

Home.Literature.Help.	Contact Us
	FAQ

Log in / Sign up	Log in / Sign up

	Post a question
	Home.
	Literature.

Help.

8503 overdue assignmnet 2

aby1425
ass2csc8503_over_due.pdf

Home>Computer Science homework help>8503 overdue assignmnet 2

CSC8503 Principles of Programming Languages Semester 1, 2015

Assignment 2

Due Date: 11:55pm AEST (13:55 UTC/GMT) Monday 10 May 2015
Weighting: 20%
Total marks: 20

Please submit this assignment using the assignment submission facility on the course
Study Desk. Submit a single file, either a ZIP or TAR archive. The archive
should contain (1) for Part A, a Haskell source file containing the function definitions,
and (2) for Part B, your version of all the files that are in the SPL distribution that you
downloaded.

Just add the Haskell file (call it say ass2.hs) to your collection of SPL files and zip or
tar them into an archive that you submit.

Part A – Haskell – 12 marks

Complete the following Haskell function definitions. Unless stated otherwise do not use library
functions that are not in the Haskell standard prelude. This constraint is so that you
gain practice in simple Haskell recursive programming. The Haskell 2010 standard prelude
definition is available at
https://www.haskell.org/onlinereport/haskell2010/haskellch9.html

Place all definitions in a single file. Submit just this text file electronically as
directed on the course Study Desk page. Use the specified function name as your
code will be tested by a Haskell function expecting that function name.

The testing program may use many more test cases than the ones shown in the specification.
So, please test your functions extensively to ensure that you maximise your marks.

1. [2 marks]
Write the function insertAt :: Int -> a -> [a] -> [a].
insertAt n x xs will insert the element x into the list xs at position n items from the
beginning of xs. In other words, skip n items in xs, then insert the new element.

You can assume that n will be a non-negative number. If n is greater than the length of
the list xs then add it to the end of the list.

For example

insertAt 3 ’-’ "abcde" ⇒ "abc-de"
insertAt 2 100 [1..5] ⇒ [1,2,100,3,4,5]
Hint: Use standard prelude functions ++ and splitAt.

2. [2 marks] Write a function uniq :: Eq a => [a] -> [a] that removes duplicate entries
from a sorted (in ascending order) list. The resulting list should be sorted, and no value
in it can appear elsewhere in the list.

For example:

1

https://www.haskell.org/onlinereport/haskell2010/haskellch9.html

uniq [1,2,2] ⇒ [1,2]
uniq [1,2,3] ⇒ [1,2,3]

3. [1 mark] Write a function
join :: Eq a => [(a,b)] -> [(a,c)] -> [(a,b,c)].
join takes two lists of pairs, and returns a single list of triples. A triple is generated only
when there exists a member of both argument lists that have the same first element. The
list elements are not sorted. This is the same semantics as the relational algebra natural
join operation.

For example:

join [(2,"S"),(1,"J")] [(2,True),(3,False)]

⇒ [(2,"S",True)]
join [(2,"S"),(1,"J")] [(2,1),(2,2),(3,4)]

⇒ [(2,"S",1),(2,"S",2)]
Hint: use list a comprehension.

4. [1 mark] This question extends the join function from question 3. Write the function
ljoin :: Eq a => [(a,b)] -> [(a,c)] -> [(a,b,Maybe c)].
This is the left outer join from relational algebra. If a tuple (database row) from the first
(left) argument does not have a matching tuple from the second argument, include that
tuple in the resulting tuple, but place a “null” value in place of the un-matched value. For
this implementation we use a Maybe data type, and use the Nothing value to denote Null.

For example

ljoin [(2,"S"),(1,"J")] [(2,1),(2,2),(3,4)]

⇒ [(2,"S",Just 1),(2,"S",Just 2),(1,"J",Nothing)]

5. [2 marks] Consider the following definition for a binary tree.

data Tree a = Leaf a | Node (Tree a) (Tree a)

A binary tree is balanced if, at every node, the difference between the number
of leaves appearing in the left and right subtree is at most one. (A tree which
contains just one leaf is considered balanced.)

Write the function isBalanced :: Tree a -> Bool that decides if the tree is balanced.
Hint: first write a function size::Tree a -> Int that counts leaves in a tree.

isBalanced (Node (Node (Leaf 1)(Leaf 3)) (Leaf 2)) ⇒ True
isBalanced (Node (Node (Leaf 1)(Node (Leaf 1)(Leaf 3))) (Leaf 2))

⇒ False

6. [2 marks] Write a function isNumber :: String -> Bool that tests if a string contains
a valid number. A valid number is defined in EBNF as:
number → .digit+ | digit+ [.digit∗]

For example, .5, 1.5, 1, 1. are all valid numbers. As usual, + signifies one or more
occurrences, and * denotes zero or more.

You may use the isDigit function from the Data.Char module.

Hint: you may wish to write functions someDigits, manyDigits :: String -> Bool
to test for .digit+ and digit∗.

2

7. [2 marks] Write a function getElems :: [Int] -> [a] -> [Maybe a] which takes a
list of integers signifying the position of an element in a list, and a list. It returns those
elements that correspond to the positions specified. Because a position may be greater
than the list size the returned element is a Maybe data type. If the position specified is
greater the the maximum list position then Nothing is returned, else Just value.

For example

getElems [2,4] [1..10] ⇒ [Just 3,Just 5]
getElems [2,4] [1..4] ⇒ [Just 3,Nothing]

Part B – SPL – 8 marks

You are required to make a number of modifications to the SPL compiler. The SPL laboratories
provide an introduction to the implementation of SPL and the SPL Reference Manual supplies
extra information.

The SPL source code and other resources are available at
https://tau.usq.edu.au/courses/CSC8503/resources.html

Important: get a fresh copy of the SPL distribution before starting work as it has
been modified slightly from earlier versions used in the tutorials.

Each of the following questions is independent in that they do not rely on any of the other
modifications. In marking the assignment, they will be tested independently.

I will be compiling and running your SPL system so your code must compile and run. If you are
unable to get some parts working and GCC or Bison compile errors exist, then comment out
the error-producing code so that I can compile and execute what you do have working.

Make sure you include all necessary files including the Makefile. I should be able to just type
‘make’ and your system will be compiled on my machine.

1. [3 marks] Implement an autoincrement operator for variables. The syntax for these new
operations is described by the extended factor grammar rule
factor → ++id | id++ | id | num | (expression) | - expression
These have the same semantics as the C operators of the same kind. The value of pre-
increment expression ++x is the current value of x, plus one , while the value of post-
increment expression x++ is the current value of x. Evaluation of both operators would
increase the stored value of x by one. Consider the following program.

var a; { a := 1;

display a;

display a++;

display a;

display ++a;

display a;

}

On execution it should produce as output the sequence 1, 1, 2, 3, 3.

You will need to modify the lexer lexer.c and the parser spl.y as follows:

3

https://tau.usq.edu.au/courses/CSC8503/resources.html

• Create new token name (say) INC in spl.y, and modify lexer.c to recognise the cor-
responding ++ symbol. Look at the way two-character symbols like ‘>=’ are handled.
Make sure that you update dispToken().

• Add grammar rules for the two new factor alternatives in spl.y.
• Generate the increment code for the two increment operators. Use the current rule

for factor : IDENT as a basis. You will need to generate add and move operations.
You’ll probably need a new temporary register, whose number will be stored in a
variable like reg, to store the operand ‘1’.

2. [2 marks] Implement a do ... until post-tested loop. The statement has syntax:

do statement+ until condition ;

Note that the body is a list of statements. This is different from the ‘while’ loop whose
body is a compound statement. Also note the trailing semicolon.

You will need to modify the lexer lexer.c and the parser spl.y as follows:

• Create new token name (say) UNTIL in spl.y, and modify lexer.c to recognise the
corresponding until reserved word. Make sure that you update dispToken().

• Add the ‘until’ loop grammar rule to spl.y.
• Add actions to the loop rule to generate corresponding code. Use the existing ‘while’

code for guidance, but beware the semantics are different. Most importantly, the
condition test follows the body of the loop, so the conditional jump address does not
need to be backpatched into the jump instruction. Also, unlike the ‘while’ loop, this
loop terminates when the condition is true.

3. [3 marks] Implement simple global constant identifiers. (Do not implement procedure-
local constants.) The declaration has the form

const id = num ;

There may be zero or more constant declaration statements.

For example you could declare const max = 100;.

You will need to do the following:

• Create new token name (say) CONST in spl.y, and modify lexer.c to recognise the
corresponding const reserved word. Make sure that you update dispToken().

• Add grammar rules to spl.y for (1) a constant declaration and (2) a list of constant
declarations; modify the program rule to include the constant declarations.

• Modify the symbol table to record the constant identifier’s value. Modify st.h to
add a new identifier class and add a ‘value’ attribute to the attr structure. Modify
list st in st.c so that the value and not the address of constant identifiers is
displayed.

• Add actions to spl.y. You should
– Add a symbol table entry when a constant declaration is recognised.

– Generate the correct machine code instruction to load a constant value into a
register when a constant IDENT in the factor rule is recognised.

4

	Applied Sciences
	Architecture and Design
	Biology
	Business & Finance
	Chemistry
	Computer Science
	Geography
	Geology
	Education
	Engineering
	English
	Environmental science
	Spanish
	Government
	History
	Human Resource Management
	Information Systems
	Law
	Literature
	Mathematics
	Nursing
	Physics
	Political Science
	Psychology
	Reading
	Science
	Social Science
	Liberty University
	New Hampshire University
	Strayer University
	University Of Phoenix
	Walden University

	Home
	Homework Answers
	Archive
	Tags
	Reviews
	Contact
		
	

Copyright © 2024 SweetStudy.com (Step To Horizon LTD)

