unity is 
launched perpendicularly onto the surface along the z axis (Figure 6.2). If the 
boundary is refractive-index-matched (ηκ\ — 1), all photon weight enters the 
scattering medium. Otherwise, only a portion enters after the Fresnel reflection. 
Then, a step size s is chosen statistically by 


, - ^ ψ - . (6.14) 
μβ + μ.9 


where ξ is a pseudorandom number evenly distributed between 0 and 1 (0 < 
ξ < 1). The photon packet loses some weight owing to absorption at the end of 
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Figure 6.2. Illustration of the conversion from an incident photon packet to an isotropic 
point source in the Monte Carlo step of the hybrid model. The last step of l't in length 
converts the photon packet into an isotropic point source. 


each step; the loss is equal to the photon weight at the beginning of the step 
multiplied by 1 — a, where a denotes the albedo. The photon packet is then 
scattered in a new propagation direction that is statistically determined by the 
Henyey-Greenstein phase function with anisotropy g. When the photon weight 
is less than a threshold, the photon packet can be either terminated or continued 
as determined by Russian roulette. If reemitted into the ambient medium, the 
photon packet contributes to the diffuse reflectance /?MC(/) (where the subscript 
denotes Monte Carlo) or the diffuse transmittance. The process is then repeated 
with multiple (N) photon packets. 


If scattered in the center zone, the photon packet is conditionally converted 
to an isotropic point source. If one transport mean free path l\ along the pho-
ton propagation direction fits in the center zone, the conversion is implemented 
(Figure 6.2); otherwise, the Monte Carlo step continues. 


The conversion is based on the similarity relation, which converts the scatter-
ing medium from anisotropic to isotropic scattering while conserving the reduced 
scattering coefficient μ^. After taking the step of l\ in length, the photon packet 
interacts with the isotropic scattering medium according to the transport albedo 
a'. With the weight reduced by a factor of 1 — a' due to absorption, the photon 
packet experiences isotropic scattering. The scattered photon packet then becomes 
an isotropic point source; its weight is recorded into a source function S(r, z), 
which is guaranteed to be zero outside the center zone. Note that the step size 
for the conversion in a finite medium is slightly less than /,', but l\ is used for 
simplicity. 


In the diffusion step, the additional contribution to the diffuse reflectance that 
is due to the converted source is calculated by the diffusion theory. After the 
Monte Carlo step tracks all photon packets, S gives the total accumulated weight 
distribution. Next, S is converted to a relative source density function Sj, which 
represents the source strength per unit volume. Then, Sd is used to compute the 
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additional diffuse reflectance R^j based on the diffusion theory (DT) 


poo poo p2n 


Rm(r)= / / / Sd(r\z')R(r,0,0;r\tf,z')r'dtfdr'dz\ (6.15) 
Jo Jo Jo 


where R is given by Eq. (6.10). Because of the cylindrical symmetry, /?DT is 
independent of the azimuthal angle φ. The final diffuse reflectance Rj is given by 


Rd(r) = Ruc(r) + Rm(r). (6.16) 


The diffuse transmittance can be similarly computed. 


6.5. NUMERICAL COMPUTATION 


A grid system is set up in the cylindrical coordinates (Figure 6.1). The grid 
element sizes in the r and z directions are Ar' and Δζ', respectively; the number 
of grid elements are Nr and Nz, respectively. The center coordinates of each grid 
element are given by 


Γ'(ΙΓ) = ( « Γ + 0 . 5 ) Δ Γ ' , (6.17) 


ζ'(ιζ) = ( ι ζ+0.5)Δζ ' , (6.18) 


where ir = 0 ,1 , . . . Nr — 1 and iz = 0,1, . . . Nz — 1. We can also use the optimized 
version of Eq. (6.17) as shown in Chapter 3. For brevity, the array elements for 
the physical quantities are referenced by either the location of the grid element 
or the indices of the grid element. 


At the end of the Monte Carlo step, raw 7?MC represents the total accumulated 
weight reflected into an annulus grid; it is converted to diffuse reflectance by 


D r . , RMCUK] 


NAa(ir) 


where Δα denotes the area of the annulus: 


Aa(ir) = 2nr\ir)Ar
f. 


Similarly, raw S is converted to Sj by 


S[ir, iz] 
Sd\ir, iA — , c NAV(ir) 


where AV denotes the grid volume: 


AV(ir) = Aa(ir)Az. 


(6.19) 


(6.20) 


(6.21) 


(6.22) 
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The grid system for recording the source term S is also used to compute the 
integral over r' and z! in Eq. (6.15). From symmetry, the upper limit of the 
integral over φ' is lowered from 2π to π. Therefore, Eq. (6.15) is computed as 
follows: 


Nr-2Nz-2 


Rm(r) = 2 Y Y Sd[ir, ιζν'(ιΓ)Δτ'Δζ' / Ä(r, 0, 0; r'(ir), φ', z\iz)) d<\>\ 
,V=o «z=o Jo 


(6.23) 


The last grid elements in each direction are not used in the summation because 
they record weight deposited outside the grid system in the Monte Carlo step. 
The integration over φ' in Eq. (6.23) is implemented with Gaussian quadratures. 


6.6. COMPUTATIONAL EXAMPLES 


In this section, we compare the hybrid model with both the pure diffusion theory 
and the pure Monte Carlo method. Unless otherwise specified, 100,000 photon 
packets are tracked in both the Monte Carlo and the hybrid simulations. 


The diffuse reflectance and the diffuse transmittance in response to an isotropic 
point source at z! — l\ in a scattering slab computed by the pure Monte Carlo 
method and the pure diffusion theory are shown in Figure 6.3. One to three point 
source pairs are used in the diffusion theory to satisfy the boundary conditions. 
The single pair is at zo± 0 = 0); the double pairs are at zo± and z\±, the triple 
pairs are at z~\±, zo±, a nd z\±. 


It is important to determine the number of point source pairs needed in the 
diffusion theory to accurately model diffuse reflectance and diffuse transmittance. 
As shown in Figure 6.3a, three pairs are required to achieve good accuracy in the 
diffuse reflectance. With fewer pairs, the accuracy is good until the radial distance 
is greater than approximately the slab thickness. As shown in Figure 6.3b, a 
single pair does not ensure accuracy to the diffuse transmittance because the 
boundary condition for the bottom surface is neglected altogether; two or three 
pairs, however, do provide accuracy. The number of pairs needed depends on 
the observation distance, the thickness of the slab, and the optical properties of 
the slab. In practice, more source pairs can be added until the new pair makes 
negligible contributions. 


The diffuse reflectance and the diffuse transmittance in response to a pencil 
beam from both the pure Monte Carlo method and the pure diffusion theory are 
shown in Figure 6.4. The diffusion theory simulates an equivalent isotropic point 
source located at z! = l\ (see Chapter 5) using three source pairs (/ = —1,0, 1). 
The relative errors of the diffuse reflectance and the diffuse transmittance from the 
diffusion theory are shown in Figure 6.4c; they represent the differences between 
the results from the diffusion theory and the Monte Carlo method, divided point-
by-point by the results from the Monte Carlo method. In this case, the diffuse 
reflectance from the diffusion theory is less than that from the accurate Monte 
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Figure 6.3. Comparison between the pure Monte Carlo method and the pure diffusion 
theory in terms of (a) the diffuse reflectance and (b) the diffuse transmittance in response 
to an isotropic source. The properties of the scattering slab are nre\ — 1, μα =0.1 cm"', 
μ, = 100 cm"1, g = 0.9, and d = 1 cm. 


Carlo method by as much as 75% near the source, but it becomes more accurate 
far from the source (Figures 6.4a and 6.4c). The diffuse transmittance, however, 
is accurate at all distances from the source (Figures 6.4b and 6.4c). 


The diffuse reflectance data in response to an isotropic point source at various 
depths (ζ' — 0.1//, 0.3/^, or 0.5/^) from both the pure Monte Carlo method and the 
pure diffusion theory are shown in Figure 6.5. Three source pairs (/ = —1,0, 1) 
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Figure 6.4. Comparison between the Monte Carlo method and the diffusion theory in 
terms of (a) the diffuse reflectance and (b) the diffuse transmittance in response to a 
pencil beam; (c) relative errors between the results. The properties of the scattering slab 
are described in Figure 6.3. 
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Figure 6.5. (a) Comparisons between the Monte Carlo method and the diffusion theory 
in terms of the diffuse reflectance when an isotropic point source is placed at z! = 0.3/,'; 
(b) relative errors between the results when an isotropic point source is placed sequentially 
at z! — 0.1/,', 0.3/p 0.5/,'. The properties of the scattering slab are described in Figure 6.3. 


are used in the diffusion theory. The relative errors between the diffusion theory 
and the Monte Carlo method in diffuse reflectance for these three source locations 
are shown in Figure 6.5b. Here, 0.5/,' and 0.3/,' give errors of 5% and 12%, 
respectively, whereas 0.1/,' gives an error of up to 25%. Clearly, critical depth 
represents a tradeoff between the computational accuracy and efficiency of the 
hybrid model. Increasing the critical depth improves the computational accuracy 
at the expense of computational efficiency. 
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Figure 6.6. Contours of Sd in response to a pencil beam from the initial Monte Carlo step 
of the hybrid model. The critical depth zc is set to 0.05 cm (~ 0.5/,'). The contour values 
are in the unit of cm-3. The properties of the scattering slab are described in Figure 6.3. 


The contours of Sd from the Monte Carlo step of the hybrid model are shown in 
Figure 6.6. Since the critical depth is 0.05 cm (^0.5/,'), Sd is densely populated 
near z' — 1.5/,; it is also limited to within approximately 2Vt from the point of 
incidence in both the r and the z dimensions. 


The diffuse reflectance data from both the pure Monte Carlo method and the 
hybrid model in response to a pencil beam, where Ar' = Αζ' = 0.01 cm and 
Nr = Nz = 30, are shown in Figure 6.7a. Figure 6.7b plots the relative error in 
the diffuse reflectance from the hybrid model, which is within ±6% including 
both statistical and systematic differences. The statistical error can be further 
reduced by using either more photon packets at the expense of computation 
time or larger grid elements at the expense of resolution, whereas the systematic 
error can be further reduced by using a larger critical depth at the expense of 
computation time. In this example, if one million photon packets are tracked in 
each model, the hybrid model is 23 times faster than the Monte Carlo method. 
In other words, the hybrid model is significantly faster than the Monte Carlo 
method and almost as accurate. 


The diffuse reflectance data from both the pure Monte Carlo method and 
the hybrid model in response to a pencil beam at various \ia values, where 
Ar' = 0.005 cm, Δζ' = 0.003 cm, and Nr = Nz = 100, are shown in Figure 6.8. 
When μα becomes comparable with μ̂  (e.g., μα = 10 cm- 1 , and μ̂  = 10 cm- 1) , 
the accuracy of the hybrid model is poor because the diffusion theory is valid 
only when μα <£ μ^. Therefore, the hybrid model is not expected to be accurate 
when \ia <^ \i's is not satisfied. If the critical depth increases, the accuracy of the 
hybrid model improves—even in the case of strong absorption—at the expense 
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Figure 6.7. (a) Comparison between the pure Monte Carlo method and the hybrid model 
in terms of the diffuse reflectance in response to a pencil beam; (b) relative errors between 
the two approaches. The properties of the scattering slab are described in Figure 6.3. 


of computation time, because the portion of the photon history tracked by the 
Monte Carlo step increases. The computer-dependent user times of the Monte 
Carlo method 7MC are 698, 583, and 136 s, respectively, for \ia = 0.1, 1, and 
10 cm- 1 . With the critical depth set to 0.05 cm, the user times of the hybrid model 
TH are only 104, 99, and 76 s, respectively, for \ia = 0 . 1 , 1, and 10 cm- 1 . With 
the critical depth set to 0.1 cm, the user times of the hybrid model increase to 
147, 142, and 114 s, respectively, for \xa — 0.1, 1, and 10 cm- 1 . 


User times for both the Monte Carlo method and the hybrid model under var-
ious conditions are listed in Table 6.1. While the other parameters are held con-
stant, μα and d are varied. Here, zc = 0.05 cm ̂  0.5/,;, Ar' = Az' = 0.01 cm, 


"T i 1 i r 


T I I I Γ 
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Figure 6.8. Comparisons between the Monte Carlo method and the hybrid model in 
terms of diffuse reflectance in response to a pencil beam when the critical depth is set 
to (a) 0.05 cm and (b) 0.1 cm. The absorption coefficient \ia varies among 0.1, 1, and 
10 cm-1, while the other properties are held constant at nrt\ = 1.37, \is — 100 cm-1, g = 
0.9, and d = 1 cm. 


and Nr — Nz — 30. The computation time of the hybrid model is insensitive to 
the optical properties unless \ia becomes comparable with \i's as shown in the 
results associated with Figure 6.8. By contrast, the computation time of the Monte 
Carlo method is highly sensitive to the optical properties. A lower \ia lengthens 
photon tracking because the chance of photon absorption per scattering event is 
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TABLE 6.1. User Times (Computer-Dependent) for Both Monte Carlo 
Method {TMc) and Hybrid Model (TH) and Their Ratio (TMC/TH) under 
Various Conditions.0 


"rel 


1.37 
1.37 
1.37 
1.37 
1.37 
1.37 
1.37 
1.37 
1.37 
1 
1 
1 
1 
1 
1 
1 
1 
1 


d (cm) 


10 
10 
10 
3 
3 
3 
1 
1 
1 
10 
10 
10 
3 
3 
3 
1 
1 
1 


μα (cm ') 


0.01 
0.1 
1 
0.01 
0.1 
1 
0.01 
0.1 
1 
0.01 
0.1 
1 
0.01 
0.1 
1 
0.01 
0.1 
1 


TMC (S) 


6684 
2589 
679 
2095 
1961 
679 
696 
698 
583 
3992 
1611 
468 
1253 
1201 
468 
415 
416 
382 


TH (S) 


23 
23 
23 
23 
23 
23 
23 
23 
23 
19 
19 
19 
19 
19 
19 
19 
19 
19 


TMC/TH 


291 
113 
30 
91 
85 
30 
30 
30 
25 
210 
85 
25 
66 
63 
25 
22 
22 
20 


aThe fixed optical properties include \is — 100 cm ' and g = 0.9 


reduced. Computation under the refractive-index-mismatched boundary condition 
takes longer because internal reflection at the boundary extends the lifetime of 
the photons in the scattering slab. In all cases, the hybrid model is faster than the 
Monte Carlo method by a factor of 20 to nearly 300, depending on the optical 
properties, the slab thickness, the number of photons tracked, the threshold for 
the Russian roulette, and the critical depth. 


If the slab thickness reduces to several transport mean free paths, the 
diffusion theory becomes inaccurate. In this case, the pure Monte Carlo 
method should be used. Since the slab is relatively thin, 7MC is reasonably 
short. For example, T^c = 75 s when the slab parameters are nlt\ — 1, \ia — 
0.1 cm- 1 , μ5 = 100 cm- 1, g = 0.9, and d = 0.2 cm; Tue increases to 136 s 
when ttrei = 1.37. 


PROBLEMS 


6.1 Derive Eqs. (6.12) and (6.13). 


6.2 Find the z coordinates of the first three source pairs (i.e., / = 
0, 1,-1) for nrei = 1.37, μα =0 .1 οιτ ι^ ,μ, = 100 cm~\ g = 0.9, z! = 
0.1 cm, and d — 1 cm. 
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6.3 Calculate the weight of a photon packet that enters a scattering medium 
versus the angle of incidence if nre\ = 1.37. 


6.4 Explain how the computation time of the hybrid model depends on the 
optical properties. 


6.5 Explain how the computation time of the Monte Carlo model depends on 
the scattering anisotropy in a scattering slab. 


6.6 Implement the hybrid model. Update Table 6.1 with new computation 
times. 


6.7 Implement the hybrid model. Adjust the threshold weight for Russian 
roulette and compare the computation times and accuracies. 


6.8 Implement the hybrid model. Vary the critical depth in the hybrid model 
and compare the computation times and accuracies. 


6.9 Extend the diffusion theory to the case of an infinitely narrow photon 
beam obliquely incident on a semiinfinite scattering medium. 


6.10 Implement a hybrid model for an obliquely incident pencil beam on a 
semiinfinite scattering medium and compare with the diffuse reflectance 
computed from the diffusion theory. 
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CHAPTER 7 


Sensing of Optical Properties 
and Spectroscopy 


7.1. INTRODUCTION 


Sensing the optical properties of biological tissue is important for diagnosis and 
therapy. After traversing biological tissue, reemitted light carries information 
about the optical properties of the scattering medium, which can be extracted 
using an inverse algorithm. Optical properties can be measured at multiple optical 
wavelengths for the production and investigation of spectra (spectroscopy). 


7.2. COLLIMATED TRANSMISSION METHOD 


The extinction coefficient μ,, which is defined as the sum of the absorption 
coefficient μα and the scattering coefficient μ5, can be measured by the colli-
mated transmission method. In this method, a collimated lightbeam is incident 
perpendicularly on the surface of a sample. The sample can be a cuvette of 
liquid (e.g., an Intralipid® solution), a tissue-mimicking gel phantom (e.g., an 
agar gel containing polystyrene spheres), a solid phantom (e.g., a solidified resin 
containing T1O2 particles), or a piece of biological tissue. The collimated (or 
ballistic) portion of the transmitted light is selected by apertures and then mea-
sured by a photodetector (Figure 7.1). First, a clear medium (e.g., water), the 
refractive index of which closely matches that of the sample to be tested, is 
measured to provide a reference ballistic-light signal /o. Then, the sample is 
measured, which yields a transmitted light signal Is. According to Beer's law, 
we have 


/, = /οεχρί-μ,*/), (7.1) 


where d denotes the sample thickness. Here, light absorption by the clear medium 
is neglected (see Problem 7.1). The ballistic transmittance T of the scattering 
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Figure 7.1. Schematic for the collimated transmission method. 


medium is defined as 


T = 
V (7.2) 


Substituting Eq. (7.2) into Eq. (7.1), we obtain the extinction coefficient of the 
sample: 


1 
[it = - - l n 7 \ 


a 
(7.3) 


A key assumption in Eq. (7.1) is that the detected scattered light is much 
weaker than the detected ballistic light. Three factors affect this assumption: 
(1) the scattering optical depth of the sample \isd, (2) the scattering phase func-
tion /?, and (3) the acceptance angle (half-angle) of detection θ</. The first factor 
determines the ratio of the number of scattered photons to the number of unscat-
tered transmitted photons. The next two factors determine the collection fraction 
of the scattered photons to be detected χ. 


7.2.1. Distribution of Scattering Count 


We first consider an ideal scattering slab with the following optical properties: 
relative refractive index nK\ — l and scattering anisotropy g = 1. In this slab, 
specular reflection does not exist, and scattering does not deflect the photon. If 
the number of incident photons is 7Vjn, the number of unscattered transmitted 
photons NQ can be computed from Beer's law: 


N0 = Nmexp(-\itd). (7.4) 


The number of transmitted photons that have experienced / scattering events N; 
is given by the following Poisson distribution (see Problem 7.2): 


Ni = M 
( μ ^ ν ' β χ ρ ί - Μ ) 


(7.5) 
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7.2.2. Collection Fraction 


We next consider the collection fraction of singly scattered light in a real scat-
tering medium. Distributed angularly, the singly scattered light is only partially 
received by the detector, which has a finite acceptance angle. The Henyey-Green-
stein scattering phase function, which is the PDF of the cosine of the scattering 
polar angle Θ, is assumed here (see Chapter 3) 


p(cos0) i - s
2 


2 ( l + g 2 - 2 g c o s e ) 3 / 2 ' 
(7.6) 


where Θ e [0, π]. Normalization requires that the integral of p(cosB) over cosO 
in the range of [—1, 1] be unity. 


For a slab with nonunity nre\, θ^ in air can be converted into an acceptance 
angle in the sample #d by Snell's law: 


sinG^ = ttrei sinO^, (7.7) 


which can be simplified to θ^ = nre[dfd if θ^ < 1. Integrating the phase function 
given by Eq. (7.6) over cosO in interval [cos0^, 1] yields the collection fraction 
χ of the singly scattered light 


1+8 
2g 


i-g 
J\+g2-2gcose'd 


(7.8) 


which can be simplified to 


9J 


2 ( 1 -g)2' 
(7.9) 


if $d « 1 - g and 1 - g « 1 (i.e., g -> 1). 


Example 7.1. Derive Eq. (7.9) from Eq. (7.8). 


Because Q'd <?C 1 — g and 1 — g <5C 1, Eq. (7.8) can be approximated by repeti-
tively using the Taylor expansion to the first order as follows: 


1-g 
J(l-g)i + 2g(l-cosd'd) 


1 
g 


i - s 


J(i-g)2 + ge'-
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1 -


yi+f(^2v(i-^)2] 


1 
l + ^[(^2)/( l-^)2] 


i « # 
2(1 - g ) 2 


Θ '2 


2(1 - g)2 
(7.10) 


7.2.3. Error Expression 


While the signal is from the unscattered light, the unwanted bias is from the 
scattered light. The unscattered light, assumed to be collimated, is completely 
collected by the detector. The scattered light contains both single- and multiple-
scattered light. When \isd < 1, multiple-scattered light is negligible; hence, only 
the single-scattered light is considered here. If g -> 1, the number of single-
scattered photons can be estimated by N\ from Eq. (7.5). Thus, the relative error 
due to the detected bias is approximately 


6r = 
No 


(7.11) 


where the numerator and denominator represent the numbers of received single-
scattered and unscattered photons, respectively. Although specular reflections 
on both slab surfaces are neglected explicitly, the unscattered and the collected 
single-scattered photons experience similar specular reflections. Therefore, the 
contributions of specular reflections to the numerator and the denominator in 
Eq. (7.11) partially offset each other. 


Substituting the expressions for No and N\ from Eq. (7.5) into Eq. (7.11), we 
obtain 


Er = x[isd. (7.12) 


Although derived using the preceding approximate analytical expressions, 
Eq. (7.12) can be validated by the accurate Monte Carlo method (see Prob-
lem 7.3). 


Substituting Eq. (7.9) into Eq. (7.12), we obtain 


d == 2sr 
(l-g)2 


μΛ2 
(7.13) 
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which is valid if both θ^ <^ \ ~ g and 1 — g <$C 1 hold. Therefore, the sample 
thickness must be limited on the basis of θ^ as well as the optical properties so that 
the relative error is controlled within a given level. Although unknown initially, 
μ5 can be first measured and then checked for error using Eq. (7.12). If the error 
is unacceptable, one can modify the sample thickness—or the concentration of 
scatterers if the sample is liquid—and repeat the measurement. 


Example 7.2. Apply Eq. (7.13) to a realistic case. Known parameters include 
nre\ = 1.37, g = 0.99, and θ^ = 1 mrad (milliradian). Assume μ5 % 100 cm- 1 . 


If er < 1% is desired, Eq. (7.13) leads to d < 0.037 cm. 


7.3. SPECTROPHOTOMETRY 


Spectrophotometry is based on the collimated transmission method. A spec-
trophotometer measures μ, of a sample as a function of wavelength; if μ5 « μ α , 
then μ, ^ μα. The absorbance A, however, is typically reported; it is defined as 


A = - l o g I 0 r . (7.14) 


Substituting Eq. (7.3) into Eq. (7.14), we obtain 


A = (log10 e)\it d = 0.4343μ, d (7.15) 


or 


μ, = (1η10)- = 2 . 3 0 3 - . (7.16) 
d d 


The absorbance is also referred to as the optical density (OD), especially for a 
neutral-density filter, which has a nearly constant absorbance in a broad band. OD 
can be further related to dB (decibels) since the transmittance in dB is defined as 
— 101og107\ For example, an OD of 1 means a 10-dB or 10-times attenuation, 
and an OD of 2 means a 20-dB or 100-times attenuation. OD is sometimes 
defined as the absorbance per unit length, however. 


The unit of dB/cm (decibels per centimeter) is also used for various coeffi-
cients, such as the absorption and the extinction coefficients, although the unit of 
cm"1 (also expressed as nepers/cm in ultrasonics) is usually used in biomedical 
optics. The two units can be converted as follows: 


1 cm"1 = (101og10*) dB/cm = 4.343 dB/cm, (7.17) 


1 dB/cm = (0.1 In 10) cm"1 = 0.2303 cm - 1 . (7.18) 


As a mnemonic aid for these two conversions, note that e23 % 10 and 10° 43 ^ e. 
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A typical spectrophotometer contains one or more light sources that provide 
a broad spectrum. For example, a tungsten lamp can provide visible and infrared 
light, and a deuterium lamp can provide ultraviolet light. A diffraction grating 
angularly disperses the light emanating from the lamp into a spectrum. A narrow 
portion of the dispersed spectrum passes through a slit opening. The wavelength 
of the selected light can be tuned by rotating the grating with a knob. The 
grating in combination with the slit is also referred to as a monochromator. The 
"monochromatic" light is incident on the sample, and the transmitted light is 
detected by an optical detector such as a photodiode, which converts the optical 
signal into an electrical signal. 


7.4. OBLIQUE-INCIDENCE REFLECTOMETRY 


An oblique-incidence reflectometer can rapidly measure both the absorption coef-
ficient μα and the reduced scattering coefficient μ^, where \ια « μ ^ . As discussed 
in Chapter 5, a pencil beam normally incident on a semiinfinite scattering medium 
can be approximately represented by an isotropic point source (Figure 7.2a). The 
far diffuse reflectance—for which the observation points are beyond one trans-
port mean free path l't from the point of incidence—in response to the pencil 
beam is well modeled using such an isotropic point source. 


Similarly, an obliquely incident pencil beam can be approximated by an 
isotropic point source that is l[ away from the point of incidence along the unscat-
tered transmission path, as illustrated in Figure 7.2b. As a result, the isotropic 
point source is horizontally shifted from the point of incidence. Here, a, and 
at are the angles of incidence and transmission, respectively; rcrei is the relative 
refractive index of the scattering medium. On the basis of Snell's law, we have 


sin a/ = Jirei sin a,. (7.19) 


From the geometry, we expect a horizontal shift of the far diffuse reflectance by 


sin a, 
μ, + μβ' 


(7.20) 


A more accurate empirical expression is given below. 
The schematic of an experimental oblique-incidence reflectometer is shown in 


Figure 7.3. A laser beam is incident on the object surface at an oblique angle. 
Diffusely reflected light is imaged by a CCD (charge-coupled device) camera. 
The CCD data are transferred to a computer and processed. 


An experimentally measured diffuse reflectance distribution is shown in 
Figure 7.4. The midpoints of the left and right sides of curve M at all reflectance 
values are connected to form a centerline C. The shift xm of the vertical portion 
of curve C represents the horizontal shift of the far diffuse reflectance; it agrees 
well with the theoretically predicted xs from Eq. (7.20). 
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The diffuse reflectance versus x from the Monte Carlo method is shown in 
Figure 7.5. The shift of the vertical portion of curve C is xm = 0.174 ± 0.009 cm. 
From the optical properties used, Eq. (7.20) predicts xs =0.167 cm, which is 
in approximate agreement with the xm predicted by the Monte Carlo method. 
Although not accurate, Eq. (7.20) is validated both experimentally and numeri-
cally. 
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Figure 7.2. Lumped isotropic point sources for a pencil beam of (a) normal incidence 
(a, = 0) and (b) oblique incidence (α{· > 0). 
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Figure 7.3. Schematic of a CCD-based oblique-incidence reflectometer. 
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Figure 7.4. Experimentally measured diffuse reflectance as a function of x, where M 
represents the measured data and C represents the centerline. 
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Figure 7.5. Curve M represents the Monte Carlo simulated diffuse reflectance of a 1-mW 
laser beam incident on a scattering medium with a, = 45°, and curve C represents the 
centerline of curve M. The optical properties of the scattering medium are Airei = 133, 
μ„ = 0.25 cm- 1 , μν = 20 cm- 1 , and g = 0.853. 
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When compared with the accurate Monte Carlo simulated shifts for various 
μα values, the shift from Eq. (7.20) is highly accurate when μα <ζ μ^, but it 
becomes progressively less accurate with increasing μα. The following empirical 
equation for the shift, however, significantly improves the accuracy: 


sin at 
(7.21) s Ws + 0.35μα ' 


where 0.35μα is used instead of μα. Equation (7.21) predicts x's = 0.176 cm, 
which is in better agreement with the value predicted by the Monte Carlo method. 
For simplicity, we define the diffusion coefficient for this section as 


D = . (7.22) 
3(μ ;+0 .35μ α ) 


Merging Eqs. (7.21) and (7.22), we obtain 


x's = 3D sin a,. (7.23) 


To measure the optical properties of the scattering medium, we first estimate 
the center x's of the far diffuse reflectance from the experimental data. From 
Eq. (7.23), we have 


D = s—. (7.24) 
3 sin at 


Since two independent optical properties are being measured, one more equation 
is needed. 


The diffusion theory in Chapter 5 can be modified for the diffuse reflectance 
in response to an obliquely incident pencil beam: 


(1 - Rsp)a' 
4π 


z's(\ H^effPi)exp(-^effPi) (z's + 2zb)(l + μ6ίίΡ2)6χρ(-μ6ΓίΡ2) 
3 3 


Pi P2 
(7.25) 


Here, Rsp denotes the specular reflectance; a' denotes the transport albedo; x 
denotes the distance between the observation point on the surface of the scatter-
ing medium and the point of incidence; pi and P2 denote the distances from the 
two point sources (the original equivalent and the image sources) to the obser-
vation point, respectively; Zb denotes the distance between the extrapolated and 
the actual boundaries; μ ^ denotes the effective attenuation coefficient; and zfs 
denotes the depth of the original point source: 


z's=x'sco\.{*t). (7.26) 
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A nonlinear least-squares fit of the measured far diffuse reflectance to Eq. (7.25) 
yields μ^, which is defined as 


μβίτ = yJ^a/D. {121) 


We have now quantified both D and μείί from the relative profile of the far diffuse 
reflectance, which can be obtained more easily than its absolute counterpart. From 
Eqs. (7.24) and (7.27), we obtain 


(7.28) 


(7.29) 


7.5. WHITE-LIGHT SPECTROSCOPY 


A spectroscopic oblique-incidence reflectometer (Figure 7.6) can measure absorp-
tion and reduced scattering spectra. White light from a lamp is coupled to a 
handheld probe made of 0.6-mm-diameter optical fibers. The source fiber is ori-
ented at a 45° angle of incidence. Nine collection fibers, arranged in a linear array, 
collect the diffuse reflectance. Approximately 4.6 mW of white light is delivered 


Probe Imaging spectrograph Computer 


9 collection fibers 


1 source 
fiber 


Air 


Scattering 
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n g \ 


Figure 7.6. Schematic of a spectroscopic oblique-incidence reflectometer. 
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through the source fiber. The collection fibers are coupled to a connecting inter-
face, the output of which is placed at the object plane of an imaging spectrograph. 
The imaging spectrograph spectrally disperses light from each detection fiber into 
a ID spectrum and subsequently projects the 2D spatiospectral distribution onto 
a CCD camera. The CCD camera, which is controlled by a personal computer, 
records the 2D spatiospectral distribution. The CCD matrix has 512 x 512-pixels 
and measures 9.7 x 9.7 mm2. With a 150 lines/mm grating, the CCD matrix is 
capable of accommodating a spectral range of 256 nm. 


In the 2D spatiospectral distribution, the vertical and horizontal dimensions 
represent the spatial distribution of the diffuse reflectance at each wavelength 
and the spectral distribution of light from each collection fiber, respectively. The 
spatial distribution at each wavelength is used to fit for μα and μ^, according 
to the theory described in the preceding section. As discussed in Chapter 1, 
the absorption spectrum can be used to assess the concentrations of oxy- and 
deoxyhemoglobin; on the basis of the Mie theory, the reduced scattering spectrum 
can be used to estimate the size distribution of the scatterers. 


7.6. TIME-RESOLVED MEASUREMENT 


Time-resolved diffuse reflectance can be used to measure the optical properties 
of biological tissue as well. With a short-pulsed collimated narrow laser beam 
normally incident on a semiinfinite scattering medium, a fast time-resolved detec-
tor—such as a streak camera or a single-photon counting system—measures the 
local diffuse reflectance Rd(r, t) or the total diffuse reflectance Rd(t). Here, r 
denotes the distance between the observation point and the point of incidence, 
and t denotes time. Under a simplified zero-boundary condition (the fluence rate 
on the real boundary is zero), the diffusion theory predicts 


^ ( Γ ' ° = (4nDc)y2t5f2 e*P ( - ^ 4 ^ " ) e X P ( - ^ C i ) ' ( 7 3 0 ) 


Γ z' I z2 \ 
Rd(t) = / Rd(n t)2nrdr = exp - 7 7 — 1 exp(-jxacO, Jo VinDct3/2 \ 4Dct J 


(7.31) 
where the source location z! — l\ and the diffusion coefficient D = l't/3. Whereas 
factors t5/2 and f3/2 dominate the early dynamics of the reflectance, exp(—\iact) 
dominates the later dynamics. 


The absorption coefficient can be extracted by rewriting Eqs. (7.30) and (7.31) 
as follows: 


d In Rd(r,t) 5 r
2 + z2 


dinRdit) ^ 3 z'2 
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At large t values, each plot of d In R^ versus t approaches a straight line with a 
slope equal to — \iac. The second term in each of the equations above should be 
included for accuracy, while the third term can be neglected. For example, when 
μα =0 .1 cm- 1 and μ̂  = 10 cm"1, the second term is comparable with the first 
term for several nanoseconds, whereas the third term becomes negligible after 
only several hundred picoseconds. Therefore, the absorption coefficient can be 
estimated by either of the following expressions: 


1 
μ* ^ — 


c 


1 


c 


d In Rd(r, t) 5 , 
+ - , (7.34) dt It 


μ« 


] 
] 


d\nRd(t) 3 , 
- ^ + ^ | . (7.35) 


7.7. FLUORESCENCE SPECTROSCOPY 


Fluorescence spectroscopy provides a means for measuring the concentrations, 
quantum yields, and lifetimes of fluorescent molecules. Concentrations can pro-
vide morphologic information about biological tissue. Because quantum yields 
and lifetimes are related to the characteristics of biological molecules, they can 
provide biochemical information. These properties can reveal a variety of clinical 
problems such as epithelial neoplasia and atherosclerosis. 


In a fluorescence spectroscopic system, light from a monochromatic excitation 
source is delivered through a flexible optical fiber bundle to the biological sample. 
The emitted fluorescent light from the sample is collected through another optical 
fiber bundle. The collected light is then separated into spectral components by a 
dispersing element. The dispersed fluorescence spectrum is finally detected by a 
detector array. 


The system can be implemented with optical fibers or in free space. Whereas 
a handheld fiberoptic probe is typically used in contact with tissue, a free-
space system is used in a noncontact fashion. A handheld probe may suffer 
from spectral dependence on the pressure applied by the probe on the in vivo 
tissue; a free-space system may suffer from intensity dependence on in vivo 
tissue motion. The contact approach is generally employed for small tissue 
areas, whereas the noncontact approach is more commonly used for relatively 
larger areas. 


A fluorescence spectrum is related to both the excitation and the emission 
wavelengths. A fluorescence excitation spectrum can be produced by measuring 
the fluorescence intensity at a given emission wavelength for a range of excitation 
wavelengths. Conversely, a fluorescence emission spectrum can be produced by 
measuring the fluorescence intensity over a range of emission wavelengths at 
a given excitation wavelength. Ultimately, a fluorescence excitation-emission 
matrix (EEM) can be produced by measuring the fluorescence intensity over a 
range of emission wavelengths for a range of excitation wavelengths. 
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7.8. FLUORESCENCE MODELING 


Although fluorescence is not discussed in Chapter 5, propagation of both excita-
tion and fluorescent light in a scattering medium can be modeled by the diffusion 
theory. Assumed to be independent of fluorescence (actually, a Born approxima-
tion), the diffusion equation for the excitation light is given by 


~ < M r , t) + μβχ<ΜΓ, 0 - V · 0 , ν Φ , ( Γ , t) = Sx(r, 0 , (7.36) 
c at 


where subscript x denotes the excitation wavelength. The other symbols are 
defined in Chapter 5. 


The source term in Eq. (7.36) can be constructed from the first equivalent 
isotropic scattering events. From the similarity relation, an equivalent isotropic 
scattering medium is considered. Unscattered photons propagate along the bal-
listic path and constitute the primary beam, which has the following fluence rate 
distribution according to Beer's law: 


Φ Ρ * ( Γ , 0 = 0 - ^Ρ)Φο.(? ' , ί )βχρ(-μ; χ / ) . (7.37) 


Here, the subscript p denotes the primary beam, Rsp denotes the specular reflect-
ance from the surface of the scattering medium, Φο* denotes the incident fluence 
rate on the surface, and / denotes the ballistic path length into the scattering 
medium. The primary beam is converted into an isotropic source distribution, 
which serves as the source term for Eq. (7.36), by 


5,(Γ,0 = μ;*Φ/«(Γ,0, (7.38) 


where μ^ denotes the reduced scattering coefficient at the excitation wavelength. 
Once an excitation photon is absorbed by a fluorophore, the probability that a 


fluorescence photon is emitted per unit time at time t (t > 0) can be modeled by 


y(t) =-cxpi-^Y (7.39) 


were Y denotes the quantum yield for fluorescence emission and τ denotes the 
fluorescence lifetime. 


Once fluorescent light is generated, its propagation can be modeled using 
another diffusion equation 


- —4>m(r, 0 + feOJr, 0 - V · Dm V4>m(r, t) = Sm(r, f). (7.40) 
c at 


where subscript m denotes the fluorescence emission wavelength. The source term 
is derived from the excitation light distribution using the following convolution 


Sm(r, t)= f y(t - ί ' ) μ β / χ [ 4 ν ( Γ , tf) + Φ Χ (Γ, t')]dt\ (7.41) 
Jo 
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where \iafx denotes the absorption coefficient of the fluorophores at the excitation 
wavelength. 


PROBLEMS 


7.1 (a) Prove Eq. (7.1). (b) Explain why it is important to measure a clear 
medium first, (c) Assuming that the absorption coefficient of the clear 
medium is significant, modify Eq. (7.1). 


7.2 Prove Eq. (7.5). 


7.3 Write a Monte Carlo program to validate Eq. (7.12). 


7.4 If the transmittance is given by absorbance A, express the transmittance 
in dB and then calculate the absorption coefficient in terms of A if the 
thickness of the sample is known. 


7.5 In the collimated transmission method, assuming that measurements /o, Is, 
and d have independent uncertainties that are quantified by standard devi-
ations σο, σΛ, and σ^, respectively, derive the expected standard deviation 
in the predicted μ,. 


7.6 In a collimated transmission measurement, if the sample is optically thin 
(d <£. 1/μ/), the number of particles along the path can fluctuate signifi-
cantly as a result of, for example, Brownian motion. Estimate the standard 
deviation of the number of received photons due to this fluctuation. 


7.7 Write a Monte Carlo program to simulate the oblique-incidence diffuse 
reflectance from a semiinfinite medium. Duplicate Figure 7.5. 


7.8 Write a Monte Carlo program to simulate the total time-resolved dif-
fuse reflectance Rd(t) from a semiinfinite scattering medium in response 
to a temporally ultrashort pencil beam. Compare it with the diffusion 
theory predicted values in response to an equivalent isotropic source 
located at (a) \/(μα + μ^), (b) 1/(0.35μα + μ^), (c) \/\jJs below the sur-
face. Assume nre\ = 1.38, μα = 0.1 cm- 1 , μν — 100 cm- 1 , g — 0.9, and 
a,· = 45°. 


7.9 Derive the time-resolved diffuse reflectance equations in Section 7.6 
assuming a zero boundary condition. Then derive them again using the 
extrapolated virtual boundary described in Chapter 5. 


7.10 A fluorescent point object is placed at (x',yf,zf) below the surface of 
a semiinfinite scattering sample, where the z axis starts at the sample 
surface and points into the sample. A normally incident continuous-wave 
pencil beam at (0, 0, 0) is used to excite the fluorophores. Use the diffusion 
theory to model the fluorescent reflectance measured on the sample surface 
at (jt,y,0). Assume that the optical properties of the medium and the 
quantum yield of the fluorophores are known. 


7.11 Explain why dB is sometimes defined by 101ogI0 instead of 20 log,0. 
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CHAPTER 8 


Ballistic Imaging and Microscopy 


8.1. INTRODUCTION 


Ideally, ballistic imaging is based on unscattered or singly backscattered ballistic 
photons. In reality, however, more-scattered quasiballistic photons are often mea-
sured as well to increase the signal strength. For brevity, subsequent use of the 
term ballistic photons in this chapter also refers to quasiballistic photons unless 
otherwise noted. Ballistic imaging provides high spatial resolution but suffers 
from limited imaging depth. 


8.2. CHARACTERISTICS OF BALLISTIC LIGHT 


The intensity of unscattered light IT attenuates according to Beer's law: 


/ Γ ω = /οβχρ(-μ,ζ) . (8.1) 


Here, z denotes the ballistic path length in the scattering medium, μ, denotes 
the extinction coefficient, and /o denotes the fluence rate of the incident light 
if specular reflection is negligible. The intensity of singly backscattered light is 
given by 


IR(z) = Ioexp(-2[L,z)Rb, (8.2) 


where R^ denotes the percentage of the backscattered light to be received by the 
detector, and the factor of 2 in the exponent is due to round-trip propagation. In 
both cases, the strictly ballistic signals decay exponentially with the path length. 


The objective of ballistic imaging is to reject nonballistic photons and to retain 
ballistic photons on the basis of the following characteristic differences between 
them: 


1. Time of Flight. Transmitted ballistic photons take shorter paths and arrive 
at the detector earlier than do nonballistic photons. Time-gated imaging 
and coherence-gated holographic imaging are based on this difference. 
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Collimation. Transmitted ballistic light has better collimation (smaller 
divergence) than does nonballistic light. Spatial-frequency filtered imaging 
and optical heterodyne imaging are based on this difference. 
Polarization. Ballistic light retains the incident polarization in a nonbire-
fringent scattering medium better than does nonballistic light. Polarization-
difference imaging is based on this difference. 
Wavefront. Ballistic light possesses a better-defined wavefront than does 
nonballistic light and hence can be better focused. Confocal microscopy and 
two-photon microscopy are based on this difference. Note that wavefront 
and collimation are related. 


8.3. TIME-GATED IMAGING 


Time-gated imaging, also referred to as early-photon imaging, takes advantage 
of the difference in arrival time between ballistic and nonballistic photons to 
select the early arriving component from the transmitted light. Figure 8.1 shows 
a block diagram of an experimental configuration for ultrafast time-gated imaging. 
A collimated ultrafast laser beam irradiates the scattering medium. The time gate 
is turned on for a short time to allow only the early-arriving photons to pass to the 
detector. The early-arriving photons carry information about optical attenuation 
along the optical axis. If the imaging system is raster scanned transversely, a 2D 
projection image (also termed a shadowgram) of the medium can be acquired. 


Both the gating delay (the time lapse from the laser pulse to the rising edge 
of the time gate) and the open duration of the gate affect the image quality; 
a tradeoff exists between the spatial resolution and the signal strength. If the 
scattering medium is optically thin (thinner than the mean free path), gating at 
the arrival of the ballistic photons yields the best spatial resolution with good 
signal strength. If the scattering medium is optically thick (thicker than the mean 
free path), nonballistic light becomes significant. As the gating delay or the open 
duration increases, more nonballistic light contributes to the signal, yet the image 
becomes more blurred. 


A time gate can be constructed using the Kerr effect. In the Kerr effect, 
birefringence is induced by an electric field applied to an isotropic transparent 
substance. Inducing a half-wave retardation in such a substance with the electric 
field of an auxiliary lightbeam can provide a high-speed shutter (Figure 8.2). 
The auxiliary beam is obtained by splitting the incoming laser light so that the 
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Figure 8.1. Experimental configuration for time-gated imaging. 
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Figure 8.2. Schematic of a Kerr gate {PH represents a horizontal polarizer; Pyy a vertical 
polarizer; λ/2, an activatable half-wave plate). 


half-wave retardation can be synchronized with the signal beam. The activatable 
retarder is sandwiched between two cross-polarized linear polarizers; its fast axis 
is oriented diagonally (±45°) between the orthogonal polarization axes of the two 
polarizers. When the retarder is not activated, no light can pass through the two 
polarizers; hence, the gate is closed. When the retarder is activated to provide 
half-wave retardation, the polarization orientation of the light ray is rotated π/2 
and becomes aligned with the polarization axis of the second polarizer; hence, 
the gate is open. The shutter speed of such a gate can be as short as 100 fs. 


A time gate can also be a single-photon counting system or a streak camera. 
The former is introduced in Chapter l l . A streak camera resolves the arrival 
time of ultrafast light by elegantly converting time into space (Figure 8.3). A 
photocathode plate converts incident photons into electrons by the photoelectric 
effect. The photoelectrons are accelerated toward a mesh and then deflected by a 
pair of fast sweep electrodes, the high voltage applied to which is synchronized 
to the incident light. Consequently, electrons arriving at different times bombard 
a microchannel plate (MCP) at different vertical locations. The MCP amplifies 
the current by generating secondary electrons. The amplified current then strikes 
the phosphor screen to produce photons. The vertical dimension of the phosphor 
screen thus provides the temporal resolution, which can reach about 200 fs. The 
horizontal dimension of the phosphor screen can provide either spatial or spectral 
resolution. For the former, a horizontal slit is added in front of the photocathode 
to form a narrow lightbeam. For the latter, a spectrometer is added in front of the 
photocathode to disperse the incident light horizontally into spectral components. 
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Figure 8.3. Basic components of a streak camera. 
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Example 8.1. Estimate the spatial resolution using some practical open durations 
of the time gate. 


If the open duration of the gate is 100 fs, the spatial resolution is on the order 
of 100 fs x 3 x 108 m/s = 30 μηη. If it is 5 ps, the resolution is on the order of 
5 ps x 3 x 108 m/s = 1.5 mm. 


8.4. SPATIOFREQUENCY-FILTERED IMAGING 


Spatiofrequency-filtered imaging, also called Fourier space-gated imaging, takes 
advantage of the different spatiofrequency distributions between ballistic and 
nonballistic light to select the ballistic component from the transmitted light. 
Figure 8.4 is a schematic representation of two spatiofrequency-filtered imag-
ing systems: (a) a narrowbeam scanning system and (b) a widebeam full-
field system. A collimated laser beam—narrow in Figure 8.4a and broad in 
Figure 8.4b—irradiates the scattering medium. A lens focuses the ballistic com-
ponent to a diffraction-limited point while dispersing the nonballistic component 
around the focus. A pinhole, placed at the focal plane of the lens, blocks most 
of the off-focus light and passes the ballistic component to the detector. In 
Figure 8.4a, optical attenuation through the medium is detected along one line 
at a time; transverse scanning yields a shadowgram. In Figure 8.4b, a 2D shad-
owgram is formed through a second lens with a single exposure as in X-ray 
projection imaging. In either case, the image signal carries information about the 
integrated attenuation along the optical path. 


From the perspective of Fourier optics, the 2D spatial Fourier transform of 
a lightbeam over a cross section provides the spatiofrequency spectrum in the 
same way that the 1D temporal Fourier transform of a lightbeam at an observa-
tion point provides the temporal frequency spectrum. Different spatiofrequency 
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Figure 8.4. Schematic of spatiofrequency-filtered imaging; (a) a narrowbeam scanning 
system; (b) a widebeam full-field system. 
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components represent plane waves traveling in different directions, which can 
be focused to different points on the focal plane of a lens. Therefore, the lens 
functions as a spatial Fourier transformer, and the pinhole functions as a spatial 
filter. The major plane-wave component in the ballistic light propagates along 
the optical axis, whereas most plane-wave components in the nonballistic light 
propagate obliquely. 


8.5. POLARIZATION-DIFFERENCE IMAGING 


Polarization-difference imaging (PDI) takes advantage of the different polariza-
tion states between ballistic and nonballistic components to select the ballistic 
component from the transmitted light. A nonbirefringent scattering medium does 
not alter the polarization state of the ballistic light, whereas the medium random-
izes the polarization state of the nonballistic light. In the PDI system shown in 
Figure 8.5, a polarizer linearly polarizes the source beam. The transmitted light 
passes through a linear polarization analyzer that is sequentially aligned in two 
orthogonal directions. Then, the light is detected by a photodetector. 


When the polarization axis of the analyzer is parallel to the incident polar-
ization, the intensity measurement is denoted by /|J(JC, y), where (JC, y) represent 
the transverse Cartesian coordinates. Likewise, when the polarization axis of the 
analyzer is perpendicular to the incident polarization, the intensity measurement 
is denoted by I±(x, y). We can approximately express the two intensities as 


1 
/||(χ, y) = Ib(x, y) + -I„b(x, y), 


1 
i±(x,y) = ^inbix.y)-


(8.3) 


(8.4) 


Here, /&(*, y) and Inb(x, y) denote the ballistic and nonballistic intensities, 
respectively. The nonballistic light is assumed to be completely unpolarized and 
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Figure 8.5. Schematic of a polarization-difference imaging system in two states. The 
polarization axis of the analyzer is (a) parallel and (b) perpendicular to the polarization 
axis of the incident polarizer. 
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hence passes through the analyzer with a 50% transmittance, regardless of the 
polarization orientation of the analyzer. 


A PDI system generates an image by 


lm(x,y) = l\\(x,y)-l±(x,y)· (8.5) 


Substituting Eqs. (8.3) and (8.4) into (8.5), we obtain 


hD(x,y) = h(x,y). (8.6) 


Therefore, the ballistic component is recovered. 
PDI is simple and fast; it can also be implemented in reflection mode. How-


ever, a small number of scattering events lead to only partial randomization of 
polarization, which affects the efficacy of PDI. Furthermore, if birefringence is 
present, more complex quantities such as the Stokes vector (see Chapter 10) need 
to be measured. 


8.6. COHERENCE-GATED HOLOGRAPHIC IMAGING 


Coherence-gated holographic imaging takes advantage of the difference in arrival 
times between ballistic and nonballistic photons to select the early-arriving com-
ponent from the transmitted light. To fully appreciate this technique, readers 
should review the principle of conventional holography (see Appendix 8A). Here, 
coherence-gated holographic imaging is based on digital holography, in which 
both recording and reconstruction are accomplished digitally (Figure 8.6). In the 
object arm, the lightbeam is filtered by a pinhole (spatial filter) and then expanded 
and collimated by a lens before irradiating the scattering medium. The transmit-
ted object beam is first spatiofrequency-filtered and then collimated before it is 
recombined with the reference beam, which is oblique with a small angle Θ (not 
shown in the figure). The path length of the reference beam is matched to that of 
the first-arriving ballistic light by adjusting a multimirror delay line. The inter-
ference pattern is imaged onto a CCD camera to form an image-plane hologram. 
Multiple CCD images are averaged to reduce speckle noise because speckles in 
successive holograms are assumed to be uncorrelated. 


For monochromatic light, the reference and the object fields can be expressed 
with phasor representations as follows: 


£/?(ω, x) = Εο(ω) txp(ikxx — ίω(ί — tR)), (8.7) 


Es(o),x, y) = Ε0(ω)[α\(χ, ^)βχρ(~ιω(ί - t\)) + a2(x, y)exp(-/a)(i - t2))). 
(8.8) 


Here, subscripts R and S denote the reference and the object (sample) beams, 
respectively; ω denotes the angular frequency; (JC, y) denote the Cartesian coor-
dinates on the detector surface; t denotes time; EQ denotes the electric field 
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Figure 8.6. Schematic of a coherence-gated holographic imaging system. The reference 
beam is incident obliquely with a small angle Θ (not shown). 


amplitude; kx denotes the JC component of the wavevector, which appears because 
the reference beam is assumed to be tilted with respect to the x axis; tR denotes 
the time delay in the reference beam; a\ and t\ denote the amplitude transmit-
tance and the time delay of the ballistic light, respectively; and a2 and t2 denote 
the amplitude transmittance and the time delay of a representative group of non-
ballistic light, respectively. In addition to the t2 component, more time-delay 
components can be added in a similar fashion. Since frequency tuning is needed, 
the frequency dependence of ER and Es is explicitly expressed here. The objec-
tive of this imaging technique is to retain the a\ component and eliminate the 
a2 component. 


Note that the phasor expression, also referred to as the complex expression, is 
a convenient mathematical convention for representing oscillations. The actual 
oscillations are the real part of the phasor expression. In linear mathematical 
operations, real-part operators Re{} on phasor expressions are implicit since real-
part operators and linear operators are permutable. In nonlinear mathematical 
operations, however, one needs to exercise caution. 


If tR = t\, the hologram can be expressed as 


Ι(ω,χ,γ) = \Ε0(ω)\
2{\ + \a{\


2 + \a2\
2} 


+ \Εο(ώ)\2{α\ exp(—ikxx) -f a* exp(ikxx)} 


+ \E0((o)\
2{a2exp(-ikxx + ιω(ί2 - *i)) (8.9) 


-f a\ exp(ikxx — /ω(*2 — ^ι))} 


+ \Εο(ω)\2{α*α2£χρ(ίω(ί2 - t\)) + axa\βχρ(-/ω(ί2 -* ι ) )} . 








1 6 0 BALLISTIC IMAGING AND MICROSCOPY 


The holographic image is reconstructed digitally as follows: 


1. We take the spatial Fourier transformation of the hologram with respect to x: 


/(ω, fc, v) - |Ε0(ω)|2{1 + kn I2 + \a2\2)M) 


+ |Ε0(ω)|2{α,δ(/: - kx) + α*δ(* + kx)} 


(8.10) 
+ \Eo(o>)\2{a2Hk - kx)exp(ii»(t2 - tx)) 


+ a$h(k + kx) βχρ(-/ω(ί2 ~ *i))} 


+ |Εο(ω)|2{α*α2εχρ(/ω(ί2 - fi)) 


-f αι«2 exp(—ί'ω(ί2 — ii))}8(fc). 


Here, the terms containing h(k) represent the zero-frequency ("DC") com-
ponent; the terms containing h(k — kx) represent the virtual image that has a 
spatial frequency of +kx, whereas the terms containing h(k -f kx) represent 
the real image that has a spatial frequency of —kx. 


2. We filter the signal to retain the h(k — kx) terms (first-order diffraction 
terms) and to reject the other components. 


3. We take the inverse Fourier transformation of the filtered signal and then 
drop exp(—ikxx), which results in 


ΐ'(ω,χ,γ) = \Ε0(ω)\
2{αι +a 2 exp(Mf 2 - *i))}. i8 ·1 1) 


To separate the a\ and a2 terms in Eq. (8.11), we tune the laser frequency within 
a bandwidth Δω while acquiring a hologram at each frequency. If |£Ό(ω)|2 
is slowly varying and Δω >> (f2 — i i ) _ 1 , integration of Eq. (8.11) over Δω 
approximately averages out the a2 term, which leads to 


l"(x,y)= I ί(ω,χ, y)d(u ^ a\(x, y) I \Εο(ω)\ άω. (8.12) 
«/Δω J Αω 


Thus, I" represents a ballistic image proportional to a\. As will be seen in 
Chapter 9, this frequency-swept gating is equivalent to coherence gating based 
on a wideband light source. 


8.7. OPTICAL HETERODYNE IMAGING 


Optical heterodyne imaging takes advantage of the different spatial frequencies 
between ballistic and nonballistic light to select the collimated component from 
the transmitted light. Optical heterodyne detection means the superposition of two 
coherent optical beams that have slightly different temporal frequencies and the 
subsequent detection of the beat-frequency component of the superposed beam. 
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Figure 8.7. Illustration of the relationship between the reference and the sample beams 
with respect to the detector. 


The antenna property of optical heterodyne detection is the basis for the ballis-
tic imaging here. Figure 8.7 shows a schematic relationship between the reference 
and the sample beams with respect to the detector. The antenna theorem can be 
stated as follows. In the ID case, |θ| ~ λ/Ζ), where Θ is the acceptance angle 
between the two beams, λ is the optical wavelength, and D is the width of the 
aperture (limited by the size of the optical beam or the detector, whichever is 
smaller). In the 2D case, Ω ~ λ2/Λ, where Ω is the acceptance solid angle and 
A is the area of the aperture. The limitation on the acceptance angle is simply 
due to the cancellation of interference fringes on the detector surface when the 
two waves propagate in different directions. 


Ballistic light, which propagates along the optical axis, has a nearly zero 
spatiofrequency bandwidth, while nonballistic light has a broad spectrum of spa-
tial frequencies. Therefore, low spatiofrequency ballistic light can be retained and 
high spatiofrequency nonballistic light rejected according to the antenna theorem. 


An experimental setup for heterodyne imaging is shown in Figure 8.8. The 
laser beam from the source is divided into two different paths by a beamsplitter. 
Before illuminating the sample, the sample beam is passed through an acous-
tooptic modulator to add a frequency shift of 80.0 MHz. The reference beam is 
passed through another acoustooptic modulator that introduces a slightly different 
frequency shift of 80.1 MHz. The two beams are then effectively superposed by 
a beam combiner before reaching a photomultiplier tube (PMT), which functions 
as a frequency mixer. The sum-frequency signal is filtered out automatically by 
the PMT, which is unable to respond to oscillations of optical frequencies. A 
beat-frequency signal of 0.1 MHz—the heterodyne frequency between the ref-
erence and the sample beams—from the PMT is amplified, digitized, and finally 
transferred to a computer. This signal represents the ballistic photons and can be 
used to form an image by transversely scanning the system across the sample. 


In general, heterodyne detection refers to the use of a local oscillator (refer-
ence signal here) to mix a high-frequency signal (sample signal) with a more 
convenient intermediate-frequency signal (interference signal). The mixer (PMT) 
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Figure 8.8. Schematic of an optical heterodyne imaging system. 


generates both upper and lower sidebands, either of which may be filtered out if 
desired. In this case, the upper sideband is filtered out because the photodetector 
cannot respond to signals of optical frequency, and the lower sideband provides 
the interference signal. 


Example 8.2. Show that the acceptance angle in the antenna theorem for a ID 
case is approximately equal to λ/D. 


In Figure 8.7, the electric fields of the sample and the reference waves can be 
expressed as 


Es - Eso exp(ikxx - iMSt + ι'φίο). 


ER = EROexp(-i(uRt + ίφκο), 


(8.13) 


(8.14) 


respectively, where kx is the projection of the wavevector ks onto the x axis: 


(8.15) L = — sin t 
λ 


If we consider only the ID case, the light intensity on the detector surface (z = 0 
plane) is 


I(kx,x) - \ES + ER\2 = Ejo + E2m + 2ES0ER0cos(kxx - Δωί + Δφ0), 
(8.16) 
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where Δω = ω$ — ω^ and Δφο = Φ50 — Φ/?ο· The first two terms represent the 
DC component while the last term represents the AC (interference) component. 
The AC photocurrent from the detector is proportional to the interference com-
ponent integrated across the detector surface: 


pD/2 


IAC(kx) oc 2ESOERO / cos(kxx - Δωί + Δφ0)Λχ 
JrD/2 


IESOERQ 


kx 


4ESQERQ 


kx 


sin I kx Δωί + Δφο I — sin f —kx Δωί + Δφο I 


in('"f) cos i -Δωί + Δφ0)8ΐη \kx—) (8.17) 
= IDESOEROS'IUC I —— 1 cos(Aoo/ — Δφο), 


V 2π / 


where sinc(jc) = ύη(πχ)/(πχ), although sometimes the definition of sinc(jf) = 
sin(x)/x is used elsewhere. For effective detection, the argument of the sine 
function must be less than unity, specifically 


\kxD\ < 2 π , (8.18) 


which leads to 


| s i n 0 | < ^ . (8.19) 


If D » λ, then sin θ % Θ. Thus 


|θ| < ~ . (8.20) 


8.8. RADON TRANSFORMATION AND COMPUTED TOMOGRAPHY 


In the aforementioned transmission-mode ballistic imaging, spatial resolution 
along the optical path can be achieved using the inverse Radon transformation, 
which is commonly used in X-ray CT for image reconstruction. Projections from 
multiple view angles are needed, however. 


The Radon transform ρψ(χ') of a function /(JC, y) is defined as the integral 
of the function along a line that is parallel to the / axis at xr (Figure 8.9) 


/


+00 


/ ( χ ' α ^ φ — y βΐηφ, χ ^ ί η φ 4- y'costy)dy\ (8.21) 
-00 


where φ denotes the view angle—the angle between the x and x' axes. The 
Radon transform, also referred to as the projection data or the sinogram, is the 
input for image reconstruction. 
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Figure 8.9. Radon transformation. 


In ballistic imaging, the Radon transformation is related to the generalized 
Beer law: 


/


+00 
\L,(z)dz), (8-22) 


-00 


where I(z) denotes the light intensity, and z denotes the optical (ballistic path) 
axis. The following reformulation of Eq. (8.22) shows that the absorbance along 
the optical axis equals the Radon transform: 


Kz) Γ+σο 
-\n-^- = [it(z)dz. (8.23) 


Various inverse algorithms can invert the Radon transformation for an image. 


8.9. CONFOCAL MICROSCOPY 


Confocal microscopy was invented in the 1950s but was not actively developed 
until the 1970s. A confocal microscope—in which both illumination and detec-
tion are focused on the same point in the object—provides optical sectioning 
for high-resolution 3D imaging of scattering samples. By contrast, a conven-
tional microscope (Figure 8.10a)—in which the illumination is broadened by a 
condenser lens and the illuminated area of the object is mapped onto the image 
plane by an objective lens—provides no optical sectioning of planar features; it 
does, however, form a full-field image at once. 
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Figure 8.10. Schematic diagrams of (a) a conventional microscope and (b) a transmission 
confocal microscope. 


In a transmission-mode confocal microscope (Figure 8.10b), a point source 
is imaged by a lens to a diffraction-limited spot to illuminate the 3D specimen. 
The illuminated spot is mapped by another lens to a pinhole to reject off-focus 
light. The filtered light is then detected by a photodetector. The detected signal is 
sensitive to the property of the sample at the illuminated point. Scanning point-
by-point across the sample then forms an image. In other words, the focused 
light irradiates one tiny volume of the object at a time; the detector along with 
the pinhole collects light from the same region. The confocal illumination and 
detection effectively reject light from elsewhere. Consequently, both lenses play 
equally important roles in defining the spatial resolution. 


A confocal microscope (Figure 8.11) can be implemented in reflection mode 
as well. As in the transmission mode, the illumination is focused by an objective 
lens to a spot. If elastically backscattered light is to be imaged, a beamsplitter is 
used to both partially reflect the source beam and partially transmit the reflected 
beam. If fluorescent light is to be imaged, a dichroic mirror can be used instead to 
both efficiently reflect the excitation light and efficiently transmit the fluorescent 
light. A reflection-mode confocal microscope can image hundreds of micrometers 
into scattering biological tissues. 


The spatial resolution of a confocal microscope can be quantified by the PSF 
(the image of a point object). According to diffraction theory, the normalized 
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Figure 8.11. Schematic of a reflection-mode confocal microscope for fluorescence 
imaging. 


optical coordinates u and v are defined by 


8π8ΐη 2 (γ /2) 
u = z, 


2Ksiny 
v = r. 


λ 


(8.24) 


(8.25) 


Here, λ denotes the optical wavelength in the object, z denotes the distance 
from the focal point along the optical axis (defocus distance), γ denotes the 
angle that defines the numerical aperture NA along with the refractive index n 
(NA = n sin γ), and r denotes the radial coordinate on the xy plane. If the system 
has circular symmetry, the field (or complex-amplitude) PSF of a lens in paraxial 
approximation is given by the following Hankel transform: 


h(u, υ) = 2 /o ' e x p G M p 2 ) J0(pv)p dp. (8.26) 
Here, p denotes the radial coordinate at the pupil normalized by the pupil radius 
and Jo denotes the zeroth-order Bessel function of the first kind. 


The PSF of a conventional microscope is 


PSF(w,u) = |/i(w,u)|2, (8.27) 
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where the absolute squared operation is a consequence of conversion from com-
plex amplitude to intensity. By contrast, the PSF of a confocal microscope is 


PSF(M, v) = |A(w, v ) | \ (8.28) 


where the absolute-to-the-fourth-power operation is a result of double conversions 
from complex amplitude to intensity for both illumination and detection. Here, 
we have implicitly invoked the principle of reciprocity, which means that when 
the source and the observation points are exchanged, the observed field remains 
the same. 


The field PSF on the optical axis can be calculated as follows: 


ft(ii,0) = 2 f expi^wp 2 ] p dp = exp( -u ] sine ^ V (8.29) 


Therefore, the axial PSF of a conventional microscope is 


PSFz(u) = |A(n, 0)|2 = sine2 (—) , (8.30) 
\ 4 π / 


and the axial PSF of a confocal microscope is 


PSFz(u) = |A(II, 0)|4 = sine4 (—) . (8.31) 
\ 4 π / 


Likewise, the lateral field PSF on the in-focus plane can be calculated as 
follows: 


,,„) = 2 / ' . - - 2 - 2 
Jo 


ft(0, v) = 2 / J0(pv)p dp = -[pJi(pv)]i = -Mv). (8.32) 
' V V 


Therefore, the lateral PSF of a conventional microscope is 


PSFr(v) = |A(0, v)\2 = 
2Ji(v)\2 (8.33) 


and the lateral PSF of a confocal microscope is 


PSFr(v) = |A(0, υ)|4 = 
2 / ι (υ) | 4 


(8.34) 


If the sample has an arbitrary complex-amplitude reflectivity distribution o(u, v, Θ) 
(where Θ is the polar angle), the image intensity distribution from a reflection-mode 
conventional microscope with incoherent illumination can be modeled by inco-
herent convolution |A|2 * |o|2. By contrast, the image intensity distribution from 
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a reflection-mode confocal microscope can be modeled by coherent convolution 
\h2 * o\2. As expected, if the object reduces to a point, the convolution recovers 
the PSF. 


If a fluorescent point object is imaged, the image intensity distribution from a 
conventional microscope remains \hm(um, vm)\2, where subscript m indicates that 
the optical coordinates are defined at the fluorescence emission wavelength. How-
ever, the image intensity from a confocal microscope is modified to \hx(ux, vx) 
hm{um, vm)\


2, where subscript x indicates that the optical coordinates are defined 
at the fluorescence excitation wavelength. 


If the sample contains an arbitrary fluorophore density distribution f(u, v, Θ), 
the image intensity distribution from a conventional microscope can still be 
modeled by incoherent convolution \hm\2 * / . The image intensity distribution 
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Figure 8.12. (a) Axial and (b) lateral PSFs in confocal and conventional microscopes. 








TWO-PHOTON MICROSCOPY 1 6 9 


from a confocal microscope can be modeled by incoherent convolution \hxhm\2 * 
/ instead. 


Example 8.3. Plot the axial and lateral PSFs for both conventional and confocal 
microscopes. 


The following MATLAB code produces Figure 8.12: 


u = linspace(-1,1)*3*4*pi; 
subplot(2, 1, 1) 
plot(u, (sinc(u/4/pi)).Λ2, 'k--', u, (sinc(u/4/pi)).Λ4, 'k-') 
grid 
xlabel('u') 
ylabelCAxial PSF') 
legend('Conventional', 'Confocal') 


v = linspace(0,10); 
subplot(2, 1, 2) 
plot(v, (2*besselj(1,v)./v).A2, 'k--', v, (2*besselj(1,v)./v).Λ4, 'k-') 
grid 
xlabel('v') 
ylabelC Lateral PSF') 
legend('Conventional', 'Confocal') 


8.10. TWO-PHOTON MICROSCOPY 


Two-photon microscopy was initially developed in the early 1990s. A two-photon 
microscope (TPM) (Figure 8.13) achieves sectioning by nonlinear optical exci-
tation. Unlike a confocal microscope, a TPM does not use a pinhole, although a 
pinhole can enhance the spatial resolution at the expense of signal strength. 


To understand why a pinhole is unnecessary in a TPM, we first examine 
the difference between one-photon and two-photon excitations of fluorescence 


Dichroic mirror 


Figure 8.13. Schematic of a reflection-mode two-photon microscope. 
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Figure 8.14. Jablonski energy diagrams for a one-photon excitation and two-photon exci-
tation of fluorescence. 


(Figure 8.14). In one-photon excitation, an electron is boosted to an excited state 
by absorbing a single photon. After a brief vibrational relaxation, it returns to a 
ground state while emitting a fluorescence photon. The probability of one-photon 
absorption is proportional to the light intensity. In two-photon excitation, an elec-
tron is pumped to an excited state by simultaneously absorbing two low-energy 
photons, followed by a similar process of fluorescence emission. Therefore, the 
probability of two-photon absorption is proportional to the square of the light 
intensity. 


Compared with a confocal microscope, a TPM has the following characteristics 
in addition to the lack of a pinhole: 


1. A more localized excitation volume defined by \hx(ux, vx)\4, rather than 
\hx(ux, vx)\


2 as in the case of a fluorescence confocal microscope, leads to 
reduced photo-bleaching. 


2. A longer excitation wavelength leads to increased penetration because both 
the absorption and the reduced scattering coefficients are decreased in the 
typical spectral region. 


3. An ultra-short-pulsed laser is used. 
4. Scattering contrast is not directly measured. 


The diffraction-limited PSF is \hx(ux, vx)hm(umj vm)\2 for a fluorescence con-
focal microscope but becomes \hx{ux, vx)\4 for a TPM. In theory, when the two 
excitation wavelengths are the same and the single-photon emission wavelength 
is close to the single-photon excitation wavelength, the two PSFs are similar. 
However, when the two-photon excitation wavelength is twice as long as the 
single-photon excitation wavelength and the two-photon emission wavelength is 
the same as the single-photon emission wavelength, the PSF for a TPM is wider. 
If the sample contains an arbitrary fluorophore density distribution f(u, v, Θ), the 
image intensity distribution from a two-photon microscope can be modeled by 
incoherent convolution \hx\4 * / . 
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Example 8.4. Estimate the number of excitation photons absorbed per fluo-
rophore for a TPM. 


Typically, the laser in a TPM has pulse duration τρ ~ 100 fs, pulse repetition 
rate fp ~ 80 MHz, and average excitation power Po ^ 50 mW. Thus, the pulse 
energy is 


Po Ep = -j- * 0.6 nJ. (8.35) 
fp 


The number of excitation photons absorbed per fluorophore Na can be estimated 
by 


Na = j l · ^ . (8.36) p τη VP 


Here, θ2Ρ denotes the two-photon absorption cross section (~10- 5 8 m4-s) and 
Jp denotes the photon flux per pulse (m~~2). We estimate Jp by 


En 
JP = T - ^ - , (8.37) hvAf 


where hv is the photon energy and Af is the area of the focused beam. We 
estimate Af by 


2 


^="(°"6^)=l44(^)· <OS) 
where λ is the excitation wavelength (~800 nm) and NA is the numerical aperture 
of the objective lens (M).9). According to these parameters, Na ^ 0.005 <$C 1. 
Only some of the absorbed photons are converted into fluorescence photons since 
the quantum yield ranges from —5% to ^90%. Nevertheless, fluorescence signals 
are detectable when the excitation volume contains enough fluorophores. 


APPENDIX 8A. HOLOGRAPHY 


The principle of conventional holography is described here. Holography records 
both the field amplitude EQ and the phase φ of a lightbeam, whereas conven-
tional photography records only the intensity. A hologram presents the effect of 
stereovision. When a hologram is recorded (Figure 8.15), a source beam is split 
into two parts: one illuminates the object, and the other serves as a coherent ref-
erence wave. When the object wave reaches the recording film, it interferes with 
the coherent reference wave. The intensity distribution of the combined beam 
forms an interferogram and is recorded on the film. 
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Figure 8.15. Recording of a hologram. The spherical wave from a point on the (jto, yo) 
plane is illustrated as the object wave. 


To simplify our discussion, we assume a monochromatic light source so that 
the phase difference between the object and the reference waves is time-invariant. 
The object and the reference waves are denoted in phasor expressions by Es(x, v) 
and ER(x,y), respectively, where (x, y) is the Cartesian coordinates on the 
recording plane. The recorded intensity I(x,y), referred to as a hologram, is 
then given by 


/ (* , y) = \ES + ER\2 = (Es + ERKEs + ER)* 


= \ES\
2 + \ER\2 + ESER + E*SER. (8.39) 


If ER is zero, a hologram reduces to a conventional photograph. 
Once the film is developed, the recorded hologram can be represented by the 


complex-amplitude transmittance of the film as follows: 


' / ( * , y) = tb + ß/(*, y) = tb + ß( |£5 | 2 + ESE*R + E*SER), (8.40) 


where tb denotes the film-dependent baseline (background transmittance with 
zero exposure) and ß denotes the sensitivity that relates the transmittance to the 
recorded intensity. Since the reference beam contains no imaging information, 
the \ER\2 term is lumped with th\tb — tb-\- $\ER\2. 


Reconstruction of a hologram recovers the object wave—in either the original 
or the conjugated form—by illuminating the hologram. If the reconstruction beam 
is the same as the reference beam, we multiply ER on both sides of Eq. (8.40) 
to obtain the field of the transmitted beam: 


ERtf - ERtb + VER\ES\2 + tEs\ER\2 + ?>E*ERER. (8.41) 


The last two terms on the right-hand side are important because they contain 
information about both the amplitude and phase of either the object wave Es or 
the complex-conjugated object wave E$. 


Obiect wave 
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Figure 8.16. (a) Recording and (b) reconstruction in Gabor holography. 


To illustrate the recording and reconstruction, we first describe the original 
Gabor holography (Figure 8.16a). For recording, a plane wave—converted from 
a spherical wave by a lens—is normally incident on an object. The transmitted 
light consists of two emerging waves—one is a directly transmitted plane wave 
that serves as the reference, and the other is a scattered object wave that carries 
imaging information about the object. The interference between these two waves 
results in a hologram on the film. 


For reconstruction, a plane wave is incident on the hologram (Figure 8.16b). 
The field of the transmitted beam is given by Eq. (8.41). The first term on the 
right-hand side represents a homogeneous background since ER for a plane wave 
is independent of x and y. The second term represents an intensity image of 
the object (a conventional photograph). The third term forms a virtual image 
because it replicates the original object wavefront and represents a divergent wave 
propagating from the hologram. Conversely, the fourth term forms a real image 
because it produces the complex conjugate of the original object wavefront and 
represents a converging wave propagating from the hologram. For a point object, 
the divergent and convergent waves for the virtual and real images are spherical 
as illustrated. The virtual image is so named because no photons actually reach 
the image location; by contrast, photons do reach the real image. Here, the real 
and virtual images appear together because their corresponding waves propagate 
in the same direction. 
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Figure 8.17. Schematic illustrating Leith-Upatnieks (offset-reference) holography. 


To separate the real and the virtual images, Leith and Upatnieks used an 
obliquely incident reference wave for recording but a normally incident reference 
wave for reconstruction (Figure 8.17). For recording, a prism abutting the sample 
refracts the incident beam by an angle Θ. We choose the vertical direction as the 
y axis and express the reference and the object fields as 


ER(y) = E0((u)cxp(ikyy - ίωί), 


Es(x, y) = a(x, y)E0(u>) exp(-/a>0. 


(8.42) 


(8.43) 


Here, EQ denotes the amplitude of the source beam, ω denotes the angular fre-
quency, t denotes time, a(x, y) denotes the transverse distribution of the object 
wave, and ky denotes the y component of the wavevector 


Ky 
2π sin Θ 


λ 
(8.44) 


where λ is the optical wavelength. Because the reference wavefront is parallel to 
the x direction, ER is independent of x. Of course, Gabor holography is recovered 
if Θ = 0. 


The recorded intensity distribution on the film is 


I(x,y) = \Es + ER\
2 


(8.45) 
= £Q[1 + \a(x,y)\* + a(x,y)exp(-ikyy)+ a*(x,y)exp(ikyy)]. 


The reconstruction with a plane wave of amplitude E\ normally incident on the 
hologram is illustrated in Figure 8.18. The complex amplitude of the transmitted 
field is given by 


tfEi = t'hEi + ßEg£/ki(jt, y)\2 + ^E^EMx, y)exp(-ikyy) 


+ $Ε$Εια*(χ, y)txp(ikyy). (8.46) 


As in Gabor holography, the last two terms on the right-hand side represent the 
virtual and the real images, respectively. The two complex-amplitude images, 
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Source 


Figure 8.18. Reconstruction in Leith-Upatnieks holography. 


however, have ^ikyy in the exponents, indicating different spatial frequencies. 
As a result, the virtual and the real images can be viewed in the =ρθ directions, 
respectively; thus, one image may be viewed at a time, which is essentially a 
filtering process. In digital holography, this filtering is implemented computa-
tionally. 


PROBLEMS 


8.1 Use the Henyey-Greenstein phase function to compute the percentage of 
backscattered light R^ that can be received by the detector in a reflection-
mode microscope. Assume that the diameter of the detector is 10 μπι and 
the distance between the scatterer and the detector is 2/,, where μ, = 
100 cm- 1 . Set g to 0, 0.9, and 0.95 sequentially. 


8.2 In transmission-mode ballistic imaging, assuming that the number of 
unscattered transmitted photons limits the maximum thickness of the bio-
logical tissue that can be imaged, derive the increase in this maximum 
thickness when the power of the incident source beam is doubled. Given an 
original maximum thickness of 30//, compute the fractional improvement. 


8.3 In time-gated transmission imaging, estimate the required temporal res-
olution of the time gate if a resolution better than 0.3 mm through a 
3-mm-thick tissue sample is desired. 


8.4 In spatiofrequency-filtered imaging, the smaller the pinhole, the better 
the rejection of scattered light, but the worse the transmission of ballis-
tic light owing to light diffraction. Derive the transmittance of ballistic 
light through a pinhole of radius rp. [Hints: (1) use [2J\(v)/v]2 for the 
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diffracted intensity distribution and (2) use MATLAB to complete the 
Bessel function integration, e.g., syms v; i n t ( b e s s e l j ( 1 , ν) Λ 2/ν) .} 


8.5 In polarization-difference imaging, assuming that the sample is equivalent 
to a half-wave retarder for the ballistic light due to tissue birefringence, 
modify the configuration for effective ballistic imaging. 


8.6 If polarization-difference imaging is implemented in reflection mode, 
explain how to reject light scattered from deeper regions of the medium. 


8.7 In Leith-Upatnieks holography, given a hologram recorded on a CCD 
camera with a pixel size of 5 μηι, compute the maximum offset angle 
below which the Nyquist criterion (>2 pixels per cycle) is satisfied. 
Assume an optical wavelength of 0.5 μπι. 


8.8 In Leith-Upatnieks holography, assuming the reference beam to be tilted 
out of the xz plane, generalize the theory. 


8.9 In coherence-gated holographic imaging, the a^ term contributes much 
less to the signal than does the a \ term when the tuned bandwidth of the 
laser is sufficiently wide. Explain how wide is considered sufficient. 


8.10 Derive the ID antenna theorem in heterodyne detection using real values 
of the electric fields rather than phasor expressions. (Hint: In this case, 
time averaging over the response time of the detector is explicit.) 


8.11 In heterodyne imaging, assuming that the source wavelength is tuned over 
a range, show that even late-arriving light normally incident on the detector 
can be rejected as in the coherence-gated holographic imaging. 


8.12 For both confocal and conventional microscopes, find the radius r at which 
the lateral PSF is zero. The center area within this radius is referred to as 
the Airy disk. [Hint: The first zero of J\(v) is at ι; = 1.22π.] 


8.13 Define spatial resolution as the FWHM of the PSF. Set refractive index n to 
1.0 and 1.5 sequentially. For both confocal and conventional microscopes, 
plot the axial resolutions versus NA in the range of 0.40-0.99. Repeat 
for the lateral resolutions versus NA in a separate figure. Plot the ratio 
of the conventional microscopic resolution to the confocal microscopic 
resolution versus NA in a third figure. (Hint: In MATLAB, type help 
fzero.) 


8.14 Use the Monte Carlo method to simulate time-resolved transmitted light 
through a scattering slab. An infinitely short-pulsed pencil beam is nor-
mally incident on the slab from one side. Add a small pinhole on the other 
side in front of the detector. Set the thickness of the slab to 0.5, 1, 2, 4, 
. . . times the mean free path sequentially. 


8.15 In confocal and conventional microscopes, if a planar target perpendicular 
to the optical axis is imaged, what are the axial PSFs? 
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CHAPTER 9 


Optical Coherence Tomography 


9.1- INTRODUCTION 


Optical coherence tomography (OCT), which was invented in the early 1990s, 
falls into the category of ballistic optical imaging. OCT is analogous to ultra-
sonography. The transverse resolution results from the confocal mechanism, albeit 
with a small numerical aperture. The axial resolution results from the arrival 
times of echoes. The detection in OCT, however, is based on interferometry 
since light speed is five orders of magnitude greater than sound speed. The max-
imum imaging depth in scattering biological tissue is 1-2 mm, and the spatial 
resolution ranges from 1 to 10 μπι. As a result, the depth-to-resolution ratio 
is greater than 100, which qualifies OCT as a high-resolution imaging modal-
ity. The contrast originates primarily from backscattering (or backreflection) and 
polarization. Since the human eye provides an optically transparent window, 
noninvasive imaging of the retina is thus far the most competitive application 
of OCT. 


9.2. MICHELSON INTERFEROMETRY 


Michelson interferometry (Figure 9.1), the basis of OCT, is briefly introduced 
in this section. A monochromatic light source emits a source beam horizontally 
toward a beamsplitter that is inclined diagonally. The source beam is split into 
two halves. One half is reflected off the beamsplitter and then backreflected by a 
reference mirror. The other half is transmitted through the beamsplitter and then 
backreflected by an object surface (no internal backscattering exists here). These 
two backreflected beams are recombined by the beamsplitter and then received 
by a detector. 
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Figure 9.1. Schematic of a Michelson interferometer. 


If polarization is neglected, the two backreflected electric fields can be repre-
sented by phasor expressions as follows: 


ER = EROcxp(i(2kRlR - ωί)), 


Es = Esoexp(i(2ksh - ωί)). 


(9.1) 


(9.2) 


Here, subscripts R and S denote the reference and the sample arms, respectively; 
ERO and Eso denote the electric field amplitudes of the two beams; kR and ks 
denote the propagation constants in the two beams; IR and Is denote the two arm 
lengths measured from the splitting point at the beamsplitter to the backreflection 
surfaces; ω denotes the optical angular frequency; and t denotes time. The factor 2 
in front of k arises from the round-trip light propagation in each arm. The electric 
field E of the recombined beam is a superposition of the two monochromatic 
electric fields: 


E = ER + Es. 


The photocurrent i(t) at the photodetector (a square-law detector) is given by 


T I * ( | £ * + ESI2> i(t) = 
hv 2Z0 


(9.3) 


Here, η denotes the quantum efficiency of the detector (the ratio of the output 
number of electrons to the input number of photons), e denotes the electron 








MICHELSONINTERFEROMETRY 183 


charge, hv denotes the photon energy, ZQ denotes the intrinsic impedance of free 
space, and ( > denotes averaging over the response time of the detection system 
(e.g., 10"12 — 10~9 s, or ps to ns). The response-time averaging is equivalent 
to lowpass filtering; thus, the photocurrent can still be a function of time t. For 
brevity, we neglect the constant factors and simply write 


I{t) = (\ER + Es\
2). (9.4) 


Here, /( /) denotes the short-time-averaged light intensity; it is used instead of 
i(t) from here on. For monochromatic light, we write 


I(t) = \ER + Es\
2, (9.5) 


where another factor of | is neglected. 
Substituting Eqs. (9.1) and (9.2) into Eq. (9.5) yields 


/(f) = E2R0 + E2S0 + 2ER0ES0 cos(2ksls ~ 2kRlR). (9.6) 


The cosine term on the right-hand side results from the interference between the 
two lightbeams. We denote the phase difference between the two beams as Δφ: 


A<\> = 2ksls-2kRlR. (9.7) 


With a varying Δφ, this interference term becomes an alternating current (AC) 
that produces interference fringes; hence, the recorded / is also referred to as an 
interferogram. 


If kR = k$ — k = 2πη/\ο, where n denotes the refractive index and λο denotes 
the optical wavelength in vacuum, we have 


2nAl 
Δφ = 2k(ls - h) = 2π ——, (9.8) λο 


where 
Al = ls-lR. (9.9) 


From here on, Δ/ is termed the arm-length difference (or mismatch) between 
the sample and the reference arms; 2Δ/ is termed the (round-trip) path-length 
difference (or mismatch) between the two beams; 2nAl is termed the (round-trip) 
optical path-length difference (or mismatch) between the two beams. Therefore, 
the interference signal varies with Δ/ periodically. For monochromatic light, the 
fringes exhibit a sustained oscillation of constant amplitude. 
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9.3. COHERENCE LENGTH AND COHERENCE TIME 


The coherence length lc of light is defined as the spatial extent along the prop-
agation direction over which the electric field is substantially correlated; it is 
related to the coherence time xc by lc — cxc, with c denoting the speed of light. 
In stationary states, where the statistical properties do not change with time, xc 
is defined as the FWHM of the autocorrelation function G\(x) of the electric 
field E(t): 


/


+oo 
E(t)E(t + x)dt. (9.10) 


-DO 


Both the coherence length and the coherence time are inversely proportional to 
the frequency bandwidth for a given spectral shape according to the following 
Wiener-Khinchin theorem: 


/ . 
G|(x)exp(/ü>x)</T = |£(ω)|2 , (9.11) 


where Ε(ω) is the Fourier transform of E(t). Note that 


|£(οο)|2 = £(ω), (9.12) 


where Ξ(ω) is the power spectral density distribution of the light. The Wiener-
Khinchin theorem, a special case of the cross-correlation theorem, states that the 
autocorrelation function of the electric field and the power spectrum are a Fourier 
transform pair. 


If 5(ω) is Gaussian, we have 


2 N 


5 ( ω ) = ' e x p ( - < ! ^ Y (9.13) 
ν ^ σ ω V 2σ2 ) 


where ωο denotes the center angular frequency and σω denotes the standard 
deviation of ω. Since the profile is of key interest, 5(ω) is normalized to unit 
power: 


/ 
S(<o)dü)=l. (9.14) 


It can be shown (see Problem 9.1) that the coherence length is given by 


41n2 λ2 
lc = 7 7 , (9.15) 


π Δλ 


where λο denotes the center wavelength of the light source and Δλ denotes 
the FWHM bandwidth in wavelength. The broader the bandwidth, the shorter 
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the coherence length becomes. In an interferometer, the two beams are said 
to be coherent with each other when 2nAl < lc. Note that Eq. (9.15) is for a 
Gaussian Hneshape and the constant factor on the right-hand side varies with the 
spectral shape; XQ/AX, however, is sometimes used to estimate lc regardless of 
the spectral shape. 


9.4. TIME-DOMAIN OCT 


OCT is based on Michelson interferometry with a light source of short coherence 
length; it can be implemented either in free space or by using optical fibers 
(Figure 9.2). The optical fibers, however, must be single-mode because modal 
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Figure 9.2. Schematic diagrams of (a) a free-space and (b) a fiberoptic OCT system. 
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dispersions in multimode fibers broaden the axial resolution. A superluminescent 
diode (SLD) is commonly used as the light source because of its high radiance 
and relatively low cost. While the reference beam is reflected from a mirror, the 
sample beam is backscattered from various depths in the biological tissue sample. 


In time-domain OCT (TD-OCT), the reference arm length oscillates period-
ically, which causes a Doppler frequency shift in the reflected reference beam. 
The sample and the refererice beams are recombined and subsequently detected 
by the photodetector; the detection falls into the category of heterodyne detec-
tion owing to the Doppler shift. The two beams coherently interfere only when 
their optical path-length difference is within the coherence length of the source, 
which is referred to as coherence gating, an effect that enables OCT to resolve 
the path-length distribution of the backscattered light. Therefore, the axial res-
olution is determined by the coherence length of the source. In the ballistic or 
quasiballistic regime, the path length distribution can be directly converted into 
a physical depth distribution; in the quasidiffusive or diffusive regime, however, 
this conversion breaks down. 


Recording the interference fringes or the envelope as a function of IR profiles 
the backscattering reflectance from the sample versus the depth. As a result, a 
ID image—referred to as an A-scan or A-line image—is produced. Multiple 
A-scan images acquired by transverse scanning form a 2D B-scan image or a 3D 
volumetric image. 


Before a more rigorous theory is described, a simple approach is presented 
to illuminate the basic principle of OCT. We let Es = Ec + £/ , where Ec and 
Ei represent the components of the backscattered sample beam that are coherent 
and incoherent with the reference beam, respectively; thus, Eq. (9.4) becomes 


/ ( 0 = <|£/? + £c + £/l2). (9.16) 


Because E\ has a random phase difference relative to ER, it does not contribute 
to the AC signal. Therefore, we have 


7(0 = E2R0 + E2a) + E% + 2EROEcocos ( ΐ π ^ ^ λ . (9.17) 


Here, Eco and EJO denote the amplitudes of Ec and £/ , respectively; AICR 
denotes the arm-length difference between Ec and ER; λο denotes the center 
wavelength of the light source. In Eq. (9.17), the last term represents an AC 
signal /ACS whose amplitude is proportional to Eco- If the reference mirror is 
scanned axially, a depth-resolved distribution of Eco can be acquired; it provides 
an A-scan image with an axial resolution that is limited by the coherence length. 


A more rigorous theory is presented below. Any low-coherence light field 
E(t) is a superposition of monochromatic waves of various frequencies by virtue 
of the inverse Fourier transformation: 


1 r+ 0 0 
E(t) = — / E(ü>)exp(-ia>i)d(D. (9.18) 


2π J_00 
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Therefore, the electric fields of the reference and the sample beams can be 
expressed in the frequency domain as 


Ε*(ω) = £Λ 0(ω)βχρ(ϊ(2Μω)/Α - ωί)), (9.19) 


£5(ω) - £so(co) exp(i(2ks(a>)ls ~ ωί)). (9.20) 


For brevity, only a single backscatterer along each A-line is considered for E$. 
The light intensity at angular frequency ω is 


/(ω) = |Ε*(ω) + £*(ω)|2 = |£Α(ω) | 2 + |£5(ω) | 2 + 2Re {ΕΗ(ω)Ε*(ω)}, 
(9.21) 


where the cross-term provides the interference signal at ω. Superposition of 
the interference signals at all angular frequencies yields the total interference 
signal /AC: 


7AC = 2Re j ί Εκ(ω)Ε$(ω)αω\ . (9.22) 


Substituting Eqs. (9.19) and (9.20) into Eq. (9.22), we obtain 


7AC = 2Re j ί £/?0(ω)£*0(ω) exp(-iΔφ(ω)) </ω , (9.23) 


where 


Δφ(ω) = 2*5(ω)/5 ~ 2^(ω)Ικ. (9.24) 


We have 


5(ω) α ^ο(ω)£* 0 (ω) , (9.25) 


where the proportionality constant is related to the amplitude reflectivities in the 
two arms. Thus, Eq. (9.23) can be rewritten as 


1/: IAC oc Re { / S((U) exp(-i Αφ(ω)) αω (9.26) 
If (1) the spectrum of the source light is bandlimited around a center frequency 
ωο and (2) the sample and the reference arms consist of a uniform nondispersive 
material, we can approximately express the propagation constant as a first-order 
Taylor series around 000 


Μ ω ) = Μ ω ) = *(ω) = *(ωο) + *'(ωο)(ω - ω0), (9.27) 
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where k' denotes the derivative of k with respect to ω. Thus, Eq. (9.24) becomes 


Δφ = *(ω0)(2Δ/) + *'(ω0)(ω - ω0)(2Δ/), (9.28) 


which can be rewritten as 


Δφ = ωοΑτρ + (ω - ωο)Δτ^. (9.29) 


Here, Ατρ denotes the round-trip phase delay between the two arms 


fc(ü)n) 
Ατρ = - ^ ( 2 Δ Ζ ) , (9.30) 


ω0 
and Δτ^ denotes the round-trip group delay between the two arms: 


Δτ^ = *'(ω0)(2Δ/). (9.31) 


From the definition of the phase velocity vp 


ω0 
P ΗωοΥ 


Eq. (9.30) can be rewritten as 


2Δ/ 
Vp 


From the definition of the group velocity vg 


1 


(9.32) 


Δτ ρ = ,. (9.33) 


(9.34) 
* *'(ω<,) 


Eq. (9.31) can be rewritten as 


2Δ/ 
Δτ„ = . (9.35) 


υ8 


Substituting Eq. (9.29) into Eq. (9.26) yields 


/AC <X Re |exp(—/ωοΔΧρ) / S((o)exp(—ι(ω - ωο)Δτ^)ί/ω J . (9.36) 


If 5(ω) is symmetric about ωο, the integral in Eq. (9.36) is real; thus, Eq. (9.36) 
becomes 


r»00 


Γ /Ac OC cos^oAip) / S((o)exp(—/(ω - ωο)Δτ^)ί/ω. (9.37) 
«/ —oo 








TIME-DOMAIN OCT 1 8 9 


The cosine factor represents a carrier that oscillates with increasing Axp. The 
integral represents an envelope as a function of Δτ^; it determines the axial PSF 
of the interferometer. The envelope is equal to the inverse Fourier transform of 
5(ω), which is an outcome of the Wiener-Khinchin theorem. Note that taking 
the envelope of /AC is a nonlinear operation. 


If 5(ω) is Gaussian, substituting Eq. (9.13) into Eq. (9.37) yields 


/ (Δτ„) 2 \ 
/AC OC exp I - \ - \ COS(Q>0AT:P). (9.38) 


The temporal Gaussian envelope has a standard deviation στ: 


στ = —. (9.39) 


The source bandwidth is typically given by the FWHM in wavelength (Δλ). 
From ω = 2TTC/X, we have approximately 


2TCC 
σω = - y a x , (9.40) 


where σλ denotes the standard deviation of λ. For any Gaussian distribution of 
ξ with standard deviation σ^, its FWHM Δξ is given by 


Δξ = ( 2 V 2 1 n 2 W (9.41) 


Thus, we have 


Δλ 
σλ = . (9.42) 


2V21n2 
In free space, we have k = ω/c and Δτ^ = Δτ^ = 2Al/c, where c denotes both 
the phase and the group velocities; thus, Eq. (9.38) becomes 


(Δ/)2 


2σ? 
/AC OC exp ( — — r cos(2fc0A/), (9.43) 


Ji 


where ko is the propagation constant at the center wavelength λο and the standard 
deviation σ/ is given by 


oi = -^. (9.44) 


The axial resolution of OCT in air AZR is commonly defined as the FWHM of 
the Gaussian envelope in Eq. (9.43). Using Eq. (9.41), we obtain 


AZR = (2V21n2)o,. (9.45) 
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Sequentially substituting Eqs. (9.44), (9.39), (9.40), and (9.42) into Eq. (9.45), 
we obtain 


2ln2 λ^ 
Δζ* = ~f. (9.46) 


π Δλ 
Comparing Eqs. (9.15) and (9.46), we find 


Δζκ = \ . (9.47) 


Therefore, the axial resolution in air equals half of the coherence length of the 
source owing to the round-trip propagation of the reference and the sample beams. 
If other factors are negligible, the axial resolution in biological tissue is the axial 
resolution in air divided by the index of refraction of the tissue. 


The transverse resolution of OCT is commonly defined as the focal diameter 
of the incident sample beam, which is independent of the coherence length of 
the source. If the transverse distribution of the incident sample beam is Gaussian, 
the transverse resolution is given by 


** = —£. (9.48) 
π D 


Here, / denotes the focal length of the objective lens; D denotes the diameter 
of the beam on the lens or the diameter of the lens, whichever is smaller. From 
the following expression for the numerical aperture NA 


N A ^ ^ , (9.49) 


Eq. (9.48) can be rewritten as 


π NA 


The depth range within which the lateral resolution is approximately maintained 
is defined by the depth of focus Δζ/ 


πΔΓο 
Δ ζ , = — A (9.51) 


Ζλο 


which is twice the Rayleigh range of a Gaussian beam. This equation shows the 
tradeoff between the focal diameter and the focal zone of the sample beam—the 
smaller the focal diameter, the shorter the focal zone. Therefore, the use of a 
high-NA objective lens requires either transverse-priority scanning—as in en 
face (C-scan) imaging—or depth-priority scanning with dynamic focusing along 
the optical axis. 
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The preceding derivation for a single backscatterer can be extended to mul-
tiple backscatterers that are distributed along the optical axis. The time window 
for the Fourier transformation, however, is truncated according to the axial 
resolution. 


A block diagram of a complete OCT system, where the reference mirror 
is scanned axially, is shown in Figure 9.3. The detection of OCT signals by 
demodulation involves the following steps: highpass filtering to remove the DC 
background, rectification to reverse the signs of the negative AC signals, lowpass 
filtering to recover the envelope of the interference fringes, and analog-digital 
conversion to record the data. 


A schematic of a representative experimental embodiment for the demodula-
tion of the interference signals is shown in Figure 9.4. The first highpass filter 
removes the DC background and passes the AC interference signal. The active 
full-wave rectifier takes the absolute value of the AC signal. The lowpass filter 
then recovers the envelope of the rectified signal. 
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Figure 9.3. Block diagram of an OCT system, where PZT (lead zirconate titanate) 
represents a piezoelectric transducer that scans the reference mirror axially. A/D represents 
an analog-to-digital converter. 
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Figure 9.4. Schematic of a representative experimental embodiment for demodulating the 
interference signals. 


Example 9.1. Derive Eq. (9.38) from Eq. (9.36). 


From the identity 


I exp(—(ax + bx + c)) dx 
J-OQ 


R /b2-4ac\ 


we derive 


/


oo 
S(ü))exp(—/(ω — ωο)Δτ^)ί/ω 


-oo 


1 Γ™ ( ( ω - ω ο ) 2 


= ε χ ρ ί - - ( σ ω Δ τ ^ ) 2 ) . 


2ol 
— /(ω — ωη)Δτ« 1 αω (9.53) 
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From Eq. (9.36), we have 


/Ac oc exp ί ω 8 j Re {exp(-i(u0ATp)} 


( (σωΔχ^)2 \ 
=™p[——> 


(9.54) 


i COS(GL>OAX,,), 


which can be reformulated to Eq. (9.38) by using Eq. (9.39). 


Example 9.2. Assume that 5(ω) is Gaussian: (a) calculate AZR given λο = 
830 nm and Δλ = 20 nm; (b) plot AZR as a function of Δλ at commonly used 
λο = 830 nm and λο = 1300 nm. 


From Eq. (9.46), (a) AZR = 15.2 μπι, and (b) the axial resolution as a function 
of Δλ is plotted in Figure 9.5. 


Example 9.3. Assume £(ω) to be Gaussian. Simulate the demodulation in TD-
OCT in MATLAB. (a) Plot the interference signal versus A///c , where λο = 
830 nm and Δλ = 60 nm. Estimate the number of periods within the FWHM 
of the interference envelope, (b) Rectify the signal by taking the absolute value 
of the interference signal, (c) Plot the spectral amplitude of the rectified signal. 
(d) Filter the rectified signal to produce an envelope. 


We reformulate Eq. (9.43) to 


I AC = exp (-" (τΐ) cos(2A:oA/). (9.55) 
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Figure 9.5. Axial resolution at two center wavelengths as a function of bandwidth. 
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From Eq. (9.15), we have 


41n2 λ^ 


π Δλ κ 


When the interference signal is sampled in MATLAB, we must use a sufficiently 
high sampling rate to satisfy the Nyquist criterion (more than two data points per 
period). 


Since the FWHM of the interference envelope is the axial resolution AZR and 
the period of the interference fringes is λο/2, the number of periods within the 
FWHM is 


A representative MATLAB program is listed below: 


% Use SI units throughout 


lambdaO = 830E-9; % center wavelength 
dlambda = 60E-9; % bandwidth (delta lambda) 
c = 3E8; % speed of light 


lc = 4*log(2)/pi*lambda(T2/dlambda % coherence length 
Numberof periods = 0.5*lc/(lambdaO/2) % # of periods in FWHM 


figure(1); 


N = 2Λ12; % number of sampling points 
dl = lc*linspace(-2,2, N); % array for Delta_l 
kO = 2*pi/lambda0; % propagation constant 


subplot(4, 1 , 1 ) % interferogram 
lac = exp(-16*log(2)*(dl/lc).A2) .* cos(2*k0 * dl); 
plot(dl/lc, lac, 'k') 
title('(a) Interferogram') 
xlabel('\Deltal/l_c') 
ylabel('Signal') 
axis([-0.6, 0.6, -1, 1]) 


subplot(4, 1 , 2 ) % rectified interferogram 
Irec = abs(Iac); 
plot(dl/lc, Irec, 'k') 
title('(b) Rectified interferogram') 
xlabel('\Deltal/l_c') 
ylabel('Signal') 
axis([-0.6, 0.6, -1, 1]) 


subplot(4, 1 , 3 ) % spectrum of the rectified interferogram 
Fred = fft(Irec)/sqrt(N); 
% order of frequencies: 0,1...(N/2-1),-N/2,-(N/2-1)...-1 
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Frec2 = fftshift(Fred); 
% shifted order of frequencies: -N/2,-(N/2-1)...-1, 0,1...(N/2-1) 
dfreq = 1/(4*lc); % freq bin size = 1/sampling range 
freq = dfreq*(-N/2:N/2-1); % frequency array 
plot(freq*lambdaO, abs(Frec2), 'k') 
title('(c) Spectrum of the rectified interferogram') 
xlabel('Frequency (1/\lambda_0)') 
ylabel('Amplitude') 
axis([-10, 10, 0, 5]) 


subplot(4, 1 , 4 ) % envelope 
freq_cut = 1/lambda0/2; % cut-off frequency for filtering 
i_cut = round(freq_cut/dfreq); % convert freq_cut to an array index 
Ffilt = Fred; % initialize array 
Ffilt(i_cut:N-i_cut+1) = 0; % filter 
Ifilt = abs(ifft(Ffilt))*sqrt(N); % amplitude of inverse FFT 


plot(dl/lc, Ifilt/max(Ifilt), 'k') 
Iac_en = exp(-16*log(2)*(dl/lc).Λ2); % envelope 
hold on; 
plot(dl(1:N/32:N)/lc, Iac_en(1:N/32:N), 'ko') 
hold off; 
t i t l e ( ' ( d ) Envelopes') 
x l a b e l ( ' \ D e l t a l / l _ c * ) 
y l a b e l ( ' S i g n a l s ' ) 
a x i s ( [ - 0 . 6 , 0 . 6 , - 1 , 1]) 
legend( 'Demodulated ' , 'Or ig inal ' ) 


The graphical output from the MATLAB program is shown in Figure 9.6. 


9.5. FOURIER-DOMAIN RAPID-SCANNING OPTICAL DELAY LINE 


In addition to the geometric means for varying the reference path length, a 
frequency-domain approach is also available based on the following inverse 
Fourier transformation: 


I /»+00 
E(t — Axg) = — I [£(ü))exp(/ü)A-C£)]exp(—ίωί) άω. (9.57) 


^ ^ J—οο 


This equation indicates that a linear phase ramp Δτ^ω in the frequency domain 
leads to a group delay Δτ^ in the time domain. In optics, a grating is a 
temporal Fourier transformer that can transform a time-domain signal into a 
temporofrequency-domain signal, whereas a lens is a spatial Fourier transformer 
that can transform a space-domain signal into a spatiofrequency-domain signal. 
Both optical elements can serve as inverse Fourier transformers as well. 


According to this principle, a Fourier-domain rapid scanning optical delay line 
was developed using a grating-lens pair, a scanning planar mirror, and a static 
planar mirror (Figure 9.7). The grating Fourier transforms (disperses) the inci-
dent light into temporofrequency (chromatic) components propagating in various 
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Figure 9.6. Simulated demodulation of OCT signals. 


directions; each chromatic component has a spatial frequency. The component for 
the center wavelength λο is aligned with the optical axis of the lens by adjusting 
the angle of incidence. The lens focuses each chromatic component into a point on 
the scanning mirror; hence, it Fourier-transforms the light into a spatiofrequency 
spectrum along the vertical direction, which represents the temporofrequency 
spectrum of the original light. The scanning mirror reflects the focused beam 
with a phase ramp across the temporofrequency spectrum because different tem-
porofrequency components accumulate different round-trip path lengths. The lens 
and the grating then function in their inverse roles to produce a merged beam 
propagating onto the static mirror, which backreflects the merged beam. Then, the 
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Figure 9.7. Schematic representation of the Fourier-domain optical delay line. 


beam inversely propagates through the entire delay line, which can be analyzed 
according to the principle of reciprocity. The final beam propagates against the 
incident beam, but it has experienced a group delay. 


The phase shift φ̂  of each temporofrequency component can be expressed by 


Snx0Bs 8 π / θ , ( λ - λ ο ) 
Φ*(λ) = — - — + — — . 


λ pg cos θολ 
(9.58) 


Here, λ is the wavelength, XQ is the center-wavelength displacement on the mirror 
surface relative to the pivot, Θ* is the tilt angle of the scanning mirror, / is 
the focal length of the lens, pg is the pitch of the grating, and θο is the first-
order center-wavelength diffraction angle with respect to the normal vector of 
the grating. Since θο is zero here, it is excluded in the following derivations. We 
rewrite Eq. (9.58) as a function of the optical angular frequency ω 


Φ*(ω) = 
4χοθ5ω 8π/θ 5 (ω —ωο) 


c pg(x>o 
(9.59) 


where ωο represents the center angular frequency. 
The phase delay, defined as the delay at the center frequency, is given by 


Axp = 
φ5(ω0) 4x0Qs 


ω0 
(9.60) 


which can be translated into the following free-space phase-path-length 
mismatch: 


Alp = cAxp = 4χ0θ*. (9.61) 
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The group delay can be derived as follows: 


Ax« 
9φ5(ω) 


3ω 


4x0Qs 4 /λ 0 θ 5 


ω=ωο 
cPg 


— ΔτΓ 
4/λρθ, 


cPg 
(9.62) 


which can be translated into the following free-space group-path-length mis-
match: 


AL CATO = 4xo$s ~ 
4/λρθ5 


Pg 
ΔΖ« 


4/λρθ, 


Pg 
(9.63) 


The phase and the group delays are different, but both are proportional to Qs. Thus, 
rotating the mirror provides a rapid delay line, which scans several millimeters 
at a repetition rate of several kilohertz. 


9.6. FOURIER-DOMAIN OCT 


For any time-domain method, a Fourier-domain equivalent usually exists. A 
Fourier-domain OCT (FD-OCT) system based on spectral interferometry is shown 
in Figure 9.8. FD-OCT avoids varying the reference optical path length alto-
gether. The recombined beam, however, is dispersed by a spectrometer into 
spectral components. The corresponding spectral components interfere and form 
a spectral interferogram. The spectral interferogram is acquired by an optical 
detector array such as a ID photodiode array. Taking the inverse Fourier trans-
formation of the spectrum yields an A-line image in its entirety. As in TD-OCT, 


Reference mirror 


Low-coherence 
light source Lens r\| 


ΓΤρ> Sample 


Imaged reference 
mirror 


] Photodiode array 


Figure 9.8. Schematic of an FD-OCT system. 
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transverse scanning across the sample provides 2D or 3D imaging. In FD-OCT, 
all backscatterers on the A-line are measured simultaneously; in TD-OCT, only 
some of the backscatterers are measured at any one time. Consequently, FD-OCT 
has a higher frame rate and a greater sensitivity. 


Now, we extend the theory for TD-OCT to one for FD-OCT. Multiple 
backscatterers at various depths on the A-line are considered. Thus, the sample 
beam consists of multiple partial waves emanating from the backscatterers. The 
spectral components of the reference and the sample beams can be expressed as 


Εκ(ω) = Ε0(ω)Γ* exp(i(2*Α(ω)/Α - ωί)), (9.64) 


/


+oo 
r'sQs) exp(i(2ks(w)ls - ω/)) dls. (9.65) 


-00 


Here, £Ό(ω) denotes the electric field incident on the reference mirror or the 
sample surface; r# denotes the amplitude reflectivity of the reference mirror; 
r's(ls), the object function to be imaged, denotes the apparent amplitude reflec-
tivity density (reflectivity per unit depth) of the backscatterers along the A-line in 
the sample. Since light incident on a scatterer may have been attenuated, r's(ls) 
represents the apparent—rather than the true—local amplitude reflectivity den-
sity. The amplitude reflectivity density r's of a discrete reflector is related to its 
amplitude reflectivity rs through a delta function 


rs(h) = rs(lso)Ws-lso), (9.66) 


where /so denotes the location of the reflector. If rfs(l$) is integrated around /so, 
then rs(/so) is recovered. 


If dispersion is neglected, we have 


^L = ^=k=™, (9.67) 
nR ns c 


where HR denotes the refractive index of the medium in the reference arm and ns 
denotes the average refractive index of the sample. For brevity, HR is set to unity 
here. Apart from a constant scaling factor, the spectral interferogram is given by 


I{k) = \ER(kc) + Es(kc)\
2. (9.68) 


Substituting Eqs. (9.64) and (9.65) into Eq. (9.68), we obtain 


/(*) = S(k)r\ 


/


+oo 
r's(ls)cos(2k(nsls-lR))dls 


-00 (9.69) 
+oo 


+ S(k) / r'sds) exp(i2k(nsls)) dls 
\J~oo 
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where the source power spectral density distribution S(k) = \Eo(kc)\2. The first 
term on the right-hand side, referred to as the reference-intensity term, can 
be measured by blocking the sample arm—setting r's(ls) to zero. The second 
term, referred to as the cross-interference term, encodes rfs(ls) in the integral 
with a cosine function—that has frequency 2(n$ls — h)—of the wavenum-
ber, which is k/(2n) = l/λ. The third term, referred to as the self-interference 
(sample-intensity) term, originates from power spectrum \Es(kc)\2 and contains 
the interference among the partial waves from the various sample depths. 


The cross-interference term can be decoded to extract r's(ls) by taking the 
inverse Fourier transformation. The deeper the origin of the backscattered partial 
wave, the higher the encoding frequency is. The shorter the reference arm, the 
higher the frequency as well. The Nyquist criterion requires that the frequencies of 
the spectral interferogram be less than half the spatial sampling frequency of the 
detector array. Thus, it is advantageous to minimize the frequency of the encoding 
cosine function. However, if the position of the "imaged reference mirror" is 
shifted into the sample to minimize the frequency, the two sides around this 
position will share encoding frequencies, which leads to ambiguity. Therefore, 
the "imaged reference mirror" must be placed outside the sample unless multiple 
interferograms with various phase differences between the two arms are measured 
to resolve the encoding ambiguity. 


For brevity in notation, we set IR to zero and shift the reference point for Is to 
the "imaged reference mirror surface" in the sample arm. If the reference point 
is outside the sample, a new even function r's(ls) can be crafted as follows so 
that r's(-ls) = rfs(ls): 


\r'sVs) if / s > 0 , 
P'sds) = , (9.70) 


[r's(-ls) if ls<0. 


With this new function, Eq. (9.69) can be rewritten as 


/(*) - S(k) \r2R+rR ί r's(ls)cxp(i2knsls)dls 


9i (9.71) 
11 r+o° I 1 


+ T / r's(ls)txp(i2knsls)dls\ | . 
4 IJ-oo I I 


If we change the variable of the integrals by Is = l's/(2ns), Eq. (9.71) can be 
rewritten as 


m-wLj + ̂ ,{fi(A))(t,+ ' |sjfi(i))««f}, 
(9.72) 
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where the following Fourier transformation is employed: 


/


+oo 
f(l's)exp(ikl's)dl's. (9.73) 


-00 


Using the inverse Fourier transformation 


f(l's) = 3-l{F(k)}(lfs) = — / F(k)exp(-ikl's)dk, (9.74) 


we rewrite Eq. (9.72) as 


$-[{I(k)Ws) = $-l{S(k)}(l's) 


\2ns \2ns) 2ns
S\2ns) \6n


2
s l 5 V 2 n s / | 


(9.75) 
Here, * denotes convolution, and 6{} denotes the autocorrelation-function oper-
ator: 


/


+00 


f(lsOf«si+ls)<U's\· (9·76) 
-oo 


In this derivation, the following property of the Dirac delta function is used: 


δ«>=^5(έ) <9·77 ) 
The following Wiener-Khinchin theorem is used as well: 


e ( M ) } = 7Γ / \F(k)\2exp(-ikl's)dk. (9.78) 


With a change of variable by l's = 2^5/5, Eq. (9.75) is converted to 


3-l{I(k)}(2nsls) 


= $-{{S(k)}(2nsls) * ^-Ws) + ^-?sOs) + 7^-2 < 2 { W ) · (9.79) [2ns 2ns I6nzs J 


The second term in the braces is the A-line image r's(ls). The first and last terms, 
however, represent spurious images. The first term is nonzero only at Is = 0, 
which is outside the sample; thus, it can be easily removed. Unfortunately, the 
last term can mingle with the second term; thus, it can be difficult to eliminate. 
In addition, the convolution with 3~l{S(k)}(2nsls) blurs the image because S(k) 
functions as a filter. 
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To recover the true image, one may take another interferogram with kl's shifted 
by π, which causes a sign change in Eq. (9.72): 


(9.80) 
Taking the difference between Eqs. (9.72) and (9.80) yields 


Δ/(*) = S(k)^9 lr's (l^-\\(k), (9.81) 


where AI(k) = I(k) — h(k). The A-line image can then be recovered by 


*(£)- "Vl^K'i). (9-82) rR [ S(k) 
Changing the variable by l's = 2tish leads to 


^ ( / S ) = ^ f - i { ^ > } ( 2 n 5 / s ) . (9.83) 


This equation shows that the subtracted-and-deconvolved spectral interferogram 
in the braces recovers an ideal image; the deconvolution involves simply divid-
ing AI(k) by S(k). Although deconvolution can sharpen the image, one should 
exercise caution in the presence of noise. 


An alternative to recovering the true image is to (1) measure the first term 
(reference-intensity term) in Eq. (9.69) by blocking the sample arm (rfs — 0), 
(2) measure the third term (self-interference term) in Eq. (9.69) by blocking the 
reference arm (r/? = 0), and (3) subtract the measured first and third terms from 
the right-hand side of Eq. (9.69). 


In practice, a spectrometer produces a spectrum with uniform wavelength 
spacing. This wavelength spacing is usually converted to uniform propagation-
constant spacing by interpolation as required by the fast Fourier transformation 
(FFT) algorithm. 


By using a single-element photodetector to measure the interference signal 
while a laser serially sweeps the wavelength, FD-OCT can also construct a 
spectral interferogram one wavelength at a time. A hardware "k clock" can be 
installed in the laser to achieve uniform propagation-constant spacing. Once a 
spectral interferogram is obtained, the theoretical analysis presented above is 
equally applicable. 


Example 9.4. Simulate FD-OCT numerically using MATLAB. Assume a Gaus-
sian source spectral density distribution S(k). 
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A representative M A T L A B program is shown below: 


% Use SI units throughout 


lambdaO = 830E-9; % center wavelength of source 
dlambda = 20E-9; % FWHM wavelength bandwidth of source 
ns=1.38; % refractive index of sample 
ls1 = 100E-6; % location of backscatterer 1 
ls2 = 150E-6; % location of backscatterer 2 
rs1 = 0.5; % reflectivity of backscatterer 1 
rs2 = 0.25; % reflectivity of backscatterer 2 


k0=2*pi/lambda0; % center propagation constant 
delta_k=2*pi*dlambda/lambda0A2; % FWHM bandwidth of k 
sigma_k = delta_k/sqrt(2*log(2)); % standard deviation of k 


N=2 10; % number of sampling points 
nsigma = 5; % number of standard deviations to plot on each side of kO 


subplot(4,1,1); % Generate the interferogram 
k = kO + sigma_k*linspace(-nsigma,nsigma, N); % array for k 
S_k = exp(-(1/2)*(k-k0). "2/sigmaJT2); % Gaussian source PSD 
E_s1 = rs1*exp(i*2*k*ns*ls1); % sample electric field from scatter 1 
E_s2 = rs2*exp(i*2*k*ns*ls2); % sample electric field from scatter 2 
I_k1 = S_k .* abs(1 + E_s1 + E_s2)."2; % interferogram (r_R = 1) 
plot(k/k0,I_k1/max(I_k1), 'k'); 
title('Interferogram'); 
xlabel('Propagation constant k/k_0'); 
ylabel('Normalized intensity'); 
axis([0.9 1.1 0 1]); 


subplot(4,1,2); % Inverse Fourier transform (IFT) of the interferogram 
sped =abs(fftshift(ifft(I_k1)))/sqrt(N); 
dls_prime = 1/(2*nsigma*sigma_k/(2*pi)); % bin = 1/sampling range 
ls_prime = dls_prime*(-N/2:N/2-1); % frequency array 
plot(ls_prime/(2*ns),spec1/max(spec1), 'k'); % scale the frequency 
title('IFT of the interferogram1); 
xlabel('Depth Is (m)'); 
ylabel('Relative reflectivity'); 
axis([-2*ls2 2*ls2 0 1]); 


subplot(4,1,3); % IFT of the deconvolved interferogram 
sped_norm =abs(f f tshi f t ( i f f t ( I_k1. /S_k)) )/sqrt(N); 
dls_prime = 1/(2*nsigma*sigma_k/(2*pi)); % bin size = 1/sampling range 
ls_prime = dls_prime*(-N/2:N/2-1); % frequency array 
plot(ls_prime/(2*ns),spec1_norm/max(spec1_norm), 'k'); 
title('IFT of the deconvolved interferogram'); 
xlabel('Depth Is (m)'); 
ylabel('Relative reflectivity'); 
axis([-2*ls2 2*ls2 0 1]); 


subplot(4,1,4); % IFT of the deconvolved differential interferogram 
I_k2 = S_k .* abs(-1 + E_s1 + E_s2). 2; % interferogram 
delta_I_k = I_k1 - I_k2; 
spec2=abs(fftshift(ifft(delta_I_k./S_k)))/sqrt(N); 
plot(ls_prime/(2*ns),spec2/max(spec2), 'k'); 
title('IFT of the deconvolved differential interferogram'); 
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x l a b e l ( " D e p t h I s ( m ) ' ) ; 
y l a b e l ( ' R e l a t i v e r e f l e c t i v i t y ' ) ; 
a x i s ( [ - 2 * l s 2 2 * l s 2 0 1 ] ) ; 


The graphical output of this program is shown in Figure 9.9. The first panel 
shows the simulated spectral interferogram I(k). The second panel shows the 
inverse Fourier transform of I(k). Remember to change the independent variable 
to 2/25/5 after taking the inverse Fourier transformation. The third panel shows 
the inverse Fourier transform of I(k)/S(k). The fourth panel shows the inverse 
Fourier transform of AI(k)/S(k) as shown in Eq. (9.82). The locations and 


Interferogram 


■? 1.5 


0.95 1 1.05 
Propagation constant k/k0 


IFT of the interferogram 


Depth ls (m) 


IFT of the deconvolved interferogram 


Depth ls (m) 


IFT of the deconvolved differential interferogram 


1.1 


2 3 


x l O - 4 


2 3 


xlO"4 


2 3 
Depth/,(m) χ 1 0 _ 4 


Figure 9.9. Simulated signal processing in FD-OCT with two backscatterers. 
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strengths of the backscatterers are recovered in all the inverse Fourier transforms. 
In the second panel, however, a DC component and a spurious backscatter at 
50 μηι appear; the latter is due to interference between the partial waves from the 
two backscatterers. The third panel shows that deconvolution sharpens the peaks. 
The fourth panel shows that the inverse Fourier transformation of the subtracted-
and-deconvolved spectral interferogram yields a much cleaner ID image. 


If the second backscatterer is obliterated by setting rs2 to zero, we obtain 
the results shown in Figure 9.10 instead. The DC component still appears in the 
inverse Fourier transform of I(k). However, no self-interference signal of the 
sample beam appears because only a single backscatterer exists. 
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Figure 9.10. Simulated signal processing in FD-OCT with a single backscatterer. 
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9.7. DOPPLER OCT 


Like ultrasonography, OCT can image blood flow on the basis of the Doppler 
effect. Doppler OCT has measured blood flow at a flow rate on the order of 10 
pL/s in ΙΟ-μηι-diameter vessels positioned up to 1 mm beneath the tissue surface. 
The basic principle of Doppler OCT is illustrated by the following analysis 
in a nondispersive medium. A moving reference mirror varies the arm-length 
difference by 


Δ/(ί) = Δ/ο - vRt, (9.84) 


where Δ/ο denotes the arm-length difference at time t = 0 and vR denotes the 
velocity of the reference mirror. The phase difference between the two arms at 
the center wavelength λο in Eq. (9.8) is modified to 


4π 
Δφ(ί) = 2&0(Δ/ο ~ vRt) = — (Δ/ο - vRt). 


This time-varying phase difference leads to a Doppler shift fR given by 


(9.85) 


Λ(λ0) = 
1 


2π 


έ/Δφ(ί) 
dt 


2vR 
λ0 ' 


(9.86) 


The Doppler shift fR is the beat frequency, also referred to as the carrier fre-
quency, of the interference fringes. The other spectral components experience 
similar Doppler shifts given by 


Λ(λ) = 
2vR (9.87) 


which can be used to compute the bandwidth of the interference signal as 


Δ/* = 
2vR 


Δλ. (9.88) 


In the presence of flow, an additional Doppler shift leads to the following carrier 
frequency: 


2π 


ύ?Δφ(ί) 
dt λο 


(vscosQs - vR) = ΙΛ(λο)-Λ(λο)|. (9.89) 
Here, vs denotes the velocity of the scatterers, Θ5 denotes the angle between the 
flow direction and the light-incidence direction, and fs denotes the Doppler shift 
due to the backscatterers: 


Λ(λ0) = 
2vs cos ds 


(9.90) 
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If fs < /R, we have 


/JW(XO) = Λ(λο) ~ Λ(λ 0 ) (9.91) 


or 
Λ(λο) = Λ(λο) - /ÄS(XO). (9.92) 


Once the original (predemodulated) interference fringes are acquired, taking 
the Fourier transformation of the fringes yields fa, which further yields f$ 
through Eq. (9.92), since //? is known. If θ$ is known, vs can be computed from 
Eq. (9.90). Because the Fourier transformation is usually performed in sliding 
short-time windows, a tradeoff between axial and velocity resolutions exists in 
the flow estimation. 


9.8. GROUP VELOCITY DISPERSION 


Group velocity dispersion (GVD), which is neglected in previous sections, deteri-
orates the axial resolution of OCT. GVD causes polychromatic light to experience 
nonlinearly frequency-dependent phase delays. As a result, GVD broadens ultra-
short laser light. More relevantly, any GVD mismatch between the reference and 
the sample arms of an OCT system broadens the axial PSF. 


To analyze the effect of GVD on OCT signals, we first expand the propaga-
tion constant into a Taylor series to the second order around the center angular 
frequency coo: 


*(ω) = *(ωο) + *'(ωο)(ω - ω0) + -*"(ωο)(ω - ω0)2. (9.93) 


From the definitions of the phase and the group velocities [Eqs. (9.32) and (9.34)], 
Eq. (9.93) is reformulated to 


*(ω) = — — ω0 + — — (ω - ω0) + -*"(ωο)(ω - ω0)2. (9.94) 
Vp(co0) ν8(ω0) 2 


The frequency-dependent phase mismatch between the reference and the sample 
beams is 


Δφ(ω) = 2ks(<u)ls - 2Μω)//?. (9.95) 


If the propagation constants in the reference and the sample paths are equal except 
for a GVD mismatch in arm length /</, substitution of Eq. (9.94) into Eq. (9.95) 
yields 


Δφ(ω) = — — ωο(2ΔΖ) + — — (ω - ω0)(2Δ/) 
νρ(ω0) ν8(ω0) 


+ ^ΔΑ:,,(ωο)(ω - ω0)2(2/^), (9.96) 
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where Δ/ = Is — IR and 


Δ£"(ω0) = *5;(ω0) - *£(ω0). 


Substituting Eqs. (9.33) and (9.35) into Eq. (9.96), we obtain 


Δφ(ω) = ω0Δτ^ + (ω - ω0)Δτ^ + -Δ*"(ω0)(ω - ω0)2(21α). 


Substitution of Eq. (9.98) into Eq. (9.26) leads to 


IAC oc Re | βχρ(-ιωοΔχρ) / 5(ω) 


x exp I —ι (ω - ω0)Δΐο + —— (ω - ω0)
2(2/^) 1) άω\ 


(9.97) 


(9.98) 


(9.99) 


If S(co) is Gaussian [Eq. (9.13)], Eq. (9.99) describes an interference signal mod-
ulated by a complex Gaussian envelope: 


/ A c a R e {rä) C T p (4rW y βχρ(-ι'ωοΔτρ) (9.100) 


Here, Γ(2/^) represents the standard deviation of the axial PSF: 


r2(2ld) = o
2
T+ix


2
d, (9.101) 


where the GVD time constant is defined by 


xd = y/Ak"(a>o)(2ld). (9.102) 


From Eq. (9.101), we have 


* /- "<* 
r2(2id) σ4 + x4 σ4 + τ; 


(9.103) 


Substituting Eq. (9.103) into Eq. (9.100), we discover that the real and imaginary 
components on the right-hand side of Eq. (9.103) cause broadening and chirp-
ing, respectively, in the interference signal. The original standard deviation στ is 
broadened to 


*<™<FM- (9.104) 
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Thus, the envelope broadens with increasing τ^ and by a factor of y/l when 
\d =z οτ. The interference signal chirps with increasing Δ/, as can be seen by 
differentiating the total phase ΦΑΟ in the two exponents in Eq. (9.100): 


dd>Ac 4τ5 /o 
- ^ = 2*(ωο) - -r^-jk 2(ω0)Δ/. (9.105) 


Here, Id is assumed to be independent of Δ/. If Δ/ is uniformly scanned, substi-
tuting Eq. (9.84) into Eq. (9.105) leads to 


d<\>AC „ f / x 4x2 d //2 2*(ωο)ν* - -rJLÄk Z(O>O)VR(A10 - vRt). (9.106) 
dt σ4τ + τ« 


Thus, the angular frequency of the interference signal varies with time, which is 
chirping. 


Because the amplitude of 1/ Γ(2/^) decreases the peak magnitude of the inter-
ference envelope, the system sensitivity —defined as the ratio of the incident light 
power to the weakest measurable sample light power, usually in dB—degrades. 
The degradation in the photocurrent amplitude is given by the following multi-
plicative factor: 


1 '"" (9.107) 
\Γ(21ά)\ [l + i W a J 4 ] 1 ^ 


which indicates an inverse proportionality to Λ/Ο^. 
In practice, the effect of GVD can be reduced by minimizing /</. For example, 


the optical fiber lengths in the reference and the sample arms should be matched 
as closely as possible. In retinal imaging, the clear path in the eye can be matched 
with one in an optically similar medium—such as water—in the reference arm. 


Example 9.5. Estimate the GVD mismatch length Id of a fused-silica fiber rel-
ative to air beyond which envelope broadening becomes significant. An SLD is 
used as the light source, where center wavelength λο = 800 nm and bandwidth 
Δλ = 20 nm. 


From Eqs. (9.39), (9.40), and (9.42), we obtain 


V21n2 λ2 
στ = ^ - - r f = 2 0 f s . (9.108) 


2nc Δλ 


In a fused-silica fiber, k" — 350 fs2/ cm at 800-nm wavelength. Therefore, Ak" = 
350 fs2/ cm relative to air. When xd = στ, envelope broadening is considered 
significant. From Eq. (9.102), we obtain 


Id = ^ = 0 . 5 1 cm. (9.109) 
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Example 9.6. Derive Eq. (9.105). 


The total phase in Eq. (9.100) is 


1 τ2, ? 


Substituting Eqs. (9.33) and (9.35) into Eq. (9.110), we obtain 


1 τ2 
ΦΑΓ(Δ/) = 2*(ω0)Δ/ - - —^ Τ [Α: , (ω 0 )2Δ/] 2 , 


which leads to Eq. (9.105) by differentiation with respect to Δ/. 


(9.110) 


(9.111) 


9.9. MONTE CARLO MODELING OF OCT 


Although singly backscattered photons are more desirable in OCT, multiple-
scattered photons can contribute to OCT signals as well. Here, both single-
and multiple-scattered contributions are simulated using the Monte Carlo 
method. Since only ensemble-averaged quantities are modeled, certain features 
of OCT—such as speckles—are excluded. 


OCT signals are divided into two classes as shown in Figure 9.11. Both classes 
are based on sample light that is coherent with the reference light. Class I orig-
inates from backscattering in a target layer whose central sample arm length zc 
and thickness Az are determined as follows: 


nszc = nRlR, 


lr 
Az = 


2ns 


(9.112) 


(9.113) 


Class I 


Figure 9.11. Composition of OCT signals. 








MONTE CARLO MODELING OF OCT 211 


Here, ns and HR denote the refractive indices in the sample and the reference 
arms, respectively. Class II originates from multiple scattering above the target 
layer. Class I provides useful imaging information about the target layer, whereas 
class II does not. Since both classes mingle in the interference signal, class II 
deteriorates both the contrast and the resolution of OCT. 


We assume 


/ A C O C T ^ , (9.114) 


where 


/s = /i + /2. (9.Π5) 


Here, I\ and h denote the ensemble-averaged intensity of class I light and class 
II light, respectively. 


Angle-biased sampling, a variance reduction technique, is employed to accel-
erate the computation of backscattering. Standard sampling of the scattering 
angle is inefficient for backscattering because scattering in biological tissue is 
highly forward-peaked. The angle-biased sampling technique samples an arti-
ficially biased scattering phase function in lieu of the true function and then 
compensates for the bias with a photon-weight correction given by 


„ Ρ(θ,φ) 
w = w. (9.116) 


Ρ*(θ,φ) 


Here, Θ (0 < θ < π) and φ (0 < φ < 2π) denote the photon deflection polar 
and azimuthal angles, respectively; P and P* denote the true and biased phase 
functions, respectively; w and w* denote the photon weights associated with P 
and P*, respectively. 


The Henyey-Greenstein phase function /?(cos0) (see Chapter 3) is adopted 
here for Ρ(θ, φ): 


Pioose) = * " * - 3 ^ , (9.117) 
2(1 + gz — 2gcos0)3/2 


where g denotes the scattering anisotropy. Further, p(— cosO) is used for 
Ρ*(θ, φ). Thus, once cos9 is sampled with /?(cos0), — cos0 is actually used to 
propagate the photon packet. From Eqs. (9.116) and (9.117), the photon-weight 
correction is given by 


i + ^ c o s e y ' V 
\\+g2-2gCOsBJ < 


In the simulation, a photon packet is launched from a pencil beam and then 
tracked by the conventional Monte Carlo method (see Chapter 3). If the photon 
packet reaches a scattering site in the target layer, it is first labeled and then 
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scattered with the aforementioned angle-biased sampling. The photon packet is 
terminated whenever n$ls > nRlR + (/r/2). When reaching the detector, pho-
ton packets with nsh < KRIR - (lc/2) are discarded; then, the labeled ones are 
recorded into class I and the unlabeled ones into class II. 


Parameters used in this simulation include lc — 15 μηι, nR = ns = 1.5, 
absorption coefficient \ia — 1.5 cm"1, scattering coefficient \ks = 60 cm- 1 , and 
g = 0.9. The detector has a radius of 10 μηι and an acceptance angle of 5°. 
Figure 9.12 shows that class II is smaller than class I at small probing depths but 
becomes greater than class I at probing depths beyond ^500 μπι. Figure 9.13 
shows that the average number of scattering events in class II is greater than in 
class I and increases faster with probing depth. Since scattering randomizes polar-
ization, class II can be rejected using cross-polarization detection by as much as 
50%. If the class I light is completely polarized while the class II light is com-
pletely unpolarized, the intersection can be extended from ^500 to ~700 μπτ as 
indicated in Figure 9.12. 


Furthermore, Figure 9.12 shows that class I signal decays at a rate related 
to the extinction coefficient μ,. The detected signal intensity Is depends on 
three factors sequentially: (1) the number of photons reaching the target layer, 
(2) the proportion that is subsequently backscattered, and (3) the proportion that 
ultimately reaches the detector. Singly backscattered light from different depths 
has the same angular distribution because the scatterers are assumed to have the 
same phase function. However, singly backscattered light from a greater depth is 
broadened over a larger area on the tissue surface and hence is not captured as 
much by the detector. Consequently, the singly backscattered portion in class I 
has a decay rate greater than μ,. When the multiple-scattered portion is included, 
class I ends up with a decay rate that is only slightly different from μ,. 
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Figure 9.12. Class I and class II signals versus probing depth (zr) . 
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Figure 9.13. Average numbers of scattering events in class I and class II signals versus 
probing depth (zc). 


As shown in Figure 9.13, class I also contains contributions from multiple-
scattered light; the average number of scattering events increases linearly with the 
probing depth and reaches ^ 2 at 200 μπι. In principle, only singly backscattered 
photons can provide exact localized imaging information because they experience 
no interactions outside the target layer. Conversely, multiple-scattered photons 
cannot directly furnish localized imaging information because they experience 
interactions at multiple sites. 


PROBLEMS 


9.1 Show Eq. (9.15) based on the definition of coherence length. Further, 
prove lc = 81n2(c/Aoo). 


9.2 If direct electronic detection were used to provide a 10-μιτι axial resolution, 
what would be the required temporal resolution? 


9.3 Derive Eq. (9.6). Plot the interference signal versus the arm-length mis-
match to show that the AC interference signal rides on a DC background. 
Under what condition does the contrast (AC amplitude/DC amplitude) 
reach the maximum? What is the maximum value? 


9.4 Prove Eq. (9.41). 


9.5 Verify Eq. (9.14). 


9.6 (a) Given that if the scatterers are static and the reference mirror is trans-
lated at a speed of 40 mm/s toward the incident beam, calculate the beat 
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frequency in OCT. The center wavelength of the light source is 830 nm. 
(b) Assuming that if the scatterers flow toward the incident beam at a 
speed of 0.5 mm/s with an angle of 75° with respect to the backscattered 
light, calculate the new beat frequency. 


9.7 Implement the simulated TD-OCT shown in Example 9.3 using your own 
code (a) for Δλ — 100, 50, and 25 nm sequentially and (b) for double 
backscatterers that are separated by 4/c, 2/c, /c, and lc/2 sequentially. Add 
a DC background to the interference signal and assume a 5% modulation 
depth (AC/DC). 


9.8 Show analytically that the demodulation demonstrated in Example 9.3 
recovers the envelope apart from a constant scaling factor. 


9.9 Prove Eq. (9.58) and the subsequent equations in Section 9.5. 


9.10 Show that the Fourier-domain rapid scanning optical delay line leads to 
the following center frequency and bandwidth in the OCT interference 
signals: 


_ 4x0des(t) A A _ 2Δλ (^ 2 A o \ dQs(t) 
/o = T 7— and Δ / = (*-Ψ) λο dt )ij \ pg ) dt 


9.11 Extend Example 9.3 to Doppler OCT. Assume that the reference mirror 
is translated toward the incident beam at a speed of 40 mm/s and the 
scatterers flow toward the incident beam at a speed of 0.5 mm/s with an 
angle of 75° with respect to the backscattered light. In addition, take the 
Fourier transformation of the interference fringes before rectification and 
recover the flow velocity of the scatterers when the flow direction and the 
reference mirror velocity are given. 


9.12 Extend the theory in Section 9.4 to one for Doppler OCT. 


9.13 Derive Eq. (9.100). 


9.14 Derive Eq. (9.103). 


9.15 Use MATLAB to demonstrate numerically the broadening and chirping 
from GVD. Assume a set of realistic parameters. 


9.16 Use MATLAB to demonstrate the concepts of phase and group velocities 
using (a) two copropagating plane waves that have the same magnitude 
but a small frequency difference and (b) three copropagating plane waves 
that have the same magnitude but a small frequency difference. Generalize 
the expressions for the phase and the group velocities. 


9.17 Implement a Monte Carlo simulation of OCT to duplicate Figures 9.12 
and 9.13. 


9.18 Replace the oc sign with an = sign in Eq. (9.25) by adding appropriate 
parameters. 
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9.19 Relate the interference signal /AC in OCT to the autocorrelation function 
G i of the electric field. 


9.20 Derive the transverse resolution in OCT on the basis of the confocal mech-
anism. 
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CHAPTER 10 


Mueller Optical Coherence 
Tomography 


10.1. INTRODUCTION 


Mueller optical coherence tomography (Mueller OCT) was conceived to image 
the polarization properties of biological tissue on the basis of polarization-
sensitive detection. Although OCT is analogous to ultrasonography in general, 
polarization exists in transverse optical waves but not in longitudinal ultrasonic 
waves. As a result, Mueller OCT has no counterpart in ultrasonography. 


10.2. MUELLER CALCULUS VERSUS JONES CALCULUS 


The term Mueller calculus refers to the use of the Stokes vector and the Mueller 
matrix in polarimetry, whereas Jones calculus refers to the use of the Jones 
vector and matrix. The Stokes vector can quantify the polarization state of any 
light, whereas the Jones vector can quantify the polarization state of completely 
polarized light only. The effect of a medium on the polarization state of light can 
be represented by a Mueller or a Jones matrix; the former operates on a Stokes 
vector, and the latter operates on a Jones vector. If the medium does not degrade 
the degree of polarization, the Mueller and the Jones matrices are equivalent, and 
both are applicable; otherwise, only the Mueller matrix is applicable. Because 
coherent detection in polarization-sensitive OCT always reports a unity degree of 
polarization, both matrices apply to OCT. The Mueller matrix, however, clearly 
separates the two major contrast mechanisms in OCT—backscattering (or back-
reflection) and polarization—and hence is preferable for presenting final images. 
In this book, Mueller OCT refers to polarization-sensitive OCT based on either 
the Mueller matrix or the Jones matrix. 


10.3. POLARIZATION STATE 


Polarization of light refers to the orientation of the electric-field vector E(z, t) 
on the transverse xy plane, where the z axis is aligned with the wave propagation 
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direction and t is time. The Cartesian coordinates (JC, y, z) are right-handed, and 
the x axis is typically horizontal. An electric field vector of monochromatic light 
can be decomposed into two orthogonal components along the x and y axes: 


E(z,t) = Ex(z,t) + Ey(z,t). (10.1) 


The two components can be expressed as 


Ex(z, t) = exEXQCO&{kz - ωί + φΛ), (10.2) 


Ey(z, t) = eyEyQCOs(kz — ωί + φν). (10.3) 


Here, ex and ey denote unit vectors along the x and y axes, respectively; EXQ and 
φχ denote the amplitude and the phase, respectively, of the horizontal component; 
Eyo and φν denote the amplitude and the phase, respectively, of the vertical 
component; ω denotes the angular frequency; and t denotes time. The relative 
phase between the two components is 


Δφ = φ ν - φ χ . (10.4) 


We rewrite Eq. (10.3) as 


Ey(z, t) = eyEy0cos(kz + φ* - (ωί - Δφ)). (10.5) 


For —π < Δφ < 0, Ey(z, t) has a phase lead over Ex(z, t) at a given z\ for 
0 < Δφ < π, Ey(z, t) has a phase lag behind Ex(z, t). 


In general, the tip of the electric field vector at a given z rotates with time 
along an ellipse as shown in Figure 10.1a; hence, the light is said to be elliptically 
polarized. The major axis of the ellipse makes an orientation angle θ() with respect 
to the JC axis 


a ] f 2Ex0Ey0cos(A(\>) 
% = - arctan2 ' __ 2 , (10.6) 


where 0 < θ0 < π. Here, arctan2 denotes four-quadrant inverse tangent, yielding 
an angle dependent on the quadrant of (E^0 — E^Qy cos Δφ). 


An ellipticity angle θ̂  is defined to quantify the shape and the handedness of 
the ellipse: 


b 
de = :parctan-. (10.7) 


a 


Here, a and b denote the semimajor and semiminor axes, respectively, of the 
ellipse; the negative and positive signs represent left- and right-handed polariza-
tions, respectively (to be discussed below). Since a > b, —π/4 < θ̂  < π/4. It 
can be shown that 


1 . 2Ex0Ex0sm(A<b) 
Qe = - - arcsin ^ . (10.8) 2 F 2 4- F2 
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Figure 10.1. (a) Elliptical polarization, where the endpoint of the electric field vector 
traces an ellipse; (b) — π/4 linear polarization; (c) right circular polarization. 


An auxiliary angle is introduced as 


θ^ = arctan 
ijcO 


(10.9) 


where 0 < θ^ < π/2 . From Eq. (10.9), Eqs. (10.6) and (10.8) can be reformu-
lated to 


30 = -arctan(tan(29</)cos(A(|))), 


3e = — arcsin(sin(26<i) sin(A(|>)). 


(10.10) 


(10.11) 


The ellipse can reduce to a line. For instance, if Eyo = 0, the ellipse reduces 
to a horizontal line; hence, the light is said to be horizontally linearly polarized 
or simply horizontally polarized. Likewise, if Ex$ = 0, the light is said to be 
vertically linearly polarized. If EXQ = Eyo and Δφ = 0, the light is + π / 4 linearly 
polarized. If EXQ = £vo and Δφ = π, the light is —π/4 linearly polarized as 
shown in Figure 10.1b. 
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If Exo = Eyo and Δφ = ± π / 2 , the ellipse reduces to a circle; hence, the light 
is said to be circularly polarized. When Δφ = —π/2, Eqs. (10.2) and (10.3) 
become 


Ex(z, t) = exEx0cos(kz + φχ - ω/), 


Ey(z, t) = eyEyo s'm(kz + φ* — ωί). 


(10.12) 


(10.13) 


Angle — ωί enlarges clockwise with time according to the definition of planar 
angle. Therefore, the electric field vector at a given z rotates clockwise when an 
observer looks back at the source (Figure 10.1c). In this case, the light is said 
to be right circularly polarized because a snapshot of the electric vectors along 
the z axis resembles a right-handed screw. On the contrary, when Δφ = π/2, 
Eqs. (10.2) and (10.3) become 


Ex(z, t) = exEx0cos((ut - kzo - Φ*), 


Ey(z, t) = eyEy0 sin(ooi - kzo - φ*). 


(10.14) 


(10.15) 


Angle +ωί widens counterclockwise with time; hence, the light is said to be left 
circularly polarized. For any elliptically polarized beam, when — π < Δφ < 0, 
the polarization is said to be right-handed; when 0 < Δφ < π, the polarization 
is said to be left-handed. 


In an alternative convention, cos(o)i — kz + φ*) and COS(GO/ — kz -f φγ) rep-
resent the x and y components of the electric field, respectively; in this case, 
the interpretation of Δφ must be reversed. Although either convention can be 
adopted as long as consistency is maintained, the coexistence of the two conven-
tions has been a source of confusion in the literature. Here, we use the convention 
in Eqs. (10.2) and (10.3). 


10.4. STOKES VECTOR 


The polarization state of any light can be quantified by the Stokes vector, which 
can be constructed from six intensities measured with different polarization ana-
lyzers in front of the detector. Light intensities measured with a horizontal linear 
analyzer, a vertical linear analyzer, a + π / 4 linear analyzer, a — π/4 linear 
analyzer, a right circular analyzer, and a left circular analyzer are denoted by 
///, Ιγ, /+π/4, / - π /4 , //?, and Ιι, respectively. The Stokes vector S is defined by 


S = 


(So\ 
Si 


s2 
(10.16) 


1R ~ h j 


All four Stokes parameters are real numbers; parameter So represents the original 
intensity of the light, and each of the other three parameters (Si, S2, and S3) 
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represents the difference between the two intensities that are measured using 
analyzers with orthogonal polarization states. 


The four Stokes parameters are constrained by 


O Q ^ Öl " f ^ 2 ' ^λ ' (10.17) 


the equality sign applies for completely polarized light and the inequality sign, 
for partially polarized light; for completely unpolarized light, S\ = 5*2 = S3 = 0. 
A normalized form of the Stokes vector is 


\ So So So/ 
(10.18) 


where the superscript T stands for transposition. 
From the Stokes vector, the degree of polarization (DOP), the degree of linear 


polarization (DOLP), and the degree of circular polarization (DOCP) can be 
defined as follows: 


DOP = 


DOLP = 


DOCP = 


Jsj + S22 + S 


So ■ 


JsJ+sj 
So 


(10.19) 


So ' 


If the DOP of light remains unity after interaction along a path with a medium, 
the medium is said to be nondepolarizing. Otherwise, the medium is said to be 
depolarizing. 


Because any light can be decomposed into two orthogonally polarized waves, 
the law of energy conservation requires 


IH + Iv = Ι+τι/4 + l-n/4 = 1R + IL = SO- (10.20) 


As a result, we can express S with four independent measurements, such as 
/ w , / v , / + π /4 , and IR: 


S = 


/ IH + IV \ 
IH-IV 


2 / + π / 4 - UH + h) 
V 2IR-(I„ + IV) ) 


(10.21) 
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For monochromatic light (completely polarized), we have 


/ £?n + El, \ 


s = 2Ex0Ey0cos(A(\)) 
\ -2Ex0Ey0sm(A(\>) / 


(10.22) 


which can be related to the polarization ellipse by 


S = S0 


I l \ 
cos(26e)cos(20o) 
cos(20^) sin(20„) 


sin(20^) 


(10.23) 


If a Stokes vector is represented geometrically by vector (S\, 5*2, S3) in Cartesian 
coordinates, the endpoints of the geometric vectors for all possible polarization 
states of constant So construct a sphere of radius So, which is referred to as a 
Poincare sphere. The surface of the sphere represents completely polarized states 
(DOP = 1), whereas the inside represents partially polarized states (DOP < 1). 
If DOP = 1, the polar and the azimuthal angles of a vector equal π/2 — 2Qe and 
2Θ0, respectively [Eqs. (10.23)]. On the spherical surface, the equator represents 
linear polarizations; the top and the bottom hemispheres represent right- and left-
handed polarizations, respectively; the north and the south poles represent right 
and left circular polarizations, respectively. 


Example 10.1. Derive the normalized Stokes vectors for right and left circularly 
polarized monochromatic light. 


For right and left circularly polarized monochromatic light, we have Exo — Eyo 
and Δφ = =ρπ/2. From Eqs. (10.22), the Stokes vectors are 


s* = 
/ 1 \ 


0 
0 


W 
s, = 


/ 1 \ 
0 
0 


V - ' / 


(10.24) 


where the subscripts R and L denote the right and left circular polarizations, 
respectively. 


10.5. MUELLER MATRIX 


The Mueller matrix M can represent the effect of a given medium on a Stokes 
vector. For an incident Stokes vector Sm, the output Stokes vector Sout is given by 


MS:, (10.25) 
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where 


M 


/ Moo Afoi M02 Mo3 \ 
M\o Mil Mj 2 Mi 3 
M20 M21 M22 M23 


\ M30 M31 M32 M33 / 


(10.26) 


In general, a Mueller matrix has 16 independent elements. 
The Mueller matrix is determined only by the intrinsic properties of the 


medium and the optical path. Conversely, the Mueller matrix can fully char-
acterize the optical polarization properties of the medium along a given path. 
Since element Moo explicitly represents only the intensity-based property of the 
medium, the Mueller matrix can clearly separate backscattering contrast from 
polarization contrast in Mueller OCT. 


10.6. MUELLER MATRICES FOR A ROTATOR, A POLARIZER, 
AND A RETARDER 


The Mueller matrix for a rotator, which rotates the incident electric field by an 
angle Θ, can be expressed as 


ΜΓ(Θ) -


/ I 
o 
0 


U 


0 
cos(29) 
sin(29) 


0 


0 
- sin(20) 


cos(20) 
0 


o\ 
0 
0 


1 / 


(10.27) 


A polarizer, also referred to as a diattenuator, has polarization-dependent 
attenuation—also termed dichroism. If the two orthogonal eigenpolarization 
states—states that are unaffected by the polarizing element apart from a con-
stant factor—are linear or circular, the diattenuator is referred to as a linear or 
circular diattenuator. 


If the two eigenpolarization axes of a linear polarizer are defined as the x 
and y axes, the electric field transmittances along the x and y axes can be 
represented by 


px = TpcosQp, 


py = TpSinOp, 


(10.28) 


(10.29) 


where Tp denotes the total electric field transmittance. Taking the ratio of these 
two equations yields tan0/7 = py/px. The Mueller matrix for the linear polarizer 
is given by 


T2 


p 2 


( 1 
cos(20/7) 


0 
V o 


cos(20p) 
1 
0 
0 


0 
0 


sin(29p) 
0 


0 \ 
0 
0 


sin(29„) / 


(10.30) 
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If θ/; = 0 (i.e., pY = 0), Mp represents a horizontal polarizer, which can con-
vert any—even random—polarization into horizontal polarization. Likewise, if 
Qp — π /2 (i.e., px = 0), M/7 represents a vertical polarizer. 


A phase retarder (also referred to as a wave plate, a phase shifter, or a 
compensator) has polarization-dependent phase delays. If the two orthogonal 
eigenpolarization states are linear or circular, the retarder is called a linear or 
circular retarder. 


If the two axes of a linear retarder are defined as the x and y axes, the x and 
y components of an incident optical beam are phase-shifted differently: 


Φ <\>x = Φ * - - , 


Φ 
Φ ' ν = Φ ν + ? , 


(10.31) 


where the primed phases are for the retarded optical beam and φ represents the 
phase shift between the two orthogonal components. If φ is positive, the x and y 
axes are referred to as the fast and slow axes, respectively. The Mueller matrix 
for the linear retarder is given by 


Μ Λ = 


/ I 0 
0 1 


V 


0 0 


0 0 


0 
0 


0 \ 
0 x 


cos φ sin φ 
— sin φ cos φ 


(10.32) 


For a quarter-wave retarder, φ = ± π / 2 . For a half-wave retarder, φ = ±π. 
The Mueller matrix of a polarizing element whose axes are rotated by Θ in 


the xy plane is given by 


Μ(θ) = ΜΓ(θ)Μ(0)ΜΓ(-θ), (10.33) 


where M(0) and Μ(θ) represent the Mueller matrices of the polarizing element 
before and after the rotation. 


Example 10.2. Show that a quarter-wave retarder converts a ± π / 4 linearly 
polarized beam into a circularly polarized beam and vice versa. 


According to Eq. (10.32) with φ = — π/2, a Mueller matrix operation on the 
incident Stokes vector leads to 


/ 1 0 0 
0 1 0 
0 0 0 


\0 0 1 


0 \ 
0 
-1 
0 / 


/ * ^ 
0 


±1 
V o ) 


( x \ 
0 
0 


U1/ 
(10.34) 
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The Stokes vectors on the right-hand side represent right and left circular polar-
izations, respectively. Conversely, we have 


/ l 0 0 0 \ 
0 1 0 O i l 
0 0 0 -1 


\0 0 1 0 / ' 


( l \ i 
0 -
o -


{±1 ' 


(l \ 
0 


^ 1 


I o ) 
(10.35) 


which means that a circular polarization is converted into a linear polarization. 
This reciprocal conversion between linear and circular polarizations is guaran-


teed by the principle of reciprocity of light. For example, the + π / 4 linear polar-
ization is converted into the right circular polarization as shown in Eq. (10.34). 
When light propagation is time reversed, the right circular polarization becomes 
a left circular polarization, which is then converted back into the + π / 4 linear 
polarization as shown in Eq. (10.35). 


10.7. MEASUREMENT OF MUELLER MATRIX 


A Mueller matrix can be measured with various combinations of source polariz-
ers and detection analyzers. One possible measurement scheme is described here. 
Four incident polarization states—horizontal polarization (//), vertical polar-
ization (V), -}-π/4 linear polarization (+π/4) , and right circular polarization 
(R)—are used sequentially for the incident optical beam. Their normalized Stokes 
vectors are 


S'« = s'„ = ^+π/4 — 
i \ 


Ί 0 / S'* = 
(\ 


0 
0 


V 
(10.36) 


where superscript i stands for the incident beams. From Eq. (10.25), the four 
corresponding output Stokes vectors can be determined as follows: 


CO 


0+π/4 
vo 


= MS1,, =Mo + Mi, 


= MS l v =Mo-M 1 , 


= M S ^ / ^ M o + IV 


= MSfÄ = Mo + M3. 


(10.37) 


Here, superscript o stands for the output beams; Mo, Mi, M2, and M3 denote the 
four column vectors of matrix M: 


M = (M0 M, M2 M3). (10.38) 
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The four column vectors (each has four elements) can be obtained from 
Eqs. (10.37): 


Mo = \(S"H + K), 


M, = Us"H-srv), 
1 (10.39) 


M 2 = ^[2sr+Ji/4-(s
0
H + srv)], 


M3 = \[2srR-(srH + s°v)]. 
At least four independent Stokes vectors must be measured to fully determine 
a general Mueller matrix, and each Stokes vector requires at least four inde-
pendent intensity measurements using different analyzers. Therefore, at least 16 
independent intensity measurements must be acquired to completely determine a 
Mueller matrix. If a Mueller matrix has less than 16 independent elements, fewer 
intensity measurements are required. 


Example 10.3. Given that 


/ 1 \ 
0 
0 


V 1 / 


GO _ 
Λ+π/4 — 


(\ 
0 
1 


CO _ 


( · \ 
-1 
0 


V o / 
(10.40) 


construct the Mueller matrix M. 


We have 


Mo = \{&Ή + $ν) = {\ 0 0 0 ) r , 


Mi = X-(S"H-^) = (0 I 0 0)7 , 


M2 = ]-[2S%/4-(S°H + S<{/)] = (0 0 0 -If, 


M3 = ^[2S'^ - (S^ + S« )] = (0 0 1 0)T. 


Therefore, we construct 


(10.41) 


M = 


(I 
0 
0 


\o 


0 
1 
0 
0 


0 
0 
0 


- 1 


0 
0 
1 
0 


(10.42) 


which is a quarter-wave plate with φ = π/2. 
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10.8. JONES VECTOR 


The polarization state of fully polarized light can be quantified by the Jones vector 
E. A Jones vector is a two-element column vector, representing the horizontal 
(JC) and vertical (y) components of the electric field in phasor expression. From 
Eqs. (10.2) and (10.3), the Jones vector for monochromatic light is given by 


E = / * * o e x p ( i < M \ 1 / Ex0 \ 
V E y 0 e x p ( l < M / Normalized /F2 , F2 \ ^ θ β Χ ρ Ο ' Δ φ ) ) ' 


γ ^JCO "*" ^yO 


The normalized form is simpler; however, the absolute values of the amplitudes 
and the phases are forfeited. Unlike the full Jones vector, neither the normalized 
Jones vector nor the Stokes vector can be used to treat interference between 
coherent lightbeams. 


From Eq. (10.43), the horizontal linear polarization state is expressed as 


E /£ ,oexp( /4> , ) \ / l \ 
\ V J Normalized \ 0 ) 


Similarly, the vertical linear polarization state is expressed as 


EV = ( T7 V * Λ I > ( ? I · (10·45> 
\ Ey0txp(l(\>y) ) Normalized \ 1 / 


The + π / 4 linear polarization state, in which Eyo = EXQ and φ̂ , = φχ, is 
expressed as 


Ε + π / 4 = (
E * ° ^ ί ! ) — ► 4= (! V (io·46) 


+ π / 4 \ Εχ0 βΧρ(ΐφ Λ ) / Normalized y / 2 \ l J 


The — π /4 linear polarization state is expressed as 


E-,/4 = ( Er°eXPii?:\ ) »4= ( \ V 00.47) 
1 \ -Εχ0£Χρ(ΐφχ) ) Normalized ^ 2 V _ 1 / 


The right circular polarization state is expressed as 


E * = ( r EM^') m ) > +=(1.). (10-48) 
\ £χ0βΧρ(ΐφχ - ΐπ/2) J Normalized ̂ 2 \ ~l / 


The left circular polarization state is expressed as 


^ = {F
 ExTftx) n.) - M ' V («0.49) 


Y Ex0exp(l<$>x + ΐπ/2) ) Normalized y/2 \
 l ) 
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If the convention of using cos(ooi — kz + φχ) and cos(o)i — kz + φν) for the x 
and y components of the electric field is adopted, the signs of the second elements 
in Eqs. (10.48) and (10.49) must be reversed. 


A normalized Jones vector satisfies the following inner-product identity: 


7-Γ* E = l . (10.50) 


The normalized Jones vectors of two orthogonal polarization states satisfy the 
following orthonormal identity: 


Ε [ * · Ε 2 = 0. (10.51) 


For example 


E^* · Ey = E+* / 4 · Ε_π/4 = Εβ* · EL — 0. (10.52) 


10.9. JONES MATRIX 


A Jones matrix J can convert an input Jones vector Em into an output Jones 
vector Eout: 


E0Ut = JEin, (10.53) 


or 


(3) i j \ _ ^ . . ><A(*A ( l054) v / \h\ hi J \Elv I 
Because both Ejn and Eout can represent fully polarized light only, J is applicable 
to nondepolarizing media only. 


10.10. JONES MATRICES FOR A ROTATOR, A POLARIZER, 
AND A RETARDER 


The Jones matrix for a rotator, which rotates the incident electric field by an 
angle Θ, is given by 


J ^ ) = (C°Sa " S i n f lV 00-55) 
y sin0 cosO J 


The Jones matrix for a linear polarizer that is aligned with the x axis is 


3P(°) = (P0 pv)'
 ( l 0 ' 5 6 ) 
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For a linear polarizer oriented at an angle Θ with respect to the x axis, we apply 
the rotational transformation matrix in Eq. (10.55) to derive its Jones matrix 


Jp(O)=Jr(0)J / ?(O)Jr(-9), (10.57) 


which leads to 


px cos2 Θ + py sin2 Θ (px — py) sin Θcos Θ 
(Px — Py) s*n Θ cos Θ px sin2 Θ + py cos2 Θ *pw = I ; : _,.=.«„.« _ .:,2al „ _ 2 , 1 · (


|0·58) 


The Jones matrix for a linear retarder whose fast axis is aligned with the x axis 
can be expressed as 


/ βχρ(-/φ/2) 0 \ 
J * < 0 , = ( 0 . χρΟ 'φ /2 ) ) · ( l 0 5 9 ) 


For a linear retarder oriented at an angle Θ with respect to the x axis, the Jones 
matrix becomes 


Ι φ ( θ ) = Ι Γ ( θ ^ φ ( 0 ) Ι Γ ( - θ ) . (10.60) 


10.11. EIGENVECTORS AND EIGENVALUES OF JONES MATRIX 


For a linear polarizer, we notice that 


Jp(!0)EH = pxEH, (10.61) 


Jp(0)Ev = pyEv. (10.62) 


Both equations are eigenequations. E// and Ev are the eigenvectors of Jp(0) 
and are also referred to as eigenpolarizations; px and py are the associated 
eigenvalues. 


If the two eigenvectors are orthogonal, the polarizing element is consid-
ered polarization homogeneous. Otherwise, the polarizing element is consid-
ered polarization inhomogeneous. Common polarization-homogeneous optical 
elements include linear polarizers, linear retarders, and circular retarders. A com-
mon polarization-inhomogeneous optical element is a circular polarizer that is 
constructed with a linear polarizer inclined at π /4 with respect to the x axis 
followed by a λ/4 retarder inclined horizontally. 


For a polarization-homogeneous element, the Jones matrix can be constructed 
from its eigenpolarizations and eigenvalues. We denote the first normalized eigen-
vector as 


E, = I ' . (10.63) 
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On the basis of the orthonormality, the second orthogonal eigenvector is given by 


E2 = ( lv ) . (10.64) 


The corresponding eigenvalues are λι and λ2: 


JE! = λ ι Ε ι , (10.65) 


JE2 = X2E2. (10.66) 


A new matrix, termed the modal matrix, is constructed from the eigenvectors 


/ EXx -E* \ 
K = (Elf E 2 ) = ( Jy , (10.67) 


Eh Eu 


which can be easily inverted by 


7<\x j 
K-i = κ^* = ( E*x E*y ) . (10.68) 


\ —E\y E] 


Another new matrix, termed the diagonal eigenvalue matrix, is constructed from 
the eigenvalues: 


A = ( o x°2)·
 ( 1 0 · 6 9 ) 


We rewrite Eqs. (10.65) and (10.66) as 


JK = KA. (10.70) 


Therefore, we have 


J - K A K " 1 . (10.71) 


Example 10.4. Show that a circular polarizer that is constructed with a linear 
polarizer inclined at π/4 with respect to the x axis followed by a λ/4 retarder 
inclined horizontally is polarization-inhomogeneous. 


From Eqs. (10.57) and (10.59), the Jones matrix for the circular polarizer is 
given by 


3pc=h(0)Jp(n/4), (10.72) 
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where φ = π/2 , ρχ = 1, and py = 0. Matrix operation leads to 


i „ - 2 3 ^ ( ; ; ) . 0073) 


We can show that 


J ,CEL - - ^ E L , (10.74) 


JpcE_w/4 = 0Ε_π / 4 . (10.75) 


The two eigenvectors, E^ and Ε_π/4, are nonorthogonal because 


Ε [ * · Ε _ π / 4 ^ 0 . (10.76) 


Therefore, Jpc is polarization inhomogeneous. We can further show that the linear 
polarizer and the λ/4 retarder are not permutable. 


Example 10.5. Construct Jones matrices for homogeneous polarizers J# , Jy, 
J+TI/4, J-Ti/4» J/?, and J^. 


Since the electric field of light can be decomposed into two orthogonal com-
ponents, only one of which can be transmitted through an ideal homogeneous 
polarizer, we use orthogonal eigenvectors to construct the Jones matrices. 


For JH and Jv, we may consider the orthogonal pair: 


0) - (?)■ 


U: £)(i)-(J)· 
(i: £)(?)-(S)· 


J„ = (J o ) · <la79> 


(£: £)0)-(!)· 
(2: £)(?)-(?)· 


From 


we obtain 


Likewise, from 
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we obtain 


For J+Ti/4 and J_ 


From 


we obtain 


Likewise, from 


we obtain 


For a circular pol 


From 


Jv = (o ij· 


π/4, we may consider the orthogonal pair: 


7l(0 and 7f(-0· 


TiUi ' W w = 7 f w ' 
J2\J2I J2i)\-l) \0)' 


J + H / 4 = 2 ( I i j ' 


1 (Jn / i 2 \ / l \ / 0 \ 
V 2 W 2 1 J22j\l)-\0)' 


J5\J2i ^ A " 1 / V f l " 1 ) ' 


J - / 4 = 2 ( - l 1 ) · 


arizer, we may consider the orthogonal pair: 


Vl \ Ji\ Jn ) \ ~i ) = V l V -«' j ' 


V2 


(10.82) 


(10.83) 


(10.84) 


(10.85) 


(10.86) 


(10.87) 


(10.88) 


(10.89) 


(10.90) 
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we obtain 


Likewise, from 


we obtain 


>-& 0 
±_( J\\ Jn\( 1 \ /<Λ 
V2W21 hijy-i) \o)' 


±_(Ju J n \ ( \ \ = l_(\ 
V2W21 Jn)\i) y/2\i 


■KJ v)· 


(10.91) 


(10.92) 


(10.93) 


(10.94) 


10-12. CONVERSION FROM JONES CALCULUS TO MUELLER 
CALCULUS 


For a nondepolarizing optical element, the Jones matrix and the Mueller matrix 
are equivalent. Unlike the Mueller matrix, the Jones matrix uses complex ele-
ments. Because one phase is typically arbitrary and is set to zero, a Jones matrix 
has seven independent real parameters. Consequently, a nondepolarizing Mueller 
matrix has seven independent parameters. 


A Jones matrix J can be transformed into an equivalent Mueller matrix M as 
follows: 


- 1 M = U(J(g>J*)U 


Here, U is the Jones-Mueller transformation matrix 


(10.95) 


U 
V2 


( 1 0 0 1 \ 
1 0 0 - 1 
0 1 1 0 


\0 -i i 0 / 


(10.96) 


and ® represents the Krönecker tensor product. The Krönecker tensor product of 
A and B is defined as 


A ® B = 


/ A ( 1 , 1 ) B A(1,2)B . 
A(2, 1)B A(2,2)B . 


\A(m,\)B A(m, 2)B . 


. A ( l , n ) B \ 


. A(2,/i)B 


. A(ra, j?)B/ 


(10.97) 


where m and n represent the dimensions of A 
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A Jones vector E can be transformed into a Stokes vector S using 


S = V2U(E(g)E*), (10.98) 


where ensemble averaging is carried out when the light is quasimonochromatic 
instead of monochromatic. 


Example 10.6. Given 


A=(au an) and B=(b" *'2 V 
V a2\ «22 ) \ θ2\ b22 ) 


calculate the Krönecker tensor product. 


A ® B = 


I a\\b\\ a\\b\2 «12*11 «12*12 \ 


«11*21 «11*22 «12*21 «12*22 


«21*11 «21*12 «22*11 «22*12 


\ «21*21 «21*22 «22*21 « 2 2 * 2 2 / 


(10.99) 


10.13. DEGREE OF POLARIZATION IN OCT 


After completely polarized monochromatic light (DOP = 1) is scattered multi-
ple times in a scattering medium, the reemitted light generally becomes partially 
polarized (DOP < 1) unless the area of the detector is much smaller than the aver-
age size of the speckle grains. OCT, however, measures the amplitude—rather 
than the intensity—of backscattered light. As a result, only the part of the 
backscattered light that is coherent with the reference beam is detected, which 
leads to a DOP of unity as explained below. 


In OCT, the interference signal /AC received by a detector of finite area can 
be considered as the sum of the interference contributions from all points on the 
detector: 


/AC oc Err* · E5, + Err* · EJ2 + Err* · Ej 3 + · · · 


= Err* · (E5| + E52 + Ej 3 + · · ·) (10.100) 


= Err*-E5. 


Here, Er represents the Jones vector of the reference beam, which is assumed 
to be uniform across the detection plane; ESi(i — 1,2,...) represents the Jones 
vector of the coherent backscattered wave reaching point / on the detector; Es 
represents the Jones vector of equivalent total coherent backscattered light; and 
the dot product represents the interference effect. The projection of each Esi 
onto Er is summed into /AC· Equivalently, Es/ can be vector summed to E9, 
whose projection onto Er contributes to /AC· If all Esi components share the 
same polarization state, Es has the same polarization state. Otherwise, Es has a 
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net apparent polarization state. In either case, Es has a unique polarization state 
with a DOP of unity. In an intensity-based detection system, by contrast, the 
intensities of the backscattered optical fields that reach the various points of the 
detector are added; thus, unless all Esi components share the same polarization 
state, the DOP is less than unity. 


10.14. SERIAL MUELLER OCT 


In serial Mueller OCT discussed in this section, 16 independent OCT measure-
ments are acquired to determine the Mueller matrix. Only five measurements, 
however, are required in Mueller OCT, as is discussed in the following section. 
From Chapter 9, we know that an interference signal for sample light from a 
given depth has a peak amplitude /ACO given by 


/ACOCX y/hAhVr^ (10.101) 


Here, lrA denotes the intensity of the reference beam, which has polarization 
state Λ; ISA denotes the intensity of the sample beam projected onto polarization 
state Λ. Thus, we have 


/2 
h,A oc - P . (10.102) 


A serial Mueller OCT system that can measure the Mueller matrix of a scattering 
medium is shown in Figure 10.2. The light from the source, an SLD (superlumi-
nescent diode), has a center wavelength of 850 nm and a FWHM bandwidth of 
26 nm. After passing through the polarizer, the lightbeam has a power of 0.4 mW. 
After passing through the half-wave and the quarter-wave plates, the lightbeam 
is split by a nonpolarizing beamsplitter. The sample beam is focused into the 
sample by an objective lens. The reference beam passes through a variable-wave 
plate and is then reflected back. The reflected beams from the reference and the 
sample arms are coupled into a single-mode fiber and detected by a photodiode. 
The spatial resolution is M 0 μπι. 


Four different incident polarization states—//, V, + π / 4 , and R—are achieved 
by rotating the half-wave and the quarter-wave plates in the source arm. For 
each incident polarization state, the variable-wave plate in the reference arm is 
adjusted to sequentially achieve polarization states //, V, +π /4 , and R for the 
round-trip reference beam. Thus, a total of 16 polarization-sensitive OCT images 
are acquired. Then, four Stokes vectors are computed using Eq. (10.21) and then 
further processed to construct a Mueller matrix using Eqs. (10.38) and (10.39). 


10.15. PARALLEL MUELLER OCT 


In parallel Mueller OCT discussed in this section, a Jones matrix is first measured 
by OCT and then converted into a Mueller matrix. Usually, the coordinates for 
the Jones vector follow the light propagation direction. For example, a reflection 
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Figure 10.2. Schematic of a serial Mueller OCT system. 


Jones matrix converts the Jones vector of the incident light expressed in the 
forward coordinates (z axis aligned with the direction of incidence) into the 
Jones vector of the reflected light expressed in the backward coordinates (z axis 
aligned with the direction of reflection). In this section, however, we use the 
forward coordinates for the Jones vectors of both the incident and the reflected 
lightbeams. 


An OCT configuration that can measure the Jones matrix of a scattering 
medium with parallel channels is shown in Figure 10.3. Since at least two inde-
pendent incident polarization states are required to fully measure a Jones matrix, 
two SLD light sources are used to provide horizontal polarization (1 0)T and 
vertical polarization (0 1 ) r , respectively. The two sources—each of which has a 
center wavelength of 850 nm and a FWHM bandwidth of 26 nm—are amplitude-
modulated at 3 and 3.5 kHz, respectively, for encoded parallel detection. The two 
source beams are merged by a polarizing beamsplitter, filtered by a spatial filter, 
and then split into the reference and the sample arms by a nonpolarizing beam-
splitter. The sample beam passes through a quarter-wave plate with its fast axis 
inclined at + π / 4 with respect to the x axis and then is focused into the sam-
ple by an objective lens (focal length / == 15 mm and NA — 0.25). Each source 
delivers about 0.2 mW of power to the sample. At the sample surface, the Jones 
vectors of the sample beam are (1 i)T and (1 — i)T for the two sources. 
The reference arm consists of a quarter-wave plate with its fast axis inclined 
at -f π/8 with respect to the x axis, a lens, and a mirror. After the reference 
beam passes through the quarter-wave plate twice, the incident horizontal and 
vertical polarizations are converted into + π / 4 polarization (1 l ) r and —π/4 
polarization (1 — l ) r , respectively. Then, the reference and the sample beams 
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Figure 10.3. Schematic of a parallel Mueller OCT system. 


are combined by the nonpolarizing beamsplitter. The combined light is split into 
horizontal and vertical components by a polarizing beamsplitter; each component 
is coupled into a single-mode fiber through an objective lens and then detected 
by a photodiode. A data-acquisition board, sampling at 50 kHz/channel, digitizes 
the two signals. The scan speed of the reference arm is 0.5 mm/s, generating a 
Doppler frequency of about 1.2 kHz. The carrier frequencies—the beat and the 
sum frequencies between the Doppler frequency and the modulation frequencies 
of the light source—are 1.8, 2.3, 4.2, and 4.7 kHz. 


For singly backscattered light, the incident Jones vector Ejn in the sample arm 
is converted to the detected Jones vector Eout by 


E0ut = JNBsJQB(JsBJMJsi)JQlEin. (10 .103) 


Here, JQI and JQB are the Jones matrices of the quarter-wave plate in the incident 
and the backscattered directions, respectively; Jsi and JSB are the Jones matrices 
of the sample in the incident and the backscattered directions, respectively; JM 
is the Jones matrix of the backscattering, which functions as a mirror reflection; 
JNBS is the Jones matrix of the reflecting surface of the nonpolarizing beamsplit-
ter. According to the convention of the coordinates used in this section, both JM 
and JNBS are equal to the identity matrix: 


J M = JNBS -a?) (10.104) 
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The combined round-trip Jones matrix of the scattering medium J52 is given by 


J S 2 = J S B J A # J S I . (10.105) 


The overall round-trip Jones matrix J7 is given by 


JT = JNBSJQBJS2JQI· (10.106) 


Substituting Eqs. (10.105) and (10.106) into (10.103), we obtain 


E0ut = JrE i n , (10.107) 


or 


(10.108) 


The Jones reversibility theorem states that the Jones matrices of an optical 
element for backward and forward light propagations—JBWD and JFWD> respec-
tively—are transposition-symmetric if the same coordinates are used for the 
Jones vectors: 


IBWD = JFWD J?wD· (10.109) 


Thus, we have 


which together lead to 


J S B = J L (10.110) 


J Q B = J $ I , (10.111) 


J s 2 = J L (10.Π2) 


J r = J r · (10.113) 


According to these symmetry relations, the number of independent real param-
eters in Js2 or JT reduces from seven to five, which means that only five real 
independent measurements are required to measure a Jones or Mueller matrix in 
OCT. 


As discussed in Chapter 9, multiple-scattered light can contribute to OCT 
signals. In the presence of multiple-scattering contributions, Eq. (10.112) still 
holds as long as each photon path is reversible (the probabilities for photons to 
travel along the same path but in opposite directions are equal). This condition is 
met, for example, in single-mode optical-fiber-based OCT systems, where light 
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delivery and detection share the same area and angular distribution. Apart from 
a constant factor, Js2 is the sum of the Jones matrices for all possible paths: 


3s2 = ]T]U>*(JF* + J**). (10.114) 


Here, w denotes the weight of a path; subscripts F and R denote the forward 
and the reversed directions of propagation, respectively; k denotes the index of 
a path. From the Jones reversibility theorem, we have 


IRk iFk^Fk 1
T 


JRk' 
(10.115) 


Substituting Eqs. (10.115) into Eq. (10.114), we reach Eq. (10.112) again. 
For two light sources of different polarization states, Eq. (10.108) leads to 


^HX C'H2 


^ V l r'V2 


JTW hn 


h l \ JT22 )(ί: ,«r CjH2t nv2e (10.116) 
Here, subscripts 1 and 2 for the electric fields denote sources 1 and 2, respectively; 
ß is a phase difference related to the difference in the spectral characteristics of the 
two light sources; and ß is zero if the two characteristics are identical. Inverting 
Eq. (10.116) yields 


JTW JT\2 


JT2\ JT22 


F° 


F° 


JH\ 


'VI 


^H2e 


/ z 'V2 t i 
(10.117) 


The inverse matrix exists and is given by 


Fl HI JH2* P*' 
-1 


El Fl 'VI ^ V 2 C / 


if the determinant D is nonzero: 


1 
D 


Fl pl 


VI 


— Fl P*\ 


Fl Hi 
(10.118) 


D 
fl fi pi\ 
^H\ r'H2e 


'VI > V 2 c 


'HI 


'VI 


JH2 


'V2 
/o. (10.119) 


This condition simply means that the two light sources have independent polar-
ization states. 


Substituting Eq. (10.118) into Eq. (10.117) yields 


JT- = -
^Η\ CjH2 


Fl ρΦ _ / Γ ' pip 


D \ F° F° 
^ \ ^ V l CjV2 


(10.120) 
'VI JH\ 
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On the basis of the transposition symmetry of J^, ß can be eliminated. Substi-
tuting Eq. (10.120) into Eq. (10.113) yields 


' i ß(*i#i*if2 + E°v>Ev2) = E°H2eHX + E°V2E^ (10.121) 


which can be solved for ß unless 


' E°HlE
i
H2 + E°vlE


i
V2=0. (10.122) 


If the two incident polarization states are orthogonal and either one happens to be 
an eigenpolarization state of the sample, Eq. (10.122) holds (see Problem 10.1). 
This drawback can be overcome by using two nonorthogonal source polarization 
states, for example, a horizontal polarization state and a + π / 4 polarization state. 
Once JT is found, J52 can then be determined by solving Eq. (10.106). 


A piece of porcine tendon is imaged by this system. The Mueller matrix image 
is shown in Figure 10.4; each element of the Mueller matrix is a 2D image. Some 
of the images present periodical stripes presumably due to the birefringence of 
the collagen fibers in the porcine tendon. Since it is free of polarization effects, 
image Moo presents no such periodicity but shows backscattering contrast instead. 


Figure 10.4. Two-dimensional images, 0.5 x 1 mm in area, of the Mueller matrix of a 
piece of porcine tendon. Each image except Moo is normalized by Moo pixel-by-pixel. 
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PROBLEMS 


10.1 Substantiate the interpretation of Eq. (10.122) mathematically. 


10.2 Given that 


CO _ »v — 


I 1 \ 
-1 
0 


V o ) 


CO _ 0 
0 


V 1 / 


C O 


I i \ 
o 


- 1 
V o / 


construct the Mueller matrix M. 


10.3 Show that the eigenvalues of the six polarizers given in Example 10.5 
are equal to 0 or 1 and that the eigenvectors are orthogonal for each pair. 


10.4 Find the Jones matrix for a linear retarder oriented at an angle with 
respect to the x axis. 


10.5 (a) Show that a linear polarizer inclined at - π / 4 with respect to the 
x axis, followed by a quarter-wave plate, leads to a circular polarizer. 
(b) Find the eigenvalues and eigenvectors for this matrix, (c) Show that 
the eigenvectors are nonorthogonal and allow both right and left circularly 
polarized beams to pass through. Swap the two optical components and 
derive the new Jones matrix of the system and show whether the two 
optical components are permutable. 


10.6 Construct the Jones matrix for a polarizing element that converts a ± π / 4 
linear polarization into a circular polarization but maintains the horizontal 
and the vertical polarizations. 


10.7 Use the Jones representations to show that a quarter-wave plate can be 
used to convert linear polarization into circular polarization and vice 
versa. 


10.8 Use Jones vectors to prove that the superposition of two equal-amplitude 
circularly polarized beams with opposite handednesses and a phase dif-
ference can be used to form a linear polarization state of an arbitrary 
orientation. In practice, circular birefringence in either optically active 
media, such as glucose or magnetooptical media, can be used to produce 
the phase difference. 


10.9 Prove that the Jones or the Mueller matrix of a rotator is independent of 
the orientation of the rotator. 


10.10 Derive Eqs. (10.6), (10.8), (10.10), and (10.11). 


10.11 Use MATLAB to produce a movie that shows an electric field vector 
tracing out the polarization ellipse and its special cases. 
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10.12 From the six measurements, ///, Iv, Ι+πμ, / - π /4 , //?, and 1L, assuming 
that four are acquired to construct the Stokes vector, derive the number 
of valid choices. 


10.13 Prove Eq. (10.22). 


10.14 Prove Eq. (10.23). 


10.15 When a linear polarizer is rotated a full circle in front of natural light 
(unpolarized light), draw the locus of the transmitted light polarization 
on the Poincare sphere in MATLAB in pseudo-3D. 


10.16 Prove Eqs. (10.27), (10.30), and (10.32). 


10.17 Prove Eq. (10.33). 


10.18 Prove Eqs. (10.55) and (10.57)-(10.59). 


10.19 Use Eq. (10.71) to form the Jones matrix for a quarter-wave plate. 


10.20 Prove conversion Eqs. (10.95) and (10.98). 


10.21 Assume that a quarter-wave plate oriented at 45° with respect to the x axis 
is measured by the system in Figure 10.3. Derive the Jones vector of the 
lightbeam after each polarizing element, starting from the source. First, 
use right-handed coordinates whose z axis always follows the propagation 
direction of the lightbeam. Revise the Jones reversibility theorem in this 
convention. Then, use right-handed coordinates whose z axis is always 
in the propagation direction of the lightbeams incident on the reference 
mirror and the sample as in Section 10.14. 


10.22 Extend polarization-difference imaging (see Chapter 8) to birefringent 
scattering media using the Stokes vector. 
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CHAPTER 11 


Diffuse Optical Tomography 


11.1. INTRODUCTION 


The term diffuse optical tomography (DOT) refers to the optical imaging of 
biological tissue in the diffusive regime. Since it has a l/e penetration depth 
on the order of 0.5 cm, NIR light around 700-nm wavelength can penetrate 
several centimeters into biological tissue. As a result, DOT can image the human 
breast and brain. Image reconstruction in DOT involves both the forward and 
the inverse problems. The forward problem usually uses the diffusion equation 
to predict the distribution of reemitted light on the basis of presumed parameters 
for both the light source and the object. The inverse problem uses the forward 
problem to reconstruct the distributions of the optical properties of the object 
from a measured data set. Since the inverse problem is ill-posed, recovering 
imaging information from diffuse photons remains a challenge. As a rule of 
thumb, the spatial resolution of DOT is on the order of 20% of the imaging 
depth; hence, DOT is a low-resolution imaging technology. Nevertheless, DOT 
provides valuable rapid functional imaging at low cost. 


11.2. MODES OF DIFFUSE OPTICAL TOMOGRAPHY 


In a DOT system, sources and detectors are placed around the object to be 
imaged in various geometric configurations. Common geometric configurations, 
suited for different applications, fall into planar transmission, planar reflection, 
and cylindrical reemission. Most anatomical sites can be imaged in the planar 
reflection configuration. Human limbs as well as small animals can be imaged in 
either the planar transmission or the cylindrical configuration. Human breasts can 
be imaged in all three configurations. Generally, while one source illuminates 
the object, all detectors measure the reemitted light. This process is repeated 
with each source to complete a measurement data set; subsequently, images are 
reconstructed by computer. 
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TABLE 11.1. Modes of DOT with Idealized Parameters0 


Mode Source Light Φ,ν^', t') Reemitted Light Om(r, /; r\ t') 


Time domain Impulse: h(r')h(t') 
Frequency Amplitude-modulated: 


domain hir')[Ds 4- As cos(oo/' + φ.ν)1 


Direct current DC: Dsh(r') 
(DC) 


"Symbol key: Φ—fluence rate; D—DC; A—AC amplitude; ω—angular frequency of AC; 
φ—phase of AC; r'—source location; t'—source time; r—detection location; t—detection time; 
subscripts s and m represent source and measurement, respectively 


According to the type of signal, DOT is usually classified into three modes 
(Table 11.1): time domain, frequency domain, and direct current (DC). In all 
three modes, the reemitted light has the same general form as the source light 
since the system is linear and time-invariant. In the time-domain mode, the source 
light is ultra-short-pulsed (typically a few picoseconds wide), and the reemitted 
light pulses are broadened. In the frequency-domain mode, the source light inten-
sity is amplitude-modulated sinusoidally at typically hundreds of MHz, and the 
reemitted light modulation has reduced modulation depth (AC amplitude/DC). 
In the DC mode, the source light is usually time-invariant, but it is sometimes 
modulated at low frequency (e.g., kHz) to improve the SNR or to encode the 
source. Such low-frequency modulation, however, does not attain the benefits of 
the frequency-domain mode. 


The time-domain and the frequency-domain modes are mathematically related 
via the Fourier transformation. If measured at many frequencies (including DC) in 
a sufficiently broad bandwidth, frequency-domain signals can be converted to the 
time domain using the inverse Fourier transformation. Therefore, the time-domain 
mode is mathematically equivalent to the combination of the frequency-domain 
and DC modes. Further, the DC mode is a zero-frequency special case of the 
frequency-domain mode. 


Among the three modes, the time-domain mode is the most information-rich 
but the slowest in data acquisition and the most expensive. The full extent of the 
information content, however, is yet to be fully explored. The frequency-domain 
mode, which typically operates at only a single modulation frequency, contains 
less information than does the time-domain mode but is faster and less expensive. 
In addition, it provides better SNR by means of narrowband detection. The DC 
mode contains no direct information about time of flight and hence has the most 
limited capability for separating absorption from scattering in a heterogeneous 
medium; it is the fastest and the least expensive, however. 


In the following sections, experimental systems representative of all three 
modes are introduced. An in-depth description of the frequency-domain mode 
follows since this mode is the most mature and dominant to date. 


Time-resolved: 4>m(r, t\ r', t') 
Amplitude-modulated: 


Dm{r\r') + Am(ry^) 
cos(cor + $m(r\r')) 


DC: Dm{r\r') 
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11.3. TIME-DOMAIN SYSTEM 


In the time-domain mode, temporal responses to an ultrashort laser pulse are 
measured around the scattering object to be imaged. Each temporal response 
represents reemitted light intensity as a function of time; each actually equals 
the convolution of three functions: the temporal PSF due to light propagation 
in the medium, the pulse profile of the laser beam, and the impulse response of 
the detection system. The responses can be temporally resolved using a streak 
camera (see Chapter 8) or a time-correlated single-photon counting system. The 
latter has the advantages of larger detection area, better temporal linearity, lower 
cost, and higher dynamic range over the former; however, it has the disadvantage 
of slower data acquisition. 


A 32-channel imaging system, based on time-correlated single-photon count-
ing, was constructed at University College London (UCL) (Figure 11.1). A laser 
provides picosecond light pulses with tunable wavelength. After going through a 
beamsplitter, the lightbeam is attenuated to a preset intensity by a neutral-density 
filter. After further passing through a shutter and a fiber coupler, the lightbeam 
is coupled to a 1 x 32 fiber switch, which selects one of the 32 source fibers 


sl·*-


Reference 
» 


Photodiode Fast fan-out module 
\ 


Amplifier-timing Delay 
discriminator 


Nuetral-density V a r i a b l e Longpass filter Picosecond 
filter optical / time analyzer 


attenuator / Preamplifier \ 


Computer | 1 


Pulsed laser 


Figure 11.1. Schematic of the UCL time-resolved DOT system. For clarity, only one 
source fiber and one detection channel are shown. 
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at a time. The source fibers are routed to distributed locations on the surface of 
the object. 


Reemitted photons are simultaneously detected by 32 detection channels, each 
with a large-diameter fiber bundle. Since the 32 detection positions are distributed 
around the object, the received optical signals have vastly different intensities. In 
other words, some detection fibers—typically those that are close to the source 
fiber—receive strong optical signals, while other detection fibers—typically the 
ones that are far away from the source fiber—receive weak optical signals. 
Since the single-photon counting technique requires that either one photon or 
none be measured per laser pulse, stronger optical signals are attenuated by 
computer-controlled variable optical attenuators to extend the dynamic range of 
the measurement. Then, a longpass filter reduces the ambient light that has shorter 
wavelengths than the signal light. 


In each detection channel, the filtered signal light is delivered to the photocath-
ode of a microchannel plate-photomultiplier tube (MCP-PMT), which converts 
the optical pulse into an analog electronic pulse. After preamplification, the ana-
log pulse is shaped by a constant fraction discriminator into a logic pulse with 
high timing accuracy. In parallel, part of the main beam is split off by a beam-
splitter to provide a reference lightbeam. The reference optical pulse is converted 
by a photodiode into an electronic pulse. The electronic pulse is also preampli-
fied and shaped into a logic pulse by a combined amplifier-timing discriminator 
unit. Each reference logic pulse is then time-delayed and converted through a 
fast fan-out module into 32 outputs. Each output is connected to a picosecond 
time analyzer. Each picosecond time analyzer compares the signal logic pulse 
with the delayed reference logic pulse to measure the time of flight of each indi-
vidual photon. The detection cycle is repeated with many laser pulses. At the 
end, the times of flight of the individual photons detected by each channel build 
a histogram, which represents the associated temporal spread function. 


Once histograms are acquired for a source location, the fiber switch shifts 
the source light to the next source fiber. This process is repeated through all 32 
source fibers to complete the measurement data set. Then, image reconstruction 
is performed by computer. 


11A DIRECT-CURRENT SYSTEM 


A DC system based on frequency-division multiplexing was built using 32 lasers 
and 32 detectors at Massachusetts General Hospital (MGH) (Figure 11.2). Half of 
the lasers operate at 690-nm wavelength and the other half at 830 nm. The lasers 
are encoded with 32 frequencies from a master clock; these frequencies are dis-
tributed uniformly between 6.4 and 12.6 kHz. The laser outputs are fiberoptically 
coupled to 16 paired positions around the object to be imaged. Reemitted light 
is collected through 32 channels of optical fibers and detected by 32 avalanche 
photodiodes (APDs) in parallel. The electronic output of each APD is bandpass-
filtered. The filtered signal is amplified by a programmable-gain stage, which 
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Figure 11.2. Schematic representation of the MGH DC imaging system. 


matches the signal amplitude to the input range of the analog-to-digital (A/D) 
converter. The amplified signal is digitized at 45 kHz by the A/D converter 
and subsequently transferred to a computer. Then, the digitally encoded signal is 
decoded by the computer on the basis of the modulation frequencies to recover the 
reemitted optical signal components originating from each source simultaneously. 
Since all sources and detectors function concurrently, the data-acquisition rate is 
high. The system is well suited to observing rapid physiological phenomena. 


11.5. FREQUENCY-DOMAIN SYSTEM 


Before describing a frequency-domain imaging system, we first introduce a 
single-channel sensing system (Figure 11.3). The output power of a laser diode is 
modulated by an AC signal at a radiofrequency / (e.g., 200 MHz) from a func-
tion generator. The modulated light is delivered to the object through an optical 


Optical fiber 


Figure 11.3. Schematic representation of a single-channel frequency-domain sensing 
system. 
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fiber. Reemitted light is detected by a PMT through another optical fiber. If the 
PMT has a constant gain, the output electronic signal will have frequency / and 
can be digitized by an A/D converter. As required by the Nyquist criterion, the 
A/D sampling frequency must be greater than 2f. 


The sampling frequency can be reduced by heterodyne detection, which is 
applicable to narrowband signals. For heterodyne detection, a local oscillator 
of frequency / -f Δ/—where Δ / is typically a fraction of / (e.g., tens of 
kHz)—is produced by another function generator to modulate the gain of the 
PMT. Because it is proportional to the product of the input light power and the 
gain, the output of the PMT has multiple frequencies: 0, Δ/, / , / -f Δ / , and 
2 / -I- Δ / . The Δ / component is selected by a bandpass filter and then digitized 
by an A/D converter. The lower frequency Δ / results in less lengthy data. 


The amount of data can be further reduced by lock-in detection, which is 
applicable to single-frequency signals. For lock-in detection, a reliable reference 
of frequency Δ / is produced by another heterodyne channel. An electronic mixer, 
which multiplies the two input signals, mixes the outputs from the two function 
generators to produce a signal of two frequencies: Δ / and 2 / + Δ / . The Δ / 
component is selected by a bandpass filter to be the reference. The lock-in detector 
inputs the signal and the reference and outputs the amplitude and the phase of 
the signal. 


The principle of dual-phase lock-in detection (Figure 11.4), also referred to as 
IQ detection ("Γ for in-phase and "Q" for quadrature), is described as follows. 
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Figure 11.4. Block diagram of a dual-phase lock-in detection system. 
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Both the signal and the reference oscillate at frequency / . The signal is repre-
sented by A sin(27r/i -f φ), where A denotes the amplitude, φ denotes the phase, 
and t denotes time. The reference is represented simply by s'm(2itfl -f- φ) without 
taking the amplitude into account. The system consists primarily of two mixers, 
two lowpass filters, and a 90° phase shifter. In the first channel, the mixer mixes 
the signal and the reference to produce a signal consisting of a DC and a second-
harmonic 2 / component. The first lowpass filter passes the DC component and 
rejects the second-harmonic component, where the DC component can be rep-
resented by Si — ^ Α ^ 8 φ apart from a constant factor. In the second channel, 
the reference signal is first phase shifted by 90° to produce a signal proportional 
to cos(o)0· Then, the second mixer followed by the second low-pass filter pro-
duces a DC component that can be represented by SQ = jA ήηφ. Finally, the 
amplitude-phase unit outputs the two unknowns—A and φ—based on the two 
DC components: 


A = 2y/sj + S2Q, (11.1) 


φ = 3 Γ ^ η - ^ . (11.2) 
Si 


A scanning frequency-domain imaging system was built at Dartmouth College 
(Figure 11.5). Unlike the system in Figure 11.3, this system automatically scans 
both the light incidence position and the light detection position around the object 
using 32 large-core fiberoptic bundles—16 for light delivery and 16 for light 


Power Signal generator Signal generator 
supply 100.000 MHz 100.001 MHz 


1 T |» 


Fiberoptic bundles 


A/D board [ 


Computer f 


Figure 11.5. Schematic of the Dartmouth College frequency-domain imaging system. 
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detection. Two signal generators—sharing the same timebase—produce signals 
of radiofrequency fx = 100.000 MHz and f2 = 100.001 MHz, respectively. A 
bias-T mixes the DC current from a power supply and the radiofrequency current 
of f\. A laser, whose output light power is modulated by the output of the 
bias-T, provides 800-nm NIR light. A linear translation stage scans to one of 
the 16 light delivery fiberoptic bundles to receive the modulated laser light. 
The selected fiberoptic bundle delivers the light to the object at one of the 16 
positions. Another linear translation stage scans to each of the 16 light detection 
fiberoptic bundles to gather reemitted light from every detection position. A filter 
wheel—made of neutral-density filters of various optical densities—attenuates 
stronger optical signals more strongly to compress the range of the received 
optical signals. A PMT detects the attenuated light and outputs a signal that 
has various frequencies. A bandpass filter passes the fi — f\ component. An 
A/D board digitizes the filtered signal and then transfers the digital data to a 
computer for data processing. This detection process is repeated through all 16 
light delivery fiberoptic bundles to complete the data acquisition. 


11.6. FREQUENCY-DOMAIN THEORY: BASICS 


As shown in Chapter 5, the time-resolved diffusion equation is 


3 Φ ( Γ , 0 


c3t 
+ μαΦ(Γ, t) - V · [D V4>(r, f)] = 5(r, t). (11.3) 


Here, Φ denotes the fluence rate, c denotes the speed of light in the scatter-
ing medium, \ia denotes the absorption coefficient, D denotes the diffusion 
coefficient, and S denotes the source power density. Sometimes, the diffusivity 
D'—defined by D' = cD—is used instead of D. 


For monochromatic light, Eq. (11.3) can be rewritten as 


dU(rJ) + c[LaU(r, t) - cV · [D VI/(r, t)] = q(r, f), (11.4) 
at 


where U denotes the photon density and q denotes the photon density source 
strength. The following relations are used in the conversion: 


Φ ( Γ , / ) = hv U(?,t)c, (11.5) 


S(r,t) = hvq(r,t), (11.6) 


where hv denotes the photon energy. 
We first examine the spatial impulse response in an infinite homogeneous 


scattering medium. A point photon density source is denoted by the following 
phasor expression: 


q(r, t) = [A + Ββχρ(-ιωί)]δ(Γ). (11.7) 
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Here, ω denotes the angular frequency and A and \B\ denote the DC and the AC 
source amplitudes, respectively. The ratio \B\/A, termed the modulation depth, 
ranges between 0 and 1 because q > 0 must hold. From B — \B\ exp(—/φ#), 
we have 


Bexp(-icut) = |2?|exp(—ι'ωί - /φβ). (11.8) 


Of course, it is the real part of a phasor expression that represents the actual 
oscillation: 


Re{|^| exp(-/oof - ι'φ*)} = |£|cos(cof+ <M. (11.9) 


Because the diffusion equation is linear, we assume the solution to be as follows: 


U(r, t) = UDC(?) + UAC(?) βχρ(-ίωί) , (11.10) 


where U\c(r) is complex. For the DC part, we have 


c\xaUOC(r)-cD V
2UDC(7) = Ah(r). (11.11) 


The solution is given by 


exp(-^effr) 
UOC(r) = A— , (Π.12) 


4ncDr 


where ^eff = Λ/VLJD. 
For the AC part, we have 


-iG)E/Ac(r) +c\xaUAC(?) -cD V2UAC(r) = Bh(r). (11.13) 


This equation can be reformulated to a Helmholtz wave equation: 


(V2+fc2)i/Ac(?) = - £ ^ , (11.14) 
cD 


where 


The solution is given by 


t* = - < * · « + '·«>. ( 1 1 . 15 ) 
cD 


ϋΑ^) = Βψφ, (11.16) 
4ncDr 


which represents a photon-density wave, where k is the propagation constant. 
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Substituting Eqs. (11.12) and (11.16) into Eq. (11.10), we obtain the overall 
response: 


ii<- ^ Aexp(-^effr) + £exp( / / : r - /Q)0 
i / ( r , i ) = : · (Π.17) 


AncDr 
When ω -> 0, the AC solution should approach the DC solution. If ω = 0, 
Eq. (11.15) becomes 


2 _ Z^a __ _ 2 
D ~~ f ' 


As a result, Eq. (11.16) reduces to 


ϋ^) = Β^ψ^, (11.18) 
AncDr 


which is identical to Eq. (11.12) except for the amplitudes. 
Propagation constant k can be separated into real and imaginary parts: 


™ ι = (^)',4™(^Β„£), 


t, = Imltl = ( ^ f ^ ) "'cos (i arc« £) (11.20) 


Substituting k = kr -f iki into Eq. (11.16), we obtain 


exp(/A;rr) 
UAC(r) = flexp(-*fr) / V nr ' . (11.21) 


Factor exp(//:rr) represents the phase delay of the photon-density wave, which 
approximately equals the product of the average time of flight of the photons 
and the angular frequency ω (see Problems 11.1-11.3); therefore, the phase 
of UAC(?) provides information about the effective path length that the diffuse 
photons have taken. The real part kr can be converted to a wavelength by 


2π 
λ = — . (11.22) 


kr 


Factor exp(—£zr) represents the attenuation of the photon-density wave due to 
diffusion and absorption in addition to the 1/r geometric decay. Even in the 
absence of absorption (i.e., \ia = 0), the photon-density wave is still strongly 
damped as a result of diffusion. Because they follow physical paths of various 
lengths, photons that reach the observation point arrive at different times. There-
fore, photons in the peaks and troughs of a photon-density wave mingle as the 
wave propagates, which dampens the modulation depth of the overall response. 
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Diffuse photon-density waves can be used to measure optical properties. Once 
the complex k is measured, \ia and D can be deduced. From Eqs. (11.19) and 
(11.20), we obtain 


ωRe{*2} , n w 
Va = ΓΊΤΤΓ' (11.23) 


c Im{£2} 
Jc2\u + ω2 


c|£|2 


Diffuse photon-density waves possess many of the common wave characteristics, 
such as reflection, refraction, diffraction, and dispersion. For example, SnelFs law 
is applicable to diffuse photon-density waves: 


sin θ; λ; 
— r L = —. (11.25) 
sin Θ, \ t 


Here, Θ,· and Θ, denote the angles of incidence and transmission, respectively; 
λ, and \ t denote the wavelengths of the diffuse photon-density waves in the 
incident and transmitted media, respectively. 


Because of its long wavelength (cm scale), a photon-density wave typically 
provides imaging in the near field, where the spatial resolution is related to the 
SNR rather than the wavelength. In far-field imaging, spatial resolution based on 
the Rayleigh criterion is related to ~ λ/2; yet, it can be improved to "superreso-
lution" by a factor related to the SNR as well. Ultimately, the resolution in either 
case is limited by the SNR. 


One must distinguish between an optical wave and a photon-density wave. The 
former is an electromagnetic vector wave, whereas the latter is a photon-density 
scalar wave. Note also that the latter is based on the former. Furthermore, their 
wavelengths and attenuation mechanisms are different. 


Example 11.1. Illustrate the null plane between two photon-density sources that 
are 180° out of phase. 


A representative MATLAB source code is shown below: 


c = 3e8 /1 .37; %m/s 
mua = 0.1E2; %/m 
mus = 10E2; %(/m) mus = mus', g = 0 
f = 200E6; %Hz 


D = 1/(3*(mua+mus)); %m 
k = sqrt(( -c*mua + i * 2 * p i * f ) / ( c * D ) ) ; %wave vector 


disp([ 'Absorpt ion coeff . mua (/cm) = ' , num2str(mua*1E-2)]) 
disp(['Reduced scatter ing coeff . mus'' (/cm) = ' , num2str(mus*1E-2)]) 
disp([ 'Frequency f (MHz) = ' , num2str( f*1E-6)] ) 
disp([ 'Wavelength (cm) = ' , num2st r (2*p i / rea l (k ) *1E2) ] ) 
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disp(['Decay const (cm) = ', num2str(1/imag(k)*1E2)]) 


xs = 1E-2; %(m) sources at (xs, 0) & (-xs, 0) 
yd = 3E-2; %(m) detector at (xd, yd) 
xd = (-3:0.02:3)*1E-2; %m 


r1 = sqrt((xd - xs).A2 + yd."2); % distance b/t -src & detector 
U1 = -exp(i*k*r1)./(4*pi*c*D*r1); % negative src 


r2 = sqrt((xd + xs)."2 + yd.A2); % distance b/t +src & detector 
U2 = exp(i*k*r2)./(4*pi*c*D*r2); 


figure(1) 
subplot(3,1,1) 
plOt([-XS xs]*1E2, [0, 0], '*', [0], [3], Ό', [0 0], [0 3]) 
text(-xs*1E2, 0.5, '+Source') 
text(+xs*1E2, 0.5, '-Source') 
text(0, 2.5, 'Scanning Detector') 
axis([-3 3 0 3]) 
xlabel('Source & Detector Positions (cm)') 
ylabel('y (cm)') 
title('Null line') 


subplot(3,1,2) 
plot(xd*1E2, abs(U1+U2)) 
xlabel('Detector position (cm)') 
ylabel('Amplitude') 


subplot(3,1,3) 
plot(xd*1E2, unwrap(angle(U1+U2))*180/pi) 
xlabel('Detector position (cm)') 
ylabel('Angle (deg)') 
grid 


figure(2) % optional 
r = (1:1:20)*1E-2; 
U = exp(i*k*r)./(4*pi*c*D*r); 
subplot(2,1,1) 
semilogy(r*1E2, abs(U)) 
xlabel('Source-detector distance (cm)') 
ylabel('Amplitude') 
title('Propagation of PDW) 


subplot(2,1,2) 
plot(r*1E2, unwrap(angle(U))*180/pi) 
xlabel('Source-detector distance (cm)') 
ylabel('Angle (deg)') 
grid 


The text output in MATLAB is shown below: 


Absorption coeff. mua (/cm) = 0.01 


Reduced scattering coeff. mus' (/cm) = 10 


Frequency f (MHz) = 200 
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Wavelength (cm) = 7.382 
Decay const (cm) = 0.9878 


The graphical output in MATLAB is shown in Figure 11.6. The detector is 
scanned along the y = 3 line. Because the two sources are 180° out of phase, 
the phase difference between any two points that are symmetric about the null 
plane must be 180°. 
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Figure 11.6. Illustration of the null plane—a null line in 2D space—in the antiphase 
dual-source response. 


11.7. FREQUENCY-DOMAIN THEORY: LINEAR IMAGE 
RECONSTRUCTION 


In this section, we illustrate frequency-domain image reconstruction in an infinite 
medium using a simple linear inverse theory. The object to be imaged is assumed 
to have absorption contrast only. The absorption coefficient μα(?) is expressed as 


Vatf) = μ*ο(?) + δμβ(Γ), (11.26) 
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where μαο(/) represents the background absorption coefficient and δμα(?) repre-
sents the differential absorption coefficient of the heterogeneities relative to the 
background. In the forward problem, the perturbation in photon density is calcu-
lated from presumed μαο(/) and δμα(?) values. In the inverse problem, δμ0(?) 
is calculated from the measured data. 


For simplicity, we define D as 1/(3μ^) in this section so that D does not 
depend on μα. We start by rewriting Eq. (11.14) as 


i Ί -. - 8(r — rs) (V2 + k2)UAC(r, rs) = -B ", (11.27) cD 


where rs denotes the location of the photon-density source. Substituting 
Eq. (11.26) into Eq. (11.15), we obtain 


Jfc2 = fcj + 0( r ) , (11.28) 


where 


Let 


2 = ζ £ μ ^ + ι ω > ( 1 ] 2 9 ) 
cD 


0Cr) = - ^ (H.30) 


UAC(r, rs) = U0(r, rs) + f/sc(r, r5), (11.31) 


where i/o represents the AC photon density in a homogeneous medium that has 
the background optical properties and Use represents the differential AC photon 
density due to the heterogeneities. 


Substituting Eq. (11.31) into Eq. (11.27) yields 


[V2 + kl + 0(f)] [U0(?, rs) + i/Sc(r, rs)] = - f l 8 ( r " r j ) . (11.32) 
cD 


The diffusion equation for Uo is given by 


(V2 + *g)l/o(r,r5) = - f l 8 ( r ^ r f ) > (11-33) 


Taking the difference between Eqs. (11.32) and (11.33), we obtain 


(V2 + *g)t/Sc(?, r5) = -O(r)[i /o(r, r,) + f/Sc(r, r,)]. (11.34) 


If δμα(?) «: μα0(?), we assume that the Born approximation, i/sc(?,?$) <3C 
£Λ)(/, Γ$)> is valid; hence, Eq. (11.34) becomes 


(V2 + k20)Usc(7, rs) = -O(r ) t / 0 ( r , rs), (11.35) 
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which can be solved by the following Green function method. For a point source 
in an infinite medium, Eq. (11.35) becomes 


(V2 +k$)G(r - rs) = -8 ( r - rs), (11.36) 


where G, referred to as a Green function, is given by 


G(r-rs) = ——————. (11.37) 
4π|Γ -rs\ 


The solution to Eq. (11.33) has a similar form: 


B txp(ik0\r-rs\) 
U0(r, rs) = — — - — — — — . (11.38) 


cD 4n\r-rs\ 


In response to the general forcing function on the right-hand side of Eq. (11.35), 
we have the following solution to the forward problem, based on Green's theorem: 


t/sc(r,r ,) = [ U0(r',rs)O(r')G(r-rf) dr'. (11.39) 


Because G is shift-invariant, this expression is actually equivalent to a con-
volution. The physical meaning of the Green function method is graphically 
represented in Figure 11.7. As can be seen, Uo(r', rs) represents the light propa-
gated from the source to a point inside the object; Uo(r', rs)0(rf) serves as a new 
source for further light propagation to the detector; the propagation is described 
by G(r - ?). 


To demonstrate the inverse problem for image reconstruction, we discretize 
Eq. (11.39) in an xy plane: 


Use (rj, ?„·) = £ £ i/o (r;„, rsi) O (?'mn) G (?, - ?mn) h\ (11.40) 


Here, i is an index of the source, j is an index of the detector, m and n are 
indices of the coordinates of the perturbations, and h is the size of each grid 


Source 


U0(r ,rs) 


0(r) 


Figure 11.7. Illustration of the Green function method. 
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element (for simplicity, assumed to be cubical). Although the sources, perturba-
tions, and detectors are restricted to the plane of interest, photons still propagate 
in 3D space. 


We rewrite Eq. (11.40) as 


Use (rj, ?si) = E Σ WV.mn*\La {?'„„) . 0 1 41) 
m n 


where 


Wilmn = - i /o {?„„, ?si) G (o - r'mn) h-. (11.42) 


To compress each pair of indices to a single index (analogous to counting the 
squares in a chessboard sequentially), we let 


/' = i + jNh (11.43) 


m — m + nNm, (11.44) 


where Nj is the range of / (the number of values represented by /) and Nm is 
the range of m. Thus, Eq. (11.41) becomes 


t/scO") - Σ Wrtm*[ia(r'm,), (11.45) 
m' 


which can be rewritten in matrix form with separated real and imaginary parts: 


"Re{i/scO 
Jm{i/sc(i /x l | - | τ - ' " ' - -1 i L-f-αν». /J, (11-46) 


or 


[t/scl = [ΗΊ[δμβ]. (Π.47) 


Of course, we can also use complex matrices directly. For matrix [W], the number 
of rows Nr equals twice the range of /' or twice the number of measurements, 
and the number of columns Nc equals the range of m' or the number of volume 
elements (voxels). Matrix [W], which is generally nonsquare, can be inverted to 
solve for [δμβ]: 


[h[La] = [W]-
l[Uscl (H.48) 


Here, [δμα] represents the image that we are pursuing. Matrix [W] is referred 
to as the Jacobian matrix; it is also referred to as the sensitivity matrix because 
it relates the changes in the measurements to the perturbations in the optical 
properties. The forward problem provides matrix [W], For regular boundaries 








FREQUENCY-DOMAIN THEORY: LINEAR IMAGE RECONSTRUCTION 2 6 5 


such as semiinfinite, cylindrical, and spherical ones, [W] can be computed by 
analytical methods. In general, however, [W] must be computed by numerical 
methods. 


Singular-value decomposition (SVD) can be used to invert [W], First, [W] is 
decomposed into three matrices as follows: 


mg(wMNr,Nc[V]
T


Nc%Nc. (Π.49) 


The middle matrix is diagonal; the subscripts describe the matrix dimensions; 
[U] and [V] have the following orthogonality: 


[Uf[U] = [Il[V]T[V] = Ul (Π.50) 


where [/] denotes identity matrix. Then, inversion leads to 


[W]~l = {[V] r}-1[diag(u; i ) r I [ l / r 1 - [V] L a g (±) [U]T. (11.51) 


To avoid overflow, we set 1/WJ to zero when Wj is less than a preset threshold. 
Alternatively, we can use the following smoothing algorithm: 


w'=Wj + —9 (11.52) 
wj 


where σ is a free parameter. Both methods trade accuracy for stability. 
Iterative methods, such as the algebraic reconstruction technique (ART) or the 


simultaneous iterative reconstruction technique (SIRT) (Appendix 11 A), may be 
used to solve Eq. (11.47) as well. The advantage of an iterative method over the 
preceding matrix inversion method is that the former permits hard constraints. 
For instance, because the reconstructed absorption coefficient should always be 
nonnegative, a negative value in any voxel can be set to zero at the end of each 
iteration cycle. 


Up until this point, only an infinite medium has been considered. With a finite 
medium, an extrapolated boundary condition can be used (see Chapter 5). The 
Green function approach takes the following form instead of Eq. (11.39): 


Usc(r) = [ U0(r',rs)O(r')G(r,r')dr'+ -j-
Jv 4π 


- _, dUsc -., dGl 
G(r,r')-^-Usc(7)—\dS. (11.53) /.[■ 


Here, S denotes the extrapolated boundary, V denotes the volume enclosed by 
5, and n' denotes the outward surface normal. 


Since t/sc is approximately zero on the extrapolated boundary, the surface 
integral of the second term in the brackets in Eq. (11.53) vanishes. If we choose 
a Green's function that satisfies the homogeneous Dirichlet boundary condition 
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(namely, G is zero on the extrapolated boundary), the surface integral of the 
first term in the brackets in Eq. (11.53) vanishes as well. Therefore, Eq. (11.53) 
becomes 


Usc(r)= I Uo{r\rs)0{r')G{r,r')dr'. (11.54) 
Jv 


It is important to note that the G here is different from the G for an infinite 
medium. The Green functions that satisfy the homogeneous Dirichlet boundary 
condition for some regular geometric shapes (e.g., semiinfinite, spherical, cylin-
drical spaces) are analytically available. Green's functions for more complex 
geometric shapes, however, can be computed only using numerical methods. 
Because no perturbation of optical properties exists outside the real boundary, 
the volume integration outside the original object is zero and, therefore, V can 
be reduced to the actual volume of the object. 


Example 11.2. Derive Eq. (11.39). 


Since the system is linear, a linear operator £ can be used to represent the system 
as follows: 


G(r-rs) = £{h(r-rs)l (11.55) 


Usc(r,rs) = £{O(r)U0(r,rs)}. (11.56) 


A general forcing function 0(r)Uo(r, rs) can be expanded using 5(r — rs) 


O(r)U0(r, rs) = f O(r')U0(r', rs)h(r - ?) dr\ (11.57) 


which is based on the sifting property of the delta function (as if a point were 
sifted out of a function). 


Substituting Eq. (11.57) into Eq. (11.56) and operating £ on the r-dependent 
quantities only, we obtain 


f/sc(r, rs) = £{O(r)£/0(r, rs)} = Α [ O(r')U0(r\ rs)h(jr - ΐ') dA 


- [ 0(r')Uo(r\rs)£{h(r-r')}dr' (11.58) 


= f O(r')U0(r\rs)G(r-r')dr'. 


Example 11.3. Implement the linear inverse algorithm in C. 


The following data structure is defined (the source code is available on the Web 
at ftp://ftp.wiley.com/public/sci_tech_med/biomedical_optics): 
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typedef struct { 
double f; /* frequency (Hz). */ 
double c; /* speed of light in medium (cm/s). */ 
double h; /* grid size (cm), dx = dy = dz = h. */ 
int N; /* NxN grid. */ 
int gap; /* gap between src/det & boundary (grid). */ 
double muaO; /* mua of background (/cm). */ 
double musO; /* mus' of background (/cm). */ 


int obj_x, obj_y, obj_size; /* object location and size in grid. */ 
double dmua; /* delta mua of object (/cm). */ 
} ParamStru; 


For the following parameters, the reconstructed image is shown in Figure 11.8: 


void SetParam(ParamStru *par) 
{ 
par->f = 500e6; 
par->c = 3E10 / 1.37; 
par->h = 0.2; 
par->N = 20; /* number of voxels in each direction. */ 
par->gap = 3; 
par->muaO = 0.1; 
par->musO = 10; 


par->obj_x = 12; 
par->obj_y = 6; 
par->obj_size = 2; 
par->dmua = 0.01; 


} 


If the frequency is set to zero, the AC photon-density wave reduces to DC. 
The corresponding reconstructed image is shown in Figure 11.9. 


11.8. FREQUENCY-DOMAIN THEORY: GENERAL IMAGE 
RECONSTRUCTION 


In this section, we formulate and solve a general frequency-domain imaging 
problem in an infinite medium. The goal is to map both the absorption coefficient 
\\,a{?) and the reduced scattering coefficient \i's{r) from the measured photon-
density distribution. 


11.8.1. Problem Formulation 


The starting point is again the time-dependent diffusion equation for a single fre-
quency. From Eq. (11.4), the AC component of the photon-density wave [UAC(?)] 
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Figure 11.8. Reconstructed image based on simulated frequency-domain data in an infi-
nite medium. 
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Figure 11.9. Reconstructed image based on simulated DC data in an infinite medium. 
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from a point source Bh(r — rs) satisfies 


cV · [D(r)Vi/AC(r)] - [c[ia(r) - iü>]t/Ac(r) = -Bh(r - rs). (11.59) 


Since [i's(r) is implicit in this equation, we reconstruct D(r) and μα(?), from 
which [i's(r) can be obtained. 


As in the previous section, D(r) and μα(?) are decomposed as 


D(r) = D0 + hD(r), (11.60) 


μ«(?) = μαο + δμα(?), (11.61) 


where Do and μαο represent the constant background optical properties and 
hμa(r) and hD(r) represent the differential optical properties of the hetero-
geneities relative to the background. We duplicate Eq. (11.31) here: 


i/Ac(r, rs) = £/0(r, rs) + £/Sc(r, r5). (11.62) 


Substituting Eqs. (11.60)—(11.62) into Eq. (11.59), we obtain a differential equa-
tion for t/sc> the solution of which is based on the Green function method: 


- - f δμα(Γ) _ _ _ ^ 
t/scfo/, r,) = - / —-—G0(rd , r)UAc(r, rs)dr 


3 °° (11.63) 
+ / - ^ ν σ 0 ( Γ ^ Γ ) . ν ΐ / Α € ( Γ , Γ , ) £ / Γ . 


Here, r</ denotes the location of the detector, r denotes a position within the 
object to be imaged, and Go denotes the Green function associated with the 
diffusion equation for a homogeneous medium that has the background optical 
properties. The integrals presented above are 3D over the entire object*. The first 
integral is what we obtained in the previous section from perturbation δμα. The 
second integral is the contribution from perturbation hD. 


Experimentally, we measure a quantity directly related to (/AC- If the back-
ground optical properties are known, we can compute U$. Next, we subtract 
UQ from UAC to yield Use- Then, from Eq. (11.63), we solve for hμa and δ£), 
which represent two images of different contrasts. Although hμa and hD appear 
in Eq. (11.63) in apparent linear form, this imaging problem is intrinsically non-
linear because i/Ac is an implicit function of hμa and hD. 


Example 11.4. Derive Eq. (11.63). 


Substituting Eqs. (11.60) and (11.61) into Eq. (11.59), we obtain 


cD0V
2UAC + cV · [hD VUAC] - [c([ia0 + hμa) - ico]UAC = -Bh(r - rs). 


(11.64) 
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In a homogeneous medium with the background optical properties, Eq. (11.64) 
becomes 


cD0V
2U0 - (c[ia0 - ίω)ϋ0 = -Bh(r - rs). (11.65) 


Subtracting Eq. (11.65) from Eq. (11.64) and using Eq. (11.62), we obtain 


V2£/sc + k2Usc = ^ ^ A C - TJ-V . (8DV£/AC), (Π.66) 
L>0> L>0 


where ko is given by Eq. (11.29). Equation (11.66) is a Helmholtz equation and 
can be solved using the Green function method. 


The Green function that satisfies differential equation 


V2G0 + k
2
0G0 = -H?d-?) (H.67) 


is given by 


- _ expO'fcnliv/ — r\) 
G0(rd, r) = F ; ™d ^ " . (11.68) 4n\rd-r\ 


Thus, the solution to Eq. (11.66) is 


- - f &ΜΆ(?) - -» _ _ _ 
Usc(rd,rs) = - I — — G 0 ( r d , r)UAC(r, rs)dr 


Do! 
+ —] V 'V>D(r)VUAC(r,rs)]G0(rd,r)dr. (11.69) 


The second integral on the right-hand side is rewritten as 


- ^ ^ V . [hD(?)VUAC(7, rs)]G0(rd, r) dr 


= ^ f V5D(r) · Vi/AC(r, rs)G0(rd, r)dr (11.70) 


+ -J- [hD(?)V2UAc(?,rs)Go(?d,7)d?. 


According to Green's second identity 


I (uV2v + Vw · Vv)dr = <b uVv -ndS, (11.71) 
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where S is an arbitrary surface that encloses the volume to be imaged and n is 
the surface normal, the second integral on the right-hand side of Eq. (11.70) is 
expressed as 


1 
/hD(r)V2OkC(rJs)Go(rdrr)d7 


(11.72) 
= Ϊ Γ / [ S D ( ? ) G o ( ^ ' ^ I ^ A C ^ rs) dr 


= J _ I [W(r)G0(rd9 r)]VI/Ac(r, rs) · n dS 
A) Js 


~Έ~0ί
 V [ 8 D ( ? ) G o ( ^ · ? ) ] ' W A C ( ? ' ?*>rf?· 


As S approaches infinity, the surface integral in Eq. (11.72) vanishes, which 
leads to 


^ j hD(r)V2f/AC(?, r JGoir j , r) rfr 


= - 7 ^ - [ V[*D<r)Go(jrd,r)].VUAC(r,rs)dr 
D


{°
J (11.73) 


= -jj-f *D(r)lVG0(rd, r) · Vt/AC(r, r , ) ]dr 


- ^ / G ° f o ' r)[V&D(r) · Vi/AC(r, r,)]rfr. 


The second term on the right-hand side of Eq. (11.73) cancels out the first term 
on the right-hand side of Eq. (11.70); thus, Eq. (11.69) becomes 


- - f δμα(Γ) -» - -» -
t / s c f o , ^ ) = - / ———G0(rd,r)UAC(r,rs)dr 


(11.74) 
+ ^ - f 8D(;)[VGo(^, r) · V£/AC(r, ?,)]</?, 


which is Eq. (11.63). 


11.8.2. Linearized Problem 


Although nonlinear with respect to the optical properties, the solution given by 
Eq. (11.63) can be linearized when the heterogeneity is weak. In this case, the 
Born approximation Use ^ ^o is assumed; hence, i/Ac on the right-hand side 
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of Eq. (11.63) can be replaced by i/o, which can be computed if μ0ο and Do are 
known. Consequently, Eq. (11.63) can be linearized and discretized to 


Nv 


Uscfa, rs) = Σ IWa.Maffj) + WsjhD(rj)l (11.75) 
7 = 1 


Here, the summation is over all Ny voxels within the object to be imaged; Waj 
and Wsj represent weights 


Waj =
 J J - , (11.76) 


Do 
VGofa, rj) · VUotfj, rs)Ax Ay Az 


Dn 
WsJ = J ^ y? , (11.77) 


where AJC, Ay, and Az represent the sizes of the grid elements along the JC, y, 
and z directions, respectively. 


We rewrite Eq. (11.75) in the following matrix form 


[WaJi, WsJi) 
la(rj)'] _ 
5(0') J -


^ V | - [ ^ s c ( ^ / , ? , t ) ] (11.78) 


or 


[W][hx] = [l/scl. (Π.79) 


Here, subscript / is the index of the measurement with the source at position 
rsi and the detector at position r^·; subscript j is the index of the position 
within the object to be imaged. If Ns source positions and ND detector positions 
exist in the image acquisition, NM = Ns x ND measurements exist. Measurement 
column vector [£/sc] n a s NM elements; column vector [hx] has 2Ny elements 
since vectors [δμα] and [hD] are concatenated; thus, matrix [W^-has dimensions 
NM x 2Ny. Unknown vector [hx] can be solved from Eq. (11.79) using various 
mathematical methods. 


11.8.3. Nonlinear Problem 


When the perturbation is not small, the image reconstruction is nonlinear and is 
usually solved iteratively with the following steps: 


1. Assume the initial optical properties. 
2. Solve the forward problem. 
3. Calculate the error and check the convergence. If the error is sufficiently 


small, terminate the loop. Otherwise, continue to the next step. 
4. Set up the inverse problem to update the optical properties. 
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5. Solve the inverse problem. 
6. Update the optical properties and return to step 2. 


In step 1, the initial optical properties are assumed. Usually, a homogeneous 
distribution of average optical properties is judiciously selected. 


In step 2, the forward problem is solved with the current optical properties 
to calculate the diffuse photon density Uc at all detection locations for 
each source position. The finite-element or the finite-difference method can 
provide a solution to the forward problem on the basis of the diffusion 
equation. For finite objects, boundary conditions must be imposed. 


In step 3, the χ2 error is typically calculated as follows: 


2 ^[Uc(rdi,rsi) - UM(rdi,rsi)'\
2 


x = ; C [ J . <ll-8°) 
where UM denotes the measured diffuse photon density and σ, denotes the 
ith measurement error. If χ2 < ε, where ε is a predefined small quantity, 
the problem has converged, and the looping is terminated. Otherwise, the 
looping proceeds to step 4. 


In step 4, an inverse problem is set up to update the optical properties. Rather 
than another random assumption, an optimal update of the optical properties 
is computed by accounting for the difference between Uc and UM- Since 
the goal is to reach UM from the current Uc, we expand UM to the first 
order by a Taylor series in matrix form: 


[UM] = [UC] + \^f\ [Δμα] + Γ ^ Ι [AD], (11.81) 


where 


[dUcl AxAyAz _ ^ _ _ 
k - M = jr—Go(rdi,rj)Uc(rj,rsi), (11.82) ί 9 μ β ! 7 A) 


[JD\ = D VGo(rdi,rj)-VUc(rj,rsi). (11.83) 


Here, vectors [UM] and [Uc] have dimension NM\ vectors [Δμα] and [AD] 
have dimension Ny and denote the differential updates for μα and D, 
respectively; matrices [3i/c/3|xfl] and [dUc/dD] have dimensions NM X 
Ny. From Eq. (11.81), the inverse problem can be formulated as 


|~Δμα] _ 
L A D J -[J]\ Λ n = WM ~ Ucl (H.84) 
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The Jacobian matrix is 


m = 


'Wc' 
d\ia 
dUc 
dD . 


(11.85) 


The inverse problem in Eq. (11.84) is a linearized problem, which is anal-
ogous to Eq. (11.78). 


In step 5, Eq. (11.84) is solved for [Δμα] and [AD] with mathematical tech-
niques to be discussed in the following section. 


In step 6, the optical properties are updated with [Αμα] and [AD]. The looping 
then returns to step 2. 


Although the entire problem is nonlinear, each iteration cycle is linear. Thus, the 
nonlinear problem is solved by a series of linear steps. To understand this concept 
by analogy, draw a parabola with the minimum slightly above the abscissa and 
the opening facing up. Try to reach the minimum from a higher point on the 
curve by searching along the local tangent, which is a linear step. Iterate the 
linear search to approach the neighborhood of the minimum. 


11.8.4. Inverse Method 


Step 5 is an inverse mathematical problem. The Jacobian matrix can be con-
structed explicitly with either the direct or the adjoint method. In the direct 
method, the forward problem calculates the derivatives of the matrix elements. 
We write the forward problem in operator form 


{A}[UC} = {S}, 


where [A] denotes the operator and {S} denotes the source. The following 
equations are solved for derivatives {dUc/d\ia} and{dUc/dD}: 


[A] 


{A} 


dUc 
3μα 


dUc 
dD 


ds_ 


dS 


JD 


dA 


dA 


d~D 


Wd 


{Uc 


(11.86) 


(11.87) 


In the adjoint method, the forward problem {A){t/c} = [S] is solved for Uc-
Next, the adjoint equation {A'}{i/c) = {S1} is solved for Green's function Go in 
response to a point source at a detector position. Then, the Jacobian matrix is 
computed by Eqs. (11.82) and (11.83). 


To solve Eq. (11.84), we must invert a nonsquare Jacobian matrix of dimen-
sions NM x 2NV. As a result of photon diffusion, the Jacobian matrix is 
ill-conditioned (nearly singular); hence, direct matrix inversion is unreliable. 
Usually, the Jacobian matrix is first multiplied by its transpose to form a square 
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matrix; accordingly, Eq. (11.84) becomes 


UfU] P ^ l = UY[UM ~ Ud (Π.88) 


However, square matrix [ / ] r [7] is still ill-conditioned. A regularization tech-
nique is usually used to improve stability at the expense of image quality as 
follows: 


(UfU] + r\r[Crf[Cr]) Γ ^ Ι - [J]T[UM - Ud (H.89) 


Here, ηΓ is the regularization parameter, which can be adjusted to control the 
stability of the inversion; [Cr] is the regularizing operator (sometimes simply the 
identity matrix). This regularized equation is usually solved using the conjugate-
gradient method. 


APPENDIX 11 A. ART AND SIRT 


If a unique solution exists for a set of linear equations, Ax = b, where A is a 
matrix with elements a/*,x is an n-tuple vector of unknowns, and b is an n-
tuple vector of measurements; then A must be a nonsingular square matrix of 
dimensions n x n. The goal is to solve for x iteratively. 


In the algebraic reconstruction technique (ART), the search typically starts 
from the origin; the iterative equation for element / of x is 


n 


Y^ajk(x£)j-i-bj 


ixf)j = (x-)j-i ~ ^—η ajh (11.90) 
Y^ajk<*jk 
k=\ 


Here, p is the index of iteration; j and k are the row and column indices of A; 
and i, j , k — 1, 2 , . . . , n. For brevity, (x£)o denotes the final search point before 
the current iteration. 


The first two movements of the iteration for n — 2 are illustrated in Fig-
ure 11.10, where the two lines represent X^ = 1 «i*** = b\ and ^ = 1 a^Xk — ̂ 2· 
In move 1, the search point moves from the current position (the origin, in this 
figure) perpendicularly to line 1 and reaches intersection (\p)j=\. In move 2, 
the search point moves from the current position perpendicularly to line 2 and 
reaches intersection (xp)7=2· These two moves complete the first iteration cycle 
for n — 2. The cycle is iterated until convergence is reached. 


If there are more equations than unknowns, the problem is overdetermined, 
and no unique solution exists. In this case, the solution of the ART oscillates in 
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2nd move 


Solution-


Figure 11.10. Illustration of ART. 


the vicinity of the "true solution." If there are more unknowns than equations, 
the solution converges to a subspace, for instance, a line for n — 2. 


The simultaneous iterative reconstruction technique (SIRT) is a variant of the 
ART. In each iteration cycle, n search points are first found by movements toward 
all the "lines" from the final search point before the current iteration: 


«>y - ('Do - —n 
Y^ajkajk 
k=\ 


cijij = 1,2, . . . , n . (11.91) 


Then, the final search point for this iteration cycle is the average of all n search 
points: 


*,'=ii>/v (11.92) 
7 = 1 


The SIRT in general yields better images than the ART does but has a slower 
convergence speed. 


PROBLEMS 


11.1 (a) On the basis of the diffusion theory for an infinite medium, derive 
the mean time of flight between the observation point and the isotropic 
point source 


<0 = 2(D + ry/^D)c 2Dc[\ + (r/δ)]' 
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where c is the speed of light in the scattering medium, r is the distance 
between the observation point and the source, and δ is the penetration 
depth, (b) Relate the mean path length of flight (p) with (t). (c) Show 
that (p) = (r2/2D) oc r2 if r « δ and (p) = (rh/2D) oc r given r » δ. 
//mte: Use fluence rate 


c ( r2 \ Φ(Γ , t) = ^ r exp I vinCt 1 


and current density R = — Dd<&/dr. Define 


I ίΦί/ί / tRdt 
(ί)Φ = ^γ and (t)R = *j . 


/ <$>dt / Rdt 
Define the differential path length as pd = —d\n R/d\ia, where R is the 
current density. We have R = — D(9/dr)0(r) , where Φ is the steady-
state fluence rate in response to an isotropic point source in an infinite 
medium: Φ ( Γ ) = exp(—\it^r)/{ATiDr). 


(a) Show that 


= 1 τ 2 [ 1 + 3 μ α Ρ ] 
Pd ~ 2 D + yft^Dr ' 


(b) Relate pd to (p) in Problem 11.1. 
(c) Show that R a exp (—\v^^r2) when r <̂C δ and R a exp(—\xeffr) 


when r ^> δ. 


A photon-density wave is generated from an isotropic point source in an 
infinite medium. 


(a) Show that the phase at distance r from the source is 


Γ Ar sinCc/2) 1 
Ψ ( Γ ) = arctan — — —— - Ar sin(x/2), 


[1 + Arcos(t/2)J 


where A = [(\iac)2 -f ω 2 ] 1 / 4 / ^ / ^ and τ = arctan[o)/^flc)]. 
(b) Plot Ψ ( Γ ) and ω(ί) versus ω e [10,100], where (/) is as defined in 


Problem 11.1. [Hint: Start with fluence rate Φ(Γ, ω) and current density 
R = -ϋ(3/3Γ)Φ(Γ,ω).] 


Use diffusion theory for an infinite scattering medium to plot the output as 
a function of time in MATLAB to graphically illustrate the three imaging 
modalities. 


5 Derive Eqs. (11.19) and (11.20). 
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11.6 Show that 


kr = 


k> = 


and 


(11.93) 


11.7 (a) Calculate the wavelength of a photon-density wave with the following 
parameters: frequency / = 200 MHz, \ia = 0 . 1 cm""1, μ̂  = 10 cm- 1 , 
index of refraction n — 1.37. (b) Plot the wavelength and k[ as a function 
of / in the range 100-1000 MHz. 


11.8 (a) Duplicate the figures presented in Example 11.1. Known parameters 
include μα =0 .1 cm- 1 , μ̂  = 10 cm- 1 , and frequency / = 200 MHz. 
(b) Find the location of the maximal amplitude. 


11.9 Generate a movie in MATLAB to demonstrate the propagation of a 
photon-density wave. 


11.10 Show Snell's law for photon-density waves. 


11.11 Derive the following diffuse photon-density wave image formation for-
mula for a spherical refracting surface: Xjn/5in -f Xout/50ut = (λϊη — 
Xout)/^· Here, \m is the wavelength in the incident medium, λοιη is 
the wavelength in the transmitted medium, Sm is the distance of object, 
Soui is the distance of image, and R is the radius of curvature. 


11.12 Derive the Rytov approximation counterpart of the Born approximation 
solution. In the Rytov approximation, the photon-density distribution is 
expressed as the product—instead of the sum—of the incident (homo-
geneous) and scattered (heterogeneous) parts: U(r, rs) = exp[wo(?, rs)+ 
"sc (^ *s)L where UQ(7, rs) = exp[wo(r, rs)]. Show that the solution is 


usc(rd,rs) = 
Uo(rd 


J f δμα(Γ) 
rd,rs)J D 


G(r -rd)U0(f,rs)dr. 


11.13 Derive the Green function for a photon-density wave in a semiinfinite 
scattering medium. The isotropic point source is one transport mean free 
path below the surface. Use the extrapolated boundary condition. 


11.14 Derive the Green function for a photon-density wave in a slab scattering 
medium. The isotropic point source is one transport mean free path below 
the surface. Use the extrapolated boundary condition. 








FURTHER READING 2 7 9 


11.15 Estimate the relative changes in the amplitude and the phase of a photon-
density wave when a small absorber within a breast is moved by a small 
distance. Use realistic parameters for the estimation. 


11.16 Rewrite the inverse algorithm in Section 11.7 in MATLAB or C / C + + . 
Explore whether the real part of Eq. (11.46) is sufficient to provide an 
image. 


11.17 Rewrite the inverse algorithm in Section 11.7 in MATLAB or C / C + + 
using ART and SIRT, respectively. 
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CHAPTER 12 


Photoacoustic Tomography 


12.1. INTRODUCTION 


The term photoacoustic tomography (PAT) refers to imaging that is based on 
the photoacoustic effect. Although the photoacoustic effect was first reported on 
by Alexander Graham Bell in 1880, PAT was invented only after the advent 
of ultrasonic transducers, computers, and lasers. In PAT, the object is usually 
irradiated by a short-pulsed laser beam. Some of the light is absorbed by the 
object and partially converted into heat. The heat is then further converted to a 
pressure rise via thermoelastic expansion. The pressure rise is propagated as an 
ultrasonic wave, which is referred to as a photoacoustic wave. The photoacoustic 
wave is detected by ultrasonic transducers and is used by a computer to form an 
image. 


12.2. MOTIVATION FOR PHOTOACOUSTIC TOMOGRAPHY 


The motivation for PAT is to combine the contrast of optical absorption with the 
spatial resolution of ultrasound for deep imaging in the optical quasidiffusive or 
diffusive regime. Optical absorption is desirable because of its high sensitivity to 
molecules such as oxygenated and deoxygenated hemoglobin. In Table 12.1, PAT 
is compared with optical coherence tomography (OCT; see Chapters 9 and 10), 
diffuse optical tomography (DOT; see Chapter 11), and ultrasonography (US). 
Because of the strong optical scattering, pure optical imaging in biological tis-
sue has either shallow imaging depth or low spatial resolution. Pure ultrasonic 
imaging can provide better resolution than pure optical imaging in the optical 
quasidiffusive or diffusive regime because ultrasonic scattering is two to three 
orders of magnitude weaker than optical scattering. Ultrasonic imaging, however, 
detects only mechanical properties and has weak contrast in early-stage tumors. 


PAT overcomes the limitations of existing pure optical and pure ultrasonic 
imaging; its contrast is based on optical absorption in the photoacoustic exci-
tation phase, whereas its resolution is derived from ultrasonic detection in the 
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TABLE 12.1. Comparison of Optical Coherence Tomography (OCT), Diffuse 
Optical Tomography (DOT), Ultrasonography (US) Operating at 5 MHz, and 
Photoacoustic Tomography (PAT) 


Property 


Contrast 


Imaging depth 


Resolution 


Speckle 
artifacts 


Scattering 
coefficient 


OCT 


Good 


Poor 
(—1 mm) 


Excellent 
(-0.01 mm) 


Strong 


Strong 
( -10 mm-1) 


DOT 


Excellent 


Good 
(-50 mm) 


Poor 
(—5 mm) 


None 


Strong 
(-10 mm" 


"Strong for the excitation light and weak for the 


■) 


US 


Poor for early 
cancers 


Excellent and 
scalable 
( -60 mm) 


Excellent and 
scalable 
(-0.3 mm) 


Strong 


Weak 
(-0.03 mm-1) 


photoacoustic wave. 


PAT 


Excellent 


Good and 
scalable 


Excellent and 
scalable 


None 


Mixed0 


photoacoustic emission phase. The image resolution, as well as the maximum 
imaging depth, is scalable with ultrasonic frequency within the reach of diffuse 
photons. As ultrasonic center frequency and bandwidth increase, spatial resolu-
tion improves at the expense of imaging depth. In addition, PAT provides images 
that are devoid of speckle artifacts, which are conspicuous in both OCT and US 
images. 


12.3. INITIAL PHOTOACOUSTIC PRESSURE 


Two important timescales exist in laser heating: 


1. The thermal relaxation time, which characterizes the thermal diffusion, is 
estimated by 


"Cth = 
otth 


(12.1) 


where ath is the thermal diffusivity (m2/s) and dc is the characteristic dimen-
sion of the heated region (the dimension of the structure of interest or the 
decay constant of the optical energy deposition, whichever is smaller). 
The stress relaxation time, which characterizes the pressure propagation, is 
given by 


(12.2) 


where vs is the speed of sound (—1480 m/s in water). 
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If the laser pulsewidth is much shorter than tth, the excitation is said to be 
in thermal confinement, and heat conduction is negligible during the laser pulse. 
Likewise, if the laser pulsewidth is much shorter than τν, the excitation is said 
to be in stress confinement, and stress propagation is negligible during the laser 
pulse. 


On laser excitation, the fractional volume expansion dV / V can be expressed as 


dV 
— = - κ ρ + β7\ (12.3) 


Here, κ denotes the isothermal compressibility (~5 x 10~10 Pa- 1 for water or 
soft tissue); β denotes the thermal coefficient of volume expansion (—4 x 10~4K_1 


for muscle); p and T denote the changes in pressure (Pa) and temperature (K), 
respectively. The isothermal compressibility κ can be expressed as 


CP 
K = - 2 F - <12-4> 


Here, p denotes the mass density (~1000 kg/m3 for water and soft tissue); Cp and 
Cy [~4000 J/(kg K) for muscle] denote the specific heat capacities at constant 
pressure and volume, respectively. 


If the laser excitation is in both the thermal and stress confinements, the frac-
tional volume expansion is negligible and the local pressure rise po immediately 
after the laser pulse can be derived from Eq. (12.3): 


Po=—, (12.5) 
K 


which can be rewritten as 


β 
Po = —μ-r)thAe. (12.6) 


Here, Ae is the specific optical absorption (J/m3) and η^ is the percentage that 
is converted into heat. We define the Grueneisen parameter (dimensionless) as 


- - ß -M (12.7) 
KpCV Cp 


For water and diluted aqueous solutions, Γ can be estimated by the following 
empirical formula: 


Vw(To) = 0.0043 + 0.0053Γ0, (12.8) 


where Γ0 is the temperature in degrees Celsius. At body temperature, rw(31°C) = 
0.20. From Eq. (12.7), Eq. (12.6) becomes 


Po = rr, thA, (12.9) 
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or 


Po = ri\ihVaF. (12.10) 


Here, μ^ is the optical absorption coefficient and F is the optical fluence (J/cm2). 


Example 12.1. Show that the dimensions of the energy density and the pressure 
are the same. 


J/m3 = N m/m3 = N/m2 = Pa. 


Note that 1 bar = 105 Pa. 


Example 12.2. Given dc = 0.15 cm and 15 μπι, compute xth and xs in soft tis-
sue. 


With the typical properties of soft tissue, Eqs. (12,1) and (12.2) predict the fol-
lowing values: 
For dc = 0.15 cm: 


(0.15 cm)2 


1.3 x 10~J cm2/s 
0.15 cm 


xs — = 1 μs. 
0.15 cm/μs 


For dc — 15 μιτι: 


(15 x 10-4cm)2 4 
xth = , ~— = 17 x 10 s, 


th 1.3 x 10-3 cm2/s 
15 x 10~4 cm 


xs = = 0.01 μβ. 0.15 cm/[i^> 


Example 12.3. Estimate the temperature and the pressure rises on a short-pulse 
laser excitation of soft tissue at body temperature with a fluence of 10 mJ/cm2. 
Assume μα =0 .1 cm- 1. 


Ae = 0.1 cm ' x 10 mJ/cm2 = 1 mJ/cm3 


Ae 1 mJ/cm3 


~ pC^ ~ 1 g/cm3 x 4 J g - 1 K ' 1 


p{) = VAe = 0.20 x 10 mbar = 2 mbar. 


= 0.25 mK, 


The results also indicate that for each mK (millikelvin) temperature rise, an 
8-mbar pressure rise is produced. 
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12.4. GENERAL PHOTOACOUSTIC EQUATION 


The photoacoustic wave generation and propagation in an inviscid medium is 
described by the following general photoacoustic equation (see Example 12.4): 


p(r,t) = —V- γ }, (12.11) 
vs 


where p(r,t) denotes the acoustic pressure at location r and time t and T denotes 
the temperature rise. The left-hand side of this equation describes the wave prop-
agation, whereas the right-hand side represents the source term. 


In thermal confinement, the thermal equation becomes 


dT(r,t) 
9CV I =H(r,t). (12.12) 


at 


Here, H(r,t) is the heating function defined as the thermal energy converted 
per unit volume and per unit time; it is related to the specific optical power 
deposition Ap by H = y\\^Ap and to the optical fluence rate Φ by H = ηηιμαΦ-
Substituting Eq. (12.12) into Eq. (12.11), we obtain the following less general 
photoacoustic equation: 


2 x , & dH 
p(7,t) = --^ — . (12.13) 


The source term is related to the first time derivative of H. Therefore, time-
invariant heating does not produce a pressure wave; only time-variant heating 
does. 


Sometimes, velocity potential φ„—which is related to p as follows—is used: 


P = -<>'-£. (12-14) 


Substituting Eq. (12.14) into Eq. (12.13) yields the following equation, which 
avoids the time derivative of H: 


Example 12.4. Derive the photoacoustic equation shown in Eq. (12.11) 


2 λ β 
φ„ = - £ - / / . (12.15) 


The two basic equations responsible for photoacoustic generation are the thermal 
expansion equation (generalized Hooke's law), 


V · ξ(?, t) = -κρ(τ, t) + βΓ(Γ, t) (12.16) 








2 8 8 PHOTOACOUSTIC TOMOGRAPHY 


and the linear inviscid force equation (the equation of motion) 


p-T2%{r,t) = -Vp(r,t), (12.17) 


where vector ξ denotes the medium displacement. The left-hand side of 
Eq. (12.16) represents the fractional volume expansion, while the right-hand side 
represents the two factors related to the volume expansion. The left-hand side of 
Eq. (12.17) represents the mass density times the acceleration, and the right-hand 
side represents the force applied per unit volume. Thus, Eq. (12.17) is an incar-
nation of Newton's second law. The reader can reduce the two equations above 
to their ID counterparts to understand their physical meanings more clearly. 


Taking the divergence of Eq. (12.17), we obtain 


a2 2 . 
p — [ V ^ ( r , 0 ] = - V 2 p C - , 0 . (12.18) 


Substituting Eq. (12.16) into Eq. (12.18) leads to Eq. (12.11), where vs = 1/^/pic 
is used. A more detailed derivation of the acoustic wave equation is shown in 
Appendix 12A. 


12.5. GENERAL FORWARD SOLUTION 


The general photoacoustic equation shown in Eq. (12.11) can be solved by the 
Green function approach (see Appendix 12B). Green's function is defined here 
as the response to a spatial and temporal impulse source term 


2 
1 G(?, t\ r \ t') = -5( r - r')h(t - r'), (12.19) 


where r' and t' denote the source location and time, respectively. In infinite 
space, where no boundary exists, Green's function is given by 


lit-t'-ψ) 
G(r, t; r', t') = v J \ (12.20) 


4n\r -r'\ 


which represents an impulse diverging spherical wave. The following reciprocity 
relation holds: 


G(r, t- r', t') = G(?\ -t'; r, -t). (12.21) 


To see this relationship more clearly, one observes G(f, t\ rf, 0) = G(rf, 0; r, — t) 
by setting t' — 0. 
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The physical meaning of Green's function should be interpreted carefully. A 
spatial delta function in the source term of the photoacoustic equation simply 
represents a point acoustic source. A temporal delta function in the source term, 
however, is translated into a step heating function or a ramp temperature rise for 
the following reason; the source term of the photoacoustic equation is proportional 
to the first time derivative of the heating function in thermal confinement or the 
second time derivative of the temperature in general. In other words, Green's 
function represents the response of a point absorber to step heating, rather than 
impulse heating. 


Applying the Green function approach to Eq. (12.11) yields 


p(r,t)=[ dt' f ά?0{ΐ,ν,7',ί')^ r Q ° L ' ° , (12.22) 
J-oo J Kttf dt2 


which represents the pressure in response to an arbitrary source. Substituting 
Eq. (12.20) into Eq. (12.22) leads to 


2Trt' t
f 


(12.23) 
t'=t-\r-r'\/vs 


In thermal confinement, substituting Eq. (12.12) into Eq. (12.23) yields 


') p(r, t) = / dr ——- — 
F 4nCP J \r- r'\ dt' 


(12.24) 
t'=t-\f-r'\/vs 


or 


FK 4nCP dt J \7-r'\ \ ' vs J 


If the heating function can be decomposed as H(r',t') = Hs(r')H,(t'), 
Eq. (12.25) can be further simplified to 


μΚ AitCp dt J I? - r'\ \ vs J 


If H,(t') = δ(ί'), Eq. (12.26) provides the delta heating response of an arbitrary 
absorbing object as 


„(?.,) = - * - ! / > f t ^ ( , _ l i Z ^ (12.27) 
FK 4itCP dt J |r - r'| V Vs ) 


or 


^-hkkhl«^-*-^1)]· <l2'28) 
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where the quantity within the square brackets is the step heating response. From 
Eq. (12.9), the initial pressure response due to delta heating can be expressed as 


p0(r) = rHs(r'). (12.29) 


Using Eqs. (12.7) and (12.29), we rewrite Eq. (12.28) as 


P^^^ = 7 ^ 2 T \ — f ^ W ^ f i - ^ — ^ ) 1 . (12.30) 
4nvjdt lvst J \ vs ) \ 


Example 12.5. Derive Eq. (12.20) from Eq. (12.19). 


The following Fourier transformations are used: 


g(jfc, ω ) = II G(r, t\ r', /')exp[-/jfc · (r - r')]exp[i<o(f - t')]drdt, (12.31) 


1 = II 8(r - r')h(t - /') expl-ik · (r - r')J 


x exp[io)(f -t')]drdt. (12.32) 


Taking the Fourier transformation of both sides of Eq. (12.19) yields 


g(fc,ü)) = — - L — . (12.33) 
&z — (joz/vf 


Substituting this equation into the following inverse Fourier transformation 


G(r, t\ r\ t') = ——- / / g(fc, ω) exp[/fc · (r - r')] exp[-/oo(f - ?')] άω dk, 
(2π)4 J J 


(12.34) 
we obtain 


G(F''; ''''> = ü b / / ^ κ exp[/* ■Cr - r)] 
x exp[-/oo(i - t')]du> dk. (12.35) 


The integral on the right-hand side involves singularities at k = ±ω/υν , but it 
can be evaluated by Cauchy's contour integration: 


ff exp(ifc · ξ - / ω τ ) r 


_ /*/· exp(/& · ξ - /ν,τω/υ,) / ω \ -. 
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n ■ f / Γ r exp(-/i;,/cx)-exp(/u9/:T) r = 2nivs I βχρ(ικ·ξ) — dk 
2k 


Ιπνχ I expO/c-ξ) dk. (12.36) 


Here, ξ = r — r' and τ = / — t'. Since dfc = Ink2 sin0 t/θ d/c in spherical coor-
dinates, we derive 


G(r,t;r\tf) = — r̂ / / &exp(/£^cos6) sin(uvÄ:T) sin0 dQ dk 
4π2 y0 Jo 


= ^— / [exp(—/£ξ) — exp(ik%)]sin(vskx) dk 
4πζξ/ Jo 


= r - ^ / sin(/^)sin(i;,fcx)</fc 


= — Γ 
- e x p | 


1 
4π% 


ivsk(x I 


ivsk I τ H j | d(vsk] 


[·κ):·κ): 
- ^ Κ - ' - ! ^ ) - ( - ' + Ε Ϊ 3 ) : 


(12.37) 


The second term on the right-hand side of this equation violates causality because 
the signal detected at distance \r — rf\ from f' can take place only when t > t'\ 
thus, it must be dropped. As a result, we reach Eq. (12.20). 


Example 12.6. From the scalar wave equation, generalize the reciprocity relation 
to a finite medium. 


The Green function for a scalar wave equation satisfies the following differential 
equation: 


\ vjdt2) 
G(r, t; r', t') = -S(r - r')h(t - t'), (12.38) 


where location r' and time t' represent the source point and r and t denote the 
observation point. Time reversal of Eq. (12.38) leads to 


V vjdt2) 
G(r, -t; r", -t") = -h(r - r)h(t" - t). (12.39) 
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Multiplying Eq. (12.38) by G(?, -t; r", - f " ) , multiplying Eq. (12.39) by 
G(r,t',r',tr), subtracting the two, and integrating over the volume of investi-
gation V and over time t from —oo to /max with tmax > max(i', t"), we obtain 


/


'max Γ Γ 


<// / rf? C(r, f ; r ' , / ' )V2G(r,-
-oo JV L 


-t;r , - i ) 


, · Z" _ , " \ V 7 2 G(r, -t\r", - r ) V z G ( r , i ; F , f ' ) 


1 32 


;G(r, f, r', t')—rG(r, -t; 7", -t") vt dt
2 


l d2 
+ -=G(r, -t; r", - < " ) - r C ( r , f; r', ί') 


υί 3ί
2 


(12.40) 


(r , —χ ; r , —ί ) - G(r , r ; r , f ) . 


Note that 


G(r, t\ r\ t')V2G{7, - r ; r", - r " ) - G(?, - / ; r", - i")V2G(r , /; r', t') 


= V · [G(F, /; r , OVG(r , -f; r", - Γ ) 


- G(r, -t\ r", -t")VG{r, t\ r\ /')] (12.41) 


and 


d2 d2 


-G(/% f; r', *') — G(r, -t; r", -t") + G(?, -f; r", - f") — G ( r , r; r', f') 


8i 
G(r,t\r,t') — G{r,-t\r\-t") 


dt 


+ G(r,-f,r",-t") — G(r,f,r',t') 
at 


(12.42) 


Substituting Eqs. (12.41) and (12.42) into Eq. (12.41) and applying Green's 
theorem, we obtain 


/


'max f 


dt / dS-[G(r,t;r',t')VG(. 
-oo J S 


r, —1\ r ,—t ) 
-oo J S 


- G(r, -t\ 7", -f")VG(r, f; r', i')] 


«,2 Λ + — / dr - G ( r , i; r \ t) — G(ry -t; r\ -t") (12.43) 


+ G(r, -t\ r \ -t") — G{r, t\ r\ f) 
dt 


G f < J " Jt\ r^ /■~,i Ji ~*i J\ 
(r ,-t \r , — t ) — G(r ,t ; r , t ) 
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where S is an arbitrary surface enclosing V. The first integral on the left-hand side 
vanishes because both Green functions satisfy the same homogeneous boundary 
condition (either G or its normal gradient is zero) on S. The second integral 
also vanishes because both G(r, t = —oo; r', tf) and G(r, —t — — tmax\ r"', —i"), 
where —oo < /' and — /max < — /", as well as their time derivatives, must be zero 
as required by causality. Thus, Eq. (12.44) becomes 


G(r\ -t'\ r", -t") = G{r", t"\ r', t'), (12.44) 


which is the reciprocity relation. 


12.6. DELTA-PULSE EXCITATION OF A SLAB 


When a delta excitation pulse heats up a slab of thickness d (Figure 12.1), an 
initial pressure po is first built up within the slab and then propagated out-
ward in both the positive and the negative z directions. The pressure distri-
bution can be derived by Eq. (12.30), where the integral over the volume is 
converted into an integral over a solid angle as shown in Figure 12.1. The 
solid angle is subtended by a section of the spherical shell of radius vst from 
observation point r = (0, 0, z), where the section is the intersection with the 
slab. 


We first consider an observation point on the positive z axis (z > 0). When 
the observation point is outside the slab (z > d/2), three cases are considered in 
terms of the propagation time: 


When vst < z — d/2, the spherical shell does not touch the slab; thus, 
P(z, t) = 0. 


When z — d/2 < vst < z 4- d/2, the spherical shell intersects the near edge of 
the slab at polar angle Θ with respect to the negative z axis. The pressure 


d 


1st 


d/2 z-d/2 


Figure 12.1. Diagram for a slab object. 
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distribution is calculated as follows: 


Piz,t) = ~—Ύ- — / dr' pohlt-1 ί 


P° d P / .-/ *, , , - I dr ö(vst - I 4πυ? 3/ r|) 


77 r) Γ 1 Γ Γ Ί 
= Γ 1 7 " / / (υ,025ΐηθ£/θί/φ 


(12.45) 


/ (I - COS0)] = 
2 dt 2 dt 


Po 
2 ' 


When vst > z + d/2, the spherical shell intersects the far edge of the slab at 
polar angle θ' as well, and we have 


p(z,t) = -p-2^\- f f (vstf sine de </φ 
4nvjdt It Jo JQ> 


2 dt 


2 dt 


[ i (cos0 '-cos0)] 


[/z+d/2 z-d/2\ 


L V *>■** Vst ) 
0. (12.46) 


When the observation point is inside the slab (0 < z < d/2), Eq. (12.45) can 
still be used. 


When vst < d/2 — z, the upper limit for the integral over Θ in Eq. (12.45) 
becomes π because the spherical shell is totally within the slab; as a result, 
p(z,t) = p0. 


When d/2 — z < vst < d/2 + z, the upper limit for the integral over Θ in 
Eq. (12.45) becomes 


= cos 
z-d/2 


Vst 


as a result, p(z, 0 = po/2. 
When vst > d/2 -f z, as in Eq. (12.46), we have /?(z, 0 = 0. 


For z < 0, the results are similar owing to symmetry. 
In summary, the initial pressure distribution can be rewritten as 


Po(z) = PoU (ζ + γ \ ν ( - * + γ) ' ( l 2 · 4 7 ) 
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where U is the Heaviside function defined as 


f 1 for z > 0, 
^ ω = | θ for z < 0 . ( 1 2 4 8 ) 


Consequently, the pressure distribution at any later time can be expressed as 


P(z, t) = -p0(z - vst) + -po(z + vst). (12.49) 


The first term on the right-hand side represents a right-propagating (along the 
+z axis) plane wave and the second term, a left-propagating (along the — z 
axis) plane wave. The physical meaning of Eq. (12.49) is interpreted as follows. 
Pressure po is generated within the slab on delta heating. Immediately thereafter, 
po is split into two plane waves, each having a magnitude of ρ$/2 but propagating 
in opposite directions. 


Example 12.7. Plot snapshots of the propagating pressure on the basis of 
Eq. (12.49). 


The following MATLAB code produces Figure 12.2; the partial pressures in 
Eq. (12.49) are denoted by ppos (/?+) and pneg (/?_), respectively: 


% Photoacoustic signal from a homogeneously heated slab 
% Use SI units 


clear all 
vs = 1500; 
p0 = 1; 
d = 1E-3; 
dhalf = d/2; 
zmax = 2; 
z = linspace(-zmax, zmax, 1000)*d; 


figure(1) 
elf 


i_axis = 1; 
for t = [0:1/2:1, 2]*dhalf/vs 


ppos = p0/2.*heaviside(z-(-dhalf+vs*t)).*heaviside(dhalf+vs*t-z); 
pneg = p0/2.*heaviside(z-(-dhalf-vs*t)).*heaviside(dhalf-vs*t-z); 
p = ppos + pneg; 


subplot(4, 2, i_axis, 'align') 
plot(z/d, ppos/ρθ, 'k-', z/d, pneg/ρθ, 'k--') 
tick = [.015 .025]; 
set(0,'DefaultAxesTickLength',tick) 
title(['\itt\rm = ', num2str(vs*t/d), '\itxd rm/ itv_s']) 
axis([-zmax, zmax, 0, 1.1]) 
if (iaxis == 7) 
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x l a b e l ( , \ i t z \ r m / \ i t d ' ) 
end 
y l a b e l ( ' P a r t i a l p ressu res / \ i t { p } \ rm_0 ' ) 
i f ( i _ a x i s == 1) 


l e g e n d ( ' \ i t p \ r m _ + ' , ' \ i t p \ r m _ - ' ) 
end 
i _ax i s = i a x i s + 1 ; 


s u b p l o t ( 4 , 2 , i _ a x i s , ' a l i g n ' ) 
p l o t ( z / d , ρ/ρθ, ' k - ' ) 
t i ck = [.015 .025] ; 
set(0, 'DefaultAxesTickLength', t ick) 
t i t l e ( [ ' \ i t t \ r m = ' , num2str(vs*t/d), ' \ i t xd \ rm / \ i t v_s ' ] ) 
axis([-zmax, zmax, 0, 1.1]) 
i f ( i_axis == 8) 


x l a b e l ( ' \ i t z \ r m / \ i t d ' ) 
end 
y labe l ( 'Tota l pressure/\it{p}\rm_0') 
i_axis = i_axis + 1; 


end 


We can also make a movie showing the pressure propagation using the fol-
lowing MATLAB script: 


% Photoacoust ic s i g n a l from a homogeneously heated s lab 
% Use SI u n i t s 


fig=figure(1); 
set(fig,'DoubleBuffer','on'); % Flash-free rendering for animations 


clear all 
vs = 1500; 
PO = 1; 
d = 1E-3; 
dhalf = d/2; 
zmax = 2; 
z = linspace(-zmax, zmax, 1000)*d; 


mov = avifile('Example07_PA_Slab.avi') 


for t = [0:0.1:2]*dhalf/vs 
ppos = p0/2.*heaviside(z-(-dhalf+vs*t)).*heaviside(dhalf+vs*t-z); 
pneg = p0/2.*heaviside(z-(-dhalf-vs*t)).*heaviside(dhalf-vs*t-z); 
p = ppos + pneg; 


subplot(1, 2, 1) 
hold off; 
plot(z/d, ppos/ρθ, 'k-', z/d, pneg/ρθ, 'k--') 
grid 
axis([-zmax, zmax, 0, 1.1]) 
xlabel('\itz/d') 
ylabel('Partial pressures/\itp\rm_0') 
legend('\itp\rm_+', ' \itp\rm_-') 
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subplot(1, 2, 2) 
hold off; 
plot(z/d, ρ/ρθ, 'k-') 
grid 
axis([-zmax, zmax, 0, 1.1]) 
xlabelCz/d') 
ylabel('Total pressure/\itp\rm_0') 
pause(O.OI) 


mov = addframe(mov,getframe(gcf)); 
end 


mov = close(mov); 


12.7, DELTA-PULSE EXCITATION OF A SPHERE 


When a sphere of radius Rs is heated up with a delta pulse, an initial pressure po is 
generated inside the sphere. As in the case of a slab, the pressure distribution can 
be derived from Eq. (12.30). However, the propagation involves spherical waves 
instead of plane waves. When the observation point is outside the sphere (r > Rs), 
three cases are considered according to the propagation time. Figure 12.3 shows 
part of a spherical shell of radius vst centered at the observation point. 


When vst < r — Rs, the spherical shell does not touch the heated spherical 
object; thus, p(r, t) = 0. 


When r — Rs < vst < r + Rs, the spherical shell intersects the heated spher-
ical object. Thus, the pressure distribution can be derived similarly as in 
Eq. (12.45): 


P<M) = y - [ , ( l -οοβθ)] = - - \t \X — JJ 


= ^(r-vst). (12.50) 


When vst > r -f Rs, the spherical shell passes the far edge of the heated 
spherical object and no longer intersects with the heated spherical object; 
thus, p(r, t) = 0. 


When the observation point is inside the sphere (r < Rs), the pressure distri-
bution can be derived similarly: 


When vst < Rs — r, the spherical shell is entirely enclosed by the heated 
spherical object, which means that θ = π; as a result, p(r, t) — p$. 


When Rs — r < vst < Rs +r, the spherical shell emerges out of the heated 
spherical object; the pressure distribution can be derived similarly as in 
Eq. (12.50): 


p{rj) = ^(r~vst). (12.51) 
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Figure 12.2. Snapshots of propagating pressure from a heated slab. 


Figure 12.3. Diagram for a heated spherical object. 
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When vst > Rs -f r, the spherical shell encloses the heated spherical object 
and no longer intersects with the heated spherical object; thus, p(r,t) = 0. 


The results listed above are summarized using the Heaviside function U as 


p(r, t) = p0\ U(RS - vst - r) + ^—^~U(r ~ \Rs ~ vst\)U(R5 + vst-r)\. 


(12.52) 


If we write the initial pressure as 


Po(r) = p0U(r)U(-r + Rs) for 0 < r < Rs, 


we have 


r + vst 
p(r, t) 


2r 
r — vst r — vst 


p0(r + vst) + ———p0(-r + υ50 + 2r 2r 


(12.53) 


/7o(̂  ~ vst). 
(12.54) 


The first term on the right-hand side represents a converging spherical wave; 
the second term represents a diverging spherical wave that originates from the 
initially converging wave propagating through the center; the third term represents 
a diverging spherical wave. On delta heating, an initial pressure po—which is 
constant across the entire heated sphere—is generated. This initial pressure is 
divided into two equal parts, each initiating a spherical wave. One travels inward 
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Figure 12.4. Bipolar (positive followed by negative) pressure profile from a heated sphere 
versus time. 
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as a converging spherical compression wave (first term), and the other travels 
outward as a diverging spherical compression wave (third term). When reaching 
the center of the heated spherical object, the converging spherical wave becomes 
a diverging spherical rarefaction wave (second term). 


Example 12.8. Plot pressure versus time on the basis of Eq. (12.54). 


The following MATLAB code produces Figure 12.4; the partial pressures in 
Eq. (12.54) are denoted by p in l , pinr, and pout, respectively: 


% Photoacoustic signal from a homogeneously heated sphere 
% Use SI units 


clear a l l 


vs = 1500; 
PO = 1; 
Rs = 0.5E-3; 


rd = 2*Rs; % Location of detector 
t = l inspace(0, (rd + 2*Rs)/vs, 1000); 


f igure(1) 
e l f 


p inl = p0/2*(1+vs*t . / rd).*heavis ide(rd+vs*t) .*heavis ide(Rs-rd-vs*t) ; 
pinr = p0/2*(1-vs*t . / rd) .*heavis ide(-rd+vs*t) .*heavis ide(Rs+rd-vs*t) ; 
pout = p0/2*(1-vs*t . / rd) .*heavis ide(rd-vs*t ) .*heavis ide(Rs-rd+vs*t) ; 
p = pinl + pinr + pout; 


p lo t (vs* t /Rs, p, ' k ' ) 
t i c k = [.015 .025] ; 
set(0, 'DefaultAxesTickLength', t ick) 
xlabel('Normalized time: \ i tv_s t \ rm/ \ i tR_s ' ) 
ylabel('Normalized pressure: \ i tp \ rm/\ i tp \ rm_0') 
t i t l e ( 'P ressure at \ i t r \rm= 2\i tR_s') 


Example 12.9. Plot snapshots of the propagating pressure on the basis of 
Eq. (12.54). 


The following MATLAB code produces Figure 12.5; the partial pressures in 
Eq. (12.54) are denoted by p in l , pinr , and pout, respectively. 


% Photoacoustic signal from a homogeneously heated sphere 
% Use SI units 


clear a l l 
vs = 1500; 
PO = 1; 
Rs = 0.5E-3; 
rmax = 4; 
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rmin = 1E-3*Rs; 
r = linspace(0, rmax*Rs, 1000) + rmin; 


theta = linspace(-pi/2, pi/2); 


figure(1) 
elf 


i_axis = 1; 
for t = [0:1/2:1, 2]*Rs/vs 


pin1 = p0/2*(1+vs*t./r).*heaviside(r+vs*t).*heaviside(Rs-r-vs*t); 
pinr = p0/2*(1-vs*t./r).*heaviside(-r+vs*t).*heaviside(Rs+r-vs*t); 
pout = p0/2*(1-vs*t./r).*heaviside(r-vs*t).*heaviside(Rs-r+vs*t); 
p = pinl + pinr + pout; 


subplot(4, 2, i_axis, 'align') 
hold off; 
plot(r/Rs, pin1/p0, 'k--', ... 


r/Rs, pinr/ρθ, 'k-.', ... 
r/Rs, pout/ρθ, 'k-', ... 
cos(theta), sin(theta), 'k-') 


tick = [.015 .025]; 
set(0,'DefaultAxesTickLength',tick) 
title(['t= ', num2str(vs*t/Rs), 'x\itR_s/v_s']) 
axis equal; 
axis([0, rmax, -2, 2]) 
ylabel('Partial pressures/\itp\rm_0') 
if (i_axis == 1) 


legend('p_{in1}', 'pjinr}', 'p_{out}') 
end 
if (i_axis == 7) 


xlabel('\itr/R_s') 
end 
iaxis = iaxis + 1; 


subplot(4, 2, iaxis, 'align') 
hold off; 
plot(r/Rs, ρ/ρθ, 'k-', cos(theta), sin(theta), 'k-') 
tick = [.015 .025]; 
set(0,'DefaultAxesTickLength',tick) 
title(['t = \ num2str(vs*t/Rs), 'x\itR_s/v_s']) 
axis equal; 
axis([0, rmax, -2, 2]) 
ylabel('Total pressure/\itp\rm_0') 
if (i_axis == 8) 


xlabel('\itr/R_s') 
end 
i_axis = iaxis + 1; 
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Figure 12.5. Snapshots of propagating pressure from a heated sphere. 


12.8. FINITE-DURATION PULSE EXCITATION OF A THIN SLAB 


Because the photoacoustic response in an infinite medium is both linear to the 
excitation power and timeshift-invariant, the response to a finite-duration excita-
tion pulse R(t) can be computed by convolution: 


R(t) 
/


+oo /·+οο 


dt'G(t - t')S(t') = / dt'G(t')S(t - t'), (12.55) 
-oo J—oo 
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where G(t) denotes the response to a delta excitation pulse and S(t) denotes the 
power of the pulse as a function of time. 


For an excited slab, G(t) is a top-hat function of time as shown in Figure 12.2. 
If the slab becomes so thin that the acoustic transit time across the slab is much 
less than the duration of the excitation pulse, G(t) approaches a delta function 
apart from a constant factor: 


G{t)(xh{vst-z). (12.56) 


Substituting Eq. (12.56) into Eq. (12.55) leads to 


R(t) a S(vst - z), (12.57) 


which means that the photoacoustic pressure is proportional to the excitation 
pulse. For example, if the pulse is Gaussian, that is, 


S(t) = 5 o e x P r - ^ ( r ~ 2 r o ) 1 , (12.58) 


the photoacoustic pressure is Gaussian as well. Here, So denotes the peak power, 
to denotes the center timepoint corresponding to the peak power, and σ denotes 
the standard deviation. 


12.9. FINITE-DURATION PULSE EXCITATION OF A SMALL SPHERE 


Outside an excited sphere, G(t) is a bipolar function of time as shown in 
Figure 12.4. If the sphere becomes so small that the acoustic transit time across 
the sphere is much less than the width of the excitation pulse, G{t) approaches 
the derivative of a delta function apart from a constant factor: 


G(0oc — h(vst-r). (12.59) 
at 


Substituting Eq. (12.59) into Eq. (12.55) leads to 


R(t)<x^-S(vst-r), (12.60) 
at 


which means that for a small spherical object, the photoacoustic pressure is 
proportional to the time derivative of the excitation pulse. 


12.10. DARK-FIELD CONFOCAL PHOTOACOUSTIC MICROSCOPY 


Reflection-mode (or backward-mode) confocal photoacoustic microscopy (PAM) 
has been implemented using both dark-field pulsed-laser illumination and 
high-NA ultrasonic detection. In conventional dark-field transmission optical 
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microscopy, an opaque disk is placed between the light source and the condenser 
lens so that ballistic light is rejected; as a result, only nonballistic light—which 
is scattered by the sample—is detected. In dark-field PAM, the excitation laser 
beam has a donut-shaped cross section; therefore, the photoacoustic signal from 
the tissue surface in the field of view is minimized. 


In the system shown in Figure 12.6, a Q-switched pulsed Nd:YAG 
(neodymium: yttrium aluminum garnet) laser, operating at 532-nm wavelength, 
delivers 0.3 mJ of energy per pulse to the object through a 0.6-mm-diameter 
optical fiber. The laser beam has a 6.5-ns pulsewidth and a 10-Hz pulse repeti-
tion frequency. The Hghtbeam from the fiber output end is coaxially aligned with 
a focused ultrasonic transducer; both are mounted on a 3D mechanical transla-
tion stage. The ultrasonic transducer has a 50-MHz center frequency and a 70% 
nominal bandwidth. A concave acoustic lens with a 5.5-mm aperture diameter 
and a 5.6-mm working distance is attached to the ultrasonic transducer. This 
positive lens provides an NA of 0.44, which is considered large in ultrasonics. 
Light from the fiber is expanded by a conical lens and then focused onto the 
object through an optical condenser that has an NA of 1.1. The optical focal 
region overlaps with the focal spot of the ultrasonic transducer; thus, the optical 
dark-field illumination and ultrasonic detection are confocal. 


Photoacoustic signals are received by the ultrasonic transducer, amplified by 
a low-noise amplifier, and then recorded digitally. For ultrasonic coupling, the 
ultrasonic transducer is immersed in water inside a plastic container; the bottom 
of the container has an opening that is sealed with a thin disposable polyethylene 
membrane; the object is first coated with ultrasound-coupling gel and then placed 
below the membrane. 


On each laser-pulse excitation, the emitted photoacoustic wave is recorded as 
a function of time at each location of the ultrasonic transducer. The photoacoustic 
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Figure 12.6. Schematic of a PAM system. 
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(a) 11.3 12.7 14.3 16.0 mm"1 


(b) 1 mm 


Figure 12.7. (a) Spatial resolution test with a bar chart placed in a tissue phantom (num-
bers below the images indicate the spatial modulation frequency); (b) imaging depth test 
with a black double-stranded cotton thread placed obliquely in the abdominal area of a 
rat (1 represents the skin surface; 2 represents the thread). 


signal is converted into a ID depth-resolved image (A-scan), based on the sound 
velocity in soft tissue (1.54 mm^xs). Raster scanning of the PAM probing head 
in a horizontal (xy) plane produces a 3D image. 


Four PAM images of a Mylar USAF-1951 target taken through a 4-mm-thick 
layer of light-scattering tissue phantom made of 2% Intralipid® solution and 1% 
agar gel are shown in Figure 12.7a; the solid curves show the relative peak-to-
peak amplitude of the received photoacoustic pressure across the bars on the 
target. The reduced scattering coefficient μ5 of the phantom is 15 cm- 1 . The 
thickness of the phantom equals six transport mean free paths. The modulation 
transfer function of the system is extracted from Figure 12.7a and extrapolated to 
its cutoff spatial frequency, producing an estimated lateral resolution of 45 μπι. 
From another image of a 6^m-diameter carbon fiber, the axial resolution is 
estimated to be ~15 μπι. 


A PAM B-scan image of a black double-stranded cotton thread of 0.2 mm in 
diameter and 1.25 mm in pitch, which is inserted obliquely into the abdominal 
area of a sacrificed rat, is shown in Figure 12.7b. The thread is clearly visible in 
the image up to 3 mm in depth. 


PAM images of the vasculature in the dorsal dermis (the upper lumbar area left 
of the vertebra) of a rat, with the hair removed using commercial hair remover 
lotion, is shown in Figure 12.8. Four in situ consecutive PAM B-scan images 
are obtained 0.2 mm apart laterally (Figure 12.8a). Each image is a gray-scale 
plot of the peak-to-peak amplitudes of the received photoacoustic signals; the 
vertical and the horizontal axes represent the depth from the skin surface and 
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Figure 12.8. (a) Four in situ consecutive PAM B-scan images (1 and 2 represent vessels 
perpendicular to the imaging plane; 3 represents an in-plane vessel); (b) in situ maximum-
amplitude projection PAM image taken from epidermal side; (c) photograph taken from 
dermal side using transmission illumination; (d) in vivo noninvasive maximum-amplitude 
projection PAM image taken from epidermal side. 


the horizontal ultrasonic transducer position, respectively. The focal plane of the 
ultrasonic transducer is located at a depth of 1.2 mm. The PAM probing head is 
scanned 100 steps horizontally with a step size of 0.1 mm. The slightly inclined 
solid line in the upper part of each B-scan delineates the skin surface. The vessels 
marked by 1 and 2 are nearly perpendicular to the imaging plane, whereas the 
vessel marked by 3 is nearly parallel to the imaging plane. 


An in situ maximum-amplitude projection PAM image on the skin surface 
(100x100 pixels, 0.1 mm step size), which plots the maximum peak-to-peak 
amplitude of each received photoacoustic signal (A-scan) within a 0.2-2-mm 
depth interval from the skin surface versus the ultrasonic transducer position on 
the tissue surface (JC, y), is shown in Figure 12.8b. For comparison, a photo-
graph (obtained using transmission light illumination) of the inner surface of the 
harvested skin is shown in Figure 12.8c. Good agreement in the vasculature is 
observed between the PAM image and the photograph. The photograph indicates 
that the major vessels are M 0 0 μιτι in diameter and the smaller vessels —30 μιη 
in diameter. 


An in vivo maximum-amplitude projection PAM image of a similar area 
(100 x 100 pixels, 0.05 mm step size, and 0.5-3-mm depth interval) is shown 


CO 
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in Figure 12.8d. Blood vessels with a density of up to a few counts per mm are 
observed. 


PAM is capable of imaging optical absorption in biological tissue in the qua-
sidiffusive regime, where the spatial resolution is determined primarily by the 
ultrasonic detection parameters instead of the optical excitation parameters. If 
the laser pulse is sufficiently short, a high-NA acoustic lens and a high-center-
frequency ultrasonic transducer provide high lateral resolution while a wideband 
ultrasonic transducer provides high axial resolution. 


Compared with bright-field illumination, dark-field illumination provides sev-
eral advantages: (1) a large illumination area reduces the optical fluence on the 
tissue surface to less than 1 mJ/cm2, which is well within the safety standards; 
(2) a large illumination area partially averages out the shadows of superficial het-
erogeneities in the image; and (3) dark-field illumination reduces the otherwise 
strong interference of the extraneous photoacoustic signal from the superficial 
paraxial area. 


12.11. SYNTHETIC APERTURE IMAGE RECONSTRUCTION 


Like optical waves, ultrasonic waves can be focused when passing through an 
acoustic lens, which is the basis of PAM as described in the previous section. 
Acoustic focusing can also be achieved synthetically by scanning a single-element 
ultrasonic transducer or using a multielement ultrasonic transducer. According to 
the principle of reciprocity, ultrasonic transmission and detection of the same 
acoustic lens are reciprocal. 


In Figure 12.9, ultrasonic transmission focusing is illustrated with a five-
element array transducer. If all elements are excited at the same time with the 
same voltage, an approximate plane ultrasonic wave is produced. If the elements 
are excited at different times, the produced ultrasonic wave can be focused to 
various points. In this illustration, the excitation of the outermost elements pre-
cedes that of the center element by AR/vs, where AR is the difference in radial 
distance to the desired focal point between the outermost elements and the center 
element. If similar proper delays are applied to all of the elements accordingly, 
ultrasonic pulses from these elements arrive at the focal point simultaneously; 
thus, the produced ultrasonic wave is focused to the desired point. Further, the 
focal point can be off the ultrasonic axis. If the focal point is set to infinity, an 
approximate plane wave is produced. 


Like an optical grating, an ultrasonic array transducer produces the following 
far-field amplitude distribution (Figure 12.10): 


sin(Nvd) sin ve 
H(Q) = . - , (12.61) 


N sin Vd ve 


where 


vd = -kde sine (12.62) 
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Figure 12.9. Ultrasonic transmission focusing by a multielement ultrasonic transducer. 


Figure 12.10. Acoustic-amplitude pattern produced by an ultrasonic array transducer ver-
sus the polar angle in a polar plot. 


and 


ve = - kwe sinG. (12.63) 


Here, Θ denotes the polar angle, N denotes the number of elements, k denotes 
the magnitude of the wavevector, de denotes the periodic distance between the 
elements, and we denotes the width of each element. Sidelobes, also termed 
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grating lobes, appear at polar angles given by 


1 ™λα 
θ^ =s in" 1 — A (12.64) 


de 
where m is a nonzero integer and λα is the acoustic wavelength. The angular 
width of the mainlobe or each grating lobe is given by 


Δθ^ = s i i r l - ^ - . (12.65) 
Nd( e 


Grating lobes deteriorate the lateral resolution in imaging but can be minimized 
using various designs. For example, the width of each element can be enlarged to 
reduce the magnitude of the grating lobes relative to the mainlobe, the excitation 
pulses can be shortened as much as possible, or the spacing between elements 
can be minimized or randomized. 


Synthetic-aperture detection, also referred to as delay-and-sum detection or 
beamforming, can be applied to imaging. This detection scheme is reciprocal to 
the aforementioned transmission focusing. For each focal point, the image signal 
S can be calculated using 


5(0 = 5^5 / ( / + Δί/). (12.66) 


Here, S/ is the signal from the ith ultrasonic transducer element; Δί,- is the time 
delay for the ith transducer element, which can be calculated similarly as in 
Figure 12.9. 


12.12. GENERAL IMAGE RECONSTRUCTION 


In this section, we consider general image reconstruction for an infinite acousti-
cally homogeneous medium. The initial photoacoustic pressure excited by pulse 
h(t) equals po(r) = T(r)Hs(r) [Eq. (12.29)]. The acoustic pressure p(r,t) at 
position r and time t, initiated by source po(r), satisfies the following photoa-
coustic wave equation [see Eq. (12.13)]: 


Po(r)dh(t) 
p(r, t) = — . (12.67) 


vs dt 


Three detection configurations are considered. As shown in Figure 12.11, the 
detection surface is represented by So. For the planar geometry, if another planar 
surface S'Q parallel to So is added, the combination of S'0 and So encloses the 
source po(r). For convenience, we write S = So + S'0 for the planar geometry 
and S = So for the cylindrical or spherical geometry. 
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Figure 12.11. (a) During measurement, an ultrasonic point detector at position ro on 
surface SQ receives photoacoustic signals emitted from source po(r)—during image recon-
struction, a quantity related to the measurement at position ro projects backward via a 
spherical surface centered at ?o; (b) in the planar geometry, another surface Sf0 is combined 
with SQ to enclose the entire source. 


The following Fourier transformation pair is used to convert pressure between 
the time and frequency domains: 


/


+oo 
F(t)exp(ikJ)dJ, (12.68) 


-co 


F(t) = — \ F(k)exp(-ikt)dk, (12.69) 
2π J_00 


where 1 — vst and k — ω/νχ (ω is the angular frequency). 
According to Green's theorem, the spectrum of the measured pressure P(TQ, 1) 


is given by 


p(r0,k) = -ik[ d?G
(
k
out\?, r0)p0(r). (12.70) 


Jv 


Here, V is a volume enclosing the entire source po(r)\ G^u (f, r0) is a Green 
function representing a monochromatic diverging spherical wave: 


o r ( ^ ) = exp(y-^|) 
4n\r -r0\ 








GENERAL IMAGE RECONSTRUCTION 311 


The acoustic pressure p(r,k) inside S can be computed by 


p(r, k)= ί dS £*(?<>, k)[2ns0 · V0G<OUV, r0)], (12.72) 


where * indicates complex conjugation—equivalent to time reversal (see Prob-
lem 12.1), Vo denotes the gradient on ?o, and ns0 denotes the normal vector 
of S pointing inward. The term in the square brackets indicates dipole radi-
ation. Since po(r) — p(r, 1 = 0), taking the inverse Fourier transformation of 
Eq. (12.72) leads to the following backprojection formula: 


1 / *+00 /» 


Po(r) = - / dkl dS £*(r0, k)[n50 ■ VoG<out)(r, r0)]. (12.73) 
π J-oo JS 


For the planar geometry, if S is replaced by SQ, the right-hand side yields po(r)/2 
instead. Since the reconstructed pressure is real, Eq. (12.73) can be rewritten as 


Mr) = - dS dk p(?o, k)[ns0 · V0G<m)(r, r0)], (12.74) 
^ Js ./-oo 


where G^ (r, ?ο) is a Green function corresponding to a monochromatic con-
verging spherical wave: 


Min)r - , exp(-ifc|r - r0|) G^ '(r, r0) = T—p——. · (12.75) 4n\r-r0\ 


A rigorous proof of Eq. (12.74) for the three common detection geometric con-
figurations is given in the references for this section. 


Employing VoG^in)(r, ro) = — VGJp(r, r0) and inverse-Fourier-transforming 
p(ro, k)> we can rewrite Eq. (12.74) in the time domain 


Po(r) = - ^ ' i flhdSol^] . 02.76) 
" 0 JSo L * JF=|F-r0| 


where Ωο is the solid angle subtended by the entire surface So with respect to 
the reconstruction point r inside So· We have Ωο = 2π for the planar geometry 
and Ωο = 4π for the spherical or cylindrical geometry. 


Further, we can rewrite Eq. (12.76) in a backprojection form as 


= / Po(r)= I 6(ro,i = | r - r o | Ä . (12.77) 
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Figure 12.12. Diagram showing the solid angle dQo subtended by detection element 
dS{) with respect to point P at r. 


Here, b(fo, t) is the backprojection term; dQo is the solid angle subtended by 
detection element dSo with respect to reconstruction point P at r (Figure 12.12): 


b(r0, t) = 2p(r0, t) - It F\- \ (12.78) 
at 


dSo fin- (r — 7Q) 
dQo = — - j ^ V ° . (12.79) 


Factor dQo/ Ωο weighs the contribution from detection element dSo to the recon-
struction. The reconstruction simply projects b(?o,l) backward via a spherical 
surface centered at position rn. The first derivative with respect to time t actually 
represents a pure ramp filter k, which suppresses low-frequency signals. 


The theory described above is based on an ideal infinite bandwidth in both 
time and space. In practice, if k\r — r0| ^> 1 within the detection bandwidth, we 
have ldp(ro, 1)1 dl > /?(r0, 7), which means that Eq. (12.78) can be simplified to 


b{roJ)^-2t μ \ . \ (12.80) 
ot 


A circular scanning configuration of PAT was implemented to image small-
animal brains (Figure 12.13a). A Q-switched Nd:YAG laser provides light pulses 
(532-nm wavelength, 6.5-ns pulse duration, and 10-Hz pulse repetition fre-
quency). The laser beam is expanded and homogenized to provide relatively 
uniform incident fluence, which is less than 10 mJ/cm2 on the skin surface. Pho-
toacoustic waves are coupled through water to an ultrasonic transducer with a 
center frequency of 3.5 MHz. 


Since a circle—rather than a full spherical surface—is scanned, the recon-
struction algorithm presented above is only approximately applicable. Neverthe-
less, good images are still attainable. Blood vessels in the cortical surface of 
small animals can be imaged transcranially with the scalp and the skull intact, 
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Figure 12.13. (a) Diagram of a circular-scanning PAT system for small-animal imaging; 
(b) a cross-sectional PAT image of a rat brain (RH represents right cerebral hemisphere; 
LH, left cerebral hemisphere; L, lesion; MCA, middle cerebral artery). 


although the hair must be removed (Figure 12.13b). At this optical wavelength, 
the contrast of hemoglobin is high; the imaging depth is limited to about 1 cm, 
which is greater than the dimension of the entire brain of a small animal such as 
a mouse. 


APPENDIX 12A. DERIVATION OF ACOUSTIC WAVE EQUATION 


A longitudinal small-amplitude acoustic plane wave propagating in a homoge-
neous and nondissipative medium in the x direction is considered here. We exam-
ine the motion of a differential volume element dV = dxdydz at position x: 


1. We derive the material equation. The excess pressure p is a function of the 
mass density p: 


P(P)· (12.81) 
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This equation can be expanded to the first order of the Taylor series around 
the equilibrium mass density po as 


ρ-ρο=(γ)((>-9ο), (12.82) 


where po denotes the equilibrium pressure. The condensation parameter s 
is defined as 


S=PZJ*^ (12.83) 
Po 


which can be rewritten as 


p = P o ( l + 5 ) . (12.84) 


For a small-amplitude acoustic wave, we have s <^ 1. Substituting 
Eq. (12.84) into Eq. (12.82), we obtain 


=p°(l)5· p-Po = Po[-f)s. (12.85) 
2. We then derive the force equation. The force F due to pressure p experi-


enced by the differential volume element is given by 


m dx dy dz. (12.86) 
From Newton's second law, we have 


dp du 
— - = P—, (12.87) 


dx *dt v 


where u denotes the medium velocity and t denotes time. Since s <^1, we 
replace p by po and yield 


dp du 
- / = Po^-. (12.88) 


dx dt 
This equation, termed the linear inviscid force equation, can be generalized 
to 3D space as -Vp = po(dü/dt). Substituting Eq. (12.85) into (12.88) 
yields 


ds 1 du 
= . (12.89) 


dx dp/dp dt 


3. We derive the continuity equation, based on the conservation of mass: 


do d(ou) 
*L = _Λϋ_Ζ, (12.90) 


dt dx 
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This equation can be generalized to — (dp/dt) = V · (pw). The right-hand 
side of Eq. (12.90) is expanded to 


3(pw) du dp / n n n 
—— = ΡΤ- + Τ-Μ· (12.91) 


ox dx ax 
Since s <£ 1, we replace p by po in the first term on the right-hand side to 
yield 


d(pu) du dp 
-ΊΓ1 = Ρο3Γ + 1TU· ( 1 1 9 2 ) 


ax ax dx 
We will show later that the second term on the right-hand side is negligible. 
In this case, Eq. (12.90) becomes 


3p du 
- T 7 = P 0 F - , (12.93) 


dt dx 
which is the linearized continuity equation. Substituting Eq. (12.84) into 
Eq. (12.93), we obtain 


35 du 
- * - » ; · < i 2 ' 9 4 ) 


4. Last, differentiating Eq. (12.89) with respect to JC and differentiating 
Eq. (12.94) with respect to f, and then taking the difference between them, 
we obtain 


d2p _ 1 d2p 


'dx2' ~ dp/dp'dt1'' 


This is a wave equation with 


(12.95) 


dp „2 vt, (12.96) 


(12.97) 


ap *' 


where vs is the speed of sound in the medium. Thus, we have 


d2P _ l d
2
P 


'dx1~~^'dt2, 


which can be generalized to the 3D case as 


9 1 d2p 
v p = ^ ^ ' < , 2 · 9 8 ) 


This is the basic acoustic wave equation that describes the propagation of 
an acoustic wave in a homogeneous nondissipative medium. 


As promised, we now show that the second term on the right-hand side of 
Eq. (12.92) is negligible. The ratio of the second term to the first term on the 
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right-hand side of Eq. (12.92) is 


u 3p u (dpjdu\ 
p09w po \dp/df)J 


From Eq. (12.97), we obtain 


\8x vs dt J \dx vs dt ) 


(12.99) 


(12.100) 


Therefore, we have \(dp/dt)/(dp/dx)\ = vs, which is substituted into 
Eq. (12.88) to yield 


d_p 


du 
POVJ. (12.101) 


Substituting Eqs. (12.96) and (12.101) into Eq. (12.99) yields 


u 3p 
p0 du 


m (12.102) 


If \u\ <£ vs (subsonic medium velocity of a small-amplitude wave), then 


dp 
1 


dx « Po 
du 


Jx 


which means that the second term on the right-hand side of Eq. (12.92) is neg-
ligible. 


APPENDIX 12B. GREEN FUNCTION APPROACH 


The general Green function approach is summarized here. The acoustic wave 
equation with a source term q(r\ tr) is 


7'2 ^ ,/x j 32P<r'> ' ') Vlp{r\t') 
v2 dt'2 


= -q(r\t'). (12.103) 


On the basis of the reciprocity relation, Green's function G(r, t\ r', t') satisfies 
the following equation: 


V2G(r, t\r\t') 
1 d2G(r,t;r',t') 


~r2 = -h(r-r')h(t - ί ' ) . (12.104) 


Multiplying Eq. (12.103) by G and Eq. (12.104) by p, subtracting them, and 
then integrating over r' in the volume of interest V and over t' from 0 to i + , 
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we obtain 


= - / dt' I dr'G(r, t\ r', t')q(?',t') + p(r, t). 
Jo Jv 


(12.105) 


Applying Green's theorem to Eq. (12.105) yields 


p(r,t)= f dt' f dr'G(r,t\r',t')q(r\t') 
Jo Jv 


+ [ dt' \ dS' · [GVp(r\ t') - pV'G] 
Jo Js' 


+ — dr' [p G—)\ . 
vjU Vdt> dt'Jl 


Here, S' encloses V". Choosing / + = t + 0+ , we have p(r', t+) = 0 and 


dp(r', t>) I 


(12.106) 


dt' 
= 0, 


t'=l+ 


due to causality. Thus, Eq. (12.106) becomes 


p(r,t)= f dt' [ dr'G(r,t\r',t')q{r',t') 
Jo Jv 


+ [ dt' f dS' ■ [GV'p(?\ t') - pV'G] (12.107) 
Jo Js' 
1 f *( , dG dp 


~G | ' , = 0ä^ 
f'=0 öt 


f ' = 0 / 


The first integral on the right-hand side depends on the source q(r', t'); the second 
depends on the boundary condition; the third depends on the initial condition. 


PROBLEMS 


12.1 Show that complex conjugation of the temporal spectrum is equivalent 
to time reversal of the temporal function. 


12.2 Derive the total acoustic energy transported through an enclosing spher-
ical shell that is concentric to a delta heated sphere. Estimate how much 
optical energy is converted into mechanical energy. 
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12.3 Derive and plot the pressure as a function of time observed outside a 
sphere excited by (a) a delta pulse and (b) a Gaussian pulse. 


12.4 Derive and plot the pressure as a function of time observed outside a thin 
spherical shell excited by (a) a delta pulse and (b) a Gaussian pulse. 


12.5 Derive and plot the pressure as a function of time observed outside a line 
object first excited by (a) a delta pulse and (b) a Gaussian pulse. 


12.6 Derive and plot the pressure as a function of time observed outside a 
cylindrical object excited by (a) a delta pulse and (b) a Gaussian pulse. 


12.7 Derive and plot the pressure as a function of time observed outside an 
optically absorbing slab object excited by (a) a delta pulse and (b) a 
Gaussian pulse. 


12.8 Derive and plot the pressure as a function of time observed outside a thin 
disk object excited by (a) a delta pulse and (b) a Gaussian pulse. Set the 
observation point first in the plane of the disk and then on the axis of 
the disk. 


12.9 Derive and plot the pressure as a function of time observed outside a thin 
ring object excited by (a) a delta pulse and (b) a Gaussian pulse. Set the 
observation point first in the plane of the ring and then on the axis of the 
ring. 


12.10 Using velocity potential, derive and plot the pressure as a function of 
time observed outside a slab object excited by (a) a delta pulse and (b) a 
Gaussian pulse. 


12.11 Make a movie in MATLAB showing the pressure propagation from a 
sphere in response to a delta-pulse excitation. 


12.12 Make a movie in MATLAB showing the pressure propagation from a 
spherical shell in response to delta-pulse excitation. 


12.13 Make a movie in MATLAB showing the pressure propagation from two 
spheres in response to delta-pulse excitation. 


12.14 Fourier-transform the pressure versus time observed outside a slab in 
response to delta-pulse excitation. 


12.15 Fourier-transform the pressure versus time observed outside a sphere in 
response to delta-pulse excitation. 


12.16 Sketch approximately the ideal wavefronts that are produced by a 
pulsed laser beam incident on a semiinfinite medium when the opti-
cal beam diameter is (a) much greater than, (b) much smaller than, and 
(c) comparable to the optical penetration depth. 


12.17 Derive the pressure as a function of time produced from a periodic array 
of slabs by delta-pulse excitation. Then take its Fourier transformation. 
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12.18 Prove that the focal length of a planoconcave acoustic lens can be approx-
imately expressed as / = δ/(1 — \/n), where δ is the radius of curvature, 
and n = vs\/vS2, where vs\ is the acoustic velocity in the lens and vS2 
is the acoustic velocity in the surrounding medium. Assume that the 
diameter of the lens is small compared with the radius of curvature. 


12.19 Derive and plot Eq. (12.61). 


12.20 Derive from Eq. (12.74) to Eq. (12.76) and then to Eq. (12.77). 


12.21 Implement the delay-and-sum reconstruction algorithm and test it with 
dummy data generated from the forward solution. 


12.22 Implement the general reconstruction algorithm and test it with dummy 
data generated from the forward solution. 
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CHAPTER 13 


Ultrasound-Modulated Optical 
Tomography 


13.1. INTRODUCTION 


Ultrasound-modulated optical tomography (UOT), first demonstrated in the 
1990s, is another hybrid method that combines optical contrast and ultrasonic 
resolution as does photoacoustic tomography. UOT is based on the ultrasonic 
modulation of coherent laser light in a scattering medium. The medium is 
irradiated by both a laser beam and a focused ultrasonic wave. The ultrasound-
modulated component of the reemitted light, which carries information about the 
local optical and acoustic properties, is used to provide tomographic imaging. 
Consequently, the image contrast is related to the optical and acoustic prop-
erties, whereas the spatial resolution is determined primarily by the ultrasonic 
wave. Because all the ultrasound-modulated light—regardless of the number of 
scattering events experienced—contributes to the imaging, UOT is capable of 
imaging deeply into the optical quasidiffusive or diffusive regime. 


13.2. MECHANISMS OF ULTRASONIC MODULATION OF COHERENT 
LIGHT 


Three mechanisms have been identified to account for ultrasonic modulation of 
light in a scattering medium: 


1. Incoherent Modulation of Light Due to Ultrasound-Induced Variations in 
Optical Properties of Medium. As an ultrasonic wave propagates in a scat-
tering medium, the medium is compressed or rarefied depending on the 
location and time, which causes the mass density to vary. The variations 
in the mass density further modulate the optical properties—including the 
absorption coefficient, scattering coefficient, and index of refraction—of 
the medium. Consequently, the reemitted light intensity varies with the 
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ultrasonic wave. Although this mechanism does not require light coher-
ence, ultrasonic modulation of low-coherence light is much weaker than 
that of high-coherence light. 


2. Variations in Optical Phase in Response to Ultrasound-Induced Displace-
ments of Scatterers. The displacements of scatterers modulate the free-path 
lengths (hence the phases) of light traversing the ultrasonic field. The mod-
ulated optical phases in the free-path lengths are accumulated along each 
complete path. Consequently, the reemitted light, which forms a speckle 
pattern, fluctuates with the ultrasonic wave. 


3. Variations in Optical Phase in Response to Ultrasonic Modulation of Index 
of Refraction of Background Medium. The modulated index of refraction 
modulates the free-path phases of light traversing the ultrasonic field. The 
modulated optical phases contribute to speckle fluctuations as in the second 
mechanism. 


Mechanisms 2 and 3 require light coherence. Both analytical and Monte Carlo 
models for the two coherent mechanisms have been developed. Only the former, 
however, is introduced here. In theory, the models for the coherent mechanisms 
can be unified by using the dielectric constant and further extended to include 
the incoherent mechanism. 


In the analytical model, a plane ultrasonic wave irradiates a homogenous 
isotropic scattering medium. We assume that (1) the optical wavelength is much 
shorter than the mean free path (weak-scattering approximation) and (2) the 
ultrasound-induced change in the optical path length is much less than the opti-
cal wavelength (weak-modulation approximation). Owing to the weak-scattering 
approximation, ensemble-averaged correlations between electric fields from dif-
ferent paths are negligible compared with those from the same paths. 


The autocorrelation function G \ (τ) of the scalar electric field of the scattered 
light can be expressed as 


poo 


d ( x ) = / p(s)(E5(t)E*{t + x))ds. (13.1) 
Jo 


Here, () denotes ensemble and time averaging, Es denotes the unit-amplitude 
electric field of the scattered light of a path of length s, and p(s) denotes the prob-
ability density function of s. The contributions to G\(x) from Brownian motion 
and from the ultrasonic field are independent and hence are treated separately. 
For brevity, only the latter is considered here. 


In the following model, a coherent optical plane wave is incident normally 
on a slab of thickness J, and a point detector detects the transmitted light. The 
diffusion theory with a zero-boundary condition provides a solution to p(s). From 
Eq. (13.1), we obtain 


C (τ) = W > s i n h « e n - c o s ^ t ) ] } 1 / 2 ) 
K sinh((d//,'){e[l -οο*(ωαχ)]}1'2)' 
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where ωα is the acoustic angular frequency, and the other parameters are 


ε = 6 (δ„+δ ί / ) (ηοΜ) 2 , (13.3) 


hn = (απ, +α„2)η2 , (13.4) 


«ni = -/cfl/,'arctan(/;fl/,'), (13.5) 


a»2 = Tir,—, n{n ,/v—7' ( 1 3 · 6 ) 
fcfl/j/arctanifcfl/,) — 1 


8</ = i (13.7) 
o 


Here, no is the background index of refraction; ko is the magnitude of the optical 
wave vector in vacuo; A is the acoustic amplitude, which is proportional to 
the acoustic pressure; ka is the magnitude of the acoustic wavevector; l't is the 
optical transport mean free path; η is the elastooptical coefficient, related to the 
adiabatic piezooptical coefficient of the material dn/dp (derivative of refractive 
index n with respect to pressure /?), the mass density p, and the speed of sound 
vs: η = (dn/dp)pv]:; δ„ and 5</ are related to the average contributions per free 
path (or per scattering event) to the ultrasonic modulation of light via index of 
refraction and displacement, respectively. 


Whereas δη increases with kaVr hj remains constant at £; thus, the ratio of δη to 
hd increases with kal'r The correlation between the two modulation mechanisms 
is neglected here for simplicity. 


According to the Wiener-Khinchin theorem, the power spectral density £(ω) 
of the modulated speckle is related to G\(x) through the following Fourier trans-
formation: 


Gi(x)exp(/ooT)dT. (13.8) 
-oo 


Frequency ω is relative to the angular frequency of the unmodulated light (ωο) 
because exp(—ιωοτ), which is dropped for convenience, is implicit in G\(x). 
Therefore, ω = 0 in Ξ(ω) corresponds to absolute angular frequency ωο· 


Since G\(x) is an even periodic function of τ, the spectral intensity at fre-
quency ηωα can be calculated by 


Ta 
cos(A20)aT)Gi(T)<iT:, (13.9) 


where n = 0, ± 1 , ±2..., and Ta is the acoustic period. The frequency spectrum 
/„ is symmetric about ωο· We define the one-sided modulation depth as 


M{ = !±. (13.10) 








3 2 6 ULTRASOUND-MODULATED OPTICAL TOMOGRAPHY 


In the weak-modulation approximation, (d//,)e1/2 <^ 1; thus, Eq. (13.2) can be 
simplified to 


GiW = l - \ ( f ) e[l-cos(a>flx)]. (13.11) 


Thus, we have 


Ml=zh(?)εαΛ2, (1312) 


which indicates a quadratic relationship between M\ and A. If the modulated light 
is measured experimentally using a Fabry-Perot interferometer, this quadratic 
dependence is observed. Otherwise, the detected apparent modulation depth 
(Μ')—defined as the ratio of the observed AC signal to the observed DC 
signal—can have a different dependence on A. In some cases, the AC signal 
originates from the beat between the electric field components at the fundamental 
frequency of the modulated light (ωο ± ωα) and the electric field component at the 
unmodulated optical angular frequency (ωο). As a result, we have approximately 
M' a (/i//o)1//2 = M / a A, which indicates that M' is proportional to A. 


13.3. TIME-RESOLVED FREQUENCY-SWEPT UOT 


If a single-frequency ultrasonic wave is used in UOT, the axial resolution along 
the ultrasonic axis is much worse than the lateral resolution because of the elon-
gated ultrasonic focal zone. Ultrasonic frequency sweeping (chirping), however, 
can improve the axial resolution. A time-resolved frequency-swept UOT system 
is shown in Figure 13.1. A frequency-swept signal is produced from a function 
generator and then amplified by a power amplifier followed by a transformer. 
The instantaneous frequency of the signal is 


fs(t)=as+bt, (13.13) 


where as denotes the starting frequency, b denotes the sweep rate, and t denotes 
time. Here, the frequency sweeps from 7.0 to 10.0 MHz at a rate of 297 MHz/s. 
The amplified signal is applied to an ultrasonic transducer, which transmits a 
focused ultrasonic wave vertically into a scattering medium in a glass tank. An 
ultrasound absorber is placed at the bottom of the tank to minimize reflection 
from the water-glass interface. 


After being broadened to 15 mm in diameter, a laser beam illuminates the 
scattering medium perpendicularly to the ultrasonic beam. The ultrasonic beam 
modulates the laser light with the following instantaneous frequency distribution 
along the ultrasonic axis: 


fs(t,z) = as + b(t-?—Q\ for ί>^—^, (13.14) 
V vs ) vs 
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Figure 13.1. Schematic of an experimental setup for frequency-swept UOT. The z axis 
is along the acoustic axis; the y axis is along the optical axis; the x axis points into the 
paper. 


Here, z denotes the ultrasonic axis and zo denotes a reference point along the 
ultrasonic axis at time zero. A PMT converts the received transmitted light into 
an electric signal. The gain of the PMT is modulated for heterodyne detection 
by a reference signal produced by another function generator. The reference 
modulation signal, also frequency-swept, has an instantaneous frequency given by 


fr{t) =ar+bt, 


where ar denotes the starting frequency. 
The heterodyned signal has the following frequency distribution: 


Mz) = \fsit,z)-fr(t)\ as - ar -
b(z - zo) 


(13.15) 


(13.16) 


which is independent of time t. The heterodyned signal at the output of the 
PMT is bandpass-filtered and then amplified. The bandwidth of the filter Afh is 
determined by the desired range on the z axis to be imaged (region of interest) 
Δζ as follows: 


Afh = - Δ ζ . (13.17) 


The signal from the amplifier is digitized by an oscilloscope and then transferred 
to a computer for postprocessing. 


An object made of rubber is placed in the middle plane of the tank. The 
thickness of the tank along the laser beam is 17 cm. The scattering coefficient 
and the anisotropy of the scattering medium are 0.16 cm"1 and 0.73, respectively. 
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The object is translated in the tank along the x axis with a step size of 1 mm. 
A time-domain signal is recorded at each stop and then Fourier-transformed into 
a spectrum by a computer. Each spectrum is further converted into a ID raw 
image of the scattering medium along the ultrasonic axis (z axis) on the basis of 
Eq. (13.16). 


Two sample frequency spectra are depicted in Figure 13.2. Figure 13.2a shows 
a spectrum when the object is far from the ultrasonic axis. Figure 13.2b shows 
a spectrum when the object blocks part of the ultrasonic axis. As can be seen, 
the frequency components corresponding to the location of the object disappear. 
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Figure 13.2. Frequency spectra of the heterodyned frequency-swept ultrasound-
modulated optical signal when the object is (a) far from and (b) on the ultrasonic axis 
(AU = arbitrary units). 
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Figure 13.3. (a) Schematic cross-sectional view of the buried object in a scattering 
medium; (b) signals along the vertical dashed line in panel (a); (c) signals along the 
horizontal dashed line in panel (a); (d) 2D image of the scattering medium. 


This figure demonstrates the one-to-one correspondence between the heterodyne 
frequency and the position along the ultrasonic axis. The image contrast reflects 
the spatial variation in the optical and acoustic properties. 


Combining all the ID spectra yields a 2D image (Figure 13.3). The first spec-
trum, which is taken when the object is far from the ultrasonic axis, is used as 
a reference. All spectra are divided by the reference spectrum point-by-point to 
yield relative spectra, which are ID images. All ID images are pieced together 
to form a 2D image. Signals along the dashed lines in Figure 13.3a are plotted 
in Figures 13.3b and 13.3c, respectively. As can be seen, the edge resolution in 
both directions is approximately 0.5 mm. The z-axis resolution is determined by 
the ultrasonic sweep parameters, whereas the jc-axis resolution is determined by 
the ultrasonic focal diameter. 


In summary, a frequency-swept (chirped) ultrasonic wave can encode laser 
light traversing the acoustic axis with various frequencies. Decoding the trans-
mitted light provides resolution along the acoustic axis. This scheme is analogous 
to MRI. 


13.4. FREQUENCY-SWEPT UOT WITH PARALLEL-SPECKLE 
DETECTION 


The frequency-swept UOT based on a single-element photodetector in the previ-
ous section is demonstrated only in the quasiballistic regime. By improving the 
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Figure 13.4. Schematic of a multiple-speckle UOT system. The z axis is along the acous-
tic axis; the y axis is along the optical axis; the x axis points out of the paper. 


SNR with a CCD camera that detects multiple optical speckle grains in parallel, 
one can image in the diffusive regime. In this detection scheme, both the laser 
and the ultrasonic transducer are modulated with chirp functions. Imaging along 
the ultrasonic axis can be accomplished by electronically scanning the time delay 
between these two chirp functions. 


An experimental setup is shown in Figure 13.4. A focused ultrasonic trans-
ducer with a 2.54-cm focal length in water, and a 1-MHz center frequency 
generates an ultrasonic wave with a peak pressure of ~2 x 105 Pa at the focus. 
A laser emits a lightbeam modulated at 1 MHz with 690-nm wavelength, 12-
mW average power, and 7-cm coherence length. The laser beam is expanded to 
1.6 x 0.3 cm in cross section and then projected onto the sample, which is par-
tially immersed in water for acoustic coupling. The light transmitted through the 
sample generates a speckle pattern, which is detected by a high-speed 12-bit CCD 
camera. The average speckle grain size is adjusted to match the CCD pixel size. 
Three function generators share the same timebase to ensure synchronization. 
Function generators 1 and 2 produce chirp functions to modulate the diode laser 
and to excite the ultrasonic transducer, respectively. A delay generator controls 
the time delay between the trigger signals to these two function generators. 


If the chirp signal from function generator 2 were not amplitude-modulated, the 
frequency of the heterodyned signal along the ultrasonic axis (z axis) would be 


Λ(ζ ,τ ) -Ή)· (13.18) 
where b is the frequency sweep rate and t is the time delay between the two 
chirps from function generators 2 and 1. 


To implement the source-synchronized lock-in technique, the chirp signal from 
function generator 2 is amplitude-modulated by a reference sinusoidal wave of 
frequency fh(z,x) from generator 3. After lowpass filtering by the CCD, the 
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signal from each CCD pixel can be expressed as 


/ί(φΓ) <xlb + 1m c o s ^ + φΓ). (13.19) 


Here, h denotes the background signal, lm denotes the signal related to the 
ultrasound-modulated light component, <\>s denotes the initial phase of the speckle 
grain, and φΓ denotes the initial phase of the reference sinusoidal wave. The 
apparent modulation depth Mf — Im/Ib, which is related to the local optical 
and acoustic properties, is recovered for imaging. The initial phase φΓ is set 
sequentially to 0°, 90°, 180°, and 270°. The corresponding four frames of CCD 
images are acquired to calculate M' by 


M' = — >/[/«(90°) - //(2700)]2 + [7,(0°) - /,(180°)]2. (13.20) 
lib 


Each pixel of the CCD camera produces an M'\ the average of the M' values from 
all 256 x 256 CCD pixels represents a single point (pixel) in the final image. 


From Eq. (13.18), the spatial location being imaged is given by 


z = vslx — J . (13.21) 


At the same time, the ultrasound-modulated light from other spatial locations 
results in AC signals in the CCD pixels and hence is rejected by the CCD 
camera. One-dimensional images are obtained along the z axis by electroni-
cally varying τ. Further, 2D images are obtained by mechanically scanning the 
ultrasonic transducer along the x axis. 


The spatial resolution ZR along the z axis is determined by 


ZR « ~ , (13.22) 


where the speed of sound vs is M500 m/s in most soft tissues and Δ / denotes 
the frequency span of the chirp. Therefore, ZR is inversely proportional to Δ / . 


13.5. ULTRASONICALLY MODULATED VIRTUAL OPTICAL SOURCE 


The original ultrasound-modulated optical signal can be considered a virtual light 
source. The virtual source is initially localized but is broadened with light prop-
agation. If imaged near the acoustic axis, the virtual source can be seen clearly. 
Figure 13.5 shows a series of images at various z coordinates associated with 
different Λ ί ζ , τ ) values [Eq. (13.18)]. Ultrasonic modulation of light locally 
improves the spatial resolution of imaging because scanning a virtual small light 
source inside a highly scattering medium can produce a better image of the 
scanned cross section than scanning an actual small light source outside the 
medium. 
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Figure 13.5. Demonstration of ultrasound-modulated light as a virtual source. The left 
frame represents the entire virtual source acquired without chirping. The following frames 
represent the virtual sources at various z values acquired with chirping Courtesy of Atlan 
et al. (2003). 


13.6. RECONSTRUCTION-BASED UOT 


Axial resolution along the ultrasonic axis can be achieved by reconstruction as in 
X-ray CT. In X-ray CT, a cross-sectional image of a sample is reconstructed from 
the transmitted X-ray intensities, which are acquired from multiple linear and 
angular scans around the object. In UOT, ultrasound-modulated optical signals are 
acquired while the ultrasonic beam is scanned linearly and angularly around the 
object. Subsequently, a filtered backprojection algorithm reconstructs an image 
of the cross section formed by the scanned ultrasonic axis. 


A reconstruction-based UOT system that can operate in either reflection or 
transmission configuration is shown in Figure 13.6a. The CCD camera and the 
incident laser beam are on the same side of the sample for the reflection con-
figuration and on opposite sides for the transmission configuration. After being 
expanded to 20 mm in diameter, light from a diode laser (690-nm wavelength, 
11-mW power) illuminates the sample. The power density used is much lower 
than the ^200-mW/cm2 safety limit. An ultrasonic wave from a focused ultra-
sonic transducer is coupled into the sample through water in which the sample 
is partially immersed. Since the ultrasonic transducer has a 38-mm focal length 
in water and a 1-MHz center frequency, the focal zone is close to 2.8 mm in 
diameter and -^20 mm in length; the peak pressure at the focus is —105 Pa. 
The speckle pattern generated by the reemitted light is detected by a 12-bit CCD 
camera with 256 x 256 pixels. Ultrasound-modulated optical signals are extracted 
using parallel-speckle detection without chirping. 


Linear and angular scans are required for the data acquisition. For experimental 
convenience, the buried object is translated horizontally and rotated about the 
optical axis while the imaging system is held stationary. A coordinate system is 
affixed to the buried object: the y axis is along the optical axis, and the z axis is 
initially along the ultrasonic axis. As shown in Figure 13.6b, the x.z coordinates 
rotate with the buried object, whereas the measurement coordinates (x\ y', z!) 
are stationary with the z axis parallel to the ultrasonic beam. 
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Figure 13.6. (a) Schematic of a reconstruction-based UOT system; (b) coordinate 
systems. 


The detected ultrasound-modulated optical signal can be expressed as an inte-
gration of the signal originating from the z! axis: 


(13.23) 5(φ, x) = / s^y(z)dz\ 


which is a Radon transform (see Chapter 8). The integrand can be expressed as 


*M'(z') = Cx Q^Az')M^Azf)G^Az'). (13.24) 


Here, C\ denotes a constant; οφ,χ'(ζ') denotes the optical fluence rate; Μψ^'(ζ') 
denotes the ultrasonic modulation depth, which is related to the optical and the 
ultrasonic properties; and G^x'(z') denotes the Green function that describes 
the transport of the original ultrasound-modulated light to the detector. In the 
diffusive regime, Q^x'(z') and G^y(z') have a weak dependence on z!. 
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From projection data ς(φ,χ'), a filtered backprojection algorithm is used to 
reconstruct an image of the sample as follows: 


f(x,z)= I / S(<\>,k)\k\exp(ikx')dkd<\>. (13.25) 


Here, k is the spatial ίΓεςμεΜ^γ in the x' direction; ^(φ, k) is the spatial Fourier 
transform of 5*(φ, x')\ \k\ is referred to as the Ram-Lak filter. 


A tissue sample is imaged using the transmission configuration. Here, the 
step size of the linear scan along the x' axis is 1.2 mm, and the step size of 
the angular scan is 5°. By placing the CCD camera at an angle of 25° with 
respect to the optical axis, contributions from ballistic photons can be ruled out 
and the capability of nonballistic imaging can be demonstrated. Figure 13.7a 
shows a photograph of the middle cross section (xz plane) of a 14-mm-thick 
chicken breast tissue sample containing a chicken blood vessel, which measures 
— 8 x 3 mm2 on the xz plane and —2 mm along the y axis. Figure 13.7b shows 
the reconstructed image, which clearly reveals the buried object. 


(b) 0.5 0.7 0.9 


Figure 13.7. (a) Photograph of the middle xz cross section of a 14-mm-thick chicken 
breast tissue sample in which a blood vessel is buried; (b) reconstructed 2D image using 
the transmission configuration. 
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13.7. UOT WITH FABRY-PEROT INTERFEROMETRY 


UOT can also be implemented with a long-cavity scanning confocal Fabry-Perot 
interferometer (CFPI), which provides a large etendue (the product of the detec-
tion area and the acceptance solid angle) and a short response time (Figure 13.8a). 
As shown in Figure 13.8b, the sample is gently pressed to a semicylindrical shape 
through a slit along the x axis; the orthogonal ultrasonic and optical beams are 
confocal below the sample surface. Reemitted light is collected on the opposite 
side of the ultrasound beam from the incident lightbeam. This configuration min-
imizes the effect of unmodulated light from the shallow region and enhances the 
ultrasonic modulation of some of the quasiballistic light that still exists at small 
imaging depths. 


A focused ultrasonic transducer (15-MHz center frequency, 15-MHz band-
width, 4.7-mm lens diameter, and 4.7-mm focal length) is driven by a pulser. The 
peak ultrasonic pressure at the focal spot measures 3.9 MPa, which is within the 
ultrasound safety limit at this frequency for biological tissue with no well-defined 
gas bodies. The laser light (532-nm wavelength, 100-mW power) has a 0.1-mm 
focal diameter in a clear medium. The sample is mounted on a three-axis (x\ yr, 
z') translation stage. The ultrasonic transducer and the sample are immersed in 
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Figure 13.8. (a) Schematic of a CFPI-based UOT system (PZT represents a piezoelectric 
transducer made of lead zirconate titanate); (b) top view of the sample. 
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water for acoustic coupling. The light-focusing optics and the collection optical 
fiber (0.6-mm core diameter) are also immersed in the same water tank. The 
optical-fiber output is coupled to the CFPI (50-cm cavity length, 0.1-mm2 sr 
etendue and >20 finesse), which operates in transmission mode. 


A beamsplitter splits off some light for cavity tuning. Initially, one of the CFPI 
mirrors is scanned by more than one free spectral range of the cavity to search 
for a cavity length that matches the center frequency of the unmodulated light. 
Then, the mirror is displaced by a calibrated amount so that the cavity length 
matches the frequency of the positive sideband of the ultrasound-modulated light 
(15 MHz greater than the center frequency of the unmodulated light). 


Next, an avalanche photodiode (APD) detects the light filtered through the 
CFPI; the output signal is sampled at 100 MHz by a data acquisition board. 
The entire system is controlled by computer. The APD signal is acquired during 
ultrasound propagation through the sample as a function of time. Converting 
the propagation time into z via the acoustic speed vs & 1500 m/s yields the 
distribution of the ultrasound-modulated optical intensity along the ultrasonic 
axis I\(z), which provides a ID image. 


In each operational cycle, the resonant frequency of the CFPI is tuned first; 
then, both the ultrasonic transducer and the data-acquisition board are triggered 
by a trigger generator, and 4000 APD signals are acquired in one second. Aver-
aging over 10 cycles produces a ID image of satisfactory SNR. Two-dimensional 
images are obtained by further scanning of the sample along the x direction. 


A typical profile of I\(z)—which peaks at the intersection between the optical 
and the ultrasonic axes because ultrasonic modulation is related to both optical 
fluence and ultrasound intensity—is shown in Figure 13.9. Chicken breast tissue 
is pressed through a 4-mm-wide slit to form a cylindrical tissue bump with a 
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Figure 13.9. Ultrasound-modulated light intensity along the ultrasonic axis (AU = 
arbitrary units). 
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2-mm radius. A long black latex rod with a 60-μπι diameter—which is transpar-
ent for ultrasound but absorptive for light—is placed along the x axis below the 
sample surface. When the ultrasound pulse passes through the object, the optical 
contrast produces a dip in I\(z). 


The axial and lateral resolutions are investigated by imaging two chicken 
breast tissue samples (Figure 13.10). The samples are in semi-cylindrical shapes 
with 3.2- and 3-mm radii of curvature, respectively; each contains a 0.1-mm-thick 
black latex object (Figures 13.10b and 13.10d) at the axis of the semicylinder. 
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Figure 13.10. (a) Image and (b) photograph of an object; (c) image and (d) photograph 
of another object; (e) ID axial profiles of intensity from the data in part (a); (f) ID lateral 
profile of intensity from the data in part (c) (AU represents arbitrary units). 
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A typical ID image of the background tissue is used as a reference /,ref(z). Each 
ID image of the object 7° J(z) is converted into a relative profile 7[e,(z) by 


7, (z) 


These relative profiles form 2D images are shown in gray scale with five equally 
spaced gray levels in Figures 13.10a and 13.10c. Figure 13.10e presents two 
I\d(z) profiles taken from Figure 13.10a along two cut lines. Along cut line 
1, the actual gap is 70 μηι and is resolved with a 55% contrast; along cut line 2, 
the actual gap reduces to 50 μιτι, and the contrast decreases to 40%. Similarly, 
Figure 13.1 Of represents the ID lateral profile of intensity versus x taken from 
Figure 13.10c along the cut line. The actual gap along the cut line is 120 μΐΏ 
and is resolved with a 50% contrast. If a gap resolvable with a 50% contrast is 
defined as the resolution, the estimated axial and lateral resolutions are 70 and 
120 μιη, respectively. 


PROBLEMS 


13.1 Show that given (d/l't)zx/1 «; 1, Eq. (13.2) can be simplified to Eq. (13.11) 
and the modulation depth can be approximated by Eq. (13.12). 


13.2 Plot the ratio of hn to δ^ as a function of kal't using the following parame-
ters: dn/dp = 1.466 x 10~10 m2/N, p = 1000 kg/m3, and vs = 1488 m/s. 


13.3 Plot the modulation depth as a function of l't using the following param-
eters: dn/dp = 1.466 x 10~10 m2/N, p = 1000 kg/m3, υ, = 1488 m/s, 
ultrasonic frequency fa — 1 MHz, no = 1.33, λο = 500 nm, d = 5 cm, 
and A = 0.01 nm. Convert A into pressure. 


13.4 Plot h/h versus Λ using the following parameters: dn/dp = 1.466 x 
10~10 m2/N, p = 1000 kg/m3, vs = 1488 m/s, ultrasonic frequency fa = 
5 MHz, no = 1.33, λο = 500 nm, d = 5 cm, and kal't = 1. 


13.5 In frequency-swept ultrasound-modulated optical tomography, the source 
that is applied to the ultrasonic transducer sweeps from 7 to 10 MHz in 
10 ms. The reference signal that is applied to the PMT sweeps from 7.01 
to 10.01 MHz in 10 ms. Derive the formula that converts the frequency 
of the heterodyned signal to the position along the ultrasonic axis. 


13.6 Derive the phase of the chirped sinusoidal function that provides frequency 
sweep fs(t) = as + bt. 


13.7 (a) Derive Eq. (13.20). (b) Extend it to a three-phase method, where the 
three phases are 90° apart, (c) Extend it to a two-phase method, where the 
two phases are 180° apart. 
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13.8 A mechanical index—which is used to estimate the likelihood of mechan-
ical bioeffects—is defined as MI = P / ( C M I \ Z J ) . Here, P is the local 
peak-rarefactional pressure in MPa, / is the acoustic frequency in MHz, 
and CMI is a coefficient equal to 1 M P a / V M H z . Calculate the MI for the 
ultrasonic parameters used in this chapter and compare with the current 
safety standards. 


13.9 Given μα = 0.03 c m - 1 , μ5 = 100 cm" 1 , and g = 0.9, compute μ6ίί in 
both c m - 1 and dB/cm. Compare μ,^ with the ultrasonic attenuation coeffi-
cient at frequency / = 3 MHz in biological tissue, which is approximately 
0 . 5 / dB/(cm MHz). 


13.10 Implement the Radon transformation in C/C++. 


13.11 Implement the inverse Radon transformation in C/C++. 
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APPENDIX A 


Definitions of Optical Properties 


TABLE A.l. Basic Optical Properties 


Parameter 


Absorption 
coefficient 


Scattering 
coefficient 


Anisotropy 


Index of 
refraction 


Definition 


Probability of photon 
absorption by a medium 
per unit (infinitesimal) 
path length 


Probability of photon 
scattering by a medium 
per unit (infinitesimal) 
path length 


Average of cosine of 
scattering polar angle by 
single scattering 


Ratio of speed of light in 
vacuum to phase velocity 
in medium; only the real 
part is considered here 


Symbol Unit 
Typical 
Value 


μ0 


cm - i 


0.1 


100 


0.9 


1.38 


TABLE A.2. Derived Optical Properties 


Parameter 


Albedo 
Diffusion 


coefficient 


Definition 


a = μ.9/(μα 4- μ5) 
0 = 1 / [ 3 ( μ β + μ;)];ΰιβ 


coefficient linking the 
current to the gradient 
of fluence in Fick's law 


Symbol 


a 
D 


Unit 


— 
cm 


Typical 
Value 


0.999 
0.033 
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344 DEFINITIONS OF OPTICAL PROPERTIES 


TABLE A.2. (Continued) 


Parameter Definition Symbol Unit 
Typical 
Value 


Effective 
attenuation 
coefficient 


Extinction 
coefficient 


μβίτ = V iW#; 
exponential decay rate 
of fluence far from the 
source 


μ, = μ0 4- μ ν; probability 
of photon interaction 
with a medium per unit 
(infinitesimal) path 
length, where 
interaction includes both 
absorption and 
scattering (also referred 
to as total interaction 
coefficient) 


^ef f .74 


100.1 


Mean free path 


Penetration 
depth 


Reduced 
scattering 
coefficient 


Transport 
albedo 


Transport 
interaction 
coefficient 


Transport mean 
free path 


lt = Ι/μ,; mean free path 
length between 
interactions 


5 = l/^eff; exponential 
decay constant of 
fluence far from the 
source 


μ.ν = μ.ν(ΐ -g); 
probability of equivalent 
isotropic photon 
scattering by a medium 
per unit (infinitesimal) 
path length in diffusive 
regime (also referred to 
as transport scattering 
coefficient) 


a' = \i'J(\ia + \i's) 


μ; = μ.α + μ; 


/; = ι/μ; 


It 


δ 


μ; 


a' 


μί 


/; 


cm 0.01 


0.575 


cm 10 


cm 


cm 


0.990 


10.1 


0.099 








APPENDIX B 


List of Acronyms 


ID 
2D 
3D 
AC 
APD 
ART 
CCD 
CDF 
CFPI 
CNR 
CT 
CW 
dB 
DC 
DOP 
DOT 
DRR 
EEM 
ESF 
FFT 
FOV 
FWHM 
GVD 
IDM 
IFT 
IR 
LSF 
MCML 


one dimension, or one-dimensional 
two dimensions, or two-dimensional 
three dimensions, or three-dimensional 
alternating current 
avalanche photodiode 
algebraic reconstruction technique 
charge-coupled device 
cumulative distribution function 
confocal Fabry-Perot interferometer 
contrast-to-noise ratio 
computed tomography 
continuous wave 
decibel 
direct current 
degree of polarization 
diffuse optical tomography 
depth-to-resolution ratio 
excitation-emission matrix 
edge spread function 
Fast Fourier transform 
field of view 
full width at half maximum 
group velocity dispersion 
inverse distribution method 
inverse Fourier transform 
infrared 
line spread function 
Monte Carlo modeling of light transport in 


multilayered scattering media 
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3 4 6 LIST OF ACRONYMS 


MCP 
MRI 
MTF 
NA 
NIR 
OCT 
OD 
PAM 
PAT 
PDF 
PDI 
PMT 
PSF 
PZT 
rms 
RTE 
SIRT 
SLD 
SNR 
STF 
SVD 
TPM 
UOT 
US 
UV 


microchannel plate 
magnetic resonance imaging 
modulation transfer function 
numerical aperture 
near-infrared 
optical coherence tomography 
optical density 
photoacoustic microscopy 
photoacoustic tomography 
probability density function 
polarization-difference imaging 
photomultiplier tube 
point spread function 
lead (Pb) zirconate titanate (piezoelectric transducer) 
root-mean-squared 
radiative transfer equation 
simultaneous iterative reconstruction technique 
superluminescent diode 
signal-to-noise ratio 
system transfer function 
singular-value decomposition 
two-photon microscopy 
ultrasound-modulated optical tomography 
ultrasonography 
ultraviolet 








APPENDIX B 


List of Acronyms 


ID 
2D 
3D 
AC 
APD 
ART 
CCD 
CDF 
CFPI 
CNR 
CT 
CW 
dB 
DC 
DOP 
DOT 
DRR 
EEM 
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FWHM 
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three dimensions, or three-dimensional 
alternating current 
avalanche photodiode 
algebraic reconstruction technique 
charge-coupled device 
cumulative distribution function 
confocal Fabry-Perot interferometer 
contrast-to-noise ratio 
computed tomography 
continuous wave 
decibel 
direct current 
degree of polarization 
diffuse optical tomography 
depth-to-resolution ratio 
excitation-emission matrix 
edge spread function 
Fast Fourier transform 
field of view 
full width at half maximum 
group velocity dispersion 
inverse distribution method 
inverse Fourier transform 
infrared 
line spread function 
Monte Carlo modeling of light transport in 


multilayered scattering media 
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MCP 
MRI 
MTF 
NA 
NIR 
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OD 
PAM 
PAT 
PDF 
PDI 
PMT 
PSF 
PZT 
rms 
RTE 
SIRT 
SLD 
SNR 
STF 
SVD 
TPM 
UOT 
US 
UV 


microchannel plate 
magnetic resonance imaging 
modulation transfer function 
numerical aperture 
near-infrared 
optical coherence tomography 
optical density 
photoacoustic microscopy 
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probability density function 
polarization-difference imaging 
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point spread function 
lead (Pb) zirconate titanate (piezoelectric transducer) 
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simultaneous iterative reconstruction technique 
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system transfer function 
singular-value decomposition 
two-photon microscopy 
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Absorbance, 139, 164 
Absorbers, primary, 6, 7 
Absorption 


coefficient. See Absorption coefficient 
cross section, 5 
cross section (two photon), 171 
efficiency, 5 
illustration, 4 
origins, 5 
spectrum, 1 
spectra of primary absorbers (plot), 7 


Absorption coefficient 
conversion from fluence to specific 


absorption, 85 
conversion from specific absorption to 


fluence, 54 
conversion to pressure, 286 
definition, 5, 343 
hemoglobin, 6 
map, 267 
sensing, 140, 145, 146 
spectra of primary absorbers (plot), 7 


Acceptance angle 
antenna theorem, 161, 162 
collimated transmission method, 


136, 137 
OCT, 212 
solid, 161, 335 


Acoustic focusing, 307 
Acoustic lens, 304, 307, 319 
Acoustic pressure, 285 
Acoustic transit time, 303 
Acoustic wave equation, 313, 316 
Acoustooptic modulator, 161 
Activatable retarder, 155 
Adjoint method, 274 
Agargel, 135, 305 
Airy disc, 176 
Albedo, 88, 123 


definition, 343 
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Algebraic reconstruction technique (ART), 265, 
275 


illustration, 276 
A-line. See also A-scan 


definition, 186 
Fourier-domain OCT, 198, 199, 201, 202 
time-domain OCT, 187 


Amino acid, 9 
Amplitude reflectivity, 167, 187, 199 


density, 199 
Analyzer, polarization. See Polarization 


analyzer 
Angiogenesis, 1, 7 
Angle-biased sampling, 211, 212 
Angular wavenumber. See Propagation 


constant 
Anisotropy 


definition, 47, 343 
formula, 87 
Mie theory, 20, 33 
plot, 24 
similarity relation, 111 
structural, 38 


ANSI Standard C, 40, 67 
Antenna theorem, 161, 162 


illustration, 161 
Anti-Stokes transition, 5 
APD. See Avalanche photodiode 
Arm-length difference, 183, 186, 206 
Arm-length mismatch. See Arm-length 


difference 
ART. See Algebraic reconstruction technique 
A-scan. See also A-line 


definition, 186 
PAM, 305, 306 
time-domain OCT, 186 


Attenuation coefficient, ultrasonic, 339 
Autocorrelation function, 184, 201, 324 
Auxiliary angle, 221 
Avalanche photodiode (APD), 252, 336 
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Axial resolution 
OCT, 181, 186, 189, 193, 207 
PAM, 305, 307 
UOT, 326, 329, 332, 337 


Azimuthal angle (illustration), 18 


Backprojection, 311-334 
Ballistic imaging, 2, 153 
Ballistic light. See Ballistic photon 
Ballistic photon, 153, 161, 334 


arrival time, 154, 158 
polarization, 157 
spatial frequency, 156, 160 


Ballistic regime, 115 
definition, 114 
OCT, 186 


Ballistic transmittance, 8, 135. See also 
Unscattered transmittance 


Bandwidth 
axial resolution, 193 
chirp, 327 
coherence length, 184 
coherence-gated holographic 


imaging, 160 
ideal, 312 
interference signal, 206 
SLD, 209, 237, 238 
spatial frequency, 161 
ultrasound, 284, 304, 335 


Bar chart, 305 
Basis set, 88 
Beam splitter 


confocal microscope, 165 
DOT, 252 
Michelson interferometer, 181 
nonpolarizing, 237-239 
OCT, 182 
optical heterodyne imaging, 161 
polarizing, 238, 239 
UOT, 336 


Beamforming, 309 
Beat frequency, 160, 161, 206 
Beer's law 


absorption, 5 
ballistic imaging, 153 
depth, 99 
generalized, 164 
primary beam, 147 
probability, 45 
scattering, 8 
thickness, 135, 136 
time, 98, 115 


Bessel equation, transformed, 100 


Bessel function, 21, 166 
modified, 70, 74 
spherical, 21, 28 


Binary tree, 74 
Biochemical information, 1, 146 
Bioluminescence, 2 
Biomarker, 2 
Bipolar pressure profile, 299 
Birefringence, 154, 158, 242. See also 


Polarization 
circular, 9 
dextrorotatory, 9 
levorotatory, 9 
linear, 9 
negative, 9 
positive, 9 


Blood flow, 2, 206 
Blue sky, 18 
Body temperature, 285, 286 
Boltzmann equation. See Radiative transfer 


equation 
Born approximation, 147, 262, 271 
Boundary 


refractive-index-matched. See 
Refractive-index-matched boundary 


refractive-index-mismatched. See 
Refractive-index-mismatched boundary 


Boundary condition 
Cauchy, 102 
Dirichlet, 103, 265,266 
DOT, 273 
extrapolated (illustration), 102 
Green's function approach, 317 
homogeneous, 293 
Mie theory, 26, 32, 33 
RTE, 97, 101 
semiinfinite medium, 106, 107 
slab, 120 


Brain, 249, 312, 313 
Breast, 249 
Broad beam, 67, 156, 199, 326 
Brownian motion, 324 
B-scan, 186, 305, 306 


Carbon fiber, 305 
Carrier, 189 
Carrier frequency, 206, 239 
Cauchy boundary condition, 102 
Cauchy's contour integration, 290 
Causality, 98, 117, 291, 293, 317 
CCD 


holography, 158 
reflectometry, 140, 145 
speckle imaging, 330-332, 334 
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CDF. See Cumulative distribution function 
Cell nuclei, 1, 8 
Center frequency 


OCT, 187, 197 
PAM, 304 
PAT, 284, 312 
UOT, 330, 332, 335, 336 


Central limit theorem, 55 
Chirping, 208, 209, 326, 329, 332 
Circular polarization, 9, 222, 224, 229 


Mueller matrix, 227 
Circular polarizer, 231, 232, 234 
CNR. See Contrast-to-noise ratio 
Coefficient 


absorption. See Absorption coefficient 
extinction. See Extinction coefficient 
molar extinction. See Molar extinction 


coefficient 
scattering. See Scattering coefficient 
total interaction. See Extinction coefficient 


Coherence gating, 153, 158, 160, 186 
Coherence length, 184-186, 190, 330 
Coherence time, 184 
Coherence-gated holographic imaging, 153, 158 


illustration, 159 
Collagen, 1, 9, 10, 38, 242 
Collimated transmission method, 135, 139 


illustration, 136 
Comparison of imaging modalities, 2, 284 
Compensator. See Retarder 
Complex conjugation, 89, 311 
Complex expression. See Phasor representation 
Compressibility, 285 
Computed tomography (CT), 1, 163, 332 
Concentration of hemoglobin. See Hemoglobin 


concentration 
Condensation parameter, 314 
Condenser lens, 164, 304 
Confocal microscopy 


fluorescence (illustration), 166 
optical, 154, 164 
photoacoustic. See Photoacoustic microscopy 
system (illustration), 165 


Conical lens, 304 
Conjugate-gradient method, 275 
Conservation of energy, 85, 88, 223 
Conservation of mass, 314 
Constant fraction discriminator, 252 
Continuity equation, 314, 315 
Contrast 


comparison, 2 
definition, 12 
DOT, 269 


functional imaging, 1 
illustration, 13 
molecular imaging, 2 
OCT, 181, 219 
PAT, 313 
UOT, 329, 338 


Contrast-to-noise ratio (CNR), 13 
CONV program, 67, 77 
Converging spherical wave, 299, 300, 311 
Conversion 


between optical wavelength and photon 
energy, 14 


from pencil beam to isotropic 
source, 106 


from temperature to pressure, 286 
Convolution 


arbitrary source, 98 
broad beam, 67 
coherent, 168 
CONV program, 77 
DOT, 251, 263 
fluorescence source, 147 
Fourier-domain OCT, 201 
Gaussian beam, 69 
incoherent, 167-170 
infinitely wide beam, 54 
LSF, 14 
numerical example, 77 
numerical solution, 72 
object function, 11 
PAT, 302 
top-hat beam, 71 
truncation error, 76 


Correlation, 324, 325 
Critical angle, 49, 104 
Critical depth, 122, 128, 129 
Cross section 


absorption, 5 
absorption (two photon), 171 
scattering. See Scattering cross section 


Cross-correlation theorem, 184 
Cross-interference term, 200 
C-scan, 190 
CT. See Computed tomography 
Cumulative distribution function (CDF), 41, 42, 


45, 60 
Current density 


conservation of energy, 117 
definition, 84 
direction, 85, 97 
effect on radiance (illustration), 91 
fractional change, 96, 97, 117 
projection, 108 


Cytoplasm, 8 
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Dark-field confocal photoacoustic microscopy 
(PAM), 303 


Dark-field illumination, 307 
Data-acquisition board, 239 
dB. See Decibel 
Decibel (dB), 139, 209 
Deconvolution, 202, 205 
Defocus distance, 166 
Degeneracy, 97 
Degree of circular polarization (DOCP), 223 
Degree of linear polarization (DOLP), 223 
Degree of polarization (DOP), 219, 223, 224, 


236, 237 
Delay-and-sum detection, 309 
Delta heating, 289, 290, 295, 299 


slab, 293 
sphere, 297 


Demodulation, 191, 193, 196 
Depolarizing medium, 223 
Depth of focus. See Focal zone 
Depth-priority scanning, 190 
Depth-to-resolution ratio (DRR), 13, 181 
Dermis, 305 
Determinant, 241 
Diattenuator, 225 
Dichroic mirror, 165 
Dichroism, 225 
Differential path length, 277 
Diffraction limit, 156, 165, 170 
Diffraction theory, 165 
Diffuse optical tomography (DOT), 2, 249, 283 


DC, 250, 252 
DC (illustration), 253 
frequency domain, 250, 253 
frequency domain (illustration), 253, 255 
reconstructed image (plot), 268 
time domain, 250, 251 
time domain (illustration), 251 


Diffuse reemittance 
relative, 39 


Diffuse reflectance 
angularly resolved, 56 
angularly resolved (plot), 57 
approximations (illustration), 107 
diffusion step, 123, 124 
diffusion theory, 106 
diffusion theory (plot), 109 
experimental data (plot), 142 
far, 140, 143, 144 
hybrid, 124 
hybrid (plot), 130, 131 
image source (plot), 112 
isotropic source in slab (plot), 126, 128 
Monte Carlo data (plot), 142 


Monte Carlo step, 123, 124 
oblique incidence, 143 
optical fibers, 144 
pencil beam and isotropic source (plot), 111 
pencil beam on slab (plot), 127 
projection of current density, 108 
relative, 39, 106 
representation, 51 
similarity relation (plot), 110, 114 
slab, 121, 125 
source depth (plot), 113 
time-resolved, 145 
total, 52, 55, 145 
weight recording, 49 


Diffuse transmittance 
angularly resolved, 56 
angularly resolved (plot), 57 
isotropic source in slab (plot), 126 
Monte Carlo step, 123 
pencil beam on slab (plot), 127 
relative, 39 
representation, 51 
slab, 121, 125 
total, 52, 55 
weight recording, 49 


Diffusion approximation 
boundary condition, 102 
directional and temporal broadening, 97 
expansion of radiance, 88, 105 
high albedo, 88 
P\ approximation, 89 
similarity relation, 97 


Diffusion coefficient, 120, 145, 256 
definition, 97, 343 
oblique incidence, 143 


Diffusion equation 
approximated RTE, 83 
background, 262, 269 
derivation, 96 
DOT, 249, 267 
excitation, 147 
expression, 97 
fluorescence, 147 
impulse response, 98 
linearity, 257 
numerical methods, 273 
photon density, 256 


Diffusion expansion of radiance, 88, 105 
Diffusion theory 


accuracy, 122 
accuracy and speed, 106 
breakdown, 99 
derivation, 88 
diffuse reflectance (plot), 109 
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fluence, 56 
fluorescence, 147 
hybrid, 119 
oblique incidence, 143 
validation, 110 
zero-boundary condition, 145, 324 


Diffusive regime 
boundary condition, 106 
definition, 114, 115 
DOT, 249 
effective reflection coefficient, 105 
OCT, 186 
PAT, 283 
penetration depth, 56 
UOT, 323, 330, 333 


Diffusivity 
optical, 256 
thermal, 284 


Digital holography, 158, 175 
Dimensionless step size, 40, 43, 45, 46, 48 
Dipole moment, 23 
Dipole radiation, 24, 311 
Dirac delta function, 2, 11, 38, 201 
Direct method, 274 
Direction cosines, 39, 43, 47, 49 
Dirichlet boundary condition, 103, 265, 266 
Dispersion compensation, 209 
Divergence, 86, 154, 288 
Diverging spherical wave, 29, 288, 299, 310 
DOCP. See Degree of circular polarization 
DOLP. See Degree of linear polarization 
DOP. See Degree of polarization 
Doppler 


effect, 2, 206 
frequency. See Doppler shift 
OCT, 206 
shift, 186, 206, 239 


DOT. See Diffuse optical tomography 
Dot product, 89 
Double refraction, 9 
Dynamic focusing, 190 
Dynamic range, 251, 252 


Early-photon imaging, 154 
Edge spread function (ESF), 11 


illustration, 11 
EEM. See Excitation-emission matrix 
Effective attenuation coefficient, 98, 120, 143 


definition, 344 
Effective path length, 258 
Effective reflection coefficient, 104, 105, 120 
Eigenequation, 231 
Eigenpolarization, 225, 226, 231, 242 
Eigenvalue, 231, 232 


Eigenvector, 231-233 
Elastic scattering, 5, 85, 165 
Elastooptical coefficient, 325 
Elliptical polarization, 220, 222 


illustration, 221 
Ellipticity angle, 220 
Empirical formula 


center shift of diffuse reflectance, 143 
effective reflection coefficient, 120 
Grueneisen parameter, 285 


Encoding ambiguity, 200 
Energy density, 85, 286 
Energy flow (illustration), 84 
Ensemble averaging, 37, 210, 211, 236, 324 
Envelope of interference fringes, 186 


axial resolution, 189 
demodulation, 191 
expression, 189 
GVD, 208, 209 
number of periods, 193, 194 


Equation 
acoustic wave. See Acoustic wave equation 
Bessel (transformed). See Bessel equation, 


transformed 
Boltzmann. See Radiative transfer equation 
continuity. See Continuity equation 
diffusion. See Diffusion equation 
eigen. See Eigenequation 
force. See Force equation 
Helmholtz. See Helmholtz equation 
inviscid force. See Inviscid force equation 
Maxwell. See Maxwell equations 
motion. See Equation of motion 
photoacoustic. See Photoacoustic equation 
radiative transfer. See Radiative transfer 


equation 
telegraphy. See Telegraphy equation 
thermal. See Thermal equation 
thermal expansion. See Thermal expansion 


equation 
Equation of motion, 288 
ESF. See Edge spread function 
Etendue, 335, 336 
Excitation 


definition, 3 
illustration, 4 
nonlinear optical, 169 
one-photon, 170 
one-photon (illustration), 170 
time, 4 
two-photon. See Two-photon excitation 
two-photon (illustration), 170 


Excitation-emission matrix (EEM), 146 
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Expansion of radiance, diffusion. See Diffusi« 
expansion of radiance 


Extended trapezoidal rule, 72 
integrand evaluation (illustration), 73 


Extinction coefficient 
ballistic imaging, 153 
collimated transmission method, 135 
definition, 6, 344 
formula, 8, 44 
OCT, 212 


Extracellular fluid, 8 
Extraordinary ray, 9 
Extrapolated boundary 


DOT, 265 
illustration, 102 
image point, 106 
oblique incidence, 143 
refractive-index-matched, 102 
refractive-index-mismatched, 105 
slab, 120 


Extrapolation (illustration), 73 


Fabry-Perot interferometer, 326, 335 
Far field, 24, 259, 307 
Fast axis, 155, 226, 231, 238 
Fast Fourier transformation (FFT), 202 
FFT. See Fast Fourier transformation 
Fick's law, 102, 106, 343 


diffuse reflectance, 108 
formula, 97 


Field of view (FOV), 13, 304 
Filter wheel, 256 
Finite-difference method, 273 
Finite-element method, 273 
First photon-tissue interaction, 76 
First-order diffraction term, 160 
Flowchart for tracking photons, 40 
Fluence, 53 


conversion to pressure, 286 
definition, 84 
depth resolved, 56 
distribution (plot), 58 
plot, 78, 79 
relative, 39 


Fluence rate 
boundary value, 145 
conversion to pressure, 287 
definition, 84 
diffusion theory, 119 
primary beam, 147 


Fluorescence 
characteristics, 9 
confocal imaging (illustration), 166 
definition, 3 


emission spectrum, 146 
excitation spectrum, 146 
illustration, 4 
incoherent, 9 
lifetime, 3, 4, 10, 146, 147 
modeling, 147 
origins, 9 
quantum yield. See Quantum yield 
red shift, 9 
spectroscopy, 146 
spectrum, 1, 9 
Stokes shift, 9 
time scales, 4 


Fluorophore, endogenous, 10 
Flux, 56 


energy, 85 
photon, 171 


Focal plane, 156, 157, 306 
Focal zone, 190, 326, 332 
Focused ultrasonic transducer, 304, 330, 332, 


335 
Force equation, 288, 314 
Forcing function, 263, 266 
Forward problem, 249, 272-274 


perturbation, 262-264 
Fourier optics, 156 
Fourier space-gated imaging, 156 
Fourier transformation 


autocorrelation function, 325 
differential equation, 99, 100, 290 
Doppler OCT, 207 
Fourier-domain OCT, 201 
PAT, 310 
spatial, 12, 156, 160 
temporal, 184, 191, 250 
UOT, 328 


Fourier transformer 
inverse, 195 
spatial, 157, 195 
temporal, 195 


Fourier-domain OCT, 198 
signal processing (illustration), 204, 205 
system (illustration), 198 


Fourier-domain optical delay line 
illustration, 197 


FOV. See Field of view 
Frame rate, 13, 199 
Frequency sweeping. See Chirping 
Frequency-division multiplexing, 252 
Frequency-swept gating, 160, 202, 326, 329 
Fresnel reflection, 43, 103, 105, 122 
Full-field image, 164 
Functional imaging, 1, 7, 249 
Fused-silica fiber, 209 
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Gabor holography, 173, 174 
illustration, 173 


Gaussian beam, 69, 190 
fluence (plot), 79 


Gaussian envelope, 189, 208 
Gaussian line shape, 184, 189 
Gaussian quadratures, 125 
Gene expression, 2 
Glucose, 9 
Grating, 140, 145, 195, 307 
Grating lobe, 309 
Grating-lens pair, 195 
Green's function, 316. See also Impulse 


response 
DOT, 263, 265, 269, 270, 274 
PAT, 288, 289, 291, 293, 310, 311 
pencil beam, 38, 67, 68 
point source, 98, 99 
PSF, 10 
UOT, 333 


Green's function approach 
DOT, 263, 265, 269, 270 
illustration, 263 
PAT, 288, 289 
summary, 316 


Green's second identity, 270 
Green's theorem 


diffusion theory, 98 
DOT, 263 
PAT, 292, 310, 317 


Group delay, 188, 195, 197, 198 
Group velocity, 188 
Group velocity dispersion, 207 
Group-path-length mismatch, 198 
Grueneisen parameter, 285 


Hankel function, 21, 29, 33 
Hankel transform, 166 
Heated slab 


illustration, 293 
snapshots of pressure (plot), 298 


Heated sphere 
illustration, 298 
pressure versus time (plot), 299 
snapshots of pressure (plot), 302 


Heating function, 287, 289 
Heaviside function, 295, 299 
Helmholtz equation, 257, 270 


scalar, 27, 29 
vector, 30 


Hemoglobin 
concentration, 1, 6, 7, 145 
deoxygenated, 6, 283 
oxygen saturation, 1, 6, 7 
oxygenated, 6, 283 
PAT, 313 
primary absorber, 6 
spectrum of molar extinction coefficient 


(plot), 6 
two forms, 6 


Henyey-Greenstein phase function 
hybrid model, 119, 123 
Monte Carlo method, 46, 47 
OCT, 211 
sensing, 137 


Heterodyne detection, 160, 161, 186, 
254, 327 


Heterodyne frequency, 161, 329, 330 
Heterodyne imaging, optical. See Optical 


heterodyne imaging 
High resolution, 2, 13, 164, 181, 284 
Highpass filter, 191 
High-speed shutter, 154 
Histogram, 252 
Hologram, 158, 159, 171-173 


reconstruction (illustration), 172, 173, 175 
recording (illustration), 172, 173 


Holographic imaging, 153, 158 
Holography, 158, 171 
Homogeneous boundary condition, 293 
Hooke's law, 287 
Hybrid model, 119, 122 


illustration, 123 
Hypermetabolism, I, 7 


IDM. See Inverse distribution method 
Image function, 11 
Image plane, 164 
Image reconstruction 


CT, 163 
DOT, 249, 252, 261, 263, 267 
PAT, 309 
UOT, 332 


Image source, 106, 108, 120, 143 
illustration, 107 
slab (illustration), 121 


Imaging modalities, comparison of, 2, 284 
Implicit function, 269 
Implicit photon capture, 42 
Impulse function. See Dirac delta function 
Impulse heating. See Delta heating 
Impulse response, 68, 76, 251, 256 See also 


Green's function 
pencil beam, 38, 67 
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Impulse response, (Continued) 
point source, 98 
PSF, 10 


Index of refraction. See Refractive index 
definition, 343 


Inelastic scattering, 4 
Infinitely narrow photon beam. See Pencil 


beam 
Initial condition, 317 
Initial photoacoustic pressure, 284, 309 


slab, 293 
sphere, 297 


Inner product, 89 
Instantaneous frequency, 326 
Intensity, 84 
Interference fringes 


antenna theorem, 161 
Doppier OCT, 206, 207 
Michelson interferometry, 183 
time-domain OCT, 186, 194 


Interferogram, 171, 183. See also Interference 
fringes 


spectral, 198-200, 202, 204, 205 
Interferometer, Fabry-Perot. See Fabry-Perot 


interferometer 
Interferometry, Michelson. See Michelson 


interferometry 
Internal conversion, 4 
Interpolation (illustration), 73 
Intralipid® solution, 135, 305 
Inverse distribution method (IDM) 


definition, 41 
illustration, 41 
proof, 42 
scattering angles, 46-48 
step size, 44, 45 


Inverse Fourier transformation 
differential equation, 100, 290 
Fourier-domain OCT, 198, 200, 201, 204, 


205 
PAT, 311 
spatial, 160 
temporal, 186, 189, 195, 250 


Inverse method, 274 
Inverse problem, 249, 262, 263, 272 
Inverse Radon transformation, 163 
Inviscid force equation, 288, 314 
IQ detection, 254 
Isosbestic point, 6 
Isothermal compressibility, 285 
Isotropie scattering 


definition, 47 
primary beam, 147 


similarity relation, 123 
UOT, 324 


Isotropie source, 92 
array, 121 
normal and oblique incidence (illustration), 


141 
plane, 99 
point, 108 
slab (plot), 126, 128 
volume, 122 


Iterative method, 265, 272 


Jablonski energy diagram, 4 
illustration, 4, 170 


Jacobian matrix, 264, 274 
Jones calculus, 219, 235 
Jones matrix, 219, 240 


conversion to Mueller matrix, 235 
definition, 230 
OCT, 237 
requisite independent measurements, 240 
rotator, polarizer, and retarder, 230 


Jones reversibility theorem, 240, 241 
Jones vector, 219, 229, 238, 239 


conversion to Stokes vector, 236 
Jones-Mueller transformation, 235 


k clock, 202 
Keratin, 9 
Kerr effect, 154 
Kerr gate (illustration), 155 
Krönecker delta function, 89 
Krönecker tensor product, 235, 236 


Lateral resolution. See Transverse resolution 
Law 


Beer's. See Beer's law 
Fick's. See Fick's law 
Hooke's. See Hooke's law 
Newton's second. See Newton's second law 
Snell's. See Snell's law 


Left circular polarization, 222, 224, 227, 229 
Legendre polynomials, 89 


associated, 29, 89 
Leith-Upatnieks holography (illustration), 174, 


175 
Lifetime, fluorescence. See Fluorescence 


lifetime 
Line spread function (LSF), 11 


illustration, 11 
Linear inverse algorithm, 261, 266 
Linear polarization 


decomposition, 49 
definition, 221 
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Jones vector, 229 
Mueller matrix, 227 
Poincare sphere, 224 
principal axes, 9 


Linear polarizer 
eigenpolarization, 225 
Jones matrix, 230, 231 
part of a circular polarizer, 233 
polarization-difference imaging, 157 
time gate, 155 


Linearity, 67, 251 
Local oscillator, 161, 254 
Lock-in, 254, 330 


illustration, 254 
LSF. See Line spread function 


Magnetic resonance imaging (MRI), 1, 2, 329 
Markov chain, 50 
MATLAB 


conventional and confocal microscopes, 169 
heated slab, 295, 296 
heated sphere, 300 
Mie theory, 22 
null plane, 259 
OCT, Fourier-domain, 202 
OCT, time-domain, 194 
Rayleigh theory, 20 


Maximum imaging depth 
ballistic imaging, 153 
comparison, 2 
definition, 13 
DOT, 249 
OCT, 181 
PAM (plot), 305 
PAT, 284, 313 


Maximum-amplitude projection 
definition, 306 
plot, 306 


Maxwell equations, 17, 26 
MCML, 40, 58, 67 
MCP. See Microchannel plate 
Mean absorption length, 2, 5 
Mean free path, 8, 115, 154, 324 


definition, 344 
typical value, 2 


Mean path length of flight, 277 
Mean time of flight, 276 
Mechanisms of ultrasonic modulation, 323 
Medical imaging modalities, 1 
Medium displacement, 288 
Medium velocity, 314, 316 
Melanin, 6, 8 


primary absorber, 6 


Michelson interferometry, 181, 185 
illustration, 182 


Microchannel plate (MCP), 155, 252 
Mie theory, 7, 17 


derivation, 26 
particle sizing, 145 
phase function, 47 


Mitochondria, 8, 10 
Mixer, 161, 254, 255 
Modal matrix, 232 
Modes of DOT, 249 
Modulation depth 


DOT, 250, 257, 258 
UOT, 325, 326, 331, 333 


Modulation transfer function (MTF), 12, 305 
Molar concentration, 6, 7 
Molar extinction coefficient, 6, 10 


spectrum (plot), 6 
Molecular conformation, 1 
Molecular imaging, 2 
Monochromator, 140 
Monte Carlo method, 37 


accuracy and speed, 106 
benchmark, 110, 138 
broad beam, 67 
equivalence to RTE, 83 
flowchart, 40 
hybrid, 119 
oblique incidence reflectometry, 141 
OCT, 210 
UOT, 324 


MRI. See Magnetic resonance imaging -
MTF. See Modulation transfer function 
Mueller calculus, 219, 235 
Mueller matrix, 219 


conversion from Jones matrix, 235 
definition, 224 
image, 242 
measurement, 227 
OCT, 237 
requisite independent measurements, 240 
rotator, polarizer, and retarder, 225 


Mueller OCT, 219 
images of tendon (plot), 242 
system (illustration), 239 


Multimode fiber, 186 
Muscle fiber, 1, 9, 38 
Myelin, 9 


NA. See Numerical aperture 
NAD(P)H, 10 
NADH, 10 
Nd:YAG, 304, 312 
Near field, 259 
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Nepers, 139 
Neutral-density filter, 139, 251, 256 
Newton's second law, 288, 314 
Nonballistic light. See Nonballistic photon 
Nonballistic photon, 115, 153 


arrival time, 154, 158 
polarization, 157 
spatial frequency, 156, 160 


Nondepolarizing medium, 223, 230 
Nonionizing radiation, 2 
Nonlinear inverse algorithm, 267, 272 
Nonlinear optical excitation, 169 
Nonlinear problem, 272 
Nonlinear reconstruction, 272 
Nonradiative relaxation, 3 
Null line (plot), 261 
Null plane, 259, 261 


plot, 261 
Numerical aperture (NA) 


definition, 166 
OCT, 190 
PAM, 303, 304 
two-photon microscopy, 171 


Nyquist criterion, 194, 200, 254 


Object function, 11 
Objective lens 


confocal microscopy, 165 
conventional microscopy, 164 
OCT, 190, 237-239 
two-photon microscopy, 171 


Oblique-incidence reflectometry, 140 
illustration, 141 
white-light (illustration), 144 


OCT. See Optical coherence tomography 
Offset-reference holography. See 


Leith-Upatnieks holography 
Operator, 274 


autocorrelation, 201 
linear, 159, 266 
real-part, 159 


Optical absorption, 1, 2, 6, 283, 307 
Optical attenuator, variable, 252 
Optical coherence tomography (OCT), 181, 283 


axial resolution versus bandwidth (plot), 193 
class I signal, 210 
class II signal, 211 
classes of signals (illustration), 210 
degree of polarization, 236 
demodulation (illustration), 192, 196 
Doppier. See Doppier OCT 
Fourier-domain. See Fourier-domain OCT 
Monte Carlo modeling, 210 
Mueller. See Mueller OCT 


polarization-sensitive, 219 
scattering versus depth (plot), 213 
signal versus depth (plot), 212 
system (illustration), 185, 191 
time-domain, 185 


Optical coordinates, 166 
Optical delay line, 195 
Optical density, 139, 256 
Optical fiber 


fused-silica, 209 
multimode, 186 
single-mode, 185, 237, 239 


Optical heterodyne imaging, 154, 160 
illustration, 162 


Optical imaging, motivation for, 1 
Optical microscopy, conventional, 164 


axial PSF, 167 
dark-field, 303 
illustration, 165 
lateral PSF, 167 
PSF, 166 
PSF (plot), 168 


Optical properties, 2, 85, 259 
Optical sectioning, 164, 169 
Optically thick medium, 154 
Optically thin medium, 154 
Optimal coordinates, 51, 53 
Ordinary ray, 9 
Orientation angle of major axis, 220 
Orthogonality, 34, 89, 265. See also 


Orthonormality 
Orthonormality, 89, 230, 232. See also 


Orthogonality 
Outgoing spherical wave. See Diverging 


spherical wave 
Oximetry, 7 
Oxygen saturation of hemoglobin. See 


Hemoglobin oxygen saturation 


PAM. See Photoacoustic microscopy 
Parallel Mueller OCT, 237 
Parallel-speckle detection, 329 
Paraxial approximation, 166 
PAT. See Photoacoustic tomography 
Path-length difference, 183, 186 
Path-length distribution, 186 
Path-length mismatch. See Path-length 


difference 
PDF. See Probability density function 
Pencil beam, 2 


conversion to isotropic source, 106, 107, 
112, 122 


conversion to isotropic source (plot), 129 
conversion to photon cloud, 115 
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cylindrical symmetry, 39 
definition, 38 
diffuse reflectance, 106 
diffuse reflectance (plot), 109, 111 
fluence (plot), 78, 79 
Green's function for broad beam, 67, 68 
hybrid model, 119 
normal and oblique incidence, 140 
normal and oblique incidence (illustration), 


141 
oblique-incidence reflectometry, 143 
OCT, 211 
slab (plot), 127, 130, 131 


Penetration depth, 56, 249 
definition, 99, 344 
scale for grid, 51 
water, 6 


Perturbation, 262-264, 269, 272 
Phase 


delay in GVD, 207 
delay in OCT, 188, 197 
delay in photon-density wave, 258 
delay in retarder, 226 
lag, 220 
lead, 220 
shift, 197 
shifter. See Retarder 
velocity, 188, 343 


Phase function 
Henyey-Greenstein. See Henyey-


Greenstein phase function 
Mie theory, 47 


Phasor representation, 159 
holography, 158, 172 
Jones vector, 229 
Michelson interferometry, 182 
Mie theory, 29 
photon density, 256, 257 


Phosphor screen, 155 
Phosphorescence, 3, 4 


illustration, 4 
Photoacoustic effect, 283 
Photoacoustic equation, 287-289, 309 
Photoacoustic microscopy (PAM), 303 


image (plot), 306 
imaging depth (plot), 305 
spatial resolution (plot), 305 
system (illustration), 304 


Photoacoustic tomography (PAT), 2, 283 
brain image (plot), 313 
reconstruction (illustration), 310, 312 


Photoacoustic wave, 283, 284, 287, 304, 312 
Photobleaching, 170 


Photocathode, 155, 252 
Photocurrent, 163, 182, 183, 209 
Photoelectric effect, 155 
Photoelectron, 155 
Photomultiplier tube (PMT) 


frequency-domain DOT, 254, 256 
frequency-swept UOT, 327 
optical heterodyne imaging, 161 
time-domain DOT, 252 


Photon cloud, 115 
Photon current, 97 
Photon density, 256, 273 


definition, 85 
perturbation, 262 
snapshot (plot), 3 
wave, 257-259, 267 


Photon energy, 4, 10, 171, 183, 256 
relation with wavelength, 14 


Photon packet 
absorption, 46 
boundary crossing, 48 
launching, 43 
moving, 46 
representation, 42 
scattering, 46 
step size, 44 
termination, 50 


Photon propagation regimes, 114 
ballistic. See Ballistic regime 
diffusive. See Diffusive regime 
quasiballistic. See Quasiballistic regime 
quasidiffusive. See Quasidiffusive regime 


Physical depth distribution, 186 
Physical quantities, 50, 72, 83 


interpolation and extrapolation (illustration), 
73 


Picosecond time analyzer, 252 
Piezooptical coefficient, 325 
Pinhole 


coherence-gated holographic imaging, 158 
confocal microscopy, 165 
spatiofrequency filtered imaging, 156, 157 
two-photon microscopy, 169, 170 


Planck constant, 14, 85 
PMT. See Photomultiplier tube 
Poincare sphere, 224 
Point spread function (PSF) 


confocal and conventional microscopy (plot), 
168 


confocal and two-photon microscopy, 170 
confocal microscopy, 165, 167 
conversion to LSF, 11 
convolution, 11, 168 
definition, 10 
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Point spread function (PSF) (Continued) 
lens, 166 
OCT, 189, 207, 208 


Poisson distribution, 136 
Polar angle 


illustration, 18 
sampling, 46 


Polarimetry, 219 
Polarizability, 17, 18, 23 
Polarization, 157, 219, 236 
Polarization analyzer 


measurement of Mueller matrix, 227 
measurement of Stokes vector, 222, 223, 228 
polarization-difference imaging, 157, 158 
polarization-difference imaging (illustration), 


157 
Polarization ellipse, 220, 222, 224 


illustration, 221 
Polarization homogeneous medium, 231 
Polarization inhomogeneous medium, 231 
Polarization origins, 9 
Polarization state, 219 
Polarization-difference imaging, 154, 157 


illustration, 157 
Polarization-sensitive OCT, 219 
Polarizer, 225, 230 
Polarizing element, 225, 226, 231 
Polystyrene sphere, 135 
Positive lens, 304 
Power spectral density, 184, 200, 325 
Primary absorbers, 6, 7 
Primary beam, 147 
Primary scatterers, 8 
Probability density function (PDF) 


definition, 60 
free path length, 44, 45 
path length, 324 
phase function, 87, 137 
sampling, 41 


Projection data, 163, 334 
Projection image, 154, 156, 163. See also 


Shadowgram 
Propagation constant 


GVD, 207 
Michelson interferometry, 182 
Mie theory, 27 
OCT, 187, 189 
photon density wave, 257, 258 
Rayleigh theory, 17 


Pseudorandom number, 41 
azimuthal angle, 47 
polar angle, 47 
Russian roulette, 50 


specular reflection, 49 
step size, 122 


PSF. See Point spread function 
Pulse oximetry, 7 
Pupil, 166 


Quantum efficiency of detector, 182 
Quantum yield, 146, 147, 171 


definition, 3 
fluorophores, 10 


Quasiballistic photon, 153 
Quasiballistic regime 


definition, 114, 115 
OCT, 186 
UOT, 329 


Quasidiffusive regime, 115 
definition, 114, 115 
OCT, 186 
PAM, 307 
PAT, 283 
UOT, 323 


Radiance, 83, 88 
diffusion expansion (illustration), 91 
illustration, 84 


Radiative transfer equation (RTE), 83, 88 
derivation (illustration), 86 


Radon transformation, 163, 333 
illustration, 164 


Raman scattering, 4, 5 
illustration, 4 
spectrum, 1 


Ram-Lak filter, 334 
Ramp filter, 312 
Random walk, 14, 37 
Raster scanning, 154, 305 
Rayleigh criterion, 259 
Rayleigh range, 190 
Rayleigh theory, 7, 17, 23 


scattering efficiency (plot), 24 
Real image, 160, 173-175 
Reciprocity 


acoustic wave, 288, 291, 307, 316 
confocal microscopy, 167 
grating-lens pair, 197 
optical fluence rate, 98 
polarization, 227 


Reconstruction of a hologram, 158, 173, 174 
Red shift, 9 
Reduced interaction coefficient. See Transport 


interaction coefficient 
Reduced scattering coefficient 


definition, 94, 344 
fluorescence excitation, 147 
map, 267 








INDEX 359 


Mie theory, 21 
oblique-incidence reflectometry, 140 
PAM, 305 
particle sizing, 145 
similarity relation, 123 
wavelength dependence, 170 


Reemission, 39, 52, 106 
imaging configuration, 249 
modeling, 50 
photon termination, 50 


Reemittance, 49, 50 
Reference-intensity term, 200 
Reflectance, 51 
Reflection mode, 158, 165 
Reflectometry, 140 
Refractive index 


glass, 44 
tissue, 8, 44 
water, 8, 44 


Refractive index, relative, 18, 104 
Refractive-index-matched boundary, 106 


boundary condition, 101 
definition, 55 
effect on fluence, 56 
effect on penetration depth, 57 
fluence distribution (plot), 58 
photon entry, 122 


Refractive-index-mismatched boundary, 55, 119 
boundary condition, 103 
computation time, 132 
effect on fluence, 56 
effect on penetration depth, 57 
fluence distribution (plot), 58 


Regularization, 275 
Relative refractive index, 18, 104 
Relaxation (illustration), 4 
Resonant frequency, 336 
Retarder, 226, 231 


activatable, 155 
half-wave, 154, 155, 226, 237 
part of a circular polarizer, 233 
quarter-wave, 226, 228, 237-239 
variable, 237 


Retina, 2, 9, 181, 209 
Riccati-Bessel function, 21 
Right circular polarization, 222, 224, 227 


illustration, 221 
Rotator, 225, 230 
RTE. See Radiative transfer equation 
Russian roulette, 43, 50, 123, 132 
Rytov approximation, 278 


Sample-intensity term, 200 
Sampling of a random variable, 41 


Scalar wave, 259 
Scatterers, primary, 8 
Scattering 


biological structures (illustration), 8 
coefficient, 8, 21, 343 
cross section, 8, 18, 25, 87 
efficiency, 8, 19, 20, 33 
efficiency (plot), 24 
mean free path, 8 
media, 2 
medium, layers (illustration), 38 
medium, slab (illustration), 121 
optical depth, 136 
origins, 7 


Secondary electron, 155 
Self-interference term, 200 
Sensitivity, 199, 209 
Sensitivity matrix, 264 
Serial Mueller OCT, 237 


system (illustration), 238 
Shadowgram, 154, 156. See also Projection 


image 
Shift invariance. See Translation invariance 
Shutter speed, 155 
Side lobe, 308 
Signal-to-noise ratio (SNR), 13, 250 


definition, 12 
effect on spatial resolution, 259 
UOT, 330, 336 


Similarity relation, 97, 106, 114, 123, 147 
diffuse reflectance (plot), 110 


Simultaneous iterative reconstruction technique 
(SIRT), 265, 275 


sine function, 163 
Single-mode fiber, 185, 237, 239 
Single-photon counting, 145, 155, 251, 252 
Singly backscattered light, 153, 210, 212, 213, 


239 
Singularity, 29, 290 
Singular-value decomposition (SVD), 265 
Sinogram. See Projection data 
SIRT. See Simultaneous iterative reconstruction 


technique 
Size parameter, 18, 21 
Slab, heated, 293, 302 
SLD. See Superluminescent diode 
Slow axis, 226 
Snell's law, 49, 104, 137, 140 


photon-density wave, 259 
SNR. See Signal-to-noise ratio 
Soft tissue contrast, 2 
Sound velocity. See Speed of sound 
Source density function, relative, 123 


plot, 129 
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Spatial filter, 157, 158, 238 
Spatial frequency, 12 


ballistic imaging, 156, 161 
grating-lens pair, 196 
holography, 160, 175 
PAM, 305 
spectrum, 156 
UOT, 334 


Spatial modulation frequency (plot), 305 
Spatial resolution 


ballistic imaging, 153 
comparison, 2 
confocal microscopy, 165 
definition, 11 
DOT, 249, 259 
OCT, 181, 237 
PAM, 307 
PAM (plot), 305 
PAT, 284 
streak camera, 155 
time gate, 156 
tradeoff with FOV, 13 
two-photon microscopy, 169 
UOT, 323, 331 


Spatiofrequency filtered imaging, 154, 156 
illustration, 156 


Specific absorption, 53, 72, 285 
definition, 85 
relative, 39 


Specific absorption rate, 287 
definition, 85 


Specific energy deposition. See Specific 
absorption 


Specific heat capacity, 285 
Specific power deposition. See Specific 


absorption rate 
Speckle 


coherence-gated holographic imaging, 
158 


grain, 236 
OCT, 210, 236, 284 
UOT, 324, 325, 329, 332 


Spectral intensity, 325 
Spectral interferometry, 198 
Spectral radiance, 83 
Spectral resolution, streak camera, 155 
Spectrograph, 145 
Spectrometer, 155, 198, 202 
Spectrophotometer, 139, 140 
Spectrophotometry, 139 
Spectroscopy, 2, 135 


fluorescence, 146 
white-light, 144 


Specular reflectance 
example, 44, 56 
formula, 43 
incident beam, 143, 147 
photon packet, 48 
unscattered reflectance, 52 


Specular reflection. See Fresnel reflection 
Speed of sound 


comparison with speed of light, 181 
formula, 315 
soft tissue, 305, 331 
UOT, 325, 336 
water, 284 


Sphere, heated, 297, 303 
Spherical harmonics, 88 
Spherical polar coordinates (illustration), 18 
Standard error, 55 
Step heating, 289 
Step size, 45, 122 
STF. See System transfer function 
Stokes parameters, 222, 223 
Stokes shift, 9 
Stokes transition, 5 
Stokes vector, 219, 222 


construction of Mueller matrix, 237 
conversion from Jones vector, 236 
polarization-difference imaging, 158 


Streak camera, 145, 155, 251 
illustration, 155 


Stress confinement, 285 
Stress relaxation time, 284 
Subsonic medium velocity, 316 
Superluminescent diode (SLD), 186, 209, 237, 


238 
Surface normal, 108, 265, 271 
SVD. See Singular-value decomposition 
Synthetic aperture, 307, 309 
System transfer function (STF), 12 


Targeted contrast agent, 2 
Taylor expansion, 137 


fluence rate at boundary, 102 
matrix form, 273 
pressure, 314 
propagation constant, 187, 207 


Telegraphy equation, 117 
Temporal PSF, 251 
Temporal resolution, 155 
Temporal spread function, 252 
Tendon, 242 
Thermal coefficient of volume expansion, 


285 
Thermal confinement, 285, 287, 289 
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Thermal diffusion, 284 
Thermal diffusivity, 284 
Thermal equation, 287 
Thermal expansion equation, 287 
Thermal relaxation time, 284 
Thermoelastic expansion, 283 
Time gate, 154 
Time of flight, 250, 252, 258 
Time reversal, 227, 291, 311 
Time-domain OCT, 185 
Time-gated imaging, 153, 154 


illustration, 154 
Time-resolved measurement, 145 
Tomography, 1 
Top-hat beam, 71 


fluence (plot), 78 
Top-hat function, 303 
Total interaction coefficient. See Extinction 


coefficient 
Total transmittance, 55 
Translation invariance, 67 


spatial, 11, 98, 263 
temporal, 68, 302 


Translation stage, 256, 304, 335 
Transmission mode, 165, 336 
Transmittance, 5, 51, 158 
Transport albedo, 106, 108, 123, 143 


definition, 344 
Transport interaction coefficient, 94 


definition, 344 
Transport mean free path 


conversion to isotropic source, 123 
definition, 344 
diffusion scale, 56, 97, 115, 132 
far diffuse reflectance, 140 
formula, 94 
PAM, 305 
scale for grid, 51 
UOT, 325 


Transport mean free time, 96, 97 
Transport scattering coefficient. See Reduced 


scattering coefficient 
Transposition symmetry, 240, 242 
Transverse resolution, 181, 309 


OCT, 190 
PAM, 305, 307 
UOT, 326, 329, 331, 337 


Transverse scanning, 156, 161 
Transverse-priority scanning, 190 
Turbid media, 2 
Two-photon excitation, 169, 170 
Two-photon microscopy, 154, 169 


illustration, 169 


Ultrafast laser, 154 
Ultrasonic array. See Ultrasonic transducer 


array 
Ultrasonic attenuation coefficient, 339 
Ultrasonic coupling, 304, 330, 336 
Ultrasonic pressure, 335. See also Acoustic 


pressure 
Ultrasonic scattering, 283 
Ultrasonic transducer, 283 


array, 307 
array (illustration), 308 
PAM, 304, 306, 307 
PAT, 312 
UOT, 326, 330, 332, 335 


Ultrasonography, 1 
analog of OCT, 181 
comparison, 2, 284 
Doppler flow, 206 
lack of polarization, 219 


Ultrasound absorber, 326 
Ultrasound imaging. See Ultrasonography 
Ultrasound-coupling gel, 304 
Ultrasound-modulated optical tomography 


(UOT), 323 
Unscattered absorption, 39, 46, 53 
Unscattered reflectance, 51, 52 
Unscattered transmittance, 51, 52, 55 
Unscattered transmitted photons, 136 
UOT. See Ultrasound-modulated optical 


tomography 
UOT, Fabry-Perot interferometry 


image (plot), 336, 337 
system (illustration), 335 


UOT, frequency-swept 
image (plot), 329 
spectrum (plot), 328 
system (illustration), 327 
virtual source (plot), 332 


UOT, multiple-speckle 
system (illustration), 330 


UOT, reconstruction-based 
image (plot), 334 
system (illustration), 333 


USAF-1951 target, 305 
User times, 130, 132 


Variable optical attenuator, 252 
Variance reduction technique, 42, 211 
Vasculature, 305, 306 
Vector wave, 259 
Velocity potential, 287 
Velocity resolution, 207 
Vibrational relaxation, 4, 9, 170 
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Video rate, 13 Waveplate. See Retarder 
Virtual image, 160, 173-175 Weak-modulation approximation, 324, 326 
Virtual optical source, 331 Weak-scattering approximation, 324 


Weight of a photon packet, 43 
Water White-light spectroscopy, 144 


absorption, 6 Wideband light source, 160 
compressibility, 285 Wiener-Khinchin theorem, 184, 189, 
dispersion compensation, 209 201, 325 
Grueneisen parameter, 285 
primary absorber, 6 X-ray 
refractive index, 8 CT, 163, 332 
refractive-index-matching, 101. 135 projection imaging, 156 
speed of sound, 284 radiography, I 
ultrasonic coupling, 304, 312, 330, 332, 336 


Wavelength of photon-density wave, 258 Zero-boundary condition, 145, 324 
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