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High Confidence Networked Control for Next
Generation Air Transportation Systems


Pangun Park, Harshad Khadilkar, Hamsa Balakrishnan, and Claire J. Tomlin


Abstract—This paper addresses the design of a secure and fault-
tolerant air transportation system in the presence of attempts to
disrupt the system through the satellite-based navigation system.
Adversarial aircraft are assumed to transmit incorrect position
and intent information, potentially leading to violations of sepa-
ration requirements among aircraft. We propose a framework for
the identification of adversaries and malicious aircraft, and then
for air traffic control in the presence of such deliberately erroneous
data. The framework consists of three mechanisms that allow each
aircraft to detect attacks and to resolve conflicts: fault detection
and defense techniques to improve Global Positioning System
(GPS)/inertial navigation, detection and defense techniques using
the Doppler/received signal strength, and a fault-tolerant control
algorithm. A Kalman filter is used to fuse high frequency iner-
tial sensor information with low frequency GPS data. To verify
aircraft position through GPS/inertial navigation, we propose a
technique for aircraft localization utilizing the Doppler effect and
received signal strength from neighboring aircraft. The control
algorithm is designed to minimize flight times while meeting safety
constraints. Additional separation is introduced to compensate
for the uncertainty of surveillance information in the presence
of adversaries. We evaluate the effect of air traffic surveillance
attacks on system performance through simulations. The results
show that the proposed mechanism robustly detects and corrects
faults generated by the injection of malicious data. Moreover, the
proposed control algorithm continuously adapts operations in or-
der to mitigate the effects these faults. The ability of the proposed
approaches to defend against attacks enables reliable air traffic
operations even in highly adversarial surveillance conditions.


Index Terms—Automatic dependent surveillance—Broadcast,
intelligent control, misbehavior detection, next generation air
transportation systems.
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I. INTRODUCTION


T HE Next Generation Air Transportation System (Next-Gen) plan supported by the Federal Aviation Adminis-
tration (FAA) aims to enhance the safety and efficiency of
air transportation systems [1], [2]. The air traffic surveillance
network is a critical part of NextGen operations, responsible for
safety, traffic efficiency, and pilot assistance [3]. In NextGen,
aircraft will carry new wireless communication and computing
platforms, and have enhanced sensing capabilities. Intercon-
nected aircraft not only collect information about themselves
and their environment, but they also exchange this information
in real time with other nearby aircraft. Wireless communication
can operate beyond the line-of-sight constraints of radar and
vision solutions, and thus enables cooperative approaches for
air traffic management.


Security is an essential consideration for upgrades in the air
transportation system, because there is the risk of making mali-
cious behavior easier [2], [4]. The high level of decentralization
in NextGen has both advantages and disadvantages: a rich set
of tools is offered to pilots and authorities, but a formidable
set of vulnerabilities also develops. There are potentially many
hundreds of millions of communication devices in nation-
wide NextGen. It is recognized that in such a system, each
communication component represents a new point of system
vulnerability, and the system must be analyzed to understand
and mitigate the impact of an attack at such points. For instance,
an adversary may induce loss of separation between aircraft by
injecting incorrect data in the satellite-based navigation system.
These adversaries inject false surveillance information to create
a “malicious” aircraft without the aircraft’s knowledge. This
misinformation may be re-transmitted by the aircraft, thus
spreading to the rest of the network. As programmable sensors
and actuators become more pervasive in NextGen, implement-
ing appropriate security mechanisms will become even more
critical to the overall safety and performance of the system.


The primary obstacle for designing a secure air transportation
system is the tight coupling between communication, compu-
tation, and control. There are several challenges in securing
NextGen air traffic management. First, many of the envisioned
safety and pilot-assistance applications impose strict deadlines
on message delivery. Security mechanisms must take these
constraints into consideration and work with low processing
and messaging overhead. Otherwise, it would suffice for an
adversary to generate a high volume of false messages and over-
load resources. Second, since position dissemination is crucial
for air traffic management, incorrect position information has
severe impact on both safety and efficiency. Each aircraft needs
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to know not only its own position but also those of other aircraft
in its neighborhood. Global Positioning System (GPS) signals
are weak, can be spoofed, and are prone to jamming [5], [6].
Existing solutions such as frequency hopping do not completely
solve the problem [7]. Third, to locate the aircraft in three-
dimensional space, a minimum of four distance measurements
to neighboring aircraft are required for triangulation. However,
it is hard to obtain reliable measurements in the presence of
adversaries across an air traffic surveillance network.


Finally, employing defense-in-depth methodologies, includ-
ing fail-safe devices and fail-secure functionality, is a necessary
part of any serious effort to protect NextGen. However, even a
robust combination of such security systems is not sufficient
for addressing the vulnerabilities of such a complex control
system. The above is especially true when reliable operations
must continue despite failures in the system. To address this
complex problem and provide comprehensive security, all of
the communication, computation, and control systems must be
safeguarded in NextGen.


This paper addresses the fault detection and defense problem
of air traffic surveillance networks in enroute areas. Ground
infrastructure in these areas is sparse, and several regions are
not covered by ground stations. Hence, the main detection and
defense mechanisms are implemented onboard aircraft. We as-
sume that aircraft regularly broadcast their status (e.g., position,
speed, and direction) along with warnings about potential dan-
gers using wireless communication [3]. Further, to simplify the
presentation in this paper, all aircraft are assumed to fly at the
same altitude. This assumption is generally valid in enroute ar-
eas, yet the analysis is straightforward to generalize to the case
in which aircraft change altitude. We propose mechanisms com-
bining the detection and defense algorithms of surveillance net-
works with a fault-tolerant control algorithm. Specifically, this
consists of three mechanisms that allow aircraft to detect attacks
and to resolve conflicts (violations of minimum separation re-
quirements): (1) Fault detection of the GPS signal that increases
the integrity of the GPS/Inertial Navigation System (INS) nav-
igation loop in adversarial environments; (2) Distributed detec-
tion and defense techniques using the Doppler effect and the
Received Signal Strength (RSS) measurement of received mes-
sages in order to verify aircraft position through the GPS/INS
system; and (3) A fault-tolerant control algorithm that accounts
for the uncertainty of surveillance information by introducing
additional separation. In contrast to other position verification
approaches, our detection and defense mechanisms are de-
signed for a general network environment where nodes or bea-
cons can move and no special hardware for ranging is available.


The remainder of this paper is organized as follows.
Section II summarizes related work including localization tech-
niques and control algorithms. Section III describes the models
used for the air traffic and surveillance systems. Section IV
presents the proposed system architecture. In Section V, we
present the state and measurement dynamics. Section VI ex-
plains the GPS/INS loop that estimates the position of aircraft.
Section VII proposes a self-localization algorithm using the
Doppler effect and RSS measurements. Section VIII presents a
fault detection technique using RSS measurements. Section IX
describes a static verification algorithm to detect malicious air-


craft. Section X presents the control algorithm, and the system
performance is evaluated in Section XI. Finally, Section XII
summarizes the contributions of the paper.


II. RELATED WORK


During recent years, many localization techniques have been
proposed for a variety of wireless network applications [8].
We only provide a brief survey on localization techniques
suitable for air traffic surveillance networks. The localization
approaches of air traffic networks differ in their assumptions
about network deployment and hardware capabilities.


Centralized localization techniques would be impractical for
air traffic surveillance networks because of the high communi-
cation costs and inherent delay, hence we focus on distributed
localization techniques [9]. Distributed localization methods
use only limited communication with nearby nodes [10]. These
methods can be classified as range-based or range-free. Range-
based techniques use distance estimates or angle estimates in
location calculations, while range-free solutions depend only
on the contents of received messages. Range-based approaches
utilize time of arrival [11], time difference of arrival of two
different signals [12], angle of arrival [13], RSS [14], and
Doppler shifts [15], [16]. Some of these techniques require
expensive separate hardware [11]–[13]. Moreover, stationary
models of radio signals are not realistic assumptions since RSS
measurements can be very sensitive to the channel environ-
ment [14]. The range-based approach using Doppler shifts is
less susceptible to multi-path propagation than the RSS-based
ranging approach [14], [17], since reflections do not change
the frequency of the signal. The Doppler effect has been used
extensively to estimate the velocity of tracked objects or to
improve the accuracy of tracking systems [15], [16]. In [15],
the self-localization of sensors is developed based on measuring
Doppler shifts in a tone that is emitted from a mobile beacon.
Each static node updates its location information by using the
location and heading of the beacon as well as the frequency of
the acoustic tone. On the other hand, in [16], the tracked node
transmits a signal and stationary nodes measure the Doppler
shifts of the transmitted signal. A number of stationary nodes
are deployed around the tracked node and the tracked node
cooperates with the tracking system.


None of these schemes address the problem encountered
in air traffic surveillance, in which both the nodes and the
beacons can move. They can be adapted for mobile networks
by refreshing location estimates frequently, but are not designed
with any explicit consideration for how mobility affects the
localization performance. The only work we are aware of that
considers localization with mobile nodes and beacons is in
[18]. They use the sequential Monte Carlo Localization method
for the random waypoint mobility model. Although it is very
frequently used in mobile ad hoc networks, this mobility model
is not realistic. The particle set can become easily diffused,
dispersing across the image plane in the LOP of the enroute
layout. Moreover, this localization technique is vulnerable to
internal adversaries, since range-free localization depends only
the contents of received messages. In addition, the particle-
based approximation of filtered density is not sufficient to
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characterize the tail behavior of true density. This problem
becomes more severe when the outliers are existent.


Previous localization techniques are vulnerable to several
kinds of attacks, and an attacker may be able to disrupt the
integrity or availability of all known localization techniques. A
secure range-free localization technique was developed in [19].
However, it cannot detect and remove compromised beacon
nodes. A number of authors have proposed using time-of-fight
measurements and the speed of light to securely gain location
information about untrusted parties. A time-bounded protocol
is proposed as a defense against man-in-the-middle attacks
on cryptographic identification schemes [20]. This protocol
can be used to verify the proximity of two devices connected
by a wired link. A protocol using temporal packet leashes is
proposed for wireless networks to defend against similar attacks
[21]. A new distance bounding protocol is proposed based
on ultrasound and radio wireless communication in [22]. The
protocol can only make an approximate decision about whether
or not a claimer is within a certain region. These systems either
require specific hardware or rely on an infrastructure of verifiers
to check positions. However, these assumptions are not likely
to hold in air traffic surveillance networks. It is desirable to
be able to verify neighbors’ position without any additional
or dedicated devices. Furthermore, most techniques require
beacon nodes to be numerous and evenly distributed so that they
can cover the whole network. We are interested in performing
localization in a more general network environment where no
special hardware for ranging is available, the prior deployment
of beacon nodes is unknown, the beacon density is low, and the
node distribution is irregular.


Jamming attacks have been used as Denial-of-Service (DoS)
attacks against different applications using wireless communi-
cations. In [23], several techniques for the detection of various
jamming attacks are proposed and evaluated at MAC layer.
The structure of this problem has been investigated in order
to identify tradeoffs and capture the impact of different pa-
rameters on performance [24]. Optimal attack and network
defense strategies were derived for the case of a single-channel
wireless sensor network. The authors assume that all network
nodes are uniformly distributed and that the topology is static.
Countermeasures for coping with jammed regions in wireless
networks have been studied in [7] and [25]. In [25], the use
of low density parity check codes was proposed to cope with
jamming. Further, an anti-jamming technique was proposed for
802.11b that involved the use of Reed-Solomon codes. In [7],
a three-dimensional modulation scheme, known as message-
driven frequency hopping (MDFH), was proposed. The basic
idea of MDFH is that part of the message acts as the pseudo-
random sequence for carrier frequency selection at the transmit-
ter. The selection of carrier frequencies is directly controlled by
the encrypted information stream rather than by a predefined
pseudo-random sequence as in conventional FH, in order to
improve the system spectral efficiency.


The increasing importance of security in vehicular networks
has attracted [26]. Sybil attacks [27], in which an adversary
creates an illusion of traffic congestion by claiming multiple
identities, are known always be possible except under unreal-
istic assumptions of resource and coordination among entities


Fig. 1. Proposed framework in enroute airspace.


without a logically centralized authority. Several techniques
to detect Sybil attacks in ad hoc networks, including radio
resource testing, registration, and position verification have
been studied [28]. Position verification is a more promising
approach for vehicular networks, since radio resource testing
relies on specific assumptions on radio modules and registration
alone is not effective. A distributed detection scheme of Sybil
attacks is proposed for networks in which a set of fixed base
stations overhear a malicious node [29]. This scheme will not
suit enroute air traffic management, since ground base stations
are sparse, and several regions are not even covered.


Several studies in the past decade have addressed the control
of air traffic in a distributed setting [30]–[33]. However, these
studies have not considered a combination of decentralized
control with measurement and state uncertainty, nor have they
addressed security issues with the proposed protocols. Eulerian
models of air traffic such as [32] are useful when the per-
spective is strategic rather than tactical. Centralized algorithms
such as those proposed in [34] can handle the computational
requirements, but such approaches are limited in their scope
when individual aircraft need to carry out conflict detection
and resolution. In order to guarantee safety in the presence of
uncertainty, the theory of reachable sets has been shown to be
highly effective [31]. However, the computational requirements
of this method are too prohibitive for fast distributed control.
To the best of the authors’ knowledge, this paper is the first
one to propose a framework combining detection and defense
surveillance with robust control. The proposed protocol is both
computationally light and robust to uncertainty, as well as
accidental or deliberate faults in measurement.


III. FRAMEWORK


The proposed framework with its components is illustrated
in Fig. 1. The direction of the arrows represents the flow of
information. The infrastructure of NextGen is comprised of the
mobile units (aircraft) and ground facilities. Aircraft-to-Aircraft
(A2A) and Aircraft-to-Infrastructure (A2I) communication will
enable safety-critical applications that provide warnings about
accidents, traffic conditions and other events [2]. Secure air
transportation systems are assumed to rely on public key
cryptography and digital signatures to protect A2A and A2I
messages in NextGen.
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A. Communication Protocols


Automatic Dependent Surveillance-Broadcast (ADS-B) is
designed to increase the safety, capacity, and efficiency of the
airspace by enhancing information sharing between aircraft and
ground facilities [3]. This system provides transmission ranges
of typically 60 to 100 nm, with data rates in the 1 Mbps
range. ADS-B uses 1090 MHz frequency band, different from
the operation bandwidth of GPS systems [6]. Safety messages
are signed and include the coordinates and time stamp of
the sender. When an aircraft validates a certificate, it checks
whether its credential has been revoked. If the credential is not
revoked, it verifies the key used to sign the message and, once
this is done correctly, it verifies the message. After validating
an ADS-B message, an aircraft stores the information in its
location table. Since our detection and defense mechanisms
are distributed and localized, we assume that most neighboring
aircraft in the airspace can be trusted. This allows aircraft to
use information from reliable neighbors in order to identify
malicious aircraft. It is reasonable to expect that only a rela-
tively small percentage of aircraft (less than 10%) would be
malicious.


B. Adversary Model


The reliability of safety-critical control systems can be
threatened by a wide variety of failure modes, including fail-
ures of the communication links, sensors, controllers, and/or
actuators. While some failure modes result in complete loss of
control, others would only result in loss of reliable control.


In this paper, we consider adversaries or attackers that dis-
rupt the air traffic management by attacking the satellite-based
navigation system. Any of these attacks can affect air traffic
management. There is a difference between malicious and non-
malicious misbehavior. Non-malicious misbehavior is typically
random, and can be detected easily. On the other hand, it is
difficult to handle a sophisticated attack that exploits weak-
nesses in the satellite-based navigation system. An attacker can
sufficiently modify messages to pass outlier detection tests.
For example, adversaries could jam satellite signals within
their range and thus selectively or completely prevent the GPS
updates. Further, a GPS spoofing attack broadcasts a slightly
more powerful signal that the legitimate one, and then slowly
deviates away towards the position desired by the attacker
[5]. Therefore, the system needs to provide more compre-
hensive protection from malicious misbehavior. The proposed
defense mechanisms apply to both malicious and non-malicious
misbehavior.


IV. SOLUTION OVERVIEW


This section provides an overview of the proposed architec-
ture of the Misbehavior Detection System (MDS) whose role
is to detect off-nominal aircraft. Each aircraft executes this
system, which functions in a distributed and localized manner.
The details of each component are given in subsequent sections.


A necessary part of the design of autonomous systems is the
inclusion of fault detection and identification algorithms which


ensure that aircraft operate in a safe and reliable manner. The
MDS protects the interface between aircraft networks, onboard
control units, and data and services required by other aircraft,
as illustrated in Fig. 2. This system constantly monitors the
status of onboard systems and provides real-time detection of
attacks. Further, the MDS controls the data flow from external
sources to the aircraft. We consider two approaches for position
verification in the MDS: a GPS/INS integrated system and a
Doppler/RSS fusion process. A Kalman filter is used to fuse
high frequency inertial sensor information with low frequency
GPS data in the GPS/INS integrated system. The Kalman filter
estimates the errors in position and velocity using the difference
between external GPS sensor information and inertial indicated
information. An error propagation model is used to fuse the ob-
served and predicted positions and velocities. These parameters
are fed back to the INS unit. To verify aircraft position through
GPS/INS system, the detection and defense mechanisms are
designed using the Doppler effect and RSS measurements of
received ADS-B messages. An Extended Kalman Filter (EKF)
is used to estimate the distance to neighboring aircraft. Given an
adequate number of neighbors, the current position is obtained
by using the Minimum Mean Square Estimate (MMSE). Then,
a Kalman filter predicts the position of an aircraft based on
the model of state dynamics. Once the Doppler/RSS-based
position is obtained, predicted positions are compared to the
ones estimated by the GPS/INS system. If the two differ by
more than a predefined threshold, the GPS/INS position is
deemed adversarial and rejected.


The estimated distance to neighboring aircraft is also used
to verify neighbors’ reported position through ADS-B. If the
estimated distance does not match with distance information
of a received ADS-B message, the verifying aircraft discards
that message. Furthermore, we propose a simple detection
technique using the history of RSS measurements to verify
aircraft position. The control algorithm is responsible for com-
puting the control action of an aircraft based upon the new
observation. The control algorithm accounts for the uncertainty
of the surveillance information in the detected malicious data.
We emphasize that our mechanisms rely on the availability
of prior information collected during periods of time when
it deems it is not under attack. In contrast to other position
verification approaches, we do not rely on special hardware or
on preinstalled infrastructure [11]–[13, 29].


V. SYSTEM MODEL


This section presents the modeling of aircraft dynamics and
various measurement models. As discussed in the previous
section, two different measurement models are used to design
the detection and defense mechanisms: GPS/INS system and
Doppler/RSS system.


A. System Dynamics


The state of a moving aircraft at time k is defined by the
vector x(k) = (x(k), y(k), ẋ(k), ẏ(k), ẍ(k), ÿ(k)) where x(k)
and y(k) specify the position, ẋ(k) and ẏ(k) specify the speed,
and ẍ(k) and ÿ(k) specify the acceleration in the x and y
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Fig. 2. System architecture of misbehavior detection system. We add the section number corresponding to the explanation of each component.


directions in a two-dimensional space. The aircraft dynamics
can be described by a discrete-time linear time-invariant model


x(k) = Fx(k − 1) + w(k) (1)


where x(k) ∈ R6 is the state vector, F is the state transition
matrix, and w(k) ∈ R6 is white Gaussian noise with zero
mean and covariance matrix Q(k) > 0, i.e. E[w(k)] = 0 and
E[w(k)w(k)T ] = Q(k). The covariance matrix Q(k) of w(k)
is Q(k) = σ2wI, where I denotes the unit matrix and σw is the
standard deviation. Note that the system model does not include
the input set. The control input is based on the information
of GPS/INS system. However, the information resource of
GPS/INS system is not secure under attack.


The time scale for reaction to events as described in this
paper is of the order of several seconds. We therefore assume
that the changes in velocity are accomplished by the next time
step of the simulation. Maximum and minimum velocity is
specified in the optimization problem, and includes the phys-
ical limits of the aircraft at the given altitude in Section X.
Furthermore, since the time scale for reaction is long, it is not
required to capture computationally intensive equations of state
dynamics, such as the six degree of freedom models used in
simulators. The state dynamics in this paper are modeled as a
Wiener-sequence acceleration model [35]. This model provides
a good compromise between complexity and performance in
the modeling of aircraft dynamics. In such a model, F and w
are equal to


F =


⎛


⎝
I2 ∆tI2


∆2t
2


I2
O2 I2 ∆tI2
O2 O2 I2


⎞


⎠


and w(k) =


⎛


⎝
(∆2t /2)B
∆tB
B


⎞


⎠ ψ(k) where ∆t is the elapsed time


since the last time step, and ψ(k) ∈ R is zero mean white
Gaussian noise with assumed known covariance. I2 ∈ R2×2 is
the identity matrix, O2 ∈ R2×2 is a zero matrix, and B ∈ R2×1
is a matrix for which all elements are equal to 1. The state
error depends on the length of time between two calibrations
using surveillance information, which in turn depends on the


network performance and security. For instance, adversaries
can jam GPS signals within their range to increase the time
interval between calibrations of GPS receivers. Since control
stability is expected to be subject to a maximum latency in the
sensing layer of the network, it is necessary to ensure that the
time difference between two calibrations satisfies the maximum
latency acceptable to the control algorithm. We derive the value
of the maximum allowable latency in Section X-F.


The general measurement model is represented as


z(k) = Hx(k) + v(k) (2)


where z(k) ∈ Rm is the measurement vector of the sensor and
H ∈ Rm×n is the measurement matrix. v(k) ∈ Rm is white
Gaussian observation noise with zero mean and with assumed
known covariance matrix R(k) = E[v(k)v(k)T ].


In the next subsections we will describe the two specific
measurement models that we use in the proposed architecture.
Accurate analysis of measurement error is essential to ensuring
effective data fusion of GPS/INS system and Doppler/RSS
system, as we will discuss in Sections VI and VII. Furthermore,
the error bound of measurement error is critical for controller
design. Additional separation is introduced to compensate for
the uncertainty of surveillance information due to adversaries.
Hence, it is essential to characterize the uncertainties in position
and velocity for aircraft. This is discussed in detail in Section X.


B. Measurement Dynamics of the GPS/INS


A simple measurement model for GPS is,


zgps(k) = Hgps(k)x(k) + vgps(k) (3)


where Hgps =


⎛


⎝
I2 O2 O2
O2 I2 O2
O2 O2 O2


⎞


⎠, zgps(k) ∈ R6 is the GPS


measurement vector, and vgps(k) ∈ R6 is zero mean white
Gaussian noise with known covariance Rgps(k).


The observed variable from the inertial sensor is the accel-
eration for the Inertial Measurement Unit (IMU) in an absolute
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frame of reference. A simplified IMU measurement model is


zimu(k) = Himux(k) + vimu(k) (4)


where Himu =


⎛


⎝
O2 O2 O2
O2 O2 O2
O2 O2 I2


⎞


⎠, zimu(k) ∈ R6 is the IMU


measurement vector, and vimu(k) ∈ R6 is zero mean white
Gaussian noise having known covariance Rimu(k). The pro-
cessed acceleration measured by the IMU is integrated to obtain
velocity and position. Each aircraft estimates the state x(k)
using the measurement model in (3) and (4).


The error bounds of IMU sensors provide an explicit measure
of the IMU performance, when it is the sole means of navigation
(due to GPS outage) [36], [37]. The stochastic errors in inertial
sensors cause the subsequent numerical integrations of the
measurements to exhibit an ever increasing variance. By using
Euler’s method, the variance of double integrated wide-band
noise is


σ2x = t
4
sσ


2
ω


k(k + 1)(2k + 1)


6


where ts is the sampling interval, σω is the standard deviation of
wide-band noise, and k is the number of samples. Note that the
variance in position error due to wide-band noise is a function
of the sampling interval, the noise variance and time. Thus,
without any external resetting properties, white noise will cause
an unbounded error growth in the IMU sensors.


C. Measurement Dynamics of Doppler Effect and RSS


To verify aircraft position through GPS/INS system, we
propose a technique for the self-localization of aircraft using
the Doppler effect and the RSS measurements. This section
describes the measurement dynamics of Doppler effect and
RSS of received ADS-B messages for aircraft localization.


A well known phenomenon that is observed when objects
move relative to each other is the Doppler effect. The Doppler
effect describes this situation in which an object transmits a
signal and moves relative to an observer, the frequency of
the observed signal will be shifted and the magnitude of the
shift depends on the frequency of the signal and the velocity
of the transmitter and observer relative to each other. In the
method proposed, the frequency offset in the receiver is used
as the observed state for distance estimation and localization.
Modern air traffic control radars use the Doppler effect to
discriminate moving aircraft from stationary targets [38]. Even
though several localization techniques based on Doppler effect
have been proposed, none of these schemes target the case when
nodes and beacons can move [15], [16]. Using the Doppler
effect in our proposed architecture as a verification of GPS/INS
is attractive since it relies on the smoothness of the Doppler
shift and the ability to predict it with low, essentially constant
errors over long periods of time. This is in contrast to the IMU
sensors, whose error grows exponentially with time. Further,
this approach is robust, since reflections do not change the
frequency of the signal.


Fig. 3. Geometry for calculating the distance and relative angle between
aircraft using the Doppler effect.


The frequency of the signal observed by a receiver moving
relative to a transmitter can be written as follows:


fr = ft −
ft
c


(
v⃗ij ·


r⃗ij
rij


)
(5)


where fr is the detected frequency, ft is the frequency of the
transmitted radio signal, c is the speed of the light, v⃗ij is the
relative velocity of the receiver, r⃗ij is the range vector from
the transmitter i to the receiver j, and r⃗ij /rij is the unit length
vector. Equation (5) allows us to compute the relative speed of
the tracked aircraft to the receiver, if the transmitted frequency
ft is known. Note that estimating the transmitted frequency
with sufficient accuracy is required in the ADS-B standard [3].
Equation (5) can be written in a scalar form as follows:


fr = ft −
ft
c


vij cos θij


where vij is the relative scalar velocity between the receiver and
the transmitter and θij is the angle between the range vector and
the direction of travel of the receiver. Therefore


∆f =
vij cos θij


−λt
(6)


where ∆f = fr − ft and wavelength λt = c/ft. Consequently,
we use (6) to compute the relative angle of the transmitter and
the receiver, if the difference between the two frequencies as
well as the relative speed are known. Note that estimating the
frequency difference is possible using the radio transceiver on
the aircraft. We assume that aircraft communicate their speeds
as measured by the IMU sensors via ADS-B.


Consider the geometrical layout shown in Fig. 3. Let the
distance between aircraft i and j at time k be d(k), their
respective velocity vectors be v⃗i(k) and v⃗j (k), and the relative
angles be θij (k) and θji(k). Then, the distance between them
is given by


d(k + 1) =
[
(d(k) − vi∆t cos θij − vj∆t cos θji)


2


+ (vi∆t sin θij + vj∆t sin θji)
2
]0.5


(7)


where ∆t is the elapsed time since the last time step. Moreover,
the update equation for the relative angle θij is


θij (k + 1) =
π


2
+ θij (k)


− cos−1
(


vi∆t sin θij (k) + vj∆t sin θji(k)


d(k + 1)


)
.
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Since d≫|vi∆t sin θij (k)+vj∆t sin θji(k)|, we approximate


cos−1
(


vi∆t sin θij (k) + vj∆t sin θji(k)


d(k + 1)


)


≈ cos−1
(


vi∆t sin θij (k) + vj∆t sin θji(k)


d(k)


)
.


By using the Taylor series expansion for the arccos function,
the approximated update of the relative angle θij is


θij (k + 1) = θij (k) −
vi∆t sin θij (k) + vj∆t sin θji(k)


d(k)
.


We can derive a similar iterative update equation for the other
relative angle, θji.


We define the new state vector at time k as xdop(k) =
(d(k), θij (k), θji(k)) where d(k) specifies the distance be-
tween aircraft i and j, θij and θji specify the relative angle in
a two-dimensional space. The distance between aircraft can be
described by a discrete-time nonlinear model


xdop(k + 1) = fdop (xdop(k)) + wdop(k) (8)


zdop(k) = hdop (xdop(k)) + vdop(k) (9)


where xdop(k) ∈ R3 is the state vector, fdop(xdop(k)) is the
state transition matrix, wdop(k) ∈ R3 is white Gaussian noise
with zero mean and covariance Qdop(k) > 0. The covariance
matrix Qdop(k) is given by Qdop(k) = σ2dI, where I denotes
the unit matrix and σd is the standard deviation. zdop(k) ∈
R2 is the measurement vector of the sensor, vdop(k) ∈ R2
is the white Gaussian observation noise with zero mean and
a known covariance Rdop(k) = E[vdop(k)vdop(k)T ]. Finally,
hdop(xdop(k)) is the measurement matrix.


The state model is


fdop (xdop(k + 1))


=


⎛


⎜
⎝


d(k + 1)


θij (k) −
vi∆t sin θij (k)+vj ∆t sin θji(k)


d(k)
+ w1


θji(k) −
vi∆t sin θij (k)+vj ∆t sin θji(k)


d(k)
+ w2


⎞


⎟
⎠ (10)


where d(k + 1) is given in (7). The error in distance estimation
depends on the length of time between two calibrations, which
depends on the performance of ADS-B. The measurement
model for the Doppler effect is


hdop (xdop(k)) =


(
vij cos θij (k)


−λt
+ v1


v⃗ji cos θji(k)
−λt


+ v2


)
. (11)


Now, we present a widely-used radio signal propagation
model considering two factors that may incur signal attenu-
ation: path loss and shadowing [17]. The received power Pr
(measured in dB) that the aircraft receives from a particular
transmitter at time tk can be modeled as


Pr(tk) = Pt(tk) − P L0 − 10α(tk) log
(


d(tk)


d0


)
+ Xg (12)


where Pt(tk) is the transmission power in dBm, d0 is a refer-
ence position, d(tk) is the position where the signal strength


is measured, P L0 is a correction constant which describes the
additional loss at a reference position, α(tk) is called the path
loss exponent, and Xg is a Gaussian random variable with
zero mean and standard deviation σg . The path loss exponent
normally ranges from 2 to 6 (default value α = 2 in ADS-B
network [39]).


VI. SENSOR FUSION FOR GPS AND INS


A Kalman filter is used to fuse GPS and INS information.
The GPS/INS loop uses a full two-dimensional inertial navi-
gation unit as an internal sensor and a differential GPS unit as
an external sensor. The actual implementation proposed for the
GPS/INS integration loop is presented in Fig. 2. The Kalman
filter is extensively used for GPS/INS data fusion [36], [37].
We adapt the standard GPS/INS integration loop for an adver-
sarial environment: in particular, we include fault detection of
the GPS signal by designing an error threshold derived from
statistical reasoning and a condition on the Geometric Dilution
of Precision (GDOP) [40] value to determine whether the GPS
data is valid. The validation procedure uses the innovations and
their associated covariances evaluated by the filter to determine
the whiteness and unbiasedness of the innovations. The chi-
squared distribution test provides a validation process which
utilizes the theoretical properties of the innovation sequence.
The threshold value is determined prior to the fusion process
and represents the probability that a particular observation lies
within an ellipsoid. The GDOP error mechanism arises when
the trilateration geometry of the measurement sensors generates
Lines-of-Position (LOP) which are nearly collinear (i.e., not
orthogonal). Two positions are nearly collinear if they lie almost
on the same line, that is, if the angle between them is small.
When such a condition exists, the measurement errors can be
blown up to determine a position.


The uncertainty in the GPS fix, or reported position, can
increase depending on the aircraft’s environment, that is, the
uncertainty increases when the system is under attack through
jamming or injection of malicious navigation messages. The
GPS fixes have to be constantly monitored in order to determine
if they are faulty. The GDOP indicator is considered to deter-
mine the rejection threshold of the measurement, depending on
the geometry of the satellites. During the rejection of erroneous
position GPS fixes, the fusion process remains at the prediction
stage, and subsequently, the INS determines the navigation
states. For GPS/INS-based navigators, these analytical results
provide simple predictions of the robustness of the systems to
temporary GPS outage.


VII. DATA FUSION IN DOPPLER/RSS LOOP


This section describes an approach to the self-localization of
aircraft using the Doppler effect and the RSS measurements.
The objective of this algorithm is to verify GPS positions using
independently received ADS-B messages. Each aircraft broad-
casts its own location to its neighbors using ADS-B. Neighbor-
ing aircraft measure their separation from their neighbors and
use the Doppler effect and RSS measurements to estimate their
own positions. The fusion process estimates aircraft position in
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three phases as illustrated in Fig. 2. An EKF is first used to
estimate the distance to neighboring aircraft using the Doppler
effect and RSS measurements. We use the EKF because we
are dealing with a nonlinear relationship between observed fre-
quency and inter-aircraft distance as explained in Section V-C.
The EKF utilizes RSS observations in order to determine the
distance error, and this is then used to correct the distance
estimated using the Doppler effect.


We calibrate the path loss exponent factor of the RSS-based
ranging technique. Assuming that the path loss exponent is
slowly varying, the RSS is used to estimate the current distance
and the path loss factor can be calculated from the estimated
distance using the EKF. Given d0 and P L0, the distance d
and the path loss factor α are computed from (12). Given a
ranging technology that estimates aircraft separation, a MMSE
is used to estimate the actual position of the aircraft. In order
to construct confidence intervals, we estimate the covariance
matrix of the estimated position. We use the exponentially
weighted moving standard deviation since the sample size may
be small in enroute areas [41]. Finally, a Kalman filter is used
to predict the position by using the model for state dynamics
described in Section V-A.


VIII. RSS DETECTION


In this section, we investigate the feasibility of using signal
strength measurement to verify aircraft position. By succes-
sively measuring RSS variations, we obtain an estimate of
the evolution of relative position between aircraft. This rough
localization gives a sufficiently accurate indication of the coher-
ence of the RSS measurements. The objective of the detection
algorithm is to allow aircraft i to estimate the signal strength
received from an aircraft j, based on previous RSS measure-
ments. Such an approach can detect the intrusion of a malicious
aircraft in the network. Let us consider the situation in which
the aircraft i measures the strength of the received signal Pr
from aircraft j at tk−1. The possible locations of aircraft j
with velocity vj in the future form a circle whose center is the
previous position of aircraft i and whose radius is equal to vj∆t
at tk = tk−1 + ∆t. Aircraft i measures the maximum RSS,
P maxr (tk), when aircraft j is at the nearest position to aircraft
i, and the minimum RSS, P minr (tk), when the aircraft j is at


the most distant position from aircraft i P minr (tk) ≤ Pr(tk) ≤
P maxr (tk). The maximum velocity of aircraft is limited by
physical laws to vmax. Therefore, a claimed position update
should be within a predicted space window, calculated around
the aircraft’s previous position and a radius of 2vmax∆t. From
the radio propagation model, the RSS at time tk is


Pr(tk) = Pr(tk−1) + log


(
d(tk−1)


d(tk)


)
+ Xg. (13)


The RSS measured by the aircraft i should belong to the interval
of (P minr (tk), P


max
r (tk)) at tk = tk−1 + ∆t. If the RSS differs


from the predicted signal strength for each neighboring aircraft
by more than the defined thresholds, the receiver can deem the
received signal as the product of an attack. Our localization
technique uses only the history of RSS to deliver a reliable and
fast detection. We verify the RSS measurement by using one
sample z-test [42].


IX. POSITION VERIFICATION


We present a simple statistical algorithm to detect whether
an aircraft is transmitting its actual position. Various model-
based fault detection techniques have been discussed in [43].
Each aircraft executes this algorithm when enough measure-
ments from a neighbor are collected. We divide the observation
period, T , into discrete time intervals, t1, . . . , tn. The claimed
positions of an aircraft i form a sequence: ρ(t1), . . . , ρ(tn),
and the estimated positions: ρ̃(t1), . . . , ρ̃(tn) where n is the
sample size. Assuming that i is a nominal aircraft, the estimated
position ρ̃(ti) contains only random errors and should follow a
normal distribution. The difference di = ρ̃(ti) − ρ(ti) should
follow the standard normal distribution with mean µ0 = 0 and
variance σ20 . Since the mean should be µ0, the two-tailed t-test
[42] is


|t| =


∣∣∣∣∣
d̄ − µ0


σ√
n


∣∣∣∣∣


where d̄ is the mean of the samples and σ is the standard
deviation of the samples. The number of degrees of freedom
in this test is n − 1.


X. CONTROL ALGORITHM


The different detection and defense mechanisms presented
in this paper significantly limit the options of adversaries, but
these mechanisms are still insufficient for addressing some
vulnerabilities. Whether due to inadvertent failure, error, or
malicious action, reliable control also requires corrective mech-
anisms and fault-tolerant algorithms.


Fig. 4 shows a simplified model of a small section of enroute
airspace. It depicts the intersection of four jet routes at the same
altitude. This results in four intersection points 100 kilometers
apart, and a total of 12 links. Designated intersections of two or
more paths in the airspace are known as fixes, while the straight-
line paths between two fixes are called links. Assuming that
the jet routes are unidirectional, the flight path of each aircraft
includes two orthogonal intersections.
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Fig. 4. A simplified layout of enroute airspace, which we use in our simulations.


A. Objectives and Constraints


We propose a control algorithm to minimize the flight times
of aircraft from origin to destination points in the airspace
representation. The primary control variable in this formulation
is a change in velocity. A minimum separation requirement
between each pair of aircraft is imposed for safety. The primary
objective of the control algorithm is to meet this separation
standard with a predefined minimum probability in adversarial
environments. From an implementation perspective, it is also
desirable to reduce the number of trajectory modifications [44].
An aircraft is sent to a holding pattern (assumed to be an
elliptical trajectory designed to introduce separation between
aircraft) only if no feasible velocity is found to resolve a pro-
jected conflict. The proposed control algorithm is considered
to be automatically implementable by the aircraft implicated
in a potential conflict. This would be in the form of advisories
from the onboard algorithm providing information to the pilot.
We assume that the aircraft under attack will not make any
aggressive maneuvers, that is, its heading and velocity changes
will be small.


The relative geometry between a given pair of aircraft de-
pends on the links that they currently occupy. Broadly, any
two links in the network in Fig. 4 can be classified as being
paired or unpaired. Two links are said to be paired if they
lead to the same fix, otherwise they are said to be unpaired.
This distinction is important when considering the separation
requirement between aircraft. If two aircraft are on paired links,
the point of closest approach between them may occur before
the merge point. In the next section, a geometrical constraint on
the velocity of the trailing aircraft in a paired merge is derived.


B. Velocity Constraint for Paired Merges


Consider the geometrical layout shown in Fig. 5. Let us de-
fine the “time of contact” to be the time instance when aircraft B
receives a broadcast from aircraft A for the first time. Let the
relative position of aircraft A with respect to B at the time of
contact be r⃗0, their respective velocity vectors be v⃗A and v⃗B ,
and the merge angle be θ = π/2. Let the relative velocity be
given by v⃗r = v⃗A − v⃗B and the angle between r⃗0 and v⃗r by φ.
Then the distance and time of closest approach between


Fig. 5. Geometry for calculating the distance of closest approach.


A and B can be calculated using the relations derived in [45].
The time of closest approach is given by


tc = −
(


r⃗0 · v⃗r
v⃗r · v⃗r


)


and the relative position at the instant of closest approach is


r⃗c = r⃗0 + v⃗rtc = r⃗0 − v⃗r
(


r⃗0 · v⃗r
v⃗r · v⃗r


)
.


The magnitude of the distance of closest approach is given by


r2c = r⃗c · r⃗c = r
2
0 sin


2φ.


Let the minimum separation required between two aircraft at
any time be smin. The maximum allowable value of φ is defined
by the minimum separation requirement smin and an additional
value ϵ, and is given by


r20 sin
2 φ = (smin + ϵ)


2 ⇒ sin φ =
smin + ϵ


r0
. (14)


The additional separation ϵ is added to smin in order to meet
the separation constraint with a probability β. The function
of this additional separation is to compensate for the effect of
adversaries. The value of ϵ is a function of the uncertainties in
position and velocity for the two aircraft. If the uncertainties are
assumed to be Gaussian and independent, ϵ = σΦ−1(1 − β/2),
where σ is the standard deviation of the position and Φ is the
cumulative Gaussian function. The higher the value of β and/or
the measurement uncertainty, the more conservative the control
strategy. Note that the initial distance between A and B should
be more than (smin + ϵ) for (14) to be valid. The value of φ
decreases monotonically after initial contact, and the point of
closest approach is reached when φ = π/2. Therefore, if the
initial value of φ is less than π/2, the distance between A and B
increases monotonically. To maximize vB while still maintain-
ing separation, it should satisfy (14) with φ > π/2. Finally, this
constraint is not active if φ < π/2, or if the projected point of
closest approach is beyond the merge point.


C. Optimal Velocities for Paired Merges


Suppose aircraft A and B are at a distance sA and sB respec-
tively from the merge point in Fig. 5. The optimal velocities vA
and vB that minimize the time at which the trailing aircraft B
reaches the merge point are given by


min
vA,vB


sB
vB


s.t. vA ≤ vA,max, vB ≥ vB,min (Feasibility)
vB ≤ f (vA, sA, sB ) (Separation). (15)
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Here, the constraint f on vB considers the uncertainty of
surveillance information due to adversaries, as explained in
Section X-B. Optimal values of vA and vB can be calculated us-
ing Lagrange multipliers, and are given by vA = vA,max, with
vB satisfying the separation constraint with equality. Note that
this result simplifies the implementation of the decentralized
version of the problem. Since aircraft A always flies at the
maximum feasible velocity (subject to physical constraints and
upstream traffic) and transmits this vA,max as part of its ADS-B
broadcast, aircraft B is able to compute its own optimal velocity
unilaterally.


D. Synthesized Control Strategy


The nominal control algorithm uses local information re-
ceived from ADS-B transmissions. In this paper, each ADS-B
message is assumed to include a time stamp, and the maximum
and minimum achievable velocities of the aircraft. Position and
velocity reports are included in ADS-B by default. Conflict
detection is carried out in a pairwise fashion for each pair of
aircraft. When an aircraft A receives a broadcast from aircraft B
for the first time, it first decides whether the new aircraft is
likely to be a factor in its own trajectory. Only two types of
engagements carry the risk of a conflict: aircraft that are on
the same link, or on intersecting links approaching the same
intersection point. In the above scenario, if aircraft B is on
the same link and ahead of aircraft A, conflict resolution is
the responsibility of aircraft A. It ensures that its own velocity
is low enough to not risk a breach of the separation standard
with aircraft B. On the other hand, if aircraft B is on another
link but heading to the same intersection point, a pairwise
precedence order first needs to be calculated. Aircraft A has
precedence if its projected time at the intersection is earlier than
that for aircraft B. In that case, aircraft A does not carry out
any resolution maneuver. If aircraft B is expected to cross the
intersection before aircraft A, the optimal velocity for aircraft A
is calculated. Hence, resolution maneuvers (if required) are
computed for the aircraft that are lower in the priority order.
Consequently, an aircraft that is ith in the priority order could
have up to (i − 1) downward adjustments of its computed
velocity while the control algorithm is processing data. If the
computed velocity is less than the least feasible velocity, it
is commanded to enter a holding pattern in order to maintain
separation. Finally, in addition to the detection of a new aircraft,
an aircraft recalculates its velocity if there is a change in state
(link, velocity or hold) of another aircraft already being tracked.
Since each pair of aircraft decides on a mutual order at the
merge point, a unique ordering of all aircraft heading to a given
merge point is developed.


Due to stochastic transmission times and possible packet
loss, state updates between aircraft are asynchronous. However,
the time stamp within each ADS-B message allows the esti-
mation of the current state of each aircraft, and also reduces
the likelihood of inconsistent calculations in the distributed
algorithm. Additionally, it guards against a mismatch caused by
the clocks on two aircraft not being synchronized. As long as
all aircraft use the transmitted time stamps, computations will
be consistent.


E. Handling Untrustworthy Aircraft


When a transmitting aircraft is judged to be untrustworthy,
only the distance to the aircraft and the relative velocity is
assumed to be reliable. The distance to the aircraft is obtained
by using the Doppler effect and RSS of received ADS-B
messages as illustrated in Algorithm 1. A modified version of
the nominal control algorithm is used by the receiving aircraft,
in order to ensure separation from the compromised aircraft.
A projection of the expected relative distance and velocity is
made using the last known reliable report. The uncertainty in
this position and velocity is then estimated using the difference
from the measured distance and velocity. The uncertainty in
state for the aircraft under attack is much larger than the aircraft
which has nominal navigational performance.


When an aircraft determines that it is under attack, the control
algorithm commands it to fly straight and level at the current
velocity. While this strategy may not be feasible in congested
arrival airspace with predefined approach paths, it is reasonable
for enroute airspace. Moreover, it ensures that the aircraft does
not make any maneuvers that are not expected by the surround-
ing traffic. It retains maximum accuracy of the INS as explained
in Section VI. Finally, it also guarantees that the aircraft will fly
out of the area under attack in a finite amount of time.


F. Challenges to Control Implementation


There are several issues to overcome before the proposed
algorithm can be implemented in practice. There is a non-zero
probability that two aircraft are projected to reach their merge
point at exactly the same time. In this case, the asynchronous
nature of ADS-B transmissions proves beneficial [3]. The con-
trol algorithm is set to give precedence to the other aircraft in
case of deadlock. Since it is very likely that one aircraft receives
a state update before the other, it will already have slowed down
by the time the other aircraft begins its computations. Even
if message delivery is nearly simultaneous and both aircraft
reduce their own velocities, a small time difference between
the adjustments will be sufficient to resolve the deadlock in the
next computation cycle.


The same logic can be extended to non-cooperative aircraft
in the airspace. If an aircraft that is expected to slow down does
not do so, other aircraft can modify their own velocities in order
to deconflict with it. This control logic can be used in the case
of mixed ADS-B equipage or malicious ADS-B system. Actual
non-cooperative behavior can be differentiated from message
reception failure by using the State Update Interval (SUI) to
calculate the probability of no messages being received by the
aircraft in a given time window. We define the SUI as the
elapsed time between successive state vector reports. The SUI
is important from the point of view of stability of the control al-
gorithm, for example, if an aircraft has to slow down suddenly.


The maximum allowable SUI that retains network stability
is derived below. It is assumed that aircraft arriving earlier at
the merge point have higher priority, and that they can change
their velocities without considering the aircraft behind them.
Suppose aircraft A, flying at velocities vA, and B, flying at vB ,
from Fig. 5 have previously made contact while at distances
sA and sB from the merge point, and aircraft A has priority.
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Aircraft A reduces its velocity to v′A ≤ vA while at a distance
dA from the merge point. Aircraft B, which is at distance dB
from the merge point, needs to adjust its own velocity to main-
tain separation with aircraft A. Nominally, aircraft A would
reach the merge point after a further time tA = dA/vA, which is
changed to t′A = dA/v


′
A ≥ tA. The instant of closest approach


can be approximated by assuming that aircraft B is going to be
in conflict with aircraft A at a time (t′A − tA), before aircraft A
arrives at the merge point. ηA denotes the maximum allowable
SUI after which aircraft B can receive an update from aircraft
A, and still not have to enter a holding pattern. In other words,
aircraft B flies at its original velocity for a further time ηA, after
which it slows to vB,min until aircraft A is at the merge point.
At this time, aircraft B needs to be at a distance smin + ϵ from
it, where ϵ is the additional padding required due to adversaries.
Equating the distance covered by aircraft B up to time tA in the
nominal case and up to time t′A under the actual case, yields


dB −smin−ϵ= vBηA +vB,min
(


dA
v′A


−ηA
)


︸ ︷︷ ︸
Actualscenario


= vB
dA
vA︸ ︷︷ ︸


Original scenario


.


Simplifying the above equation, the maximum allowable SUI
for communication from aircraft A to aircraft B is


ηA =


dA
vA


vB − dAv′
A


vB,min


vB − vB,min
. (16)


Equation (16) suggests that as dA decreases, that is, as aircraft
A approaches the merge point, it needs to provide faster
updates in case of velocity changes. If aircraft B is already
flying at its minimum speed (vB = vB,min), then v′A = vA,
that is, aircraft A cannot slow down without causing aircraft B
to change its trajectory to maintain separation. In the nominal
case, vA = v′A and (16) implies ηA = dA/vA. Aircraft A
only needs to transmit an update when it reaches the merge
point, supporting the assumption that control computations
need only be run when aircraft transition from one link to
another. For any v′A < vA, the maximum allowable SUI is less
than dA/vA, that is, there must be an update before aircraft
A arrives at the intersection. Note that the minimum update
interval is independent of position uncertainty. This is because
the uncertainties are introduced into the formulation as an
additive term to the minimum separation, they cancel out when
considering only a change in aircraft velocity.


XI. PERFORMANCE EVALUATION


We evaluate the performance of the proposed system in terms
of the congestion and instability of air traffic management along
with the performance of the detection and defense algorithms
under attack. The simulations are carried out using a simple
model of air traffic operations, depicted in Fig. 4. For the simu-
lations presented in this section, we assume that an adversary is
located in the center of the enroute layout in Fig. 4. We consider
a nominal range R, within which adversarial transmissions can
be received. We fix the maximum attack range R = 100 km
that covers the most congested area of the enroute layout. We
call this the area under attack. The more powerful radios an ad-
versary has, the higher its potential impact can be. For instance,


adversaries can lock on actual GPS signals for a period of time
when entering an area under attack. We abstract the physical
properties of the adversarial equipment and consider the periods
of time it can cause unavailability and keep the receiver locked
on the spoofed signal. We conjecture that persistent disruption
of data transmission is the worst form of attack, as it has
the most severe impact. Further, a sophisticated attacker could
selectively inject malicious data while avoiding detection.


We evaluate the effectiveness of the detection and the defense
algorithms in a variety of setups, to gain insight into the role of
each component of the system. We capture the uncertain nature
of air traffic demand by the assumption that aircraft appear
at the boundary of the simulated region as a Poisson process
with average inter-arrival time λ = 300 s. To account for future
traffic levels, 1.5 times (λ = 200 s) and 3 times the current
traffic level (λ = 100 s) are also simulated. Individual flights
are simulated from their initial appearance 200 km from the
center, until their arrival to the fixes in Fig. 4. The simulation
data was obtained from 6 experiments, with each repetition
lasting 5.5 hours.


A. GPS Jamming Attack


An adversary jams the GPS signal in a nominal range R =
100 km with a certain attack probability per second. Whenever
an aircraft gets GPS data, it either uses it to estimate the position
or it rejects the GPS data if it deems it unreliable.


Fig. 6 shows the average position error and average number
of holds per hour as a function of different attack probabilities
p = 0, . . . , 1 for traffic loads λ = 100, 200, 300 s, with the
vertical bars indicating the standard deviation of the samples
around the average. The attack probability p = 1 has the most
severe impact since GPS system is completely jammed. The key
metric for evaluating a defense technique is the accuracy of the
position estimates under attack. Further, holding patterns in the
airspace are an indicator of congestion and instability within
the network. We see that the onset of instability is immediate
for the highest traffic case, indicating that the nominal stability
margin is quite small. These holds are necessary when just a
velocity change by an aircraft cannot guarantee safety. In dense
traffic, one holding pattern typically causes a cascade of holding
patterns upstream, affecting a large section of the airspace.


In Fig. 6(a), the average position error increases as the attack
probability increases due to the GPS jamming attack. The gate
function of the GPS/INS system rejects jammed GPS signals.
The position error increases quadratically when it is the sole
means of navigation as explained in Section V-B. During the
affected portion of the trajectory, the filter remains in the predic-
tion stage and the IMU runs stand-alone. As the uncertainties of
position and velocity increase, the control algorithm increases
the separation between aircraft to guarantee the safety. Fig. 6(b)
emphasizes the unstable nature of the network as the frequency
of GPS jamming attack increases. We observe the increase
in position error as the air traffic load increases under GPS
jamming attack. The position of aircraft suddenly changes
when it enters the holding mode under the high traffic load.
Hence, the uncertainty in the observed error of the IMU in-
creases as the traffic load increases under GPS jamming attack.
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Fig. 6. Average position error and average number of holds per hour as
a function of different attack probabilities p = 0, . . . , 1 for different traffic
loads λ = 100, 200, 300 s. The vertical bars indicate the standard deviation
as obtained from 6 experimental runs of 5.5 hours each.


However, the error of the Kalman filer is not significant around
several meters.


In Fig. 6(b), the proposed detection and defense algorithm
efficiently stabilizes the traffic for nominal traffic arrival rates
λ = 200, 300 s. The average number of holds increases as the
traffic arrival rate increases. The current architecture cannot
cope with higher traffic load λ = 100 s, and experiences a
continuous increase in the number of holds in the airspace, most
of which have been delayed in the central region. While holding
patterns are generated in bursts, low to moderate traffic loads
allow the airspace to recover and resume smooth operations.
However, traffic accumulates if more holds are generated before
this recovery is complete for high traffic loads. Furthermore,
the effect of attack probability is significant for smaller interval
of air traffic generation λ = 100 s due to the higher traffic
loads. The benefits of using a GPS/INS integrated system are
seen to be quite small for high traffic loads. Hence, the system
with high traffic demand becomes unstable even by a relatively
unsophisticated jamming attack.


At the normal air traffic load λ = 200, 300 s, the proposed
system yields essentially the same level of average number


Fig. 7. Jamming attack sequence and position error of GPS/INS integrated
system.


of holds, because the conflict detection and resolution time
is similar due to the similar position accuracy for λ = 200,
300 s. Overall, for short unavailability periods, the GPS/INS
integrated system can be effective. As long as the position error
does not grow significantly, the GPS jamming attack can be
detected and efficiency defended.


Fig. 7 shows the evolution of position error due to a jamming
attack, for a single aircraft with attack probability p = 0.8 and
traffic load λ = 200 s over the duration of the flight. The aircraft
starts at a location 50 km North, 200 km East of the origin and
moves towards 50 km North, −200 km East. In Fig. 7(a), the
spikes are time instances where packets are received. Fig. 7(b)
presents the fused result of the navigation loop onboard the air-
craft. After the aircraft crosses the boundary of the region under
attack, errors build up until the aircraft leaves the vulnerable
region. The gate function rejects the incorrect GPS fixes until
the end of the vulnerable region where there is a slight adjust-
ment since the uncertainty in the IMU solution is, at this stage,
greater than that of the GPS fix. It shows the effectiveness of the
Kalman filter, which keeps the position error less than 20 m.
Even at this very high attack probability, the estimator and
controller are able to guarantee safety.
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Fig. 8. Error of estimated position, attack sequence, true trajectory, estimated
trajectory, GPS/INS trajectory, and Doppler/RSS trajectory of a single aircraft
for the fraction of malicious aircraft p = 0.1 and traffic load λ = 200 s.


B. Sophisticated GPS Attack


Even though INS can be effective for short unavailability
periods of GPS signals, a sophisticated adversary can remain
undetected if the system only relies on GPS and INS. The ad-
versary could interfere with GPS messages and inject malicious
navigation messages while avoiding detection [5].


Therefore, we now evaluate the Doppler/RSS system and its
control performance by measuring how its estimated position
errors, detection delay, and number of holds vary for different
scenarios. Fig. 8 shows the error in the estimated trajectory,
attack sequence, true trajectory, and estimated trajectory of a
single aircraft with the fraction of malicious aircraft p = 0.1
and traffic load λ = 200 s. The aircraft starts in a position
50 km North, 200 km East and moves to a direction 50 km
North, −200 km East. As the aircraft approaches the boundary
of the vulnerable region, GPS/INS errors will increase due to
the GPS spoofing attack. GPS fixes occur when the aircraft
departs from this region. Fig. 8(a) presents an enhanced view of
the attack sequence. The spikes are time instances where correct
GPS signals are received. Fig. 8(b) shows a two-dimensional
projection of the true trajectory and estimated trajectory using
the GPS/INS system and the Doppler/RSS system. The esti-
mated position presents the fused result using either GPS/INS
system or Doppler/RSS system. Since a simple fault detection


of the GPS/INS system is not able to reject the sophisticated
GPS attack, the fused data is drawn into the vulnerable region.
A significant position error is created because of the spoof-
ing attack over a short period of time. However, the fusion
algorithm of the Doppler/RSS loop is robust in its position
estimates since it relies on the received signal information from
neighboring aircraft instead of GPS signals.


In Fig. 8(b), the estimated position switches from GPS/INS
system to Doppler/RSS system when the position verification
fails at time 580 s. By comparing with the attack sequence,
we see that the detection delay of GPS spoofing is 70 s. The
detection delay, which is the time required for the detection of
an adversary by a receiver, is an important metric for evaluating
the performance of the detection algorithm. When the trajec-
tory difference between the GPS/INS system and Doppler/RSS
system is small, the estimated position relies on the estimated
position of GPS/INS system. Fig. 8(a) shows the spikes in error
corresponding to switches between different systems.


Fig. 9 shows the average position error in the Doppler/RSS
estimate, average detection delay, and average number of holds
per hour for traffic loads λ = 100, 200, 300 s, as a func-
tion of different fractions of malicious aircraft p = 0, . . . , 0.1.
Fig. 9(a) shows the average error in the position estimates
from the Doppler/RSS system when the aircraft density varies.
By comparing position errors for traffic loads λ = 200, 300 s,
increasing the density of aircraft improves the position accuracy
using the Doppler/RSS system since aircraft will receive more
location messages from neighboring aircraft. Note that increas-
ing the density of aircraft makes localization easier, but it also
increases the number of malicious aircraft in our setup. The
number of correct aircraft available for estimating the position
decreases as the fraction of malicious aircraft increases. Hence,
the average position error of Doppler/RSS system increases
as the fraction of malicious aircraft increases. When the filter
detects a malicious aircraft, it rejects the information from this
aircraft when it estimates its position.


Fig. 9(b) shows how the detection delay of malicious aircraft
correlates with network density. Each aircraft verifies its own
position using the hypothesis test based on received neighbor
information. Since the accuracy of the Doppler/RSS system
improves as aircraft density increases, the detection delay is sig-
nificantly improved. In Fig. 9(c), even though the traffic arrival
rate increases, the average number holds does not significantly
increase. For the two cases with λ = 200, 300 s, the average
number holds are approximately equal, because the conflict de-
tection and resolution time is similar due to the similar position
error and detection delay. The proposed Doppler/RSS system
and control algorithm improve the detection and resolution time
of conflicts for the safety constraints, and also provide a high
level of efficiency in the system.


C. Operation Under a Challenging Scenario


The Doppler/RSS system can be effective for detecting
and defending against a possibly sophisticated GPS adversary,
when the fraction of malicious aircraft is small. As long as the
number of malicious aircraft due to sophisticated GPS attacks
does not grow significantly, a sophisticated GPS attack can
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Fig. 9. Average position error, average detection delay, and average number of holds per hour as a function of different fractions of malicious aircraft
p = 0, . . . , 0.1 for traffic loads λ = 100, 200, 300 s.


be detected. However, for a sufficiently high number of so-
phisticated GPS adversaries, the attack can remain undetected.
We study even extreme conditions, because the system has to
remain operational under these conditions. Malicious aircraft
are implemented as follows. Whenever a malicious aircraft
is about to send an ADS-B message to announce its present
position, it selects a fake position on the field and applies it to
the ADS-B message (instead of its real position). We assume
that the GPS/INS system is not able to detect this malicious
aircraft. Whenever an aircraft gets a data packet, it estimates
the distance by using the Doppler/RSS system. We consider
a challenging scenario where the number of correct aircraft
is less than three due to its poor GDOP indicator. Hence, it
is not feasible to estimate the position using the Doppler/RSS
system. Note that it is not trivial to directly modify the ADS-B
system since most commercial aircraft are currently equipped
with a hardware security module, whose purpose is to store and
protect sensitive information. The control algorithm becomes
conservative since it only relies on the distance estimation using
the Doppler/RSS system.


Fig. 10 shows the average number of holds per hour as a func-
tion of different fractions of malicious aircraft p = 0, . . . , 0.1
for various traffic loads λ = 100, 200, 300 s. The number of


Fig. 10. Average number of holds per hour as a function of different fractions
of malicious aircraft p = 0, . . . , 0.1 for traffic loads λ = 100, 200, 300 s.


holds significantly increases as the fraction of malicious aircraft
increases. The system with high traffic loads becomes unstable
even with a small fraction of malicious aircraft. Hence, if the
ADS-B system is malicious or faulty, then the system easily
becomes unstable even if the GPS/INS system is active.
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XII. CONCLUSIONS AND FUTURE WORK


This paper proposes a framework for a secure and fault-
tolerant system in the presence of adversaries across an air
traffic surveillance network. Our detection and defense mech-
anism is a distributed and localized approach in which each
aircraft can detect the reception of malicious signals, and then
reject unreliable location reports generated by the attack. A
Kalman filter is used to fuse high frequency inertial sensor
information with low frequency GPS data. We also propose a
technique for the position verification and localization of an
aircraft that utilizes, the Doppler effect and RSS of the received
ADS-B messages from neighboring aircraft. This estimated
neighboring information is then used to verify the aircraft’s
own position by means of Kalman filtering. By accounting
for the uncertainty of surveillance information, we design a
control algorithm to minimize the flight time while meeting
the safety constraints in adversarial environments. We evaluate
the effect of security breaches on the air traffic management
through simulation. Simulation results show that the proposed
algorithms are capable of robustly detecting faults caused by
malicious aircraft. Moreover, the filter using the Doppler effect
and the RSS is shown to be able to detect sophisticated GPS
attacks. The proposed control algorithm continuously adapts
system operations to avoid and tolerate malicious faults.


The simple model considered in this paper, while providing
valuable insights, could be extended, for example, by consider-
ing control inputs. The tradeoff between computation complex-
ity and efficiency of misbehavior detection systems is important
for practical implementation. Another related direction is the
formal analysis of the proposed architectures by considering
realistic NextGen scenarios.
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